1
|
Diaz-Gil D, Silva-Gomez N, Morton SU, Seidman JG, Seidman CE, Zurakowski D, Staffa SJ, Marx GR, Emani SM, Del Nido PJ, Friehs I. Predictive modeling of endocardial fibroelastosis recurrence in patients with congenital heart disease. J Thorac Cardiovasc Surg 2025; 169:366-374. [PMID: 39208926 DOI: 10.1016/j.jtcvs.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Endocardial fibroelastosis (EFE) is a major effector in the maldevelopment of the heart in patients with congenital heart disease. Despite successful surgical removal, EFE can redevelop, but the underlying cause of EFE recurrence remains unknown. This study aimed to identify hemodynamic predictors and genetic links to epithelial/endothelial-to-mesenchymal transition (EMT/EndMT) alterations for preoperative risk assessment. METHODS We assessed the impact of preoperative hemodynamic parameters on EFE recurrence in a cohort of 92 patients with congenital heart disease who underwent left ventricular (LV) EFE resection between January 2010 and March 2021. Additionally, whole-exome sequencing in 18 patients was used to identify rare variants (minor allele frequency <10-5) in high-expression heart (HHE) genes related to cardiac EMT/EndMT and congenital heart disease. RESULTS EFE recurred in 55.4% of patients, within a median of 2.2 years postsurgery. Multivariable analysis revealed specific hemodynamic parameters (mitral valve inflow and area, LV filling pressure, and aortic valve gradient and diameter) as predictors, forming a predictive model with an area under the receiver operating characteristic curve of 0.782. Furthermore, 89% of the patients exhibited damaging variants in HHE genes, with 38% linked to cardiac EMT/EndMT Gene Ontology processes and 22% associated with known congenital heart disease genes. Notably, HHE genes associated with cardiac EMT/EndMT were significantly associated with faster EFE recurrence in a multivariate analysis (hazard ratio, 3.56; 95% confidence interval, 1.24-10.17; P = .018). CONCLUSIONS These findings established a predictive scoring system using preoperative hemodynamic parameters for EFE recurrence risk assessment. Alterations in HHE genes, particularly those linked to cardiac EMT/EndMT, exacerbate the risk of recurrence.
Collapse
Affiliation(s)
- Daniel Diaz-Gil
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine, Boston, Mass; Department of Pediatric Heart Medicine and Adults with Congenital Heart Disease, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sarah U Morton
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, Mass
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Mass; Cardiovascular Division, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass; Howard Hughes Medical Institute, Chevy Chase, Md
| | - David Zurakowski
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Mass; Department of Anesthesia, Harvard Medical School, Boston, Mass
| | - Steven J Staffa
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Mass
| | - Gerald R Marx
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Cardiology, Boston Children's Hospital, Boston, Mass
| | - Sitaram M Emani
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass.
| |
Collapse
|
2
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Thomas AS, Spector LG, McCracken C, Oster ME, Kochilas LK. Cancer mortality in children surviving congenital heart interventions: A study from the Pediatric Cardiac Care Consortium. Pediatr Blood Cancer 2024; 71:e31271. [PMID: 39138600 PMCID: PMC11499021 DOI: 10.1002/pbc.31271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Children with congenital heart defects (CHD) have shorter life expectancy than the general population. Previous studies also suggest that patients with CHD have higher risk of cancer. This study aims to describe cancer-related mortality among patients with a history of CHD interventions using the Pediatric Cardiac Care Consortium (PCCC), a large US cohort of such patients. METHODS We performed a retrospective cohort study of individuals (<21 years) who underwent interventions for CHD in the PCCC from 1982 to 2003. Patients surviving their first intervention were linked to the National Death Index through 2020. Multivariable models assessed risk of cancer-related death, adjusting for age, sex, race, and ethnicity. Patients with/without genetic abnormalities (mostly Down syndrome [DS]) were considered separately, due to expected differential risk in cancer. RESULTS Among the 57,601 eligible patients in this study, cancer was the underlying or contributing cause of death for 208; with 20% among those with DS. Significantly increased risk of cancer-related death was apparent among patients with DS compared to the non-genetic group (aHR: 3.63, 95% confidence interval [CI]: 2.52-5.24, p < .001). For the group with non-genetic abnormalities, the highest association with cancer-related death compared to those with mild CHD was found among those with more severe CHD (severe two-ventricle aHR: 1.82, 95% CI: 1.04-3.20, p = .036, single-ventricle aHR: 4.68, 95% CI: 2.77-7.91, p < .001). CONCLUSIONS Patients with more severe forms of CHD are at increased risk for cancer-related death. Despite our findings, we are unable to distinguish whether having CHD raises the risk of cancer or reduces survival.
Collapse
Affiliation(s)
- Amanda S. Thomas
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
- Minnesota Population Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Logan G. Spector
- Division of Epidemiology and Clinical Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Courtney McCracken
- Center for Research and Evaluation, Kaiser Permanente of Georgia, Atlanta, Georgia, USA
| | - Matthew E. Oster
- Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Lazaros K. Kochilas
- Division of Cardiology, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Morton SU. Lifespan health with congenital heart disease: Considering cancer-associated mortality. Pediatr Blood Cancer 2024; 71:e31349. [PMID: 39327641 DOI: 10.1002/pbc.31349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Das D, Khor ES, Jiang F, He J, Kawakami Y, Wainwright L, Hollinger J, Geiger J, Liu H, Meng F, Porter GA, Jin Z, Murphy P, Yao P. Loss-of-function of RNA-binding protein PRRC2B causes translational defects and congenital cardiovascular malformation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.26.24313895. [PMID: 39398999 PMCID: PMC11469349 DOI: 10.1101/2024.09.26.24313895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Alternative splicing generates variant forms of proteins for a given gene and accounts for functional redundancy or diversification. A novel RNA-binding protein, Pro-rich Coiled-coil Containing Protein 2B (PRRC2B), has been reported by multiple laboratories to mediate uORF-dependent and independent regulation of translation initiation required for cell cycle progression and proliferation. We identified two alternative spliced isoforms in human and mouse hearts and HEK293T cells, full-length (FL) and exon 16-excluded isoform ΔE16. A congenital heart disease-associated human mutation-mimicry knock-in of the equivalent variant in the mouse genome leads to the depletion of the full-length Prrc2b mRNA but not the alternative spliced truncated form ΔE16, does not cause any apparent structural or functional disorders. In contrast, global genetic inactivation of the PRRC2B gene in the mouse genome, nullifying both mRNA isoforms, caused patent ductus arteriosus (PDA) and neonatal lethality in mice. Bulk and single nucleus transcriptome profiling analyses of embryonic mouse hearts demonstrated a significant overall downregulation of multiple smooth muscle-specific genes in Prrc2b mutant mice resulting from reduced smooth muscle cell number. Integrated analysis of proteomic changes in Prrc2b null mouse embryonic hearts and polysome-seq and RNA-seq multi-omics analysis in human HEK293T cells uncover conserved PRRC2B-regulated target mRNAs that encode essential factors required for cardiac and vascular development. Our findings reveal the connection between alternative splicing regulation of PRRC2B, PRRC2B-mediated translational control, and congenital cardiovascular development and disorder. This study may shed light on the significance of PRRC2B in human cardiovascular disease diagnosis and treatment.
Collapse
Affiliation(s)
- Debojyoti Das
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
| | - Eng-Soon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Jiali He
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
| | - Yui Kawakami
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
| | - Lindsey Wainwright
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Jared Hollinger
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
| | - Joshua Geiger
- Department of Vascular Surgery, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
| | - Fanju Meng
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - George A. Porter
- Department of Pediatrics, Medicine, and Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Zhenggen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
| | - Patrick Murphy
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| |
Collapse
|
6
|
Boonsawat P, Asadollahi R, Niedrist D, Steindl K, Begemann A, Joset P, Bhoj EJ, Li D, Zackai E, Vetro A, Barba C, Guerrini R, Whalen S, Keren B, Khan A, Jing D, Palomares Bralo M, Rikeros Orozco E, Hao Q, Schlott Kristiansen B, Zheng B, Donnelly D, Clowes V, Zweier M, Papik M, Siegel G, Sabatino V, Mocera M, Horn AHC, Sticht H, Rauch A. Deleterious ZNRF3 germline variants cause neurodevelopmental disorders with mirror brain phenotypes via domain-specific effects on Wnt/β-catenin signaling. Am J Hum Genet 2024; 111:1994-2011. [PMID: 39168120 PMCID: PMC11393693 DOI: 10.1016/j.ajhg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/β-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/β-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/β-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/β-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/β-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.
Collapse
Affiliation(s)
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Faculty of Engineering and Science, University of Greenwich London, Medway Campus, Chatham Maritime ME4 4TB, UK
| | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Pascal Joset
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Sandra Whalen
- Unité Fonctionnelle de Génétique Odellin, Hôpital Armand Trousseau, Paris, France
| | - Boris Keren
- Département de Génétique, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Amjad Khan
- Faculty of Science, Department of Biological Science (Zoology), University of Lakki Marwat, Khyber Pakhtunkhwa 28420, Pakistan
| | - Duan Jing
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - María Palomares Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Unidad de Trastornos Del Neurodesarrollo, Hospital Universitario La Paz, Madrid, Spain
| | - Emi Rikeros Orozco
- Instituto de Genética Médica y Molecular (INGEMM), Unidad de Trastornos Del Neurodesarrollo, Hospital Universitario La Paz, Madrid, Spain
| | - Qin Hao
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Deirdre Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health & Social Care Trust, Belfast, Northern Ireland
| | - Virginia Clowes
- Thames Regional Genetics Service, North West University Healthcare NHS Trust, London, UK
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Gabriele Siegel
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Valeria Sabatino
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Martina Mocera
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Pediatric University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Vandewouw MM, Norris-Brilliant A, Rahman A, Assimopoulos S, Morton SU, Kushki A, Cunningham S, King E, Goldmuntz E, Miller TA, Thomas NH, Adams HR, Cleveland J, Cnota JF, Ellen Grant P, Goldberg CS, Huang H, Li JS, McQuillen P, Porter GA, Roberts AE, Russell MW, Seidman CE, Tivarus ME, Chung WK, Hagler DJ, Newburger JW, Panigrahy A, Lerch JP, Gelb BD, Anagnostou E. Identifying novel data-driven subgroups in congenital heart disease using multi-modal measures of brain structure. Neuroimage 2024; 297:120721. [PMID: 38968977 DOI: 10.1016/j.neuroimage.2024.120721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024] Open
Abstract
Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | | | - Anum Rahman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Stephania Assimopoulos
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sarah U Morton
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Azadeh Kushki
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Sean Cunningham
- Department of Pediatrics, Division of General Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Eileen King
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas A Miller
- Department of Pediatrics, Maine Medical Center, Portland, ME, USA
| | - Nina H Thomas
- Department of Child and Adolescent Psychiatry and Behavioral Sciences and Center for Human Phenomic Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather R Adams
- Departments of Neurology and Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - John Cleveland
- Departments of Surgery and Pediatrics, Keck School of Medicine, University of Southern California, LA, USA
| | - James F Cnota
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA; Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - P Ellen Grant
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Caren S Goldberg
- Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Hao Huang
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer S Li
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Patrick McQuillen
- Departments of Pediatrics and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - George A Porter
- Departments of Neurology and Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy E Roberts
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Mark W Russell
- Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences and Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, USA; Department of Radiology, School of Medicine, University of California San Diego, USA; Departments of Cognitive Science and Neuroscience, University of California San Diego, USA
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Liu Z, Lai J, Song F. Noonan syndrome and Noonan-like syndrome with loose anagen hair: rare phenotypes may emerge during follow-up. Transl Pediatr 2024; 13:1161-1168. [PMID: 39144424 PMCID: PMC11320002 DOI: 10.21037/tp-24-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
Background Noonan syndrome (NS) and Noonan-like syndrome with loose anagen hair (NS/LAH) are neurodevelopmental syndromes resulting from germline mutations in genes that participate in the rat sarcoma/mitogen-activated protein kinases (RAS/MAPK) pathway. The aim of this retrospective study was to describe common and rare manifestations of NS and NS/LAH. Methods We collected and analyzed clinical and genetic data from 25 patients with NS and NS/LAH. Results The patients' median age was 6.3 years (range, 1-13 years), and the male-to-female ratio was 18:7. In total, 19 patients had NS caused by a mutation in PTPN11. Another causative gene was found in six patients, including two patients with a SHOC2 mutation, one patient with a KRAS mutation, one patient with an LZTR1 mutation, one patient with a BRAF mutation, and one patient with a PPP1CB mutation. Short stature was detected in 100% of the patients. This study provides an overview of the clinical features of NS, including unique facial features, short stature, congenital heart defects, and other manifestations. Notably, systemic lupus erythematosus (SLE) was found in two SHOC2-positive patients. One patient had a posterior urethral valve, which is very rare in NS patients. Conclusions Our study identified several clinical features that were previously poorly related to NS, including SLE. We concluded that SHOC2-related NS is associated with a particularly high risk of SLE, which may have a significant impact on quality of life, and a posterior urethral valve is a novel phenotype. These findings could be helpful in enhancing the understanding of the clinical spectrum of NS.
Collapse
Affiliation(s)
- Ziqin Liu
- Department of Endocrinology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Jianming Lai
- Department of Rheumatology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Fuying Song
- Department of Endocrinology, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
9
|
Ren L, Feng M, Luo Y, Chen Y. Risk of Cancer in Patients with Congenital Heart Disease: A Systematic Review and Meta-Analysis. Cardiology 2024:1-8. [PMID: 39053445 DOI: 10.1159/000540443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION There has been remarkable progress in both diagnosis and treatment of patients with congenital heart disease (CHD), with an increasing number of survivors. Whether patients with CHD are more likely to develop cancer is still a controversial issue. This study aimed to quantitatively estimate the association between patients with CHD and the risk of developing cancer through meta-analysis. METHODS Web of Science, PubMed, and Embase databases were searched from inception to September 2023 to identify potentially relevant case-control studies and cohort studies that reported risk estimates and confidence intervals (CIs). RevMan software was used to analyze the pooled effect size and test for heterogeneity. The random effect and fixed effect models were applied to the study period. Egger's test was performed to examine publication bias. RESULTS We analyzed six studies, consisting of 2 case-control studies and 4 cohort studies comprising 276,124 participants. The overall pooled hazard risk for cancer in patients with CHD was 1.71 (95% CI: 1.28-2.28; p < 0.01), with significant heterogeneity (I2 = 97%, p < 0.01). The quantitative analysis of studies indicates that patients with CHD have an increased risk of developing cancer, even after adjusting for chromosomal disorders. CONCLUSION Our study highlights the importance of controlling modifiable factors in cancer prevention and emphasizes the need for health education for patients with CHD in primary care. Given the limited number of studies included in this analysis, further research is needed to accurately quantify the cancer risk of exposed versus unexposed CHD.
Collapse
Affiliation(s)
- Lijuan Ren
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Mei Feng
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yulan Luo
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Chen
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 488] [Impact Index Per Article: 488.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
11
|
Narayan P, Richter F, Morton S. Genetics and etiology of congenital heart disease. Curr Top Dev Biol 2024; 156:297-331. [PMID: 38556426 DOI: 10.1016/bs.ctdb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common severe birth anomaly, affecting almost 1% of infants. Most CHD is genetic, but only 40% of patients have an identifiable genetic risk factor for CHD. Chromosomal variation contributes significantly to CHD but is not readily amenable to biological follow-up due to the number of affected genes and lack of evolutionary synteny. The first CHD genes were implicated in extended families with syndromic CHD based on the segregation of risk alleles in affected family members. These have been complemented by more CHD gene discoveries in large-scale cohort studies. However, fewer than half of the 440 estimated human CHD risk genes have been identified, and the molecular mechanisms underlying CHD genetics remains incompletely understood. Therefore, model organisms and cell-based models are essential tools for improving our understanding of cardiac development and CHD genetic risk. Recent advances in genome editing, cell-specific genetic manipulation of model organisms, and differentiation of human induced pluripotent stem cells have recently enabled the characterization of developmental stages. In this chapter, we will summarize the latest studies in CHD genetics and the strengths of various study methodologies. We identify opportunities for future work that will continue to further CHD knowledge and ultimately enable better diagnosis, prognosis, treatment, and prevention of CHD.
Collapse
Affiliation(s)
| | - Felix Richter
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Morton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
13
|
Di Francesco D, Swenerton A, Li WL, Dunham C, Hendson G, Boerkoel CF. Are CUL3 variants an underreported cause of congenital heart disease? Am J Med Genet A 2023; 191:2903-2907. [PMID: 37665043 DOI: 10.1002/ajmg.a.63387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Complex heart defects (CHD) are a common malformation associated with disruption of developmental pathways. The Cullin-RING ligases (CRLs) are multi-subunit E3 ubiquitin ligases in which Cullin 3 (CUL3) serves as a scaffolding subunit. Heterozygous CUL3 variants have been associated with neurodevelopmental disorders and pseudohypoaldosteronism type IIE. We report a fetus with CHD and a de novo CUL3 variant (NM_003590.4:c.[1549_1552del];[=], p.(Ser517Profs*23)) and review CUL3 variants reported with CHD. We postulate that CUL3 variants predispose to CHD and hypothesize mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Daniela Di Francesco
- MD Undergraduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne Swenerton
- Provincial Medical Genetics Program, B.C. Women's Hospital, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Christopher Dunham
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Hendson
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Cornelius F Boerkoel
- Provincial Medical Genetics Program, B.C. Women's Hospital, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
15
|
Sinibaldi L, Garone G, Mandarino A, Iarossi G, Chioma L, Dentici ML, Merla G, Agolini E, Micalizzi A, Mancini C, Niceta M, Macchiaiolo M, Diodato D, Onesimo R, Blandino R, Delogu AB, De Rosa G, Trevisan V, Iademarco M, Zampino G, Tartaglia M, Novelli A, Bartuli A, Digilio MC, Calcagni G. Congenital heart defects in CTNNB1 syndrome: Raising clinical awareness. Clin Genet 2023; 104:528-541. [PMID: 37455656 DOI: 10.1111/cge.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
CTNNB1 [OMIM *116806] encodes β-catenin, an integral part of the cadherin/catenin complex, which functions as effector of Wnt signaling. CTNNB1 is highly expressed in brain as well as in other tissues, including heart. Heterozygous CTNNB1 pathogenic variations are associated with a neurodevelopmental disorder characterized by spastic diplegia and visual defects (NEDSDV) [OMIM #615075], featuring psychomotor delay, intellectual disability, behavioral disturbances, movement disorders, visual defects and subtle facial and somatic features. We report on a new series of 19 NEDSDV patients (mean age 10.3 years), nine of whom bearing novel CTNNB1 variants. Notably, five patients showed congenital heart anomalies including absent pulmonary valve with intact ventricular septum, atrioventricular canal with hypoplastic aortic arch, tetralogy of Fallot, and mitral valve prolapse. We focused on the cardiac phenotype characterizing such cases and reviewed the congenital heart defects in previously reported NEDSDV patients. While congenital heart defects had occasionally been reported so far, the present findings configure a higher rate of cardiac anomalies, suggesting dedicated heart examination to NEDSDV clinical management.
Collapse
Affiliation(s)
- Lorenzo Sinibaldi
- Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Giacomo Garone
- Clinical and Experimental Neurology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Mandarino
- Child and Adolescent Neuropsychiatry Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giancarlo Iarossi
- Department of Ophthalmology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Laura Chioma
- Endocrinology and Diabetology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Daria Diodato
- Neuromuscular and Neurodegenerative Disorders Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Roberta Onesimo
- Rare Diseases Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Pediatric Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Rita Blandino
- Pediatric Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | - Gabriella De Rosa
- Pediatric Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Valentina Trevisan
- Rare Diseases Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Mariella Iademarco
- Rare Diseases Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Giuseppe Zampino
- Rare Diseases Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Pediatric Unit, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica Sacro Cuore, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | | | - Giulio Calcagni
- Department of Cardiac Surgery, Cardiology and Heart and Lung Transplant, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
16
|
Hardy RY, Babu S, Jackson JL, George S, Andrews JG, Daskalov R, May SC, Miller P, Timmins S, Pike NA. Young adults with congenital heart disease heading to college: Are college health centers and providers prepared? J Am Assoc Nurse Pract 2023; 35:620-628. [PMID: 37471528 DOI: 10.1097/jxx.0000000000000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/01/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND An estimated 1.4 million adults in the United States have congenital heart disease (CHD). As this population grows and many pursue postsecondary education, these adults' health care needs and concerns should be at the forefront for providers, particularly nurse practitioners, at college health centers. PURPOSE To understand how college health centers and providers identify and manage the care of students with chronic conditions to further support their health care transition, with a focus on students with CHD. METHODOLOGY Qualitative key informant interviews were performed with providers at five college health centers to understand the processes in place and the challenges health care providers on college campuses face when caring for students with CHD. RESULTS Most of the college health centers did not have formalized processes in place to care for these students. Although many felt that they had the capabilities in their health centers to manage these students' maintenance/preventive care needs, fewer felt comfortable with their urgent or emergent care needs. The onus was often on students or parents/guardians to initiate these transitions. CONCLUSIONS This study highlights some challenges to providing care to students with chronic conditions like CHD. More collaborative relationships with specialists may be critical to ensuring that all the care needs of chronic disease students are met on college campuses. IMPLICATIONS Nurse practitioners, who often staff these clinics, are well positioned to support this transition onto campuses and lead the development of processes to identify these students, ease care management transitions, and ensure easy provider communication that allow students with chronic diseases to thrive on campus.
Collapse
Affiliation(s)
- Rose Y Hardy
- Center for Child Health Equity, Nationwide Children's Hospital, Columbus, Ohio
| | - Suhas Babu
- Texas A&M University, College Station, Texas
| | - Jamie L Jackson
- Center for Biobehavioral Health, Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | - Susan C May
- Adult Congenital Heart Association (ACHA), Media, Pennsylvania
| | - Paula Miller
- Adult Congenital Heart Association (ACHA), Media, Pennsylvania
| | - Susan Timmins
- Adult Congenital Heart Association (ACHA), Media, Pennsylvania
| | - Nancy A Pike
- School of Nursing, University of California, Los Angeles, California, USA
| |
Collapse
|
17
|
Sahajpal NS, Jeffrey DHF, DuPont BR, Hilton B. 17q25.3 copy number changes: association with neurodevelopmental disorders and cardiac malformation. Mol Cytogenet 2023; 16:15. [PMID: 37430334 DOI: 10.1186/s13039-023-00644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
Copy number variants (CNVs) have been identified as common genomic variants that play a significant role in inter-individual variability. Conversely, rare recurrent CNVs have been found to be causal for many disorders with well-established genotype-phenotype relationships. However, the phenotypic implications of rare non-recurrent CNVs remain poorly understood. Herein, we re-investigated 18,542 cases reported from chromosomal microarray at Greenwood Genetic Center from 2010 to 2022 and identified 15 cases with CNVs involving the 17q25.3 region. We report the detailed clinical features of these subjects, and compare with the cases reported in the literature to determine genotype-phenotype correlations for a subset of genes in this region. The CNVs in the 17q25.3 region were found to be rare events, with a prevalence of 0.08% (15/18542) observed in our cohort. The CNVs were dispersed across the entire 17q25.3 region with variable breakpoints and no smallest region of overlap. The subjects presented with a wide range of clinical features, with neurodevelopmental disorders (autism spectrum disorder, intellectual disability, developmental delay) being the most common features (80%), then expressive language disorder (33%), and finally cardiovascular malformations (26%). The association of CNVs involving the critical gene-rich region of 17q25.3 with neurodevelopmental disorders and cardiac malformation, implicates several genes as plausible drivers for these events.
Collapse
Affiliation(s)
| | - David H F Jeffrey
- Diagnostic Laboratories, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Barbara R DuPont
- Diagnostic Laboratories, Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Benjamin Hilton
- Diagnostic Laboratories, Greenwood Genetic Center, Greenwood, SC, 29646, USA.
| |
Collapse
|
18
|
Luo Q, Liu P, Yu P, Qin T. Cancer Stem Cells are Actually Stem Cells with Disordered Differentiation: the Monophyletic Origin of Cancer. Stem Cell Rev Rep 2023; 19:827-838. [PMID: 36648606 PMCID: PMC10185654 DOI: 10.1007/s12015-023-10508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Cancer stem cells (CSCs) play an important role in cancer development. Based on advancements in CSC research, we propose a monophyletic model of cancer. This model is based on the idea that CSCs are stem cells with disordered differentiation whose original purpose was to repair damaged tissues. Inflammatory responses and damage repair signals are crucial for the creation and maintenance of CSCs. Normal quiescent stem cells are activated by environmental stimulation, such as an inflammatory response, and undergo cell division and differentiation. In the initial stage of cancer development, stem cell differentiation leads to heteromorphism due to the accumulation of gene mutations, resulting in the development of metaplasia or precancerosis. In the second stage, accumulated mutations induce poor differentiation and lead to cancer development. The monophyletic model illustrates the evolution, biological behavior, and hallmarks of CSCs, proposes a concise understanding of the origin of cancer, and may encourage a novel therapeutic approach.
Collapse
Affiliation(s)
- Qiankun Luo
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pan Liu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pengfei Yu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Tao Qin
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China.
| |
Collapse
|
19
|
Mishra-Gorur K, Barak T, Kaulen LD, Henegariu O, Jin SC, Aguilera SM, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, Rai DK, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek AG, Bilguvar K, Lifton RP, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc Natl Acad Sci U S A 2023; 120:e2214997120. [PMID: 37043537 PMCID: PMC10120005 DOI: 10.1073/pnas.2214997120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leon D. Kaulen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - Ezgi Yalbir
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Gizem Goles
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Lydia Djenoune
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Devendra K. Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Andrew Prendergast
- Department of Internal Medicine, Section of Cardiology, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT06510
| | - Cynthia Zerillo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Burcin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leman Sencar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Nukte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| | - Shiaulou Yuan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Martina Brueckner
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
20
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1906] [Impact Index Per Article: 953.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
21
|
Gelb BD. Prospects for precision genetic medicine in congenital heart disease. Curr Opin Genet Dev 2022; 77:101983. [PMID: 36115276 PMCID: PMC9729438 DOI: 10.1016/j.gde.2022.101983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023]
Abstract
Precision medicine, defined as tailoring medical care individually based upon relevant factors, is primarily implemented currently through the use of genetic variation. Over the past thirty years, the possibility of determining specific genetic variants underlying congenital heart disease has increased dramatically. This has created the potential for using precision genetic approaches to improve care and outcomes for patients and families with congenital heart disease. In this review, recent advances in understanding the roles of genetic variants in various outcomes, in developing novel therapeutic approaches, and in refining clinical trials for congenital heart disease are discussed.
Collapse
Affiliation(s)
- Bruce D Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Keir M, Borman M, Clegg R, Colbert J, Guron N, Harper L, Helmerson D, Patzer J, Reynolds S, Alvarez N. Caring for the Aging Patient With Adult Congenital Heart Disease: A Review of Cardiac and Noncardiac Comorbidities. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:274-281. [PMID: 37969485 PMCID: PMC10642149 DOI: 10.1016/j.cjcpc.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2023]
Abstract
As the demographics of congenital heart disease (CHD) have shifted, there are now more adults living with CHD than children in North America. This presents unprecedented challenges as patients with CHD acquire noncardiac comorbidities and seek care for a variety of reasons, including noncardiac surgery and emergency department (ED) visits. CHD shifts from a one organ problem to a multisystem disease and requires a team of specialists to maintain high-quality longitudinal care. In this review, we summarize the challenges patients with CHD and their providers face as they age. We review the demographics of CHD and health care utilization. We examine the rates of noncardiac comorbidities and the current quality of care received by adult patients with CHD.
Collapse
Affiliation(s)
- Michelle Keir
- Southern Alberta Adult Congenital Heart Clinic, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Meredith Borman
- Section of Gastroenterology, Division of Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin Clegg
- Southern Alberta Adult Congenital Heart Clinic, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jillian Colbert
- Southern Alberta Adult Congenital Heart Clinic, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nita Guron
- Southern Alberta Adult Congenital Heart Clinic, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lea Harper
- Section of Respirology, Division of Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Doug Helmerson
- Section of Respirology, Division of Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Patzer
- Southern Alberta Adult Congenital Heart Clinic, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephen Reynolds
- Southern Alberta Adult Congenital Heart Clinic, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nanette Alvarez
- Southern Alberta Adult Congenital Heart Clinic, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Chelu A, Williams SG, Keavney BD, Talavera D. Joint analysis of functionally related genes yields further candidates associated with Tetralogy of Fallot. J Hum Genet 2022; 67:613-615. [PMID: 35718831 PMCID: PMC7613636 DOI: 10.1038/s10038-022-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Although several genes involved in the development of Tetralogy of Fallot have been identified, no genetic diagnosis is available for the majority of patients. Low statistical power may have prevented the identification of further causative genes in gene-by-gene survey analyses. Thus, bigger samples and/or novel analytic approaches may be necessary. We studied if a joint analysis of groups of functionally related genes might be a useful alternative approach. Our reanalysis of whole-exome sequencing data identified 12 groups of genes that exceedingly contribute to the burden of Tetralogy of Fallot. Further analysis of those groups showed that genes with high-impact variants tend to interact with each other. Thus, our results strongly suggest that additional candidate genes may be found by studying the protein interaction network of known causative genes. Moreover, our results show that the joint analysis of functionally related genes can be a useful complementary approach to classical single-gene analyses.
Collapse
Affiliation(s)
- Alexandru Chelu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Simon G Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Congenital Heart Disease and the Risk of Cancer: An Update on the Genetic Etiology, Radiation Exposure Damage, and Future Research Strategies. J Cardiovasc Dev Dis 2022; 9:jcdd9080245. [PMID: 36005409 PMCID: PMC9409914 DOI: 10.3390/jcdd9080245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Epidemiological studies have shown an increased prevalence of cancer in patients with congenital heart disease (CHD) as compared with the general population. The underlying risk factors for the acquired cancer risk remain poorly understood, and shared genetic anomalies and cumulative radiation exposure from repeated imaging and catheterization procedures may be contributing factors. In the present review, we provide an update on the most recent literature regarding the associations between CHD and cancer, with a particular focus on genetic etiology and radiation exposure from medical procedures. The current evidence indicates that children with CHD may be a high-risk population, already having the first genetic “hit”, and, consequently, may have increased sensitivity to ionizing radiation from birth or earlier. Future research strategies integrating biological and molecular measures are also discussed in this article.
Collapse
|
25
|
Turk A, Kunej T. Shared Genetic Risk Factors Between Cancer and Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:931917. [PMID: 35872888 PMCID: PMC9300967 DOI: 10.3389/fcvm.2022.931917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer and cardiovascular diseases (CVD) account for approximately 27.5 million deaths every year. While they share some common environmental risk factors, their shared genetic risk factors are not yet fully understood. The aim of the present study was to aggregate genetic risk factors associated with the comorbidity of cancer and CVDs. For this purpose, we: (1) created a catalog of genes associated with cancer and CVDs, (2) visualized retrieved data as a gene-disease network, and (3) performed a pathway enrichment analysis. We performed screening of PubMed database for literature reporting genetic risk factors in patients with both cancer and CVD. The gene-disease network was visualized using Cytoscape and the enrichment analysis was conducted using Enrichr software. We manually reviewed the 181 articles fitting the search criteria and included 13 articles in the study. Data visualization revealed a highly interconnected network containing a single subnetwork with 56 nodes and 146 edges. Genes in the network with the highest number of disease interactions were JAK2, TTN, TET2, and ATM. The pathway enrichment analysis revealed that genes included in the study were significantly enriched in DNA damage repair (DDR) pathways, such as homologous recombination. The role of DDR mechanisms in the development of CVDs has been studied in previously published research; however, additional functional studies are required to elucidate their contribution to the pathophysiology to CVDs.
Collapse
|
26
|
Mejia EJ, Rossano JW. Congenital heart disease and the risk of cancer: The importance of understanding associated comorbidities. Lancet Reg Health Eur 2022; 18:100415. [PMID: 35663364 PMCID: PMC9160338 DOI: 10.1016/j.lanepe.2022.100415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Erika J. Mejia
- Corresponding author at: 3401 Civic Center Boulevard, Philadelphia, PA 19104.
| | | |
Collapse
|
27
|
Karazisi C, Dellborg M, Mellgren K, Giang KW, Skoglund K, Eriksson P, Mandalenakis Z. Risk of cancer in young and older patients with congenital heart disease and the excess risk of cancer by syndromes, organ transplantation and cardiac surgery: Swedish health registry study (1930-2017). THE LANCET REGIONAL HEALTH. EUROPE 2022; 18:100407. [PMID: 35663362 PMCID: PMC9156800 DOI: 10.1016/j.lanepe.2022.100407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background Increasing survival of patients with congenital heart disease (CHD) will result in an increased risk of age-dependent acquired diseases later in life. We aimed to investigate the risk of cancer in young and older patients with CHD and to evaluate the excess risk of cancer by syndromes, organ transplantation and cardiac surgery. Methods Patients with CHD born between 1930 and 2017 were identified using Swedish Health Registers. Each patient with CHD (n = 89,542) was matched by sex and birth year with ten controls without CHD (n = 890,472) from the Swedish Total Population Register. Findings 4012 patients with CHD (4·5%) and 35,218 controls (4·0%) developed cancer. The median follow-up time was 58·8 (IQR 42·4-69·0) years. The overall cancer risk was 1·23 times higher (95% confidence interval (CI) 1·19-1·27) in patients with CHD compared with matched controls, and remained significant when patients with syndromes and organ transplant recipients were excluded. The risk of cancer was higher in all CHD age groups, and in patients that underwent cardiac surgery during the first year after birth (Hazard Ratio 1·83; 95% CI 1·32-2·54). The highest risk was found in children (0-17 years), HR 3·21 (95% CI 2·90-3·56). Interpretation The cancer risk in patients with CHD was 23% higher than in matched controls without CHD. The highest risk was found in children and in the latest birth cohort (1990-2017). Funding Funding by the Swedish state (Grant Number: 236611), the Swedish Research Council (Grant Number: 2019-00193), the Swedish Childhood Cancer Fund (Grant Number: SP2017-0012) and the Swedish Heart-Lung Foundation (Grant Number: 20190724).
Collapse
Affiliation(s)
- Christina Karazisi
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Diagnosvägen 11, Gothenburg SE-416 50, Sweden
| | - Mikael Dellborg
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Diagnosvägen 11, Gothenburg SE-416 50, Sweden
- Adult Congenital Heart Disease Unit, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Mellgren
- Department of Pediatric Oncology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kok Wai Giang
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Diagnosvägen 11, Gothenburg SE-416 50, Sweden
| | - Kristofer Skoglund
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Peter Eriksson
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Diagnosvägen 11, Gothenburg SE-416 50, Sweden
- Adult Congenital Heart Disease Unit, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Zacharias Mandalenakis
- Institute of Medicine, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Diagnosvägen 11, Gothenburg SE-416 50, Sweden
- Adult Congenital Heart Disease Unit, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
28
|
Zeng C, Bastarache LA, Tao R, Venner E, Hebbring S, Andujar JD, Bland ST, Crosslin DR, Pratap S, Cooley A, Pacheco JA, Christensen KD, Perez E, Zawatsky CLB, Witkowski L, Zouk H, Weng C, Leppig KA, Sleiman PMA, Hakonarson H, Williams MS, Luo Y, Jarvik GP, Green RC, Chung WK, Gharavi AG, Lennon NJ, Rehm HL, Gibbs RA, Peterson JF, Roden DM, Wiesner GL, Denny JC. Association of Pathogenic Variants in Hereditary Cancer Genes With Multiple Diseases. JAMA Oncol 2022; 8:835-844. [PMID: 35446370 PMCID: PMC9026237 DOI: 10.1001/jamaoncol.2022.0373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Knowledge about the spectrum of diseases associated with hereditary cancer syndromes may improve disease diagnosis and management for patients and help to identify high-risk individuals. Objective To identify phenotypes associated with hereditary cancer genes through a phenome-wide association study. Design, Setting, and Participants This phenome-wide association study used health data from participants in 3 cohorts. The Electronic Medical Records and Genomics Sequencing (eMERGEseq) data set recruited predominantly healthy individuals from 10 US medical centers from July 16, 2016, through February 18, 2018, with a mean follow-up through electronic health records (EHRs) of 12.7 (7.4) years. The UK Biobank (UKB) cohort recruited participants from March 15, 2006, through August 1, 2010, with a mean (SD) follow-up of 12.4 (1.0) years. The Hereditary Cancer Registry (HCR) recruited patients undergoing clinical genetic testing at Vanderbilt University Medical Center from May 1, 2012, through December 31, 2019, with a mean (SD) follow-up through EHRs of 8.8 (6.5) years. Exposures Germline variants in 23 hereditary cancer genes. Pathogenic and likely pathogenic variants for each gene were aggregated for association analyses. Main Outcomes and Measures Phenotypes in the eMERGEseq and HCR cohorts were derived from the linked EHRs. Phenotypes in UKB were from multiple sources of health-related data. Results A total of 214 020 participants were identified, including 23 544 in eMERGEseq cohort (mean [SD] age, 47.8 [23.7] years; 12 611 women [53.6%]), 187 234 in the UKB cohort (mean [SD] age, 56.7 [8.1] years; 104 055 [55.6%] women), and 3242 in the HCR cohort (mean [SD] age, 52.5 [15.5] years; 2851 [87.9%] women). All 38 established gene-cancer associations were replicated, and 19 new associations were identified. These included the following 7 associations with neoplasms: CHEK2 with leukemia (odds ratio [OR], 3.81 [95% CI, 2.64-5.48]) and plasma cell neoplasms (OR, 3.12 [95% CI, 1.84-5.28]), ATM with gastric cancer (OR, 4.27 [95% CI, 2.35-7.44]) and pancreatic cancer (OR, 4.44 [95% CI, 2.66-7.40]), MUTYH (biallelic) with kidney cancer (OR, 32.28 [95% CI, 6.40-162.73]), MSH6 with bladder cancer (OR, 5.63 [95% CI, 2.75-11.49]), and APC with benign liver/intrahepatic bile duct tumors (OR, 52.01 [95% CI, 14.29-189.29]). The remaining 12 associations with nonneoplastic diseases included BRCA1/2 with ovarian cysts (OR, 3.15 [95% CI, 2.22-4.46] and 3.12 [95% CI, 2.36-4.12], respectively), MEN1 with acute pancreatitis (OR, 33.45 [95% CI, 9.25-121.02]), APC with gastritis and duodenitis (OR, 4.66 [95% CI, 2.61-8.33]), and PTEN with chronic gastritis (OR, 15.68 [95% CI, 6.01-40.92]). Conclusions and Relevance The findings of this genetic association study analyzing the EHRs of 3 large cohorts suggest that these new phenotypes associated with hereditary cancer genes may facilitate early detection and better management of cancers. This study highlights the potential benefits of using EHR data in genomic medicine.
Collapse
Affiliation(s)
- Chenjie Zeng
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa A Bastarache
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ran Tao
- Department of Biostatistics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Venner
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Scott Hebbring
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Justin D Andujar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Clinical and Translational Hereditary Cancer Program, Division of Genetic Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Sarah T Bland
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington School of Medicine, Seattle
| | - Siddharth Pratap
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Ayorinde Cooley
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kurt D Christensen
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts.,Department of Population Medicine, Harvard Medical School, Boston, Massachusetts
| | - Emma Perez
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Carrie L Blout Zawatsky
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Leora Witkowski
- Centre Universitaire de Santé McGill, McGill University Health Centre, Montreal, Quebec, Canada
| | - Hana Zouk
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York
| | - Kathleen A Leppig
- Genetic Services and Kaiser Permanente Washington Health Research Institute, Kaiser Permanente of Washington, Seattle
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Human Genetics, Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Human Genetics, Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Marc S Williams
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle.,Department of Genome Sciences, University of Washington, Seattle
| | - Robert C Green
- Brigham and Women's Hospital, Broad Institute, Ariadne Labs and Harvard Medical School, Boston, Massachusetts
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, New York.,Department of Medicine, Columbia University, New York, New York
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Niall J Lennon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Heidi L Rehm
- Medical & Population Genetics Program and Genomics Platform, Broad Institute of MIT and Harvard Cambridge, Cambridge, Massachusetts.,Center for Genomic Medicine, Massachusetts General Hospital, Boston.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Josh F Peterson
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dan M Roden
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee.,Divisions of Cardiovascular Medicine and Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Georgia L Wiesner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Clinical and Translational Hereditary Cancer Program, Division of Genetic Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Joshua C Denny
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Abstract
Immunity could be viewed as the common factor in neurodevelopmental disorders and cancer. The immune and nervous systems coevolve as the embryo develops. Immunity can release cytokines that activate MAPK signaling in neural cells. In specific embryonic brain cell types, dysregulated signaling that results from germline or embryonic mutations can promote changes in chromatin organization and gene accessibility, and thus expression levels of essential genes in neurodevelopment. In cancer, dysregulated signaling can emerge from sporadic somatic mutations during human life. Neurodevelopmental disorders and cancer share similarities. In neurodevelopmental disorders, immunity, and cancer, there appears an almost invariable involvement of small GTPases (e.g., Ras, RhoA, and Rac) and their pathways. TLRs, IL-1, GIT1, and FGFR signaling pathways, all can be dysregulated in neurodevelopmental disorders and cancer. Although there are signaling similarities, decisive differentiating factors are timing windows, and cell type specific perturbation levels, pointing to chromatin reorganization. Finally, we discuss drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
30
|
Morton SU, Pereira AC, Quiat D, Richter F, Kitaygorodsky A, Hagen J, Bernstein D, Brueckner M, Goldmuntz E, Kim RW, Lifton RP, Porter GA, Tristani-Firouzi M, Chung WK, Roberts A, Gelb BD, Shen Y, Newburger JW, Seidman JG, Seidman CE. Genome-Wide De Novo Variants in Congenital Heart Disease Are Not Associated With Maternal Diabetes or Obesity. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003500. [PMID: 35130025 PMCID: PMC9295870 DOI: 10.1161/circgen.121.003500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is the most common anomaly at birth, with a prevalence of ≈1%. While infants born to mothers with diabetes or obesity have a 2- to 3-fold increased incidence of CHD, the cause of the increase is unknown. Damaging de novo variants (DNV) in coding regions are more common among patients with CHD, but genome-wide rates of coding and noncoding DNVs associated with these prenatal exposures have not been studied in patients with CHD. METHODS DNV frequencies were determined for 1812 patients with CHD who had whole-genome sequencing and prenatal history data available from the Pediatric Cardiac Genomics Consortium's CHD GENES study (Genetic Network). The frequency of DNVs was compared between subgroups using t test or linear model. RESULTS Among 1812 patients with CHD, the number of DNVs per patient was higher with maternal diabetes (76.5 versus 72.1, t test P=3.03×10-11), but the difference was no longer significant after including parental ages in a linear model (paternal and maternal correction P=0.42). No interaction was observed between diabetes risk and parental age (paternal and maternal interaction P=0.80 and 0.68, respectively). No difference was seen in DNV count per patient based on maternal obesity (72.0 versus 72.2 for maternal body mass index <25 versus maternal body mass index >30, t test P=0.86). CONCLUSIONS After accounting for parental age, the offspring of diabetic or obese mothers have no increase in DNVs compared with other children with CHD. These results emphasize the role for other mechanisms in the cause of CHD associated with these prenatal exposures. REGISTRATION URL: https://clinicaltrials.gov; NCT01196182.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Department of Medicine (S.U.M.), Boston Children's Hospital
| | - Alexandre C Pereira
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Daniel Quiat
- Department of Cardiology (D.Q., A.R., J.W.N.), Boston Children's Hospital
| | - Felix Richter
- Graduate School of Biomedical Sciences (F.R.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Kitaygorodsky
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Jacob Hagen
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University, CA (D.B.)
| | - Martina Brueckner
- Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT (M.B.)
| | - Elizabeth Goldmuntz
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, Univeristy of Pennsylvania (E.G.)
| | - Richard W Kim
- Cedars-Sinai Medical Center, Los Angeles, CA (R.W.K.)
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY (R.P.L.)
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, The School of Medicine and Dentistry, Rochester, NY (G.A.P.)
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine (W.K.C.), Columbia University Medical Center, New York, NY
| | - Amy Roberts
- Department of Cardiology (D.Q., A.R., J.W.N.), Boston Children's Hospital
| | - Bruce D Gelb
- Department of Pediatrics, Mindich Child Health and Development Institute (B.D.G.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Jane W Newburger
- Department of Pediatrics (S.U.M., D.Q., A.R., J.W.N.), Harvard Medical School, Boston, MA
| | - J G Seidman
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Christine E Seidman
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Jiao Z, Zhao X, Wang Y, Wei E, Mei S, Liu N, Kong X, Shi H. A de novo and novel nonsense variants in ASXL2 gene is associated with Shashi-Pena syndrome. Eur J Med Genet 2022; 65:104454. [PMID: 35182806 DOI: 10.1016/j.ejmg.2022.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
This ASXL2 gene encodes a member of a family of epigenetic regulators that bind various histone-modifying enzymes and are involved in the assembly of transcription factors at specific genomic loci. Recent research has found that pathogenic variants in ASXL2 gene can lead to Shashi-Pena syndrome. However, clinical reports of individuals with damaging ASXL2 variants were limited and clinical phenotypic information may also be incomplete at present. Here, we reported a patient from Chinese family presenting with Shashi-Pena syndrome duo to a nonsense variant c.2485C > T; p. (Gln829*) in ASXL2 and analyzed the clinical phenotypes of the patient. In addition to the typical facial appearance, feeding difficulty, cardiac dysfunction and developmental delay, the patient also demonstrated multiple clinical problems not reported in other published cases, including granulocytopenia, thrombocytopenia and "simian line". Additionally, this is also the first case of premature death associated to Shashi-Pena syndrome induced by ASXL2 variants in a Chinese population. Our results provided important information for genetic counseling of the family and broaden the spectrum of phenotypes and genetic variations of the syndrome.
Collapse
Affiliation(s)
- Zhihui Jiao
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China; The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, China.
| | - Xuechao Zhao
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Yanhong Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, He Nan Province, China, No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| | - Erhu Wei
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, He Nan Province, China, No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| | - Ning Liu
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Huirong Shi
- The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
32
|
Abstract
The application of next-generation sequencing to study congenital heart disease (CHD) is increasingly providing new insights into the causes and mechanisms of this prevalent birth anomaly. Whole-exome sequencing analysis identifies damaging gene variants altering single or contiguous nucleotides that are assigned pathogenicity based on statistical analyses of families and cohorts with CHD, high expression in the developing heart and depletion of damaging protein-coding variants in the general population. Gene classes fulfilling these criteria are enriched in patients with CHD and extracardiac abnormalities, evidencing shared pathways in organogenesis. Developmental single-cell transcriptomic data demonstrate the expression of CHD-associated genes in particular cell lineages, and emerging insights indicate that genetic variants perturb multicellular interactions that are crucial for cardiogenesis. Whole-genome sequencing analyses extend these observations, identifying non-coding variants that influence the expression of genes associated with CHD and contribute to the estimated ~55% of unexplained cases of CHD. These approaches combined with the assessment of common and mosaic genetic variants have provided a more complete knowledge of the causes and mechanisms of CHD. Such advances provide knowledge to inform the clinical care of patients with CHD or other birth defects and deepen our understanding of the complexity of human development. In this Review, we highlight known and candidate CHD-associated human genes and discuss how the integration of advances in developmental biology research can provide new insights into the genetic contributions to CHD.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Daniel Quiat
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
33
|
Zhang H, Zhang X, Zhao X, Cheng G, Chang H, Ye X, Wang J, Yu Z, Wang Q, Huang C. Maternal exposure to air pollution and congenital heart diseases in Henan, China: A register-based case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113070. [PMID: 34920182 DOI: 10.1016/j.ecoenv.2021.113070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Association between ambient air pollution and congenital heart diseases (CHDs) remains inconclusive, and the critical exposure windows has not been well studied. OBJECTIVES This case-control study aimed to assess the effect of ambient air pollution exposure on the risk of CHDs and the subtypes in Henan, China, and further to explore potential susceptible windows. METHODS Daily average particulate matter with an aerodynamic diameter of ≤2.5 µm (PM2.5) and ≤10 µm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO) and ozone (O3) were collected by Chinese Air Quality Reanalysis datasets. Binary logistic regression was used to examine trimester-specific associations between per 10 μg/m3 increase in air pollutants and CHDs as well as the major subtypes. Distributed lag models incorporating logistic regression were applied to explore weekly-specific associations. RESULTS A total of 196,069 singleton live births were included during 2013-2018, 643 CHDs were identified (3.3‰). We found that first and second trimester CO exposure increased overall CHDs risk, the adjusted odds ratio (aOR) and 95% confidence interval (CI) were 1.066 (1.010-1.125) and 1.065 (1.012-1.122). For CHDs subtypes, we observed that NO2 and CO in first trimester, PM2.5 and PM10 in the second trimester exposure were associated with the risk of atrial septal defect (ASD), the susceptible windows of air pollutants and ASD mainly occurred in the 1st- 6th gestational weeks. No positive association was observed for air pollution and tetralogy of Fallot. CONCLUSION Our findings suggest that ambient air pollution exposure is associated with the risk of CHDs especially for ASD, and the susceptible windows generally occurred in first trimester. Further well-designed longitudinal studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guomei Cheng
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofang Ye
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Huang GH, Zhang YH, Chen L, Li Y, Huang T, Cai YD. Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data. Life (Basel) 2021; 11:life11090940. [PMID: 34575089 PMCID: PMC8467493 DOI: 10.3390/life11090940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Non-small cell lung cancer is a major lethal subtype of epithelial lung cancer, with high morbidity and mortality. The single-cell sequencing technique plays a key role in exploring the pathogenesis of non-small cell lung cancer. We proposed a computational method for distinguishing cell subtypes from the different pathological regions of non-small cell lung cancer on the basis of transcriptomic profiles, including a group of qualitative classification criteria (biomarkers) and various rules. The random forest classifier reached a Matthew’s correlation coefficient (MCC) of 0.922 by using 720 features, and the decision tree reached an MCC of 0.786 by using 1880 features. The obtained biomarkers and rules were analyzed in the end of this study.
Collapse
Affiliation(s)
- Guo-Hua Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Lei Chen
- Department of College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - You Li
- Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Tao Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (T.H.); (Y.-D.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.-D.C.)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Correspondence: (T.H.); (Y.-D.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.-D.C.)
| |
Collapse
|
35
|
Reuter MS, Chaturvedi RR, Jobling RK, Pellecchia G, Hamdan O, Sung WW, Nalpathamkalam T, Attaluri P, Silversides CK, Wald RM, Marshall CR, Williams S, Keavney BD, Thiruvahindrapuram B, Scherer SW, Bassett AS. Clinical Genetic Risk Variants Inform a Functional Protein Interaction Network for Tetralogy of Fallot. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003410. [PMID: 34328347 PMCID: PMC8373675 DOI: 10.1161/circgen.121.003410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tetralogy of Fallot (TOF)-the most common cyanotic heart defect in newborns-has evidence of multiple genetic contributing factors. Identifying variants that are clinically relevant is essential to understand patient-specific disease susceptibility and outcomes and could contribute to delineating pathomechanisms. METHODS Using a clinically driven strategy, we reanalyzed exome sequencing data from 811 probands with TOF, to identify rare loss-of-function and other likely pathogenic variants in genes associated with congenital heart disease. RESULTS We confirmed a major contribution of likely pathogenic variants in FLT4 (VEGFR3 [vascular endothelial growth factor receptor 3]; n=14) and NOTCH1 (n=10) and identified 1 to 3 variants in each of 21 other genes, including ATRX, DLL4, EP300, GATA6, JAG1, NF1, PIK3CA, RAF1, RASA1, SMAD2, and TBX1. In addition, multiple loss-of-function variants provided support for 3 emerging congenital heart disease/TOF candidate genes: KDR (n=4), IQGAP1 (n=3), and GDF1 (n=8). In total, these variants were identified in 63 probands (7.8%). Using the 26 composite genes in a STRING protein interaction enrichment analysis revealed a biologically relevant network (P=3.3×10-16), with VEGFR2 (vascular endothelial growth factor receptor 2; KDR) and NOTCH1 (neurogenic locus notch homolog protein 1) representing central nodes. Variants associated with arrhythmias/sudden death and heart failure indicated factors that could influence long-term outcomes. CONCLUSIONS The results are relevant to precision medicine for TOF. They suggest considerable clinical yield from genome-wide sequencing, with further evidence for KDR (VEGFR2) as a congenital heart disease/TOF gene and for VEGF (vascular endothelial growth factor) and Notch signaling as mechanisms in human disease. Harnessing the genetic heterogeneity of single gene defects could inform etiopathogenesis and help prioritize novel candidate genes for TOF.
Collapse
Affiliation(s)
- Miriam S. Reuter
- CGEn, Univ Health Network, Toronto, ON, Canada
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Program in Genetics & Genome Biology, Univ Health Network, Toronto, ON, Canada
| | - Rajiv R. Chaturvedi
- Labatt Family Heart Ctr, Univ Health Network, Toronto, ON, Canada
- Ontario Fetal Ctr, Mt Sinai Hospital, Univ Health Network, Toronto, ON, Canada
- Ted Rogers Ctr for Heart Rsrch, Cardiac Genome Clinic, Univ Health Network, Toronto, ON, Canada
| | - Rebekah K. Jobling
- Ted Rogers Ctr for Heart Rsrch, Cardiac Genome Clinic, Univ Health Network, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, Univ Health Network, Toronto, ON, Canada
- Genome Diagnostics, Dept of Paediatric Laboratory Medicine, The Hospital for Sick Children, Univ Health Network, Toronto, ON, Canada
| | | | - Omar Hamdan
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
| | - Wilson W.L. Sung
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
| | | | - Pratyusha Attaluri
- Medical Genomics Program, Dept of Molecular Genetics, Univ Health Network, Toronto, ON, Canada
| | - Candice K. Silversides
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
| | - Rachel M. Wald
- Labatt Family Heart Ctr, Univ Health Network, Toronto, ON, Canada
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
| | - Christian R. Marshall
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Genome Diagnostics, Dept of Paediatric Laboratory Medicine, The Hospital for Sick Children, Univ Health Network, Toronto, ON, Canada
- Laboratory Medicine & Pathobiology, Univ Health Network, Toronto, ON, Canada
| | - Simon Williams
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine & Health, The Univ of Manchester, Manchester, UK
- Manchester Univ NHS Foundation Trust, Manchester Academic Health Science Ctr, Manchester, UK
| | - Bernard D. Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine & Health, The Univ of Manchester, Manchester, UK
- Manchester Univ NHS Foundation Trust, Manchester Academic Health Science Ctr, Manchester, UK
| | | | - Stephen W. Scherer
- The Ctr for Applied Genomics, Univ Health Network, Toronto, ON, Canada
- Program in Genetics & Genome Biology, Univ Health Network, Toronto, ON, Canada
- Dept of Molecular Genetics, Univ Health Network, Toronto, ON, Canada
- McLaughlin Ctr, Univ Health Network, Toronto, ON, Canada
| | - Anne S. Bassett
- Division of Cardiology, Toronto Congenital Cardiac Ctr for Adults at the Peter Munk Cardiac Ctr, Dept of Medicine, Univ Health Network, Toronto, ON, Canada
- Clinical Genetics Research Program, Ctr for Addiction & Mental Health, Toronto, ON, Canada
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Dept of Psychiatry & Toronto General Rsrch Inst, Univ Health Network, Toronto, ON, Canada
- Dept of Psychiatry, Univ of Toronto, Univ Health Network, Toronto, ON, Canada
| |
Collapse
|
36
|
Diab NS, Barish S, Dong W, Zhao S, Allington G, Yu X, Kahle KT, Brueckner M, Jin SC. Molecular Genetics and Complex Inheritance of Congenital Heart Disease. Genes (Basel) 2021; 12:1020. [PMID: 34209044 PMCID: PMC8307500 DOI: 10.3390/genes12071020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
Congenital heart disease (CHD) is the most common congenital malformation and the leading cause of mortality therein. Genetic etiologies contribute to an estimated 90% of CHD cases, but so far, a molecular diagnosis remains unsolved in up to 55% of patients. Copy number variations and aneuploidy account for ~23% of cases overall, and high-throughput genomic technologies have revealed additional types of genetic variation in CHD. The first CHD risk genotypes identified through high-throughput sequencing were de novo mutations, many of which occur in chromatin modifying genes. Murine models of cardiogenesis further support the damaging nature of chromatin modifying CHD mutations. Transmitted mutations have also been identified through sequencing of population scale CHD cohorts, and many transmitted mutations are enriched in cilia genes and Notch or VEGF pathway genes. While we have come a long way in identifying the causes of CHD, more work is required to end the diagnostic odyssey for all CHD families. Complex genetic explanations of CHD are emerging but will require increasingly sophisticated analysis strategies applied to very large CHD cohorts before they can come to fruition in providing molecular diagnoses to genetically unsolved patients. In this review, we discuss the genetic architecture of CHD and biological pathways involved in its pathogenesis.
Collapse
Affiliation(s)
- Nicholas S. Diab
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
| | - Syndi Barish
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Shujuan Zhao
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Xiaobing Yu
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|