1
|
Geng S, Zhu L, Wang Y, Liu Q, Yu C, Shi S, Yu S. Co-Colorectal cancer stem cells employ the FADS1/DDA axis to evade NK cell-mediated immunosuppression after co-cultured with NK cells under hypoxia. Int Immunopharmacol 2024; 143:113535. [PMID: 39488917 DOI: 10.1016/j.intimp.2024.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Colorectal cancer (CRC) ranks as China's second most common cancer and fifth top cancer death cause. The study highlights the role of Natural Killer (NK) cells in targeting cancer stem cells (CSCs) that evade immune responses in CRC. Colorectal cancer stem cells (CCSCs) were stem from HT-29 cells and co-cultured with NK cells under normoxic or hypoxic conditions. The impact of this co-culture was evaluated using CCK8 assays for NK cell viability, ELISA for cytokine level changes, and flow cytometry for assessing NK cell apoptosis and activation. Comprehensive metabolomic and transcriptomic analyses were also performed to identify key genes and metabolites involved in the interaction between CCSCs and NK cells Co-culture of CCSCs with NK cells under hypoxia reduced NK cytotoxicity, increased NK apoptosis, and altered cytokine secretion by decreasing IFN-γ and TNF-α levels while increasing IL-6. Transcriptomic and metabolomic analysis identified 4 genes (FADS1, ALDH3A2, GCSH, MTCL1) and 3 metabolites (glyoxylic acid, spermine, DDA) as significant. Interfering with FADS1 counteracted the suppression of IFN-γ and TNF-α induced by CSC cells. Curiously, this inhibition caused by si-FADS1 could be neutralized by the addition of exogenous DDA. Co-culturing with NK cells notably increased spermine levels. Exogenous spermine resulted in a significant reduction in HT-29 cell death rates at 32 µM, 64 µM, and 128 µM, compared to NK cells without spermine. Our research explored CCSCs employed the FADS1/DDA axis to evade NK cell-mediated immunosuppression after co-cultured with NK cells under hypoxia.
Collapse
Affiliation(s)
- Shan Geng
- Central Laboratory of the People's Hospital of Dazu, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Lei Zhu
- Department of General Surgery, The First People's Hospital of Kunming, 650034 Kunming, Yunnan Province, China
| | - Yanping Wang
- Central Laboratory of the People's Hospital of Dazu, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Qiang Liu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Caiyu Yu
- Department of Hernia Surgery, Qujing No.1 Hospital, 655099 Qujing, Yunnan Province, China
| | - Shan Shi
- Office of Hospital, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China.
| | - Shaohong Yu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China.
| |
Collapse
|
2
|
Vassiliou VS, Johnson N, Langlands K, Tsampasian V. Genetics of Calcific Aortic Stenosis: A Systematic Review. Genes (Basel) 2024; 15:1309. [PMID: 39457433 PMCID: PMC11508093 DOI: 10.3390/genes15101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Calcific aortic stenosis is the most prevalent valvular abnormality in the Western world. Factors commonly associated with calcific aortic stenosis include advanced age, male sex, hypertension, diabetes and impaired renal function. This review synthesises the existing literature on genetic associations with calcific aortic stenosis. Methods: A systematic search was conducted in the PubMed, Ovid and Cochrane libraries from inception to 21 July 2024 to identify human studies investigating the genetic factors involved in calcific aortic stenosis. From an initial pool of 1392 articles, 78 were selected for full-text review and 31 were included in the final qualitative synthesis. The risk of bias in these studies was assessed using the Newcastle Ottawa Scale. Results: Multiple genes have been associated with calcific aortic stenosis. These genes are involved in different biological pathways, including the lipid metabolism pathway (PLA, LDL, APO, PCSK9, Lp-PLA2, PONS1), the inflammatory pathway (IL-6, IL-10), the calcification pathway (PALMD, TEX41) and the endocrine pathway (PTH, VIT D, RUNX2, CACNA1C, ALPL). Additional genes such as NOTCH1, NAV1 and FADS1/2 influence different pathways. Mechanistically, these genes may promote a pro-inflammatory and pro-calcific environment in the aortic valve itself, leading to increased osteoblastic activity and subsequent calcific degeneration of the valve. Conclusions: Numerous genetic associations contribute to calcific aortic stenosis. Recognition of these associations can enhance risk stratification for individuals and their first-degree relatives, facilitate family screening, and importantly, pave the way for targeted therapeutic interventions focusing on the identified genetic factors. Understanding these genetic factors can also lead to gene therapy to prevent calcific aortic stenosis in the future.
Collapse
Affiliation(s)
- Vassilios S. Vassiliou
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
- Fitzwilliam College, University of Cambridge, Cambridge CB3 0DG, UK
| | - Nicholas Johnson
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
| | - Kenneth Langlands
- Institute of Continuing Education, University of Cambridge, Cambridge CB23 8AQ, UK;
| | - Vasiliki Tsampasian
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
| |
Collapse
|
3
|
Yu M, Bouatia-Naji N. Insights into the Inherited Basis of Valvular Heart Disease. Curr Cardiol Rep 2024; 26:381-392. [PMID: 38581562 DOI: 10.1007/s11886-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE OF REVIEW: Increases in the availability of genetic data and advances in the tools and methods for their analyses have enabled well-powered genetic association studies that have significantly enhanced our understanding of the genetic factors underlying both rare and common valve diseases. Valvular heart diseases, such as congenital valve malformations and degenerative valve lesions, increase the risk of heart failure, arrhythmias, and sudden death. In this review, we provide an updated overview of our current understanding of the genetic mechanisms underlying valvular heart diseases. With a focus on discoveries from the past 5 years, we describe recent insights into genetic risk and underlying biological pathways. RECENT FINDINGS: Recently acquired knowledge around valvular heart disease genetics has provided important insights into novel mechanisms related to disease pathogenesis. Newly identified risk loci associated valvular heart disease mainly regulate the composition of the extracellular matrix, accelerate the endothelial-to-mesenchymal transition, contribute to cilia formation processes, and play roles in lipid metabolism. Large-scale genomic analyses have identified numerous risk loci, genes, and biological pathways associated with degenerative valve disease and congenital valve malformations. Shared risk genes suggest common mechanistic pathways for various valve pathologies. More recent studies have combined cardiac magnetic resonance imaging and machine learning to offer a novel approach for exploring genotype-phenotype relationships regarding valve disease. Progress in the field holds promise for targeted prevention, particularly through the application of polygenic risk scores, and innovative therapies based on the biological mechanisms for predominant forms of valvular heart diseases.
Collapse
Affiliation(s)
- Mengyao Yu
- Shanghai Pudong Hospital, Human Phenome Institute, Fudan University Pudong Medical Center, Zhangjiang Fudan International Innovation Center, Fundan University, 825 Zhangheng Road, Pudong District, Shanghai, 201203, China.
| | | |
Collapse
|
4
|
Liu Q, Liu Z, Wu D, Wang S. Relationship between Polyunsaturated Fatty Acid Metabolism and Atherosclerosis. Rev Cardiovasc Med 2024; 25:142. [PMID: 39076540 PMCID: PMC11263998 DOI: 10.31083/j.rcm2504142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 07/31/2024] Open
Abstract
Multiple factors cause atherosclerosis, meaning its pathogenesis is complex, and has not been fully elucidated. Polyunsaturated fatty acids are a member of the fatty acid family, which are critical nutrients for mammalian growth and development. The types of polyunsaturated fatty acids ingested, their serum levels, and fatty acid desaturase can influence the atherosclerotic disease progression. The fatty acid desaturase gene cluster can regulate fatty acid desaturase activity and further affect atherosclerosis. This study reviewed the research progress on the effects of polyunsaturated fatty acids on atherosclerosis regulated by fatty acid desaturase and the relationship between genetic variants of the fatty acid desaturase gene cluster and atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Qiulei Liu
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Zhaoxuan Liu
- Department of Vascular Surgery, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Ding Wu
- Department of Vascular Surgery, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Sheng Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
5
|
Thériault S, Li Z, Abner E, Luan J, Manikpurage HD, Houessou U, Zamani P, Briend M, Boudreau DK, Gaudreault N, Frenette L, Argaud D, Dahmene M, Dagenais F, Clavel MA, Pibarot P, Arsenault BJ, Boekholdt SM, Wareham NJ, Esko T, Mathieu P, Bossé Y. Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation. Nat Commun 2024; 15:2407. [PMID: 38494474 PMCID: PMC10944835 DOI: 10.1038/s41467-024-46639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
There is currently no medical therapy to prevent calcific aortic valve stenosis (CAVS). Multi-omics approaches could lead to the identification of novel molecular targets. Here, we perform a genome-wide association study (GWAS) meta-analysis including 14,819 cases among 941,863 participants of European ancestry. We report 32 genomic loci, among which 20 are novel. RNA sequencing of 500 human aortic valves highlights an enrichment in expression regulation at these loci and prioritizes candidate causal genes. Homozygous genotype for a risk variant near TWIST1, a gene involved in endothelial-mesenchymal transition, has a profound impact on aortic valve transcriptomics. We identify five genes outside of GWAS loci by combining a transcriptome-wide association study, colocalization, and Mendelian randomization analyses. Using cross-phenotype and phenome-wide approaches, we highlight the role of circulating lipoproteins, blood pressure and inflammation in the disease process. Our findings pave the way for the development of novel therapies for CAVS.
Collapse
Affiliation(s)
- Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.
| | - Zhonglin Li
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Hasanga D Manikpurage
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Ursula Houessou
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Pardis Zamani
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Mewen Briend
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Dominique K Boudreau
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Nathalie Gaudreault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Lily Frenette
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Déborah Argaud
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - Manel Dahmene
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
| | - François Dagenais
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Philippe Pibarot
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Benoit J Arsenault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
6
|
Bull C, Hazelwood E, Bell JA, Tan V, Constantinescu AE, Borges C, Legge D, Burrows K, Huyghe JR, Brenner H, Castellvi-Bel S, Chan AT, Kweon SS, Le Marchand L, Li L, Cheng I, Pai RK, Figueiredo JC, Murphy N, Gunter MJ, Timpson NJ, Vincent EE. Identifying metabolic features of colorectal cancer liability using Mendelian randomization. eLife 2023; 12:RP87894. [PMID: 38127078 PMCID: PMC10735227 DOI: 10.7554/elife.87894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Recognizing the early signs of cancer risk is vital for informing prevention, early detection, and survival. Methods To investigate whether changes in circulating metabolites characterize the early stages of colorectal cancer (CRC) development, we examined the associations between a genetic risk score (GRS) associated with CRC liability (72 single-nucleotide polymorphisms) and 231 circulating metabolites measured by nuclear magnetic resonance spectroscopy in the Avon Longitudinal Study of Parents and Children (N = 6221). Linear regression models were applied to examine the associations between genetic liability to CRC and circulating metabolites measured in the same individuals at age 8 y, 16 y, 18 y, and 25 y. Results The GRS for CRC was associated with up to 28% of the circulating metabolites at FDR-P < 0.05 across all time points, particularly with higher fatty acids and very-low- and low-density lipoprotein subclass lipids. Two-sample reverse Mendelian randomization (MR) analyses investigating CRC liability (52,775 cases, 45,940 controls) and metabolites measured in a random subset of UK Biobank participants (N = 118,466, median age 58 y) revealed broadly consistent effect estimates with the GRS analysis. In conventional (forward) MR analyses, genetically predicted polyunsaturated fatty acid concentrations were most strongly associated with higher CRC risk. Conclusions These analyses suggest that higher genetic liability to CRC can cause early alterations in systemic metabolism and suggest that fatty acids may play an important role in CRC development. Funding This work was supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol, the Wellcome Trust, the Medical Research Council, Diabetes UK, the University of Bristol NIHR Biomedical Research Centre, and Cancer Research UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work used the computational facilities of the Advanced Computing Research Centre, University of Bristol - http://www.bristol.ac.uk/acrc/.
Collapse
Affiliation(s)
- Caroline Bull
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Emma Hazelwood
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Joshua A Bell
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Vanessa Tan
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Andrei-Emil Constantinescu
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Carolina Borges
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Danny Legge
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard UniversityBostonUnited States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard UniversityBostonUnited States
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical SchoolGwangjuRepublic of Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun HospitalHwasunRepublic of Korea
| | | | - Li Li
- Department of Family Medicine, University of VirginiaCharlottesvilleUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San FranciscoSan FranciscoUnited States
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San FranciscoSan FranciscoUnited States
| | - Rish K Pai
- Department of Pathology and Laboratory Medicine, Mayo ClinicScottsdaleUnited States
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on CancerLyonFrance
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on CancerLyonFrance
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| |
Collapse
|
7
|
Bull CJ, Hazelwood E, Bell JA, Tan VY, Constantinescu AE, Borges MC, Legge DN, Burrows K, Huyghe JR, Brenner H, Castellví-Bel S, Chan AT, Kweon SS, Marchand LL, Li L, Cheng I, Pai RK, Figueiredo JC, Murphy N, Gunter MJ, Timpson NJ, Vincent EE. Identifying metabolic features of colorectal cancer liability using Mendelian randomization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23287084. [PMID: 36945480 PMCID: PMC10029059 DOI: 10.1101/2023.03.10.23287084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Background Recognizing the early signs of cancer risk is vital for informing prevention, early detection, and survival. Methods To investigate whether changes in circulating metabolites characterise the early stages of colorectal cancer (CRC) development, we examined associations between a genetic risk score (GRS) associated with CRC liability (72 single nucleotide polymorphisms) and 231 circulating metabolites measured by nuclear magnetic resonance spectroscopy in the Avon Longitudinal Study of Parents and Children (N=6,221). Linear regression models were applied to examine associations between genetic liability to colorectal cancer and circulating metabolites measured in the same individuals at age 8, 16, 18 and 25 years. Results The GRS for CRC was associated with up to 28% of the circulating metabolites at FDR-P<0.05 across all time points, particularly with higher fatty acids and very-low- and low-density lipoprotein subclass lipids. Two-sample reverse Mendelian randomization (MR) analyses investigating CRC liability (52,775 cases, 45,940 controls) and metabolites measured in a random subset of UK Biobank participants (N=118,466, median age 58y) revealed broadly consistent effect estimates with the GRS analysis. In conventional (forward) MR analyses, genetically predicted polyunsaturated fatty acid concentrations were most strongly associated with higher CRC risk. Conclusions These analyses suggest that higher genetic liability to CRC can cause early alterations in systemic metabolism, and suggest that fatty acids may play an important role in CRC development. Funding This work was supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol, the Wellcome Trust, the Medical Research Council, Diabetes UK, the University of Bristol NIHR Biomedical Research Centre, and Cancer Research UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work used the computational facilities of the Advanced Computing Research Centre, University of Bristol - http://www.bristol.ac.uk/acrc/.
Collapse
Affiliation(s)
- Caroline J. Bull
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Emma Hazelwood
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Joshua A. Bell
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Vanessa Y. Tan
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrei-Emil Constantinescu
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Danny N. Legge
- Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Kimberly Burrows
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, California, USA
| | - Rish K. Pai
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Arizona, Scottsdale, Arizona, USA
| | - Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| |
Collapse
|
8
|
Liu J, Wang D, Xie Z, Ding L, Li S, Ma X, Liu J, Ren J, Xiao C, Yang C, Xiao X. Combination of Pioglitazone and Metformin Actions on Liver Lipid Metabolism in Obese Mice. Biomolecules 2023; 13:1199. [PMID: 37627267 PMCID: PMC10452643 DOI: 10.3390/biom13081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Despite the increasing prevalence rate of nonalcoholic fatty liver disease (NAFLD) worldwide, efficient pharmacotherapeutic regimens against NAFLD still need to be explored. Previous studies found that pioglitazone and metformin therapy could partly ameliorate NAFLD, but their combination therapy effects have not been researched. In the present study, we assessed the protective effects of metformin and pioglitazone combination therapy on liver lipid metabolism in high-fat diet (HFD)-fed mice and investigated the molecular mechanism. METHODS Male C57BL/6 mice were divided into five groups: normal control; HFD control; metformin monotherapy; pioglitazone monotherapy and combined therapy. After 8 weeks of pharmacological intervention, glucose and lipid metabolism characteristics, hepatic histology, lipidomics profiling and RNA-seq analysis were performed. RESULTS The combination of pioglitazone and metformin significantly ameliorated HFD-induced metabolic disturbance and the hepatic oil red O area. A lipidomics analysis showed that combined therapy could significantly reduce the high levels of free fatty acids (FFA), diacylglycerol and triglycerides, while a set of glycerophospholipids and sphingolipids were increased in the combined therapy group. Consistently, an RNA-seq analysis also showed a remarkable reduction in genes associated with FFA uptake and de novo lipogenesis, including Cd36, Fads1, Fads2, Fasn, Scd1, Elovl5 and Pklr in the combined therapy group. CONCLUSIONS Pioglitazone and metformin might have a synergistic protective effect on NAFLD by improving hepatic lipid profiles in HFD-induced mice. Further studies are needed to verify the clinical effects.
Collapse
Affiliation(s)
- Jieying Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dongmei Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Ziyan Xie
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Lu Ding
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Shunhua Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Xuemei Ma
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Jing Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Jing Ren
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Cheng Xiao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Chunru Yang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| | - Xinhua Xiao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (J.L.); (D.W.)
| |
Collapse
|
9
|
Yu Chen H, Dina C, Small AM, Shaffer CM, Levinson RT, Helgadóttir A, Capoulade R, Munter HM, Martinsson A, Cairns BJ, Trudsø LC, Hoekstra M, Burr HA, Marsh TW, Damrauer SM, Dufresne L, Le Scouarnec S, Messika-Zeitoun D, Ranatunga DK, Whitmer RA, Bonnefond A, Sveinbjornsson G, Daníelsen R, Arnar DO, Thorgeirsson G, Thorsteinsdottir U, Gudbjartsson DF, Hólm H, Ghouse J, Olesen MS, Christensen AH, Mikkelsen S, Jacobsen RL, Dowsett J, Pedersen OBV, Erikstrup C, Ostrowski SR, O’Donnell CJ, Budoff MJ, Gudnason V, Post WS, Rotter JI, Lathrop M, Bundgaard H, Johansson B, Ljungberg J, Näslund U, Le Tourneau T, Smith JG, Wells QS, Söderberg S, Stefánsson K, Schott JJ, Rader DJ, Clarke R, Engert JC, Thanassoulis G. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur Heart J 2023; 44:1927-1939. [PMID: 37038246 PMCID: PMC10232274 DOI: 10.1093/eurheartj/ehad142] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 04/12/2023] Open
Abstract
AIMS Although highly heritable, the genetic etiology of calcific aortic stenosis (AS) remains incompletely understood. The aim of this study was to discover novel genetic contributors to AS and to integrate functional, expression, and cross-phenotype data to identify mechanisms of AS. METHODS AND RESULTS A genome-wide meta-analysis of 11.6 million variants in 10 cohorts involving 653 867 European ancestry participants (13 765 cases) was performed. Seventeen loci were associated with AS at P ≤ 5 × 10-8, of which 15 replicated in an independent cohort of 90 828 participants (7111 cases), including CELSR2-SORT1, NLRP6, and SMC2. A genetic risk score comprised of the index variants was associated with AS [odds ratio (OR) per standard deviation, 1.31; 95% confidence interval (CI), 1.26-1.35; P = 2.7 × 10-51] and aortic valve calcium (OR per standard deviation, 1.22; 95% CI, 1.08-1.37; P = 1.4 × 10-3), after adjustment for known risk factors. A phenome-wide association study indicated multiple associations with coronary artery disease, apolipoprotein B, and triglycerides. Mendelian randomization supported a causal role for apolipoprotein B-containing lipoprotein particles in AS (OR per g/L of apolipoprotein B, 3.85; 95% CI, 2.90-5.12; P = 2.1 × 10-20) and replicated previous findings of causality for lipoprotein(a) (OR per natural logarithm, 1.20; 95% CI, 1.17-1.23; P = 4.8 × 10-73) and body mass index (OR per kg/m2, 1.07; 95% CI, 1.05-1.9; P = 1.9 × 10-12). Colocalization analyses using the GTEx database identified a role for differential expression of the genes LPA, SORT1, ACTR2, NOTCH4, IL6R, and FADS. CONCLUSION Dyslipidemia, inflammation, calcification, and adiposity play important roles in the etiology of AS, implicating novel treatments and prevention strategies.
Collapse
Affiliation(s)
- Hao Yu Chen
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Christian Dina
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - Aeron M Small
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Christian M Shaffer
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | - Rebecca T Levinson
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | | | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | | | - Andreas Martinsson
- Department of Cardiology, Clinical Sciences, Lund University, Sweden and Skåne University Hospital, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Benjamin J Cairns
- MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Linea C Trudsø
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mary Hoekstra
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Hannah A Burr
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Thomas W Marsh
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Line Dufresne
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Solena Le Scouarnec
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - David Messika-Zeitoun
- Department of Cardiology, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, Paris, France
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Dilrini K Ranatunga
- Division of Research, Kaiser Permanente of Northern California, Oakland, USA
| | - Rachel A Whitmer
- Department of Public Health Sciences, University of California Davis, Davis, USA
| | - Amélie Bonnefond
- University Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, UMR1283-8199 EGID, Lille, France
- Department of Metabolism, Imperial College London, London, UK
| | | | - Ragnar Daníelsen
- Internal Medicine and Emergency Services, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
| | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Internal Medicine and Emergency Services, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daníel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Hólm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Jonas Ghouse
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Salling Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alex H Christensen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Christopher J O’Donnell
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Boston, USA
| | - Matthew J Budoff
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | | | - Wendy S Post
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bengt Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Johan Ljungberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Ulf Näslund
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University, Sweden and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kári Stefánsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - Daniel J Rader
- Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert Clarke
- MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James C Engert
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
10
|
Huang T, Long Y, Ou Y, Li J, Huang Y, Gao J. Association between circulating fatty acid metabolites and asthma risk: a two-sample bidirectional Mendelian randomization study. BMC Med Genomics 2023; 16:112. [PMID: 37221513 DOI: 10.1186/s12920-023-01545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/13/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Fatty acids are involved in a wide range of immunological responses in humans. Supplementation of polyunsaturated fatty acids has been reported to help alleviate symptoms and airway inflammation in asthma patients, whereas the effects of fatty acids on the actual risk of asthma remain controversial. This study comprehensively investigated the causal effects of serum fatty acids on asthma risk using two-sample bidirectional Mendelian Randomization (MR) analysis. METHODS Genetic variants strongly associated with 123 circulating fatty acid metabolites were extracted as instrumental variables, and a large GWAS data of asthma was used to test effects of the metabolites on this outcome. The inverse-variance weighted method was used for primary MR analysis. The weighted median, MR-Egger regression, MR-PRESSO, and leave-one-out analyses were utilized to evaluate heterogeneity and pleiotropy. Potential confounders were adjusted by performing multivariable MR analyses. Reverse MR analysis was also conducted to estimate the causal effect of asthma on candidate fatty acid metabolites. Further, we performed colocalization analysis to examine the pleiotropy of variants within the fatty acid desaturase 1 (FADS1) locus between the significant metabolite traits and the risk of asthma. Cis-eQTL-MR and colocalization analysis were also performed to determine the association between RNA expression of FADS1 and asthma. RESULTS Genetically instrumented higher average number of methylene groups was causally associated with a lower risk of asthma in primary MR analysis, while inversely, the higher ratio of bis-allylic groups to double bonds and the higher ratio of bis-allylic groups to total fatty acids, were associated with higher probabilities of asthma. Consistent results were obtained in multivariable MR when adjusted for potential confounders. However, these effects were completely eliminated after SNPs correlated with the FADS1 gene were excluded. The reverse MR also found no causal association. The colocalization analysis suggested that the three candidate metabolite traits and asthma likely share causal variants within the FADS1 locus. In addition, the cis-eQTL-MR and colocalization analyses demonstrated a causal association and shared causal variants between FADS1 expression and asthma. CONCLUSIONS Our study supports a negative association between several PUFA traits and the risk of asthma. However, this association is largely attributed to the influence of FADS1 polymorphisms. The results of this MR study should be carefully interpreted given the pleiotropy of SNPs associated with FADS1.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yichen Long
- Department of Epidemiology, School of Public Health, Southeast University, Jiangsu, Nanjing, China
| | - Yang Ou
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jia Li
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilin Huang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinming Gao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
11
|
Bäck M. Icosapent ethyl in cardiovascular prevention: Resolution of inflammation through the eicosapentaenoic acid - resolvin E1 - ChemR23 axis. Pharmacol Ther 2023:108439. [PMID: 37201735 DOI: 10.1016/j.pharmthera.2023.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular outcome trials on omega-3 fatty acids have generated contradictory results but indicate a dose-dependent beneficial effect of eicosapentaenoic acid (EPA). Beneficial cardiovascular effects of EPA may in addition to triglyceride lowering be mediated through alternative mechanisms of action. In this review, the link between EPA and a resolution of atherosclerotic inflammation is addressed. EPA is a substrate for the enzymatic metabolism into the lipid mediator resolvin E1 (RvE1), which activates the receptor ChemR23 to transduce an active resolution of inflammation. This has been shown to dampen the immune response and provide atheroprotective responses in different models. The intermediate EPA metabolite 18-HEPE emerges as a biomarker of EPA metabolism towards proresolving mediators in observational studies. Genetic variations within the EPA-RvE1-ChemR23 axis affecting the response to EPA may open up for precision medicine to identify responders and non-responders to EPA and fish oil supplementation. In conclusion, activation of the EPA-RvE1-ChemR23 axis towards a resolution of inflammation may contribute to beneficial effects in cardiovascular prevention.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden; Translational Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Université de Lorraine, Inserm, DCAC, Nancy, France; CHRU Nancy, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is a leading global cause of morbidity and mortality, posing an increasing burden on society. Advances in next-generation technologies and disease models over the last decade have further delineated the genetic and molecular factors that might be exploited in development of therapeutics for affected patients. This review describes several advances in the molecular and genetic understanding of AVD, focusing on bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). RECENT FINDINGS Genomic studies have identified a myriad of genes implicated in the development of BAV, including NOTCH1 , SMAD6 and ADAMTS19 , along with members of the GATA and ROBO gene families. Similarly, several genes associated with the initiation and progression of CAVD, including NOTCH1 , LPA , PALMD , IL6 and FADS1/2 , serve as the launching point for emerging clinical trials. SUMMARY These new insights into the genetic contributors of AVD have offered new avenues for translational disease investigation, bridging molecular discoveries to emergent pharmacotherapeutic options. Future studies aimed at uncovering new genetic associations and further defining implicated molecular pathways are fuelling the new wave of drug discovery.
Collapse
Affiliation(s)
- Ruth L. Ackah
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Small AM, Peloso G, Linefsky J, Aragam J, Galloway A, Tanukonda V, Wang LC, Yu Z, Selvaraj MS, Farber-Eger EH, Baker MT, Setia-Verma S, Lee SSK, Preuss M, Ritchie M, Damrauer SM, Rader DJ, Wells QS, Loos RJF, Lubitz S, Thanassoulis G, Cho K, Wilson PWF, Natarajan P, O’Donnell CJ. Multiancestry Genome-Wide Association Study of Aortic Stenosis Identifies Multiple Novel Loci in the Million Veteran Program. Circulation 2023; 147:942-955. [PMID: 36802703 PMCID: PMC10806851 DOI: 10.1161/circulationaha.122.061451] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/15/2022] [Indexed: 02/22/2023]
Abstract
BACKGROUND Calcific aortic stenosis (CAS) is the most common valvular heart disease in older adults and has no effective preventive therapies. Genome-wide association studies (GWAS) can identify genes influencing disease and may help prioritize therapeutic targets for CAS. METHODS We performed a GWAS and gene association study of 14 451 patients with CAS and 398 544 controls in the Million Veteran Program. Replication was performed in the Million Veteran Program, Penn Medicine Biobank, Mass General Brigham Biobank, BioVU, and BioMe, totaling 12 889 cases and 348 094 controls. Causal genes were prioritized from genome-wide significant variants using polygenic priority score gene localization, expression quantitative trait locus colocalization, and nearest gene methods. CAS genetic architecture was compared with that of atherosclerotic cardiovascular disease. Causal inference for cardiometabolic biomarkers in CAS was performed using Mendelian randomization and genome-wide significant loci were characterized further through phenome-wide association study. RESULTS We identified 23 genome-wide significant lead variants in our GWAS representing 17 unique genomic regions. Of the 23 lead variants, 14 were significant in replication, representing 11 unique genomic regions. Five replicated genomic regions were previously known risk loci for CAS (PALMD, TEX41, IL6, LPA, FADS) and 6 were novel (CEP85L, FTO, SLMAP, CELSR2, MECOM, CDAN1). Two novel lead variants were associated in non-White individuals (P<0.05): rs12740374 (CELSR2) in Black and Hispanic individuals and rs1522387 (SLMAP) in Black individuals. Of the 14 replicated lead variants, only 2 (rs10455872 [LPA], rs12740374 [CELSR2]) were also significant in atherosclerotic cardiovascular disease GWAS. In Mendelian randomization, lipoprotein(a) and low-density lipoprotein cholesterol were both associated with CAS, but the association between low-density lipoprotein cholesterol and CAS was attenuated when adjusting for lipoprotein(a). Phenome-wide association study highlighted varying degrees of pleiotropy, including between CAS and obesity at the FTO locus. However, the FTO locus remained associated with CAS after adjusting for body mass index and maintained a significant independent effect on CAS in mediation analysis. CONCLUSIONS We performed a multiancestry GWAS in CAS and identified 6 novel genomic regions in the disease. Secondary analyses highlighted the roles of lipid metabolism, inflammation, cellular senescence, and adiposity in the pathobiology of CAS and clarified the shared and differential genetic architectures of CAS with atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Aeron M Small
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
- Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, MA, USA
| | - Gina Peloso
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Jason Linefsky
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jayashri Aragam
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
| | - Ashley Galloway
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
| | | | - Lu-Chen Wang
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
| | - Zhi Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Eric H Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, United States, 37232
| | - Michael T Baker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Shefali Setia-Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon SK Lee
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Marylyn Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 19104
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA, 19104
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Quinn S Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
| | - George Thanassoulis
- Department of Medicine, Division of Experimental Medicine, McGill University Health Center, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Veterans Affairs, Boston Healthcare System, Boston, Massachusetts
| | - Peter WF Wilson
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA, 02114
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA, 02142
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston
| | - Christopher J O’Donnell
- Department of Cardiology, Boston Veterans Affairs Healthcare System, West Roxbury, MA, USA
- Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
14
|
Tserensonom M, Yagi S, Ise T, Kawabata Y, Kadota M, Hara T, Kusunos K, Yamaguchi K, Yamada H, Soeki T, Wakatsuki T, Sata M. Lipoprotein (a) is a risk factor of aortic valve calcification in patients with a risk of atherosclerosis. THE JOURNAL OF MEDICAL INVESTIGATION 2023; 70:450-456. [PMID: 37940531 DOI: 10.2152/jmi.70.450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Aortic valve calcification (AVC), which causes aortic stenosis (AS), is more common in elderly persons. Controlling for conventional risk variables did not, however, reduce the incidence of AS. Thus, residual risk factors of AS should be identified. We enrolled 513 patients who underwent coronary angiography with computed tomography because of suspicion of coronary artery disease (CAD) or ruling out of CAD before aortic valve replacement. Calcium volume was calculated with a commercially available application. Conventional and lipid-related risk factors including serum levels of Lp(a) were evaluated for all patients. Calcium volume and Lp(a) levels were significantly higher in patients who underwent aortic valve replacement than in those who did not. A single regression analysis showed that the calcium volume was positively associated with age and the Lp(a) levels and negatively associated with the estimated glomerular filtration rate. No statistical significance was observed for other risk factors, including oxidized low-density lipoprotein, omega-3 fatty acids levels. The multiple regression analysis revealed that age (P<0.001), female sex (P<0.05), Lp(a) (P<0.01), and hemoglobin A1c (P<0.01) were determinants of the calcium volume. The area under the curve in receiver operating characteristic analysis of Lp(a) for implementation of AVR was 0.65 at an Lp(a) cut-off level of 16 mg/dL. In conclusion, the serum Lp(a) level is a potent risk factor of AVC in patients with high risk of atherosclerosis. J. Med. Invest. 70 : 450-456, August, 2023.
Collapse
Affiliation(s)
- Munkhtsetseg Tserensonom
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Community Medicine and Human Resource Development, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayuki Ise
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yutaka Kawabata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Muneyuki Kadota
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenya Kusunos
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
15
|
Borges MC, Haycock P, Zheng J, Hemani G, Howe LJ, Schmidt AF, Staley JR, Lumbers RT, Henry A, Lemaitre RN, Gaunt TR, Holmes MV, Davey Smith G, Hingorani AD, Lawlor DA. The impact of fatty acids biosynthesis on the risk of cardiovascular diseases in Europeans and East Asians: a Mendelian randomization study. Hum Mol Genet 2022; 31:4034-4054. [PMID: 35796550 PMCID: PMC9703943 DOI: 10.1093/hmg/ddac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk.
Collapse
Affiliation(s)
- Maria-Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Phillip Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Laurence J Howe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - A Floriaan Schmidt
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Department of Cardiology, Division Heart and Lungs, UMC Utrecht, Utrecht 3584 CX, The Netherlands
| | - James R Staley
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London NW1 2DA, UK
- Health Data Research UK London, University College London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Albert Henry
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Institute of Health Informatics, University College London, London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA WA 98101, USA
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Aroon D Hingorani
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Health Data Research UK London, University College London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
- NIHR Bristol Biomedical Research Centre, Bristol BS8 2BN, UK
| |
Collapse
|
16
|
Molnár AÁ, Pásztor D, Merkely B. Cellular Senescence, Aging and Non-Aging Processes in Calcified Aortic Valve Stenosis: From Bench-Side to Bedside. Cells 2022; 11:cells11213389. [PMID: 36359785 PMCID: PMC9659237 DOI: 10.3390/cells11213389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aortic valve stenosis (AS) is the most common valvular heart disease. The incidence of AS increases with age, however, a significant proportion of elderly people have no significant AS, indicating that both aging and nonaging pathways are involved in the pathomechanism of AS. Age-related and stress-induced cellular senescence accompanied by further active processes represent the key elements of AS pathomechanism. The early stage of aortic valve degeneration involves dysfunction and disruption of the valvular endothelium due to cellular senescence and mechanical stress on blood flow. These cells are replaced by circulating progenitor cells, but in an age-dependent decelerating manner. When endothelial denudation is no longer replaced by progenitor cells, the path opens for focal lipid deposition, initiating subsequent oxidation, inflammation and micromineralisation. Later stages of AS feature a complex active process with extracellular matrix remodeling, fibrosis and calcification. Echocardiography is the gold standard method for diagnosing aortic valve disease, although computed tomography and cardiac magnetic resonance are useful additional imaging methods. To date, no medical treatment has been proven to halt the progression of AS. Elucidation of differences and similarities between vascular and valvular calcification pathomechanisms may help to find effective medical therapy and reduce the increasing health burden of the disease.
Collapse
|
17
|
Zhang S, Fan L, Wang Y, Xu J, Shen Q, Xie J, Zeng Z, Zhou T. Dihydromyricetin ameliorates osteogenic differentiation of human aortic valve interstitial cells by targeting c-KIT/interleukin-6 signaling pathway. Front Pharmacol 2022; 13:932092. [PMID: 36003494 PMCID: PMC9393384 DOI: 10.3389/fphar.2022.932092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Aims: Calcific aortic valve disease (CAVD) is a chronic cardiovascular disease with high morbidity that lacks effective pharmacotherapeutics. As a natural flavonoid extracted from Ampelopsis grossedentata, dihydromyricetin (DHM) has been shown to be effective in protecting against atherosclerosis; yet, the therapeutic role of DHM in CAVD remains poorly understood. Herein, we aimed to clarify the therapeutic implications of DHM in CAVD and the underlying molecular mechanisms in human valvular interstitial cells (hVICs). Methods and Results: The protein levels of two known osteogenesis-specific genes (alkaline phosphatase, ALP; runt-related transcription factor 2, Runx2) and calcified nodule formation in hVICs were detected by Western blot and Alizarin Red staining, respectively. The results showed that DHM markedly ameliorated osteogenic induction medium (OM)–induced osteogenic differentiation of hVICs, as evidenced by downregulation of ALP and Runx2 expression and decreased calcium deposition. The SwissTargetPrediction database was used to identify the potential AVC-associated direct protein target of DHM. Protein–protein interaction (PPI) analysis revealed that c-KIT, a tyrosine-protein kinase, can act as a credible protein target of DHM, as evidenced by molecular docking. Mechanistically, DHM-mediated inhibition of c-KIT phosphorylation drove interleukin-6 (IL-6) downregulation in CAVD, thereby ameliorating OM-induced osteogenic differentiation of hVICs and aortic valve calcification progression. Conclusion: DHM ameliorates osteogenic differentiation of hVICs by blocking the phosphorylation of c-KIT, thus reducing IL-6 expression in CAVD. DHM could be a viable therapeutic supplement to impede CAVD.
Collapse
Affiliation(s)
- Shaoshao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leilei Fan
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianhua Xie, ; Zhipeng Zeng, ; Tingwen Zhou,
| | - Zhipeng Zeng
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianhua Xie, ; Zhipeng Zeng, ; Tingwen Zhou,
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianhua Xie, ; Zhipeng Zeng, ; Tingwen Zhou,
| |
Collapse
|
18
|
Huang Y, Liu Y, Wu Y, Tang Y, Zhang M, Liu S, Xiao L, Tao S, Xie M, Dai M, Li M, Gui H, Wang Q. Patterns of Convergence and Divergence Between Bipolar Disorder Type I and Type II: Evidence From Integrative Genomic Analyses. Front Cell Dev Biol 2022; 10:956265. [PMID: 35912095 PMCID: PMC9334650 DOI: 10.3389/fcell.2022.956265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023] Open
Abstract
Aim: Genome-wide association studies (GWAS) analyses have revealed genetic evidence of bipolar disorder (BD), but little is known about the genetic structure of BD subtypes. We aimed to investigate the genetic overlap and distinction of bipolar type I (BD I) & type II (BD II) by conducting integrative post-GWAS analyses. Methods: We utilized single nucleotide polymorphism (SNP)–level approaches to uncover correlated and distinct genetic loci. Transcriptome-wide association analyses (TWAS) were then approached to pinpoint functional genes expressed in specific brain tissues and blood. Next, we performed cross-phenotype analysis, including exploring the potential causal associations between two BD subtypes and lithium responses and comparing the difference in genetic structures among four different psychiatric traits. Results: SNP-level evidence revealed three genomic loci, SLC25A17, ZNF184, and RPL10AP3, shared by BD I and II, and one locus (MAD1L1) and significant gene sets involved in calcium channel activity, neural and synapsed signals that distinguished two subtypes. TWAS data implicated different genes affecting BD I and II through expression in specific brain regions (nucleus accumbens for BD I). Cross-phenotype analyses indicated that BD I and II share continuous genetic structures with schizophrenia and major depressive disorder, which help fill the gaps left by the dichotomy of mental disorders. Conclusion: These combined evidences illustrate genetic convergence and divergence between BD I and II and provide an underlying biological and trans-diagnostic insight into major psychiatric disorders.
Collapse
Affiliation(s)
- Yunqi Huang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yunjia Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yulu Wu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yiguo Tang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Mengting Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Siyi Liu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Liling Xiao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Min Xie
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Minhan Dai
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Hongsheng Gui
- Center for Health Policy & Health Services Research, Henry Ford Health System, Detroit, MI, United States
- Behavioral Health Services, Henry Ford Health System, Detroit, MI, United States
- *Correspondence: Hongsheng Gui, ; Qiang Wang,
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
- *Correspondence: Hongsheng Gui, ; Qiang Wang,
| |
Collapse
|
19
|
Raheem J, Sliz E, Shin J, Holmes MV, Pike GB, Richer L, Gaudet D, Paus T, Pausova Z. Visceral adiposity is associated with metabolic profiles predictive of type 2 diabetes and myocardial infarction. COMMUNICATIONS MEDICINE 2022; 2:81. [PMID: 35789567 PMCID: PMC9249739 DOI: 10.1038/s43856-022-00140-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background Visceral fat (VF) increases risk for cardiometabolic disease (CMD), the leading cause of morbidity and mortality. Variations in the circulating metabolome predict the risk for CMD but whether or not this is related to VF is unknown. Further, CMD is now also present in adolescents, and the relationships between VF, circulating metabolome, and CMD may vary between adolescents and adults. Methods With an aim to add understanding to the metabolic variations in visceral obesity, we tested associations between VF, measured directly with magnetic resonance imaging, and 228 fasting serum metabolomic measures, quantified with nuclear magnetic resonance spectroscopy, in 507 adults (36-65 years) and 938 adolescents (12-18 years). We further utilized data from published studies to estimate similarities between VF and CMD-associated metabolic profiles. Results Here we show that VF, independently of body mass index (BMI) or subcutaneous fat, is associated with triglyceride-rich lipoproteins, fatty acids, and inflammation in both adults and adolescents, whereas the associations with amino acids, glucose, and intermediary metabolites are significant in adults only. BMI-adjusted metabolomic profile of VF resembles those predicting type 2 diabetes in adults (R 2 = 0.88) and adolescents (R 2 = 0.70), and myocardial infarction in adults (R 2 = 0.59) and adolescents (R 2 = 0.40); this is not the case for ischemic stroke (adults: R 2 = 0.05, adolescents: R 2 = 0.08). Conclusions Visceral adiposity is associated with metabolomic profiles predictive of type 2 diabetes and myocardial infarction even in normal-weight individuals and already in adolescence. Targeting factors contributing to the emergence and maintenance of these profiles might ameliorate their cumulative effects on cardiometabolic health.
Collapse
Affiliation(s)
- Javeria Raheem
- The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON Canada
| | - Eeva Sliz
- The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON Canada
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON Canada
| | - Michael V. Holmes
- MRC Population Health Research Unit at the University of Oxford, Oxford, OX3 7LF UK
| | - G. Bruce Pike
- Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC Canada
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genetic Medicine Center, Department of Medicine, Université de Montréal, Montreal, QC Canada
- ECOGENE-21, Chicoutimi, QC Canada
| | - Tomas Paus
- ECOGENE-21, Chicoutimi, QC Canada
- Departments of Psychiatry and Neuroscience, Centre Hospitalier Universitaire Sainte-Justine, Universite de Montreal, Montreal, QC Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON Canada
- ECOGENE-21, Chicoutimi, QC Canada
| |
Collapse
|
20
|
Borges MC, Haycock PC, Zheng J, Hemani G, Holmes MV, Davey Smith G, Hingorani AD, Lawlor DA. Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 UK Biobank participants. BMC Med 2022; 20:210. [PMID: 35692035 PMCID: PMC9190170 DOI: 10.1186/s12916-022-02399-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/09/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Despite early interest in the health effects of polyunsaturated fatty acids (PUFA), there is still substantial controversy and uncertainty on the evidence linking PUFA to cardiovascular diseases (CVDs). We investigated the effect of plasma concentration of omega-3 PUFA (i.e. docosahexaenoic acid (DHA) and total omega-3 PUFA) and omega-6 PUFA (i.e. linoleic acid and total omega-6 PUFA) on the risk of CVDs using Mendelian randomization. METHODS We conducted the largest genome-wide association study (GWAS) of circulating PUFA to date including a sample of 114,999 individuals and incorporated these data in a two-sample Mendelian randomization framework to investigate the involvement of circulating PUFA on a wide range of CVDs in up to 1,153,768 individuals of European ancestry (i.e. coronary artery disease, ischemic stroke, haemorrhagic stroke, heart failure, atrial fibrillation, peripheral arterial disease, aortic aneurysm, venous thromboembolism and aortic valve stenosis). RESULTS GWAS identified between 46 and 64 SNPs for the four PUFA traits, explaining 4.8-7.9% of circulating PUFA variance and with mean F statistics >100. Higher genetically predicted DHA (and total omega-3 fatty acids) concentration was related to higher risk of some cardiovascular endpoints; however, these findings did not pass our criteria for multiple testing correction and were attenuated when accounting for LDL-cholesterol through multivariable Mendelian randomization or excluding SNPs in the vicinity of the FADS locus. Estimates for the relation between higher genetically predicted linoleic acid (and total omega-6) concentration were inconsistent across different cardiovascular endpoints and Mendelian randomization methods. There was weak evidence of higher genetically predicted linoleic acid being related to lower risk of ischemic stroke and peripheral artery disease when accounting by LDL-cholesterol. CONCLUSIONS We have conducted the largest GWAS of circulating PUFA to date and the most comprehensive Mendelian randomization analyses. Overall, our Mendelian randomization findings do not support a protective role of circulating PUFA concentration on the risk of CVDs. However, horizontal pleiotropy via lipoprotein-related traits could be a key source of bias in our analyses.
Collapse
Affiliation(s)
- Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael V Holmes
- MRC Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- UCL BHF Research Accelerator, London, UK
- Health Data Research UK, Institute of Health Informatics, University College London, London, UK
- UCL NIHR Biomedical Research Centre, London, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| |
Collapse
|
21
|
Shu X, Chen Z, Long J, Guo X, Yang Y, Qu C, Ahn YO, Cai Q, Casey G, Gruber SB, Huyghe JR, Jee SH, Jenkins MA, Jia WH, Jung KJ, Kamatani Y, Kim DH, Kim J, Kweon SS, Le Marchand L, Matsuda K, Matsuo K, Newcomb PA, Oh JH, Ose J, Oze I, Pai RK, Pan ZZ, Pharoah PD, Playdon MC, Ren ZF, Schoen RE, Shin A, Shin MH, Shu XO, Sun X, Tangen CM, Tanikawa C, Ulrich CM, van Duijnhoven FJ, Van Guelpen B, Wolk A, Woods MO, Wu AH, Peters U, Zheng W. Large-scale Integrated Analysis of Genetics and Metabolomic Data Reveals Potential Links Between Lipids and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2022; 31:1216-1226. [PMID: 35266989 PMCID: PMC9354799 DOI: 10.1158/1055-9965.epi-21-1008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 03/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The etiology of colorectal cancer is not fully understood. METHODS Using genetic variants and metabolomics data including 217 metabolites from the Framingham Heart Study (n = 1,357), we built genetic prediction models for circulating metabolites. Models with prediction R2 > 0.01 (Nmetabolite = 58) were applied to predict levels of metabolites in two large consortia with a combined sample size of approximately 46,300 cases and 59,200 controls of European and approximately 21,700 cases and 47,400 controls of East Asian (EA) descent. Genetically predicted levels of metabolites were evaluated for their associations with colorectal cancer risk in logistic regressions within each racial group, after which the results were combined by meta-analysis. RESULTS Of the 58 metabolites tested, 24 metabolites were significantly associated with colorectal cancer risk [Benjamini-Hochberg FDR (BH-FDR) < 0.05] in the European population (ORs ranged from 0.91 to 1.06; P values ranged from 0.02 to 6.4 × 10-8). Twenty one of the 24 associations were replicated in the EA population (ORs ranged from 0.26 to 1.69, BH-FDR < 0.05). In addition, the genetically predicted levels of C16:0 cholesteryl ester was significantly associated with colorectal cancer risk in the EA population only (OREA: 1.94, 95% CI, 1.60-2.36, P = 2.6 × 10-11; OREUR: 1.01, 95% CI, 0.99-1.04, P = 0.3). Nineteen of the 25 metabolites were glycerophospholipids and triacylglycerols (TAG). Eighteen associations exhibited significant heterogeneity between the two racial groups (PEUR-EA-Het < 0.005), which were more strongly associated in the EA population. This integrative study suggested a potential role of lipids, especially certain glycerophospholipids and TAGs, in the etiology of colorectal cancer. CONCLUSIONS This study identified potential novel risk biomarkers for colorectal cancer by integrating genetics and circulating metabolomics data. IMPACT The identified metabolites could be developed into new tools for risk assessment of colorectal cancer in both European and EA populations.
Collapse
Affiliation(s)
- Xiang Shu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen B. Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | | | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,School of Public Health, University of Washington, Seattle, Washington, USA
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Jennifer Ose
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Paul D.P. Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mary C. Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute and Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Xiao-ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Epidemiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Catherine M. Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Cornelia M. Ulrich
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O. Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Anna H. Wu
- University of Southern California, Preventative Medicine, Los Angeles, California, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
22
|
Xu Q, Wu C, Zhu Q, Gao R, Lu J, Valles-Colomer M, Zhu J, Yin F, Huang L, Ding L, Zhang X, Zhang Y, Xiong X, Bi M, Chen X, Zhu Y, Liu L, Liu Y, Chen Y, Fan J, Sun Y, Wang J, Cao Z, Fan C, Ehrlich SD, Segata N, Qin N, Qin H. Metagenomic and metabolomic remodeling in nonagenarians and centenarians and its association with genetic and socioeconomic factors. NATURE AGING 2022; 2:438-452. [PMID: 37118062 DOI: 10.1038/s43587-022-00193-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
A better understanding of the biological and environmental variables that contribute to exceptional longevity has the potential to inform the treatment of geriatric diseases and help achieve healthy aging. Here, we compared the gut microbiome and blood metabolome of extremely long-lived individuals (94-105 years old) to that of their children (50-79 years old) in 116 Han Chinese families. We found extensive metagenomic and metabolomic remodeling in advanced age and observed a generational divergence in the correlations with socioeconomic factors. An analysis of quantitative trait loci revealed that genetic associations with metagenomic and metabolomic features were largely generation-specific, but we also found 131 plasma metabolic quantitative trait loci associations that were cross-generational with the genetic variants concentrated in six loci. These included associations between FADS1/2 and arachidonate, PTPA and succinylcarnitine and FLVCR1 and choline. Our characterization of the extensive metagenomic and metabolomic remodeling that occurs in people reaching extreme ages may offer new targets for aging-related interventions.
Collapse
Affiliation(s)
- Qian Xu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Zhu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renyuan Gao
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianquan Lu
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | | | - Jian Zhu
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Fang Yin
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linsheng Huang
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lulu Ding
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Xiaohui Zhang
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yonghui Zhang
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Xiao Xiong
- Realbio Genomics Institute, Shanghai, China
| | | | - Xiang Chen
- Realbio Genomics Institute, Shanghai, China
| | - Yefei Zhu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Liu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongqiang Liu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongshen Chen
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Jian Fan
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Yan Sun
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Jun Wang
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Zhan Cao
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunsun Fan
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - S Dusko Ehrlich
- MGP MetaGenoPolis, INRAE, Université Paris-Saclay, Jouy en Josas, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Nan Qin
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Realbio Genomics Institute, Shanghai, China.
| | - Huanlong Qin
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Bäck M, Xhaard C, Rouget R, Thuillier Q, Plunde O, Larsson SC, Girerd N, Ferreira JP, Boivin JM, Bozec E, Mercklé L, Zannad F, Hoge A, Guillaume M, Dandine-Roulland C, Floch EL, Bacq-Daian D, Deleuze JF, Van den Berghe L, Nazare JA, Laville M, Branlant C, Behm-Ansmant I, Wagner S, Rossignol P. Fatty acid desaturase genetic variations and dietary omega-3 fatty acid intake associate with arterial stiffness. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac016. [PMID: 35919123 PMCID: PMC9242081 DOI: 10.1093/ehjopen/oeac016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/11/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Aims
Long-chain polyunsaturated fatty acids (PUFAs) generate diverse bioactive lipid mediators, which tightly regulate vascular inflammation. The effects of omega-3 PUFA supplementation in cardiovascular prevention however remain controversial. In addition to direct dietary intake, fatty acid desaturases (FADS) determine PUFA levels. Increased arterial stiffness represents an independent predictor of mortality and cardiovascular events. The aim of the present study was to determine the association of PUFA intake, FADS1 genotype, and FADS expression with arterial stiffness.
Methods and results
A cross-sectional population-based cohort study of 1464 participants without overt cardiovascular disease was conducted. Dietary intake was assessed using a food frequency questionnaire. Arterial stiffness was assessed by carotid–femoral pulse wave velocity (cfPWV), and the FADS1 locus variant was determined. Blood cell transcriptomics was performed in a subset of 410 individuals. Pulse wave velocity was significantly associated with the FADS1 locus variant. Differential associations between PWV and omega-3 PUFA intake were observed depending on the FADS1 genotype. High omega-3 PUFA intake attenuated the FADS1 genotype-dependent associations. Carriers of the minor FADS1 locus variant exhibited increased expression of FADS2, which is associated with PWV.
Conclusion
Taken together, these findings point to FADS1 genotype-dependent associations of omega-3 PUFA intake on subclinical cardiovascular disease. These findings may have implications for identifying responders and non-responders to omega-3 PUFA supplementation and open up for personalized dietary counselling in cardiovascular prevention.
Collapse
Affiliation(s)
- Magnus Bäck
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
- Karolinska Institutet Department of Medicine Solna, , 17176 Stockholm, Sweden
- Karolinska University Hospital Huddinge Department of Cardiology, , 14186 Stockholm, Sweden
| | - Constance Xhaard
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Raphael Rouget
- Université de Lorraine , CNRS, UMR 7365, IMoPA, F54000 Nancy, France
| | - Quentin Thuillier
- Université de Lorraine , CNRS, UMR 7365, IMoPA, F54000 Nancy, France
| | - Oscar Plunde
- Karolinska Institutet Department of Medicine Solna, , 17176 Stockholm, Sweden
| | - Susanna C. Larsson
- Institute of Environmental Medicine, Karolinska Institutet Unit of Cardiovascular and Nutritional Epidemiology, , 17177 Stockholm, Sweden
- Uppsala University Department of Surgical Sciences, , Uppsala, Sweden
| | - Nicolas Girerd
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - João Pedro Ferreira
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Jean-Marc Boivin
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Erwan Bozec
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Ludovic Mercklé
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Faiez Zannad
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Axelle Hoge
- Université de Liège Département des Sciences de la Santé publique, , Liège, Belgium
| | - Michèle Guillaume
- Université de Liège Département des Sciences de la Santé publique, , Liège, Belgium
| | | | - Edith Le Floch
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay , Evry, France
| | - Delphine Bacq-Daian
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay , Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay , Evry, France
| | - Laurie Van den Berghe
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre Bénite , Lyon, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre Bénite , Lyon, France
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre Bénite , Lyon, France
| | | | | | - Sandra Wagner
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| | - Patrick Rossignol
- University of Lorraine , INSERM U1116, CIC 1433, FCRIN INI-CRCT, Nancy University Hospital, Nancy, France
| |
Collapse
|
24
|
Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J 2021; 43:683-697. [PMID: 34849696 DOI: 10.1093/eurheartj/ehab757] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/12/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB7, Boston, MA 02115, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Heart Division, Royal Brompton & Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
25
|
Irvin MR, Montasser ME, Kind T, Fan S, Barupal DK, Patki A, Tanner RM, Armstrong ND, Ryan KA, Claas SA, O’Connell JR, Tiwari HK, Arnett DK. Genomics of Postprandial Lipidomics in the Genetics of Lipid-Lowering Drugs and Diet Network Study. Nutrients 2021; 13:4000. [PMID: 34836252 PMCID: PMC8617762 DOI: 10.3390/nu13114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid molecular species which are more closely related to the genome. We measured the plasma lipidome at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identified. Heritable and responsive lipid species were examined for association with single-nucleotide polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine (CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple testing of 132 lipids (α = 5 × 10-8/132 = 4 × 10-10), no SNP was statistically significantly associated with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1 and 2/FADS1 and FADS2) on chromosome 11 had p < 8.0 × 10-7 for arachidonic acid FA(20:4). Those SNPs replicated in HAPI Heart with p < 3.3 × 10-3. CpGs around the FADS1/2 region were associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG (p = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute jointly and independently to the diet response to a high-fat meal.
Collapse
Affiliation(s)
- Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - May E. Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tobias Kind
- NIH West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, CA 95616, USA; (T.K.); (S.F.)
| | - Sili Fan
- NIH West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, CA 95616, USA; (T.K.); (S.F.)
| | - Dinesh K. Barupal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.P.); (H.K.T.)
| | - Rikki M. Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - Kathleen A. Ryan
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
| | - Steven A. Claas
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA; (S.A.C.); (D.K.A.)
| | - Jeffrey R. O’Connell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.P.); (H.K.T.)
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA; (S.A.C.); (D.K.A.)
| |
Collapse
|
26
|
Afshar M, Yazdan-Ashoori S, Engert JC, Thanassoulis G. Drugs for Prevention and Treatment of Aortic Stenosis: How Close Are We? Can J Cardiol 2021; 37:1016-1026. [DOI: 10.1016/j.cjca.2021.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
|
27
|
Tandon I, Quinn KP, Balachandran K. Label-Free Multiphoton Microscopy for the Detection and Monitoring of Calcific Aortic Valve Disease. Front Cardiovasc Med 2021; 8:688513. [PMID: 34179147 PMCID: PMC8226007 DOI: 10.3389/fcvm.2021.688513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease. CAVD results in a considerable socio-economic burden, especially considering the aging population in Europe and North America. The only treatment standard is surgical valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. Novel diagnostic techniques and biomarkers for early detection and monitoring of CAVD progression are thus a pressing need. Additionally, non-destructive tools are required for longitudinal in vitro and in vivo assessment of CAVD initiation and progression that can be translated into clinical practice in the future. Multiphoton microscopy (MPM) facilitates label-free and non-destructive imaging to obtain quantitative, optical biomarkers that have been shown to correlate with key events during CAVD progression. MPM can also be used to obtain spatiotemporal readouts of metabolic changes that occur in the cells. While cellular metabolism has been extensively explored for various cardiovascular disorders like atherosclerosis, hypertension, and heart failure, and has shown potential in elucidating key pathophysiological processes in heart valve diseases, it has yet to gain traction in the study of CAVD. Furthermore, MPM also provides structural, functional, and metabolic readouts that have the potential to correlate with key pathophysiological events in CAVD progression. This review outlines the applicability of MPM and its derived quantitative metrics for the detection and monitoring of early CAVD progression. The review will further focus on the MPM-detectable metabolic biomarkers that correlate with key biological events during valve pathogenesis and their potential role in assessing CAVD pathophysiology.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
28
|
Miyazawa K, Ito K. The Evolving Story in the Genetic Analysis for Heart Failure. Front Cardiovasc Med 2021; 8:646816. [PMID: 33928132 PMCID: PMC8076510 DOI: 10.3389/fcvm.2021.646816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Genomic studies of cardiovascular diseases have achieved great success, not only in Mendelian genetic diseases such as hereditary arrhythmias and cardiomyopathies, but also in common diseases such as ischemic heart disease and atrial fibrillation. However, only limited success has been achieved in heart failure due to the complexity of its disease background. In this paper, we will review the genetic research for heart failure to date and discuss how we can discover new aspects of heart failure from the viewpoint of genomic perspective.
Collapse
Affiliation(s)
- Kazuo Miyazawa
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The current review describes the fundamentals of the Mendelian randomization framework and its current application for causal inference in human nutrition and metabolism. RECENT FINDINGS In the Mendelian randomization framework, genetic variants that are strongly associated with the potential risk factor are used as instrumental variables to determine whether the risk factor is a cause of the disease. Mendelian randomization studies are less susceptible to confounding and reverse causality compared with traditional observational studies. The Mendelian randomization study design has been increasingly used in recent years to appraise the causal associations of various nutritional factors, such as milk and alcohol intake, circulating levels of micronutrients and metabolites, and obesity with risk of different health outcomes. Mendelian randomization studies have confirmed some but challenged other nutrition-disease associations recognized by traditional observational studies. Yet, the causal role of many nutritional factors and intermediate metabolic changes for health and disease remains unresolved. SUMMARY Mendelian randomization can be used as a tool to improve causal inference in observational studies assessing the role of nutritional factors and metabolites in health and disease. There is a need for more large-scale genome-wide association studies to identify more genetic variants for nutritional factors that can be utilized for Mendelian randomization analyses.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Artiach G, Bäck M. Omega-3 Polyunsaturated Fatty Acids and the Resolution of Inflammation: Novel Therapeutic Opportunities for Aortic Valve Stenosis? Front Cell Dev Biol 2020; 8:584128. [PMID: 33304901 PMCID: PMC7693622 DOI: 10.3389/fcell.2020.584128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammation is well-established in cardiovascular disease, including valvular heart disease. Inflammation is a key process in the fibrosis and calcification of the aortic valve leaflets, which ultimately clinically manifest as aortic valve stenosis characterized by valve dysfunction and cardiac obstruction. In the absence of pharmacological treatment, either surgical or transcatheter aortic valve replacement is currently the only available therapeutic strategy for patients with severe aortic valve stenosis. Omega-3 polyunsaturated fatty acids, which exert beneficial effects in several cardiovascular diseases, serve as the substrate for several bioactive lipid mediators that regulate inflammation. Recent findings point to the beneficial effects of omega-3 fatty acids in cardiac valves, being inversely associated with aortic valve calcification and contributing to the resolution of valvular inflammation by means of the pro-resolving mediator resolvin E1 and downstream signaling through its receptor ChemR23.
Collapse
Affiliation(s)
- Gonzalo Artiach
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|