1
|
Qiu H, Shi M, Zhong Z, Hu H, Sang H, Zhou M, Feng Z. Causal Relationship between Aging and Anorexia Nervosa: A White-Matter-Microstructure-Mediated Mendelian Randomization Analysis. Biomedicines 2024; 12:1874. [PMID: 39200338 PMCID: PMC11351342 DOI: 10.3390/biomedicines12081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study employed a two-step Mendelian randomization analysis to explore the causal relationship between telomere length, as a marker of aging, and anorexia nervosa and to evaluate the mediating role of changes in the white matter microstructure across different brain regions. We selected genetic variants associated with 675 diffusion magnetic resonance imaging phenotypes representing changes in brain white matter. F-statistics confirmed the validity of the instruments, ensuring robust causal inference. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy tests, and leave-one-out tests, validated the results. The results show that telomere length is significantly negatively correlated with anorexia nervosa in a unidirectional manner (p = 0.017). Additionally, changes in specific white matter structures, such as the internal capsule, corona radiata, posterior thalamic radiation, left cingulate gyrus, left longitudinal fasciculus, and left forceps minor (p < 0.05), were identified as mediators. These findings enhance our understanding of the neural mechanisms, underlying the exacerbation of anorexia nervosa with aging; emphasize the role of brain functional networks in disease progression; and provide potential biological targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Hunini Sang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Wesarg-Menzel C, Gallistl M, Niconchuk M, Engert V. Reflections on the study of empathy in a sample of refugees and migrants from Arabic-speaking countries with diverse experiences of war-related trauma. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100253. [PMID: 39170081 PMCID: PMC11338152 DOI: 10.1016/j.cpnec.2024.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Empathic abilities are proposed to affect the trajectory from trauma exposure to psychopathology. Yet, studies addressing the role of empathy in refugees with diverse experiences of war-related trauma are lacking. This may relate to missing recommendations on aspects to consider in the planning and execution of such a study. In the present methodological paper, we hence share our experiences in designing and implementing a study on the interrelations of war-related trauma, post-traumatic stress disorder, and empathy in individuals from Arabic-speaking countries who had entered Germany as refugees or migrants. In specific, we reflect on decisions related to the choice of experimental groups and measures of empathy, and describe unanticipated problems encountered during recruitment, screening and testing. Overall, we recommend applying a multi-method approach (i.e., a combination of questionnaire, behavioral and biological measures) to gain a comprehensive picture of the different facets of empathy. Further, we stress the importance to consider that not only refugees, but also migrants may have experienced war-related trauma. Beyond that, we advise to consult individuals of the study population of interest for the translation of instruments, realization of effective recruitment strategies, and to ensure that the testing procedures are sensitive to participants' past experiences and current needs. We hope that sharing these insights will benefit researchers interested in conducting basic and intervention research aimed at improving the mental health of individuals exposed to war-related trauma.
Collapse
Affiliation(s)
- Christiane Wesarg-Menzel
- Social Stress and Family Health Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - Mathilde Gallistl
- Social Stress and Family Health Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Veronika Engert
- Social Stress and Family Health Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- German Center for Mental Health (DZPG), Germany
- Center for Intervention and Research in Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| |
Collapse
|
3
|
Wesarg-Menzel C, Gallistl M, Niconchuk M, Böckler A, O'Malley B, Engert V. Compassion buffers the association between trauma exposure and PTSD symptom severity: Findings of a cross-sectional study. Psychoneuroendocrinology 2024; 165:107036. [PMID: 38642476 DOI: 10.1016/j.psyneuen.2024.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
To advance intervention science dedicated to improve refugees' mental health, a better understanding of factors of risk and resilience involved in the etiology and maintenance of post-traumatic stress disorder (PTSD) is needed. In the present study, we tested whether empathy and compassion, two trainable aspects of social cognition related to health, would modulate risk for PTSD after war-related trauma. Fifty-six refugees and 42 migrants from Arabic-speaking countries reported on their trauma experiences, PTSD symptoms, and perceived trait empathy and compassion. They further completed the EmpaToM, a naturalistic computer task measuring behavioral empathy and compassion. Moderation analyses revealed that behavioral, but not self-reported compassion was a significant moderator of the trauma-PTSD link. Trauma was more strongly related to PTSD symptoms when individuals had low (β =.59, t = 4.27, p <.001) as compared to high levels of behavioral compassion. Neither self-reported nor behavioral empathy moderated the trauma-PTSD link (β =.24, t = 1.57, p =.120). Findings indicate that the ability to go beyond the sharing of others' suffering and generate the positive feeling of compassion may support resilience in the context of trauma and subsequent development of PTSD. Hence, compassion may be a suitable target for prevention and intervention approaches reducing PTSD symptoms after trauma.
Collapse
Affiliation(s)
- Christiane Wesarg-Menzel
- Social Stress and Family Health Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany.
| | - Mathilde Gallistl
- Social Stress and Family Health Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Anne Böckler
- Department of Psychology, Würzburg University, Würzburg, Germany
| | - Bonnie O'Malley
- Social Stress and Family Health Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Veronika Engert
- Social Stress and Family Health Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Center for Intervention and Research in adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| |
Collapse
|
4
|
Schaefer JK, Engert V, Valk SL, Singer T, Puhlmann LM. Mapping pathways to neuronal atrophy in healthy, mid-aged adults: From chronic stress to systemic inflammation to neurodegeneration? Brain Behav Immun Health 2024; 38:100781. [PMID: 38725445 PMCID: PMC11081785 DOI: 10.1016/j.bbih.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Growing evidence implicates systemic inflammation in the loss of structural brain integrity in natural ageing and disorder development. Chronic stress and glucocorticoid exposure can potentiate inflammatory processes and may also be linked to neuronal atrophy, particularly in the hippocampus and the human neocortex. To improve understanding of emerging maladaptive interactions between stress and inflammation, this study examined evidence for glucocorticoid- and inflammation-mediated neurodegeneration in healthy mid-aged adults. N = 169 healthy adults (mean age = 39.4, 64.5% female) were sampled from the general population in the context of the ReSource Project. Stress, inflammation and neuronal atrophy were quantified using physiological indices of chronic stress (hair cortisol (HCC) and cortisone (HEC) concentration), systemic inflammation (interleukin-6 (IL-6), high-sensitive C-reactive protein (hs-CRP)), the systemic inflammation index (SII), hippocampal volume (HCV) and cortical thickness (CT) in regions of interest. Structural equation models were used to examine evidence for pathways from stress and inflammation to neuronal atrophy. Model fit indices indicated good representation of stress, inflammation, and neurological data through the constructed models (CT model: robust RMSEA = 0.041, robust χ2 = 910.90; HCV model: robust RMSEA <0.001, robust χ2 = 40.95). Among inflammatory indices, only the SII was positively associated with hair cortisol as one indicator of chronic stress (β = 0.18, p < 0.05). Direct and indirect pathways from chronic stress and systemic inflammation to cortical thickness or hippocampal volume were non-significant. In exploratory analysis, the SII was inversely related to mean cortical thickness. Our results emphasize the importance of considering the multidimensionality of systemic inflammation and chronic stress, with various indicators that may represent different aspects of the systemic reaction. We conclude that inflammation and glucocorticoid-mediated neurodegeneration indicated by IL-6 and hs-CRP and HCC and HEC may only emerge during advanced ageing and disorder processes, still the SII could be a promising candidate for detecting associations between inflammation and neurodegeneration in younger and healthy samples. Future work should examine these pathways in prospective longitudinal designs, for which the present investigation serves as a baseline.
Collapse
Affiliation(s)
- Julia K. Schaefer
- Cognitive Neuropsychology, Department of Psychology, Ludwig-Maximilians-Universität München, Germany
| | - Veronika Engert
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Clinic, Friedrich-Schiller University, Jena, Germany
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| | - Lara M.C. Puhlmann
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
5
|
Feng Z, Wang Y, Fu Z, Liao J, Liu H, Zhou M. Exploring the Causal Effects of Mineral Metabolism Disorders on Telomere and Mitochondrial DNA: A Bidirectional Two-Sample Mendelian Randomization Analysis. Nutrients 2024; 16:1417. [PMID: 38794655 PMCID: PMC11123946 DOI: 10.3390/nu16101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study was to assess the causal relationships between mineral metabolism disorders, representative of trace elements, and key aging biomarkers: telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN). Utilizing bidirectional Mendelian randomization (MR) analysis in combination with the two-stage least squares (2SLS) method, we explored the causal relationships between mineral metabolism disorders and these aging indicators. Sensitivity analysis can be used to determine the reliability and robustness of the research results. The results confirmed that a positive causal relationship was observed between mineral metabolism disorders and TL (p < 0.05), while the causal relationship with mtDNA-CN was not significant (p > 0.05). Focusing on subgroup analyses of specific minerals, our findings indicated a distinct positive causal relationship between iron metabolism disorders and both TL and mtDNA-CN (p < 0.05). In contrast, disorders in magnesium and phosphorus metabolism did not exhibit significant causal effects on either aging biomarker (p > 0.05). Moreover, reverse MR analysis did not reveal any significant causal effects of TL and mtDNA-CN on mineral metabolism disorders (p > 0.05). The combination of 2SLS with MR analysis further reinforced the positive causal relationship between iron levels and both TL and mtDNA-CN (p < 0.05). Notably, the sensitivity analysis did not indicate significant pleiotropy or heterogeneity within these causal relationships (p > 0.05). These findings highlight the pivotal role of iron metabolism in cellular aging, particularly in regulating TL and sustaining mtDNA-CN, offering new insights into how mineral metabolism disorders influence aging biomarkers. Our research underscores the importance of trace element balance, especially regarding iron intake, in combating the aging process. This provides a potential strategy for slowing aging through the adjustment of trace element intake, laying the groundwork for future research into the relationship between trace elements and healthy aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China or (Z.F.); (Y.W.); (Z.F.); (J.L.); (H.L.)
| |
Collapse
|
6
|
Gupta M, Rathored J. Hyperbaric oxygen therapy: future prospects in regenerative therapy and anti-aging. FRONTIERS IN AGING 2024; 5:1368982. [PMID: 38757145 PMCID: PMC11097100 DOI: 10.3389/fragi.2024.1368982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Hyperbaric Oxygen Therapy (HBOT) utilizes 100% oxygen at high atmospheric pressure for clinical applications. HBOT has proven to be an effective supplementary treatment for a variety of clinical and pathological disorders. HBOT's therapeutic results are based on the physiological effects of increased tissue oxygenation, or improved oxygen bioavailability. HBOT's current indications in illnesses like as wound healing, thermal or radiation burns, and tissue necrosis point to its function in facilitating the regeneration process. Various research has revealed that HBOT plays a function in vascularization, angiogenesis, and collagen production augmentation. Individual regeneration capacity is influenced by both environmental and genetic factors. Furthermore, the regenerating ability of different types of tissues varies, and this ability declines with age. HBOT affects physiological processes at the genetic level by altering gene expression, delaying cell senescence, and assisting in telomere length enhancement. The positive results in a variety of indications, ranging from tissue regeneration to better cognitive function, indicate that it has enormous potential in regenerative and anti-aging therapy.
Collapse
Affiliation(s)
- Manoj Gupta
- Datta Meghe Institute of Medical Sciences, Wardha, India
| | - Jaishriram Rathored
- Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
7
|
Ahlers NE, Lin J, Weiss SJ. WITHDRAWN: Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.17.23295692. [PMID: 37790308 PMCID: PMC10543047 DOI: 10.1101/2023.09.17.23295692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This manuscript has been withdrawn by the authors as it was submitted and made public without the full consent of all the authors. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author. The authors have an approved version for citation that is peer reviewed. Ahlers, N.E.; Lin, J.; Weiss, S.J. Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. Air 2024, 2, 24-37. https://doi.org/10.3390/air2010002.
Collapse
|
8
|
Vellingiri B, Balasubramani K, Iyer M, Raj N, Elangovan A, Song K, Yeo HC, Jayakumar N, Kinoshita M, Thangarasu R, Narayanasamy A, Dayem AA, Prajapati VK, Gopalakrishnan AV, Cho SG. Role of Telomeres and Telomerase in Parkinson's Disease-A New Theranostics? Adv Biol (Weinh) 2023; 7:e2300097. [PMID: 37590305 DOI: 10.1002/adbi.202300097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, 641021, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ajay Elangovan
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Namitha Jayakumar
- Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore, Tamil Nadu, 641006, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Ondoyama-Cho, Narutaki, Ukyo-Ku, Kyoto, 616-8255, Japan
| | - Ravimanickam Thangarasu
- Department of Zoology, School of Science, Tamil Nadu Open University, Saidapet, Chennai, 600015, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
9
|
Aghajanyan V, Bhupathy S, Sheikh S, Nausheen F. A Narrative Review of Telomere Length Modulation Through Diverse Yoga and Meditation Styles: Current Insights and Prospective Avenues. Cureus 2023; 15:e46130. [PMID: 37900433 PMCID: PMC10612486 DOI: 10.7759/cureus.46130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Mindfulness practices have demonstrated the potential to positively impact various aspects of human health associated with telomere length (TL) - a recognized marker of healthy aging and susceptibility to age-related diseases. This review seeks to conduct an in-depth comparative analysis, examining methodological variations, outcome assessments, strengths, weaknesses, and gaps across mindfulness-focused studies concerning TL and attrition rates. While emerging data tentatively suggest a positive connection between mindfulness practices and TL, a notable research gap pertains to establishing the clinically recommended dosage of yoga/meditation and mindfulness interventions to effectively influence TL. To address this gap, upcoming research should prioritize meticulous structuring, pedagogical precision, and vigilant monitoring of mindfulness interventions to yield psychological and physiological benefits across an appropriate timeframe and intensity. The amalgamation of yoga/meditation or mindfulness emerges as a promising avenue for enhancing the quality of life while counteracting the influence of telomere attrition in the spectrum of age-related diseases. The core objective of this review is to meticulously investigate the interplay between yoga/meditation and mindfulness practices and their potential impact on TL - an essential biomarker indicative of age-related health and well-being. To achieve this, our study methodically compares various methodological approaches, outcome measures, strengths, and limitations within relevant research endeavors focused on TL and attrition rates. Through this scrutiny, we highlight prevailing research gaps. Our analysis underscores the need for comprehensive research efforts aimed at establishing the optimal therapeutic regimen for yielding significant clinical effects on TL and overall health. In summation, our exploration emphasizes the urgency of further studies to unravel the most effective approaches for positively influencing TL and its implications for holistic health.
Collapse
Affiliation(s)
- Vahe Aghajanyan
- Medical Education, California University of Science and Medicine, Colton, USA
| | - Supriya Bhupathy
- Medical Education, California University of Science and Medicine, Colton, USA
| | - Shazia Sheikh
- Medical Education, California University of Science and Medicine, Colton, USA
| | - Fauzia Nausheen
- Education, California University of Science and Medicine, Colton, USA
| |
Collapse
|
10
|
Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A. Exploring the Causal Relationship Between Telomere Biology and Alzheimer's Disease. Mol Neurobiol 2023; 60:4169-4183. [PMID: 37046137 PMCID: PMC10293431 DOI: 10.1007/s12035-023-03337-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).
Collapse
Affiliation(s)
- Xi-Yuen Kuan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Nurul Syahira Ahmad Fauzi
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
11
|
Dasanayaka NN, Sirisena ND, Samaranayake N. Associations of meditation with telomere dynamics: a case-control study in healthy adults. Front Psychol 2023; 14:1222863. [PMID: 37519381 PMCID: PMC10380951 DOI: 10.3389/fpsyg.2023.1222863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Telomeres are protective end caps of chromosomes which naturally shorten with each cell division and thus with age. Short telomeres have been associated with many age-related diseases. Meditation has come to the fore as a mind-body practice which could influence the telomere dynamics underlying these phenomena. We previously reported meditation to be associated with higher telomerase levels, mindfulness and quality of life. Here, reporting on the same study population, we describe associations between long-term meditation and telomere length (TL), expression of hTERT and hTR genes and methylation of the promoter region of hTERT gene. Methods Thirty healthy meditators and matched non-meditators were recruited. TL was measured using quantitative PCR, gene expression was assessed using reverse transcriptase PCR, and methylation level was quantified by bisulfite-specific PCR followed by Sanger sequencing. Comparisons between meditators and controls were carried out using t-tests, while Pearson correlation was used to identify correlations, and regression was used to identify predictors. Results Males comprised 63.4% of each group with an average age of 43 years. On average, they had meditated daily for 5.82 h (±3.45) for 6.8 years (±3.27). Meditators had longer relative TLs (p = 0.020), and TL decreased with age (p < 0.001) but was not associated with other socio-demographic variables. Regression analysis showed that age (p < 0.001) and duration of meditation (p = 0.003) significantly predicted TL. The meditators showed higher relative expression of hTERT (p = 0.020) and hTR (p = 0.029) genes while the methylation level of the promoter region of hTERT gene was significantly lower when compared to non-meditators (p < 0.001). Negative correlations were identified between the methylation level of the promoter region of hTERT gene and the expression of the hTERT gene (p = 0.001) and duration of meditation (p = 0.001). Conclusion The findings suggest that meditation as a lifestyle practice has multi-level beneficial effects on telomere dynamics with potential to promote healthy aging.
Collapse
Affiliation(s)
- Nirodhi Namika Dasanayaka
- Research Promotion and Facilitation Centre, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nirmala Dushyanthi Sirisena
- Department of Anatomy, Genetics & Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
12
|
Ibanez A, Matallana D, Miller B. Can prosocial values improve brain health? Front Neurol 2023; 14:1202173. [PMID: 37342774 PMCID: PMC10278355 DOI: 10.3389/fneur.2023.1202173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Prosocial values play a critical role in promoting care and concern for the well-being of others and prioritizing the common good of society. Evidence from population-based reports, cognitive neuroscience, and clinical studies suggests that these values depend on social cognition processes, such as empathy, deontological moral cognition, moral emotions, and social cooperation. Additionally, indirect evidence suggests that various forms of prosocial behaviors are associated with positive health outcomes at the behavioral, cardiovascular, immune, stress-related, and inflammatory pathways. However, it is unclear whether prosociality can positively influence brain health outcomes. In this perspective, we propose that prosocial values are not only influenced by brain conditions but could also potentially play a role in protecting brain health. We review studies from various fields that support this claim, including recent reports of prosociality-based interventions impacting brain health. We then explore potential multilevel mechanisms, based on the reduction of allostatic overload at behavioral, cardiovascular, immune, stress-related, and inflammatory levels. Finally, we propose potential prosociality-based interventions for improving brain health in at-risk populations, such as psychiatric and neurological patients, and individuals exposed to poverty or violence. Our perspective suggests that prosocial values may play a role in promoting and maintaining healthy brains.
Collapse
Affiliation(s)
- Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Trinity College Dublin, Dublin, Ireland
| | - Diana Matallana
- Pontificia Universidad Javeriana, Instituto de Envejecimiento, Bogotá, Colombia
- Memory and Cognition Center, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Bruce Miller
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Trinity College Dublin, Dublin, Ireland
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Sheikh-Wu SF, Liang Z, Downs CA. The Relationship Between Telomeres, Cognition, Mood, and Physical Function: A Systematic Review. Biol Res Nurs 2023; 25:227-239. [PMID: 36222081 DOI: 10.1177/10998004221132287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose: Cognitive, affective, and physical symptoms and alterations in their function are seen across chronic illnesses. Data suggest that environmental, psychological, and physiological factors contribute to symptom experience, potentially through loss of telomeres (telomere attrition), structures at the ends of chromosomes. Telomere length is affected by many factors including environmental (e.g., exercise, diet, smoking) and physiological (e.g., response to stress), as well as from oxidative damage and inflammation that occurs in many disease processes. Moreover, telomere attrition is associated with chronic disease (cancer, cardiovascular disease, Alzheimer's disease) and predicts higher morbidity and mortality rates. However, findings are inconsistent among telomere roles and relationships with health outcomes. This article aims to synthesize the current state-of-the-science of telomeres and their relationship with cognitive, affective, and physical function and symptoms. Method: A comprehensive literature search was performed in two databases: CINAHL and PUBMED. A total of 33 articles published between 2000 and 2022 were included in the final analysis. Results: Telomere attrition is associated with various changes in cognitive, affective, and physical function and symptoms. However, findings are inconsistent. Interventional studies (e.g., meditation and exercise) may affect telomere attrition, potentially impacting health outcomes. Conclusion: Nursing research and practice are at the forefront of furthering the understanding of telomeres and their relationships with cognitive, affective, and physical function and symptoms. Future interventions targeting modifiable risk factors may be developed to improve health outcomes across populations.
Collapse
Affiliation(s)
| | - Zhan Liang
- 5452University of Miami, Coral Gables, FL, USA
| | | |
Collapse
|
14
|
Xiong M, Lin L, Jin Y, Kang W, Wu S, Sun S. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. SENSORS (BASEL, SWITZERLAND) 2023; 23:3622. [PMID: 37050682 PMCID: PMC10098634 DOI: 10.3390/s23073622] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Machine learning (ML) has transformed neuroimaging research by enabling accurate predictions and feature extraction from large datasets. In this study, we investigate the application of six ML algorithms (Lasso, relevance vector regression, support vector regression, extreme gradient boosting, category boost, and multilayer perceptron) to predict brain age for middle-aged and older adults, which is a crucial area of research in neuroimaging. Despite the plethora of proposed ML models, there is no clear consensus on how to achieve better performance in brain age prediction for this population. Our study stands out by evaluating the impact of both ML algorithms and image modalities on brain age prediction performance using a large cohort of cognitively normal adults aged 44.6 to 82.3 years old (N = 27,842) with six image modalities. We found that the predictive performance of brain age is more reliant on the image modalities used than the ML algorithms employed. Specifically, our study highlights the superior performance of T1-weighted MRI and diffusion-weighted imaging and demonstrates that multi-modality-based brain age prediction significantly enhances performance compared to unimodality. Moreover, we identified Lasso as the most accurate ML algorithm for predicting brain age, achieving the lowest mean absolute error in both single-modality and multi-modality predictions. Additionally, Lasso also ranked highest in a comprehensive evaluation of the relationship between BrainAGE and the five frequently mentioned BrainAGE-related factors. Notably, our study also shows that ensemble learning outperforms Lasso when computational efficiency is not a concern. Overall, our study provides valuable insights into the development of accurate and reliable brain age prediction models for middle-aged and older adults, with significant implications for clinical practice and neuroimaging research. Our findings highlight the importance of image modality selection and emphasize Lasso as a promising ML algorithm for brain age prediction.
Collapse
Affiliation(s)
- Min Xiong
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
| | - Lan Lin
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Yue Jin
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
| | - Wenjie Kang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Shen Sun
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (M.X.); (Y.J.); (W.K.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Topiwala A, Nichols TE, Williams LZJ, Robinson EC, Alfaro-Almagro F, Taschler B, Wang C, Nelson CP, Miller KL, Codd V, Samani NJ, Smith SM. Telomere length and brain imaging phenotypes in UK Biobank. PLoS One 2023; 18:e0282363. [PMID: 36947528 PMCID: PMC10032499 DOI: 10.1371/journal.pone.0282363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
Telomeres form protective caps at the ends of chromosomes, and their attrition is a marker of biological aging. Short telomeres are associated with an increased risk of neurological and psychiatric disorders including dementia. The mechanism underlying this risk is unclear, and may involve brain structure and function. However, the relationship between telomere length and neuroimaging markers is poorly characterized. Here we show that leucocyte telomere length (LTL) is associated with multi-modal MRI phenotypes in 31,661 UK Biobank participants. Longer LTL is associated with: i) larger global and subcortical grey matter volumes including the hippocampus, ii) lower T1-weighted grey-white tissue contrast in sensory cortices, iii) white-matter microstructure measures in corpus callosum and association fibres, iv) lower volume of white matter hyperintensities, and v) lower basal ganglia iron. Longer LTL was protective against certain related clinical manifestations, namely all-cause dementia (HR 0.93, 95% CI: 0.91-0.96), but not stroke or Parkinson's disease. LTL is associated with multiple MRI endophenotypes of neurodegenerative disease, suggesting a pathway by which longer LTL may confer protective against dementia.
Collapse
Affiliation(s)
- Anya Topiwala
- Nuffield Department Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Thomas E. Nichols
- Nuffield Department Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, United Kingdom
| | - Logan Z. J. Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Fidel Alfaro-Almagro
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, United Kingdom
| | - Bernd Taschler
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, United Kingdom
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Stephen M. Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| |
Collapse
|
16
|
Panelli DM, Diwan M, Cruz GI, Leonard SA, Chueh J, Gotlib IH, Bianco K. An exploratory analysis of leukocyte telomere length among pregnant and non-pregnant people. Brain Behav Immun Health 2022; 25:100506. [PMID: 36110146 PMCID: PMC9467886 DOI: 10.1016/j.bbih.2022.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
|
17
|
Sung MK, Koh E, Kang Y, Lee JH, Park JY, Kim JY, Shin SY, Kim YH, Setou N, Lee US, Yang HJ. Three months-longitudinal changes in relative telomere length, blood chemistries, and self-report questionnaires in meditation practitioners compared to novice individuals during midlife. Medicine (Baltimore) 2022; 101:e30930. [PMID: 36254044 PMCID: PMC9575785 DOI: 10.1097/md.0000000000030930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Aging accelerates during midlife. Researches have shown the health benefits of mind-body intervention (MBI). However, whether MBI is involved with aging process has not been well understood. In this study, we approach to examine the relations of MBI with this process by investigating an aging marker of the peripheral blood, blood chemistry, and self-report questionnaires. A quasi-experimental design was applied. Experienced MBI practitioners participated in a 3-month intensive meditation training, while the age, gender-matched MBI-naïve controls led a normal daily life. Measurements were taken at before and after the 3 months for relative telomere length (RTL), blood chemistry, and self-report questionnaires including items about sleep quality, somatic symptoms, depression, anxiety, stress, emotional intelligence (EI), and self-regulation. For RTL, the repeated measures analysis of variance showed a significant group*time interaction (P = .013) with a significant post hoc result (P = .030) within the control group: RTL was significantly reduced in the control while it was maintained in the meditation group. In repeated measures analysis of variance for blood chemistries, there were significant group differences between the groups in glucose and total protein. In the post hoc comparison analysis, at post measurements, the meditation group exhibited significantly lower values than the control group in both glucose and total protein. There were significant group-wise differences in the correlations of RTL with triglyceride (TG), high-density lipoprotein (HDL), glutamic oxaloacetic transaminase and glutamic pyruvic transaminase. Any of self-report results did not show significant changes in group*time interaction. However, there were group differences with significant (P < .05) or a tendency (.05 < P < .1) level. There were significant improvements in depression, stress and EI as well as tendencies of improvement in sleep quality and anxiety, in the meditation group compared to the control group. Our results suggest that meditation practice may have a potential to modify aging process in molecular cellular level combined with changes in psychological dimension.
Collapse
Affiliation(s)
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore
| | | | - Jin-Hee Lee
- Department of Integrative Health Care, University of Brain Education, Cheonan, Korea
| | - Ji-Yeon Park
- Department of Integrative Health Care, University of Brain Education, Cheonan, Korea
| | - Ji Young Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - So-Young Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Hee Kim
- Department of Clinical Nursing, University of Ulsan, Seoul, Korea
| | - Noriko Setou
- Department of Disaster Psychiatry, Fukushima Medical University, Fukushima, Japan
| | - Ul Soon Lee
- Department of Brain Education Convergence, Global Cyber University, Seoul, Korea
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul, Korea
- Department of Integrative Health Care, University of Brain Education, Cheonan, Korea
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Korea
- *Correspondence: Hyun-Jeong Yang, Korea Institute of Brain Science, Seoul 06022, Korea (e-mail: )
| |
Collapse
|
18
|
Panelli DM, Leonard SA, Wong RJ, Becker M, Mayo JA, Wu E, Girsen AI, Gotlib IH, Aghaeepour N, Druzin ML, Shaw GM, Stevenson DK, Bianco K. Leukocyte telomere dynamics across gestation in uncomplicated pregnancies and associations with stress. BMC Pregnancy Childbirth 2022; 22:381. [PMID: 35501726 PMCID: PMC9063069 DOI: 10.1186/s12884-022-04693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Short leukocyte telomere length is a biomarker associated with stress and morbidity in non-pregnant adults. Little is known, however, about maternal telomere dynamics in pregnancy. To address this, we examined changes in maternal leukocyte telomere length (LTL) during uncomplicated pregnancies and explored correlations with perceived stress. METHODS In this pilot study, maternal LTL was measured in blood collected from nulliparas who delivered live, term, singleton infants between 2012 and 2018 at a single institution. Participants were excluded if they had diabetes or hypertensive disease. Samples were collected over the course of pregnancy and divided into three time periods: < 200/7 weeks (Timepoint 1); 201/7 to 366/7 weeks (Timepoint 2); and 370/7 to 9-weeks postpartum (Timepoint 3). All participants also completed a survey assessing a multivariate profile of perceived stress at the time of enrollment in the first trimester. LTL was measured using quantitative polymerase chain reaction (PCR). Wilcoxon signed-rank tests were used to compare LTL differences within participants across all timepoint intervals. To determine whether mode of delivery affected LTL, we compared postpartum Timepoint 3 LTLs between participants who had vaginal versus cesarean birth. Secondarily, we evaluated the association of the assessed multivariate stress profile and LTL using machine learning analysis. RESULTS A total of 115 samples from 46 patients were analyzed. LTL (mean ± SD), expressed as telomere to single copy gene (T/S) ratios, were: 1.15 ± 0.26, 1.13 ± 0.23, and 1.07 ± 0.21 for Timepoints 1, 2, and 3, respectively. There were no significant differences in LTL between Timepoints 1 and 2 (LTL T/S change - 0.03 ± 0.26, p = 0.39); 2 and 3 (- 0.07 ± 0.29, p = 0.38) or Timepoints 1 and 3 (- 0.07 ± 0.21, p = 0.06). Participants who underwent cesareans had significantly shorter postpartum LTLs than those who delivered vaginally (T/S ratio: 0.94 ± 0.12 cesarean versus 1.12 ± 0.21 vaginal, p = 0.01). In secondary analysis, poor sleep quality was the main stress construct associated with shorter Timepoint 1 LTLs (p = 0.02) and shorter mean LTLs (p = 0.03). CONCLUSIONS In this cohort of healthy pregnancies, maternal LTLs did not significantly change across gestation and postpartum LTLs were shorter after cesarean than after vaginal birth. Significant associations between sleep quality and short LTLs warrant further investigation.
Collapse
Affiliation(s)
- Danielle M Panelli
- Department of Obstetrics and Gynecology, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Stephanie A Leonard
- Department of Obstetrics and Gynecology, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Martin Becker
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Jonathan A Mayo
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Erica Wu
- Department of Obstetrics and Gynecology, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Anna I Girsen
- Department of Obstetrics and Gynecology, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Maurice L Druzin
- Department of Obstetrics and Gynecology, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Katherine Bianco
- Department of Obstetrics and Gynecology, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| |
Collapse
|
19
|
Dasanayaka NN, Sirisena ND, Samaranayake N. Impact of Meditation-Based Lifestyle Practices on Mindfulness, Wellbeing, and Plasma Telomerase Levels: A Case-Control Study. Front Psychol 2022; 13:846085. [PMID: 35310206 PMCID: PMC8931770 DOI: 10.3389/fpsyg.2022.846085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Meditation involves psychophysical training which can result in a range of benefits including creating a calm mind and increasing self-awareness, relaxation, and tranquility. Increasing evidence, mostly based on short-term focused interventions, suggests that meditation-based activities may also have favorable effects on physical wellbeing including cellular aging. Hence, the aim of this study was to investigate if continued practice of meditation benefited quality of life, state of mindfulness, and plasma telomerase level in healthy adults. 30 long-term and skilled meditators were recruited from meditation centers in different parts of the island following a two-tier screening process of 70 eligible participants and 30 age- and gender-matched healthy non-meditators were recruited from the community. Mindfulness level and the quality of life were measured using the Five Facet Mindfulness Questionnaire (FFMQ) and Quality of Life Questionnaire, respectively, while the levels of plasma telomerase enzyme were measured using Enzyme-Linked Immunosorbent Assay. Skilled meditators had a better mindfulness level (p < 0.001) and quality of life (QOL; p < 0.001) than those in the comparison group. Similarly, higher plasma telomerase levels were observed in skilled meditators compared to non-meditators (p = 0.002). Trait mindfulness level and plasma telomerase level showed a significant relationship with the duration of meditation practice (p = 0.046 and p = 0.011, respectively). Regression analysis indicated that trait mindfulness level (p < 0.001) significantly predicts the plasma telomerase level. The findings of this comparative study add to the evidence on sustained benefits of meditation on wellbeing and healthy aging and supports incorporating meditation-based activities into lifestyle practices.
Collapse
Affiliation(s)
- Nirodhi Namika Dasanayaka
- Research Promotion and Facilitation Centre, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- *Correspondence: Nirodhi Namika Dasanayaka,
| | - Nirmala Dushyanthi Sirisena
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
20
|
Athanasopoulou S, Kapetanou M, Magouritsas MG, Mougkolia N, Taouxidou P, Papacharalambous M, Sakellaridis F, Gonos E. Antioxidant and Antiaging Properties of a Novel Synergistic Nutraceutical Complex: Readouts from an In Cellulo Study and an In Vivo Prospective, Randomized Trial. Antioxidants (Basel) 2022; 11:antiox11030468. [PMID: 35326118 PMCID: PMC8944750 DOI: 10.3390/antiox11030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Aging is a dynamic procedure that is developed in multiple layers and characterized by distinct hallmarks. The use of biomarkers that target different hallmarks of aging is substantial in predicting adverse outcomes during the aging process, implementing specifically designed antiaging interventions and monitoring responses to these interventions. The present study aimed to develop a novel composition of plant extracts, comprising identified active ingredients that synergistically target different hallmarks of aging in cellulo and in vivo. The selected single extracts and the developed composition were tested through a powerful set of biomarkers that we have previously identified and studied. The composition of selected extracts simultaneously increased cellular lifespan, reduced the cellular oxidative load and enhanced antioxidant defense mechanisms by increasing proteasome activity and content. In addition, the combination prevented telomere attrition and preserved optimum DNA methylation levels. Remarkably, biomarker profiling of healthy volunteers who received the identified combination in the form of a nutritional supplement within the frame of a prospective, randomized, controlled 3-month trial revealed an unprecedented antioxidant capacity in humans. In conclusion, our results support the notion that interventions with specifically designed combinations of natural compounds targeting multiple hallmarks of aging represent an effective way to improve healthspan and well-being.
Collapse
Affiliation(s)
- Sophia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece
| | - Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
| | | | - Nikoletta Mougkolia
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
| | - Polykseni Taouxidou
- Department of Physical Education and Sport Science, Aristotle University, 57001 Thessaloniki, Greece;
| | | | | | - Efstathios Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
- Correspondence: ; Tel.: +30-210-6478860
| |
Collapse
|
21
|
Womersley JS, Spies G, Tromp G, Seedat S, Hemmings SMJ. Longitudinal telomere length profile does not reflect HIV and childhood trauma impacts on cognitive function in South African women. J Neurovirol 2021; 27:735-749. [PMID: 34448146 PMCID: PMC8602727 DOI: 10.1007/s13365-021-01009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) present a challenge in South Africa where the burden of HIV infection is the highest. Identification of biological correlates of HAND is required to improve diagnosis and inform interventions. Telomeres maintain genomic integrity and their shortening is a marker of biological aging sensitive to environmental influences. This study examined relative telomere length (rTL) as a predictor of cognitive function in the context of HIV and childhood trauma (CT), a risk factor for HAND. Two hundred and eighty-six women completed a neurocognitive assessment battery and the Childhood Trauma Questionnaire-Short Form (CTQ). Quantitative polymerase chain reaction for amplification of telomeric repeats and the reference gene human beta-globin was used to calculate rTL. Neurocognitive and rTL assessments were repeated at 1 year in 110 participants. Cross-sectional and longitudinal data were assessed using linear and mixed models, respectively. Participants with HIV (n = 135 in cross-sectional and n = 62 in longitudinal study groups) reported more severe CT and had shorter baseline rTL compared to seronegative controls. Participants without HIV had a greater 1-year decline in rTL. Global cognitive and attention/working memory scores declined in participants with HIV. Our data indicate that baseline rTL in the context of CT and HIV did not predict decline in cognitive scores. HIV-associated pathophysiological processes driving cognitive decline may also engage mechanisms that protect against telomere shortening. The results highlight the importance of examining biological correlates in longitudinal studies.
Collapse
Affiliation(s)
- Jacqueline Samantha Womersley
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Georgina Spies
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
22
|
Fritz MM, Walsh LC, Cole SW, Epel E, Lyubomirsky S. Kindness and cellular aging: A pre-registered experiment testing the effects of prosocial behavior on telomere length and well-being. Brain Behav Immun Health 2021; 11:100187. [PMID: 34589726 PMCID: PMC8474583 DOI: 10.1016/j.bbih.2020.100187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Objective Prosocial behavior can improve psychological well-being and physical health. However, the underlying biological mechanisms that mediate the relationship between prosociality and health remain unclear. In this pre-registered experiment, we tested whether a 4-week kindness intervention could slow leukocyte telomere shortening and increase well-being. Methods Community adults (N = 230) were randomly assigned to complete 1 of 3 activities, each week for 4 weeks: to perform 3 kind acts for other people, to perform 3 kind acts for themselves, or to list daily activities. At baseline and post-intervention, participants came to the lab to provide a small dried blood spot (DBS) sample via finger prick for analysis of telomere length. Participants completed psychological measures (e.g., loneliness, life satisfaction) at baseline, post-intervention, and at the 2-week follow up. Results Participants who performed kind acts for others did not demonstrate hypothesized changes in well-being, nor in telomere length, relative to controls. Exploratory analyses revealed that, relative to controls, participants who did kind acts for others showed reductions in loneliness through the 2-week follow up. Conclusions The salubrious effects of prosocial behavior in the short term are not likely due to the inhibition of cellular aging (at least as indexed by telomere length). However, extending kindness to others holds promise as a future research direction for interventions to alleviate loneliness. Prosocial behavior is associated with better health, but mechanisms remain unclear. We report a pre-registered investigation of prosocial behavior and telomere length. A 4-week prosocial behavior intervention did not slow rates of telomere shortening. Performing prosocial behavior for others was linked with reductions in loneliness. Prosocial behavior may reduce loneliness but does not appear to impact telomeres.
Collapse
Affiliation(s)
- Megan M Fritz
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Lisa C Walsh
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Steven W Cole
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elissa Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Sonja Lyubomirsky
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
23
|
Puhlmann LM, Vrtička P, Linz R, Stalder T, Kirschbaum C, Engert V, Singer T. Contemplative Mental Training Reduces Hair Glucocorticoid Levels in a Randomized Clinical Trial. Psychosom Med 2021; 83:894-905. [PMID: 34259441 PMCID: PMC8505163 DOI: 10.1097/psy.0000000000000970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/24/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of regular contemplative mental training on endocrine and psychological indices of long-term stress. METHODS An open-label efficacy trial that comprised three distinct 3-month long modules targeting attention and interoception, socioaffective, or sociocognitive abilities through dyadic exercises and secularized meditation practices was conducted with healthy adults. Participants underwent the training for 3 or 9 months, or were assigned to a retest control cohort. Chronic stress indices were assayed at four time points: pretraining and after 3, 6, and 9 months. The main outcome measures were cortisol (HC) and cortisone (HE) concentration in hair and self-reported long-term stress. RESULTS Of 362 initially randomized individuals, 30 dropped out before study initiation (n = 332; mean [SD] age = 40.7 [9.2] years; 197 women). Hair-based glucocorticoid assays were available from n = 227, and questionnaire data from n = 326. Results from three separate training cohorts (TC1-3) revealed consistent decreases in HC and HE levels over the first three (TC3) to 6 months (TC1 and TC2) of training, with no further reduction at the final 9-month mark (baseline to end of training differences, HC, TC1: t(355) = 2.59, p = .010, contrast estimate (est.) [SE] = 0.35 [0.14]; HC, TC2: t(363) = 4.06, p < .001, est. = 0.48 [0.12]; HC, TC3: t(368) = 3.18, p = .002, est. = 0.41 [0.13]; HE, TC1: t(435) = 3.23, p = .001, est. = 0.45 [0.14]; HE, TC2: t(442) = 2.60, p = .010, est. = 0.33 [0.13]; HE, TC3: t(446) = 4.18, p < .001, est. = 0.57 [0.14]). Training effects on HC increased with individual compliance (practice frequency), and effects on both HC and HE were independent of training content and unrelated to change in self-reported chronic stress. Self-reported stress, and cortisol-to-dehydroepiandrosterone ratios as an exploratory endpoint, were also reduced, albeit less consistently. CONCLUSIONS Our results point to the reduction of long-term cortisol exposure as a mechanism through which meditation-based mental training may exert positive effects on practitioners' health.Trial Registration: ClinicalTrials.gov identifier: NCT01833104.
Collapse
|
24
|
Miglani M, Pasha Q, Gupta A, Priyadarshini A, Pati Pandey R, Vibhuti A. Seeding drug discovery: Telomeric tankyrase as a pharmacological target for the pathophysiology of high-altitude hypoxia. Drug Discov Today 2021; 26:2774-2781. [PMID: 34302973 DOI: 10.1016/j.drudis.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Cellular exposure to extreme environments leads to the expression of multiple proteins that participate in pathophysiological manifestations. Hypobaric hypoxia at high altitude (HA) generates reactive oxygen species (ROS) that can damage telomeres. Tankyrase (TNKS) belongs to multiple telomeric protein complexes and is actively involved in DNA damage repair. Although published research on TNKS indicates its possible role in cancer and other hypoxic diseases, its role in HA sicknesses remains elusive. Understanding the roles of telomeres, telomerase, and TNKS could ameliorate physiological issues experienced at HA. In addition, telomeric TNKS could be a potential biomarker in hypoxia-induced sicknesses or acclimatization. Thus, a new research avenue on TNKS linked to HA sickness might lead to the discovery of drugs for hypobaric hypoxia.
Collapse
Affiliation(s)
- Manjula Miglani
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India; Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi 110007, India
| | - Qadar Pasha
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi 110007, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Anjali Priyadarshini
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Ramendra Pati Pandey
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India.
| |
Collapse
|
25
|
Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. Molecular and cellular pathways contributing to brain aging. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:6. [PMID: 34118939 PMCID: PMC8199306 DOI: 10.1186/s12993-021-00179-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Aging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), 9717853577 Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
26
|
Dasanayaka NN, Sirisena ND, Samaranayake N. The effects of meditation on length of telomeres in healthy individuals: a systematic review. Syst Rev 2021; 10:151. [PMID: 34020720 PMCID: PMC8139075 DOI: 10.1186/s13643-021-01699-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Meditation-based practices have been suggested to result in many biological benefits which include reduction of attrition of telomeres, the protective nucleotide-protein complexes at termini of eukaryotic chromosomes. This systematic review evaluated the effects of meditation on telomere length (TL) in healthy adults. METHODS Randomized controlled trials (RCTs) and observational studies conducted to determine the effects of meditation on TL in healthy individuals, published up to July 2020 were retrieved by searching seven electronic databases (PubMed, Scopus, PsycINFO, EMBASE, Cochrane Library, CINAHL and Google Scholar). The methodological quality of RCTs and observational studies was assessed using the Cochrane Collaboration Risk of Bias Tool and Joanna Briggs Institute critical appraisal checklist, respectively. The data was synthesized narratively and the effect estimates of TL in the RCTs were synthesized using alternative methods as a meta-analysis was not conducted. The certainty of evidence was classified according to the GRADE system. RESULTS A total of 1740 articles were screened. Five studies comprising two RCTs and three case-control studies (CCS) were included in the final review based on the inclusion and exclusion criteria. The combined sample consisted of 615 participants with 41.7% males. Average age of participants was 47.7 years. One CCS and one RCT reported significant beneficial effects of meditation on TL while the two remaining CCS and the RCT showed positive effects of meditation on TL which were not significant. For all CCS and one RCT, the methodological quality was high while the remaining RCT was of moderate quality. The quality of evidence for the primary outcome was moderate in RCTs. CONCLUSION The effect of meditation on TL per se is still unclear. Strictly designed and well-reported RCTs with larger sample sizes are required to provide evidence of higher quality. SYSTEMATIC REVIEW REGISTRATION The protocol of this review was registered with the International Prospective Register of Systematic Reviews (PROSPERO) database (registration number: CRD42020153977 ).
Collapse
Affiliation(s)
- Nirodhi N Dasanayaka
- Research Promotion and Facilitation Centre, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| | - Nirmala D Sirisena
- Human Genetics Unit, Department of Anatomy, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka.
| |
Collapse
|
27
|
Pathak GA, Wendt FR, Levey DF, Mecca AP, van Dyck CH, Gelernter J, Polimanti R. Pleiotropic effects of telomere length loci with brain morphology and brain tissue expression. Hum Mol Genet 2021; 30:1360-1370. [PMID: 33831179 PMCID: PMC8255129 DOI: 10.1093/hmg/ddab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Several studies have reported association between leukocyte telomere length (LTL) and neuropsychiatric disorders. Although telomere length is affected by environmental factors, genetic variants in certain loci are strongly associated with LTL. Thus, we aimed to identify the genomic relationship between genetic variants of LTL with brain-based regulatory changes and brain volume. We tested genetic colocalization of seven and nine LTL loci in two ancestry groups, European (EUR) and East-Asian (EAS), respectively, with brain morphology measures for 101 T1-magnetic resonance imaging-based region of interests (n = 21 821). The posterior probability (>90%) was observed for 'fourth ventricle', 'gray matter' and 'cerebellar vermal lobules I-IV' volumes. We then tested causal relationship using LTL loci for gene and methylation expression. We found causal pleiotropy for gene (EAS = four genes; EUR = five genes) and methylation expression (EUR = 17 probes; EAS = 4 probes) of brain tissues (P ≤ 2.47 × 10-6). Integrating chromatin profiles with LTL-single nucleotide polymorphisms identified 45 genes (EUR) and 79 genes (EAS) (P ≤ 9.78×10-7). We found additional 38 LTL-genes using chromatin-based gene mapping for EUR ancestry population. Gene variants in three LTL-genes-GPR37, OBFC1 and RTEL1/RTEL1-TNFRSF6B-show convergent evidence of pleiotropy with brain morphology, gene and methylation expression and chromatin association. Mapping gene functions to drug-gene interactions, we identified process 'transmission across chemical synapses' (P < 2.78 × 10-4). This study provides evidence that genetic variants of LTL have pleiotropic roles with brain-based effects that could explain the phenotypic association of LTL with several neuropsychiatric traits.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Alzheimer’s Disease Research Unit, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06551, USA,Veteran Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Renato Polimanti
- To whom correspondence should be addressed at: VA CT 116A2, 950 Campbell Avenue, West Haven, CT 06516, USA. Tel: +1 2039375711 ext. 5745; Fax: +1 2039373897;
| |
Collapse
|
28
|
Affiliation(s)
- Tarek Benameur
- College of Medicine, Department of Biomedical Sciences, King Faisal University Al-Ahsa, Kingdom of Saudi Arabia
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
29
|
Symons GF, Clough M, O’Brien WT, Ernest J, Salberg S, Costello D, Sun M, Brady RD, McDonald SJ, Wright DK, White O, Abel L, O’Brien TJ, Mccullough J, Aniceto R, Lin IH, Agoston DV, Fielding J, Mychasiuk R, Shultz SR. Shortened telomeres and serum protein biomarker abnormalities in collision sport athletes regardless of concussion history and sex. JOURNAL OF CONCUSSION 2020. [DOI: 10.1177/2059700220975609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mild brain injuries are frequent in athletes engaging in collision sports and have been linked to a range of long-term neurological abnormalities. There is a need to identify how these potential abnormalities manifest using objective measures; determine whether changes are due to concussive and/or sub-concussive injuries; and examine how biological sex affects outcomes. This study investigated cognitive, cellular, and molecular biomarkers in male and female amateur Australian footballers (i.e. Australia’s most participated collision sport). 95 Australian footballers (69 males, 26 females), both with and without a history of concussion, as well as 49 control athletes (28 males, 21 females) with no history of brain trauma or participation in collision sports were recruited to the study. Ocular motor assessment was used to examine cognitive function. Telomere length, a biomarker of cellular senescence and neurological health, was examined in saliva. Serum levels of tau, phosphorylated tau, neurofilament light chain, and 4-hydroxynonenal were used as markers to assess axonal injury and oxidative stress. Australian footballers had reduced telomere length (p = 0.031) and increased serum protein levels of 4-hydroxynonenal (p = 0.001), tau (p = 0.007), and phosphorylated tau (p = 0.036). These findings were independent of concussion history and sex. No significant ocular motor differences were found. Taken together, these findings suggest that engagement in collision sports, regardless of sex or a history of concussion, is associated with shortened telomeres, axonal injury, and oxidative stress. These saliva- and serum-based biomarkers may be useful to monitor neurological injury in collision sport athletes.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, Australia
| | | | - Joel Ernest
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | | | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Owen White
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Larry Abel
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Terence J O’Brien
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jesse Mccullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Joanne Fielding
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Hachmo Y, Hadanny A, Abu Hamed R, Daniel-Kotovsky M, Catalogna M, Fishlev G, Lang E, Polak N, Doenyas K, Friedman M, Zemel Y, Bechor Y, Efrati S. Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. Aging (Albany NY) 2020; 12:22445-22456. [PMID: 33206062 PMCID: PMC7746357 DOI: 10.18632/aging.202188] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Aging is characterized by the progressive loss of physiological capacity. At the cellular level, two key hallmarks of the aging process include telomere length (TL) shortening and cellular senescence. Repeated intermittent hyperoxic exposures, using certain hyperbaric oxygen therapy (HBOT) protocols, can induce regenerative effects which normally occur during hypoxia. The aim of the current study was to evaluate whether HBOT affects TL and senescent cell concentrations in a normal, non-pathological, aging adult population. METHODS Thirty-five healthy independently living adults, aged 64 and older, were enrolled to receive 60 daily HBOT exposures. Whole blood samples were collected at baseline, at the 30th and 60th session, and 1-2 weeks following the last HBOT session. Peripheral blood mononuclear cells (PBMCs) telomeres length and senescence were assessed. RESULTS Telomeres length of T helper, T cytotoxic, natural killer and B cells increased significantly by over 20% following HBOT. The most significant change was noticed in B cells which increased at the 30th session, 60th session and post HBOT by 25.68%±40.42 (p=0.007), 29.39%±23.39 (p=0.0001) and 37.63%±52.73 (p=0.007), respectively. There was a significant decrease in the number of senescent T helpers by -37.30%±33.04 post-HBOT (P<0.0001). T-cytotoxic senescent cell percentages decreased significantly by -10.96%±12.59 (p=0.0004) post-HBOT. In conclusion, the study indicates that HBOT may induce significant senolytic effects including significantly increasing telomere length and clearance of senescent cells in the aging populations.
Collapse
Affiliation(s)
- Yafit Hachmo
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Bar Ilan University, Ramat-Gan, Israel
| | - Ramzia Abu Hamed
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel
| | - Malka Daniel-Kotovsky
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Merav Catalogna
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Gregory Fishlev
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Erez Lang
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Nir Polak
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Keren Doenyas
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Mony Friedman
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yonatan Zemel
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Yair Bechor
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel
| | - Shai Efrati
- Research and Development Unit, Shamir Medical Center, Zerifin, Israel.,The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
31
|
Travica N, Ried K, Hudson I, Sali A, Scholey A, Pipingas A. The Contribution of Plasma and Brain Vitamin C on Age and Gender-Related Cognitive Differences: A Mini-Review of the Literature. Front Integr Neurosci 2020; 14:47. [PMID: 32973470 PMCID: PMC7471743 DOI: 10.3389/fnint.2020.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that sex differences in the brain may contribute to gender-related behavioral differences, including cognitive function. Literature has revealed gender dimorphisms in cognitive function between males and females. Additionally, several risk factors associated with cognitive decline depend on chronological age. It is well recognized that the process of aging is associated with a decline in cognitive ability and brain function. Various explanations may account for these gender-related cognitive differences and age-associated cognitive changes. Recent investigations have highlighted the importance of vitamin C in maintaining brain health and its association with cognitive function in both cognitively intact and impaired cohorts. The present review explores previous literature that has evaluated differences in plasma/brain vitamin C between genders and during aging. It then assesses whether these age and gender-related differences may affect the relationship between plasma/brain vitamin C and cognition. The purpose of this review was to examine the evidence for a link between plasma/brain vitamin C and cognition and the impact of gender and age on this relationship. Epidemiological studies have frequently shown higher vitamin C plasma concentrations in women. Similarly, aging has been systematically associated with reductions in plasma vitamin C levels. A range of animal studies has demonstrated potential gender and age-related differences in vitamin C brain distribution and utilization. The reviewed literature suggests that gender differences in plasma and brain vitamin C may potentially contribute to differences in gender-associated cognitive ability, particularly while females are pre-menopausal. Additionally, we can propose that age-associated differences in plasma and brain vitamin C may be potentially linked to age-associated cognitive differences, with older cohorts appearing more vulnerable to experience declines in plasma vitamin C concentrations alongside compromised vitamin C brain regulation. This review encourages future investigations to take into account both gender and age when assessing the link between plasma vitamin C concentrations and cognitive function. Further large scale investigations are required to assess whether differences in cognitive function between genders and age groups may be causally attributed to plasma vitamin C status and brain distribution and utilization.
Collapse
Affiliation(s)
- Nikolaj Travica
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Karin Ried
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
- Discipline of General Practice, University of Adelaide, Adelaide, SA, Australia
- Torrens University, Melbourne, VIC, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
- School of Mathematical and Physical Science, University of Newcastle, Callaghan, NSW, Australia
| | - Avni Sali
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Colich NL, Rosen ML, Williams ES, McLaughlin KA. Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychol Bull 2020; 146:721-764. [PMID: 32744840 DOI: 10.1037/bul0000270] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Life history theory argues that exposure to early life adversity (ELA) accelerates development, although existing evidence for this varies. We present a meta-analysis and systematic review testing the hypothesis that ELA involving threat (e.g., violence exposure) will be associated with accelerated biological aging across multiple metrics, whereas exposure to deprivation (e.g., neglect, institutional rearing) and low-socioeconomic status (SES) will not. We meta-analyze 54 studies (n = 116,010) examining associations of ELA with pubertal timing and cellular aging (telomere length and DNA methylation age), systematically review 25 studies (n = 3,253) examining ELA and neural markers of accelerated development (cortical thickness and amygdala-prefrontal cortex functional connectivity) and evaluate whether associations of ELA with biological aging vary according to the nature of adversity experienced. ELA overall was associated with accelerated pubertal timing (d = -0.10) and cellular aging (d = -0.21), but these associations varied by adversity type. Moderator analysis revealed that ELA characterized by threat was associated with accelerated pubertal development (d = -0.26) and accelerated cellular aging (d = -0.43), but deprivation and SES were unrelated to accelerated development. Systematic review revealed associations between ELA and accelerated cortical thinning, with threat-related ELA consistently associated with thinning in ventromedial prefrontal cortex, and deprivation and SES associated with thinning in frontoparietal, default, and visual networks. There was no consistent association of ELA with amygdala-PFC connectivity. These findings suggest specificity in the types of early environmental experiences associated with accelerated biological aging and highlight the importance of evaluating how accelerated aging contributes to health disparities and whether this process can be mitigated through early intervention. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
33
|
Levstek T, Kozjek E, Dolžan V, Trebušak Podkrajšek K. Telomere Attrition in Neurodegenerative Disorders. Front Cell Neurosci 2020; 14:219. [PMID: 32760251 PMCID: PMC7373805 DOI: 10.3389/fncel.2020.00219] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Telomere attrition is increased in various disorders and is therefore a potential biomarker for diagnosis and/or prognosis of these disorders. The contribution of telomere attrition in the pathogenesis of neurodegenerative disorders is yet to be fully elucidated. We are reviewing the current knowledge regarding the telomere biology in two common neurodegenerative disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). Furthermore, we are discussing future prospective of telomere research in these disorders. The majority of studies reported consistent evidence of the accelerated telomere attrition in AD patients, possibly in association with elevated oxidative stress levels. On the other hand in PD, various studies reported contradictory evidence regarding telomere attrition. Consequently, due to the low specificity and sensitivity, the clinical benefit of telomere length as a biomarker of neurodegenerative disease development and progression is not yet recognized. Nevertheless, longitudinal studies in large carefully selected cohorts might provide further elucidation of the complex involvement of the telomeres in the pathogenesis of neurodegenerative diseases. Telomere length maintenance is a complex process characterized by environmental, genetic, and epigenetic determinants. Thus, in addition to the selection of the study cohort, also the selection of analytical methods and types of biological samples for evaluation of the telomere attrition is of utmost importance.
Collapse
Affiliation(s)
- Tina Levstek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kozjek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
34
|
Erusalimsky JD. Oxidative stress, telomeres and cellular senescence: What non-drug interventions might break the link? Free Radic Biol Med 2020; 150:87-95. [PMID: 32061901 DOI: 10.1016/j.freeradbiomed.2020.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
Telomeres are higher order structures that cap and protect chromosome ends. Telomeric DNA naturally shortens during somatic cell division and as a result of oxidative stress. Excessive shortening disrupts the integrity of the telomere, causing cellular senescence, one of the hallmarks of organismal ageing. The accumulation of senescent cells with ageing contributes to the loss of tissue homeostasis and the development of age-related pathologies. Hence, counteracting telomere shortening may be one relevant approach to develop strategies for healthier ageing. In this review I present the case for the existence of a link between oxidative stress, accelerated telomere shortening and cellular senescence. I also examine findings from human observational studies exploring associations between telomere length and oxidative stress-related parameters. Finally, I discuss results from randomised control trials testing the impact of non-pharmacological lifestyle interventions on the maintenance of telomere length, considering the potential mechanisms that might be involved.
Collapse
Affiliation(s)
- Jorge D Erusalimsky
- The Cellular Senescence and Pathophysiology Group, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, Cardiff, CF5 2YB, United Kingdom.
| |
Collapse
|