1
|
Huang E, Kurkure S, Seo Y, Lau K, Puglisi J. The effectiveness of vaccination on the COVID-19 epidemic in California. Am J Infect Control 2024; 52:1252-1257. [PMID: 38825240 DOI: 10.1016/j.ajic.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The COVID-19 pandemic has caused overwhelming morbidity, mortality, and hospitalization worldwide, including in the state of California. Vaccination efforts have been an important measure in curtailing the adverse outcomes of COVID-19. METHODS To quantify the effectiveness of COVID-19 vaccinations in California, we conducted a retrospective cohort study investigating how vaccination has impacted the extent of COVID-19 contraction, hospitalizations, and death totals. We compared outcomes of the Delta Wave, Omicron Wave, and Pre-Delta Period. RESULTS Vaccinated individuals have far-lower incidence risk ratio (IRR) of and odds of contracting a COVID-19 case (Delta IRR: 0.197) being hospitalized from COVID-19 (Delta IRR: 0.105), and dying from COVID-19 compared with an unvaccinated individual (Delta IRR: 0.0941). The preventive fraction of the unexposed and population-preventive fractions for cases, deaths, and hospitalizations also showed significant proportions. All tests showed P < .001. DISCUSSION Vaccination was most effective in the Delta Wave, then in the Omicron Wave, and least effective in the Pre-Delta Period. Deaths were the most prevented outcome, followed by hospitalizations, then cases. CONCLUSIONS This study exposes the massive impact of vaccinations in California in reducing COVID-19 outcomes and the potential for fewer adverse outcomes had there been greater vaccination compliance, demonstrating the need to increase vaccination efforts.
Collapse
Affiliation(s)
- Elijah Huang
- College of Medicine, California Northstate University, Elk Grove, CA.
| | - Siddharth Kurkure
- College of Medicine, California Northstate University, Elk Grove, CA
| | - Yui Seo
- College of Medicine, California Northstate University, Elk Grove, CA
| | - Kristie Lau
- College of Medicine, California Northstate University, Elk Grove, CA
| | - Jose Puglisi
- College of Medicine, California Northstate University, Elk Grove, CA
| |
Collapse
|
2
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Liang K, Barnett KC, Hsu M, Chou WC, Bais SS, Riebe K, Xie Y, Nguyen TT, Oguin TH, Vannella KM, Hewitt SM, Chertow DS, Blasi M, Sempowski GD, Karlsson A, Koller BH, Lenschow DJ, Randell SH, Ting JPY. Initiator cell death event induced by SARS-CoV-2 in the human airway epithelium. Sci Immunol 2024; 9:eadn0178. [PMID: 38996010 DOI: 10.1126/sciimmunol.adn0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
Virus-induced cell death is a key contributor to COVID-19 pathology. Cell death induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is well studied in myeloid cells but less in its primary host cell type, angiotensin-converting enzyme 2 (ACE2)-expressing human airway epithelia (HAE). SARS-CoV-2 induces apoptosis, necroptosis, and pyroptosis in HAE organotypic cultures. Single-cell and limiting-dilution analysis revealed that necroptosis is the primary cell death event in infected cells, whereas uninfected bystanders undergo apoptosis, and pyroptosis occurs later during infection. Mechanistically, necroptosis is induced by viral Z-RNA binding to Z-DNA-binding protein 1 (ZBP1) in HAE and lung tissues from patients with COVID-19. The Delta (B.1.617.2) variant, which causes more severe disease than Omicron (B1.1.529) in humans, is associated with orders of magnitude-greater Z-RNA/ZBP1 interactions, necroptosis, and disease severity in animal models. Thus, Delta induces robust ZBP1-mediated necroptosis and more disease severity.
Collapse
Affiliation(s)
- Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin Hsu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei-Chun Chou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sachendra S Bais
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | | | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Tuong Thien Nguyen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Kevin M Vannella
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
| | | | | | - Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah J Lenschow
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Gorochov G, Ropers J, Launay O, Dorgham K, da Mata-Jardin O, Lebbah S, Durier C, Bauer R, Radenne A, Desaint C, Vieillard LV, Rekacewicz C, Lachatre M, Parfait B, Batteux F, Hupé P, Ninove L, Lefebvre M, Conrad A, Dussol B, Maakaroun-Vermesse Z, Melica G, Nicolas JF, Verdon R, Kiladjian JJ, Loubet P, Schmidt-Mutter C, Dualé C, Ansart S, Botelho-Nevers E, Lelièvre JD, de Lamballerie X, Kieny MP, Tartour E, Paul S. Serum and Salivary IgG and IgA Response After COVID-19 Messenger RNA Vaccination. JAMA Netw Open 2024; 7:e248051. [PMID: 38652471 PMCID: PMC11040412 DOI: 10.1001/jamanetworkopen.2024.8051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/26/2024] [Indexed: 04/25/2024] Open
Abstract
Importance There is still considerable controversy in the literature regarding the capacity of intramuscular messenger RNA (mRNA) vaccination to induce a mucosal immune response. Objective To compare serum and salivary IgG and IgA levels among mRNA-vaccinated individuals with or without previous SARS-CoV-2 infection. Design, Setting, and Participants In this cohort study, SARS-CoV-2-naive participants and those with previous infection were consecutively included in the CoviCompare P and CoviCompare M mRNA vaccination trials and followed up to day 180 after vaccination with either the BNT162b2 (Pfizer-BioNTech) vaccine or the mRNA-1273 (Moderna) vaccine at the beginning of the COVID-19 vaccination campaign (from February 19 to June 8, 2021) in France. Data were analyzed from October 25, 2022, to July 13, 2023. Main Outcomes and Measures An ultrasensitive digital enzyme-linked immunosorbent assay was used for the comparison of SARS-CoV-2 spike-specific serum and salivary IgG and IgA levels. Spike-specific secretory IgA level was also quantified at selected times. Results A total of 427 individuals were included in 3 groups: participants with SARS-CoV-2 prior to vaccination who received 1 single dose of BNT162b2 (Pfizer-BioNTech) (n = 120) and SARS-CoV-2-naive individuals who received 2 doses of mRNA-1273 (Moderna) (n = 172) or 2 doses of BNT162b2 (Pfizer-BioNTech) (n = 135). The median age was 68 (IQR, 39-75) years, and 228 (53.4%) were men. SARS-CoV-2 spike-specific IgG saliva levels increased after 1 or 2 vaccine injections in individuals with previous infection and SARS-CoV-2-naive individuals. After vaccination, SARS-CoV-2-specific saliva IgA levels, normalized with respect to total IgA levels, were significantly higher in participants with previous infection, as compared with the most responsive mRNA-1273 (Moderna) recipients (median normalized levels, 155 × 10-5 vs 37 × 10-5 at day 29; 107 × 10-5 vs 54 × 10-5 at day 57; and 104 × 10-5 vs 70 × 10-5 at day 180 [P < .001]). In contrast, compared with day 1, spike-specific IgA levels in the BNT162b2-vaccinated SARS-CoV-2-naive group increased only at day 57 (36 × 10-5 vs 49 × 10-5 [P = .01]). Bona fide multimeric secretory IgA levels were significantly higher in individuals with previous infection compared with SARS-CoV-2-naive individuals after 2 antigenic stimulations (median optical density, 0.36 [IQR, 0.16-0.63] vs 0.16 [IQR, 0.10-0.22]; P < .001). Conclusions and Relevance The findings of this cohort study suggest that mRNA vaccination was associated with mucosal immunity in individuals without prior SARS-CoV-2 infection, but at much lower levels than in previously infected individuals. Further studies are needed to determine the association between specific saliva IgA levels and prevention of infection or transmission.
Collapse
Affiliation(s)
- Guy Gorochov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie et des Maladies Infectieuses (CIMI), Département d’Immunologie, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Ropers
- INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique Paris Sciences et Lettres (PSL)–CFX, Sorbonne Université, Paris, France
| | - Odile Launay
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Karim Dorgham
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie et des Maladies Infectieuses (CIMI), Département d’Immunologie, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Omaira da Mata-Jardin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie et des Maladies Infectieuses (CIMI), Département d’Immunologie, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Said Lebbah
- INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique Paris Sciences et Lettres (PSL)–CFX, Sorbonne Université, Paris, France
| | | | | | - Anne Radenne
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière–Charles Foix, Unité de Recherche Clinique des Hôpitaux Universitaires Pitié-Salpêtrière, Paris, France
| | - Corinne Desaint
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Louis-Victorien Vieillard
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Claire Rekacewicz
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Marie Lachatre
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Béatrice Parfait
- AP-HP, Hôpital Cochin, Fédération des Centres de Ressources Biologiques–Plateforme de Ressources Biologiques Centre de Ressources Biologique Cochin, Paris, France
| | - Frédéric Batteux
- AP-HP, Hôpital Cochin, Service d’Immunologie Biologique et Plateforme d’Immunomonitoring Vaccinal, Paris, France
| | - Philippe Hupé
- Institut Curie, PSL Research University, INSERM U900, MINES ParisTech, PSL, Paris, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 144, Paris, France
| | - Läétitia Ninove
- Research Institute for Sustainable Development 190, INSERM 1207, Institut Hospitalier Universitaire Méditerranée Infection, Unité des Virus Émergents, Aix Marseille Université, Marseille, France
| | - Maeva Lefebvre
- Centre Hospitalier Universitaire (CHU) de Nantes, INSERM CIC 1413, Maladies Infectieuses et Tropicales, Centre de Prévention des Maladies Infectieuses et Transmissibles, Nantes, France
| | - Anne Conrad
- Département des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Université Claude Bernard Lyon I, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Bertrand Dussol
- CIC 1409, INSERM–Hôpitaux Universitaires de Marseille–Aix Marseille Université, Hôpital de la Conception, Marseille, France
| | - Zoha Maakaroun-Vermesse
- Centre de Vaccination CHU de Tours, CIC 1415, INSERM, Centre Hospitalier Régional et Universitaire de Tours, Tours, France
| | - Giovanna Melica
- Service d’Immunologie Clinique et Maladies Infectieuses, AP-HP, Hôpital Henri Mondor, Créteil, Centre d’Investigation Clinique 1430 INSERM, AP-HP, Hôpital Henri Mondor, Créteil, France
| | - Jean-François Nicolas
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, Lyon, CHU Lyon-Sud, Pierre-Bénite, France
| | - Renaud Verdon
- Service de Maladies Infectieuses, CHU de Caen, Dynamicure INSERM UMR 1311, Normandie Université, University of Caen Normandy, Caen, France
| | - Jean-Jacques Kiladjian
- Université Paris Cité, AP-HP, Hôpital Saint-Louis, Centre d’Investigations Cliniques, INSERM, CIC 1427, Paris, France
| | - Paul Loubet
- Virulence Bactérienne et Maladies Infectieuses, INSERM U1047, Department of Infectious and Tropical Diseases, CHU 37 Nîmes, Université de Montpellier, Nîmes, France
| | | | - Christian Dualé
- CIC, INSERM CIC1405, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Elisabeth Botelho-Nevers
- INSERM CIC 1408, Axe Vaccinologie, CHU de Saint-Étienne, Service d’Infectiologie, Saint-Étienne, France
| | | | - Xavier de Lamballerie
- Research Institute for Sustainable Development 190, INSERM 1207, Institut Hospitalier Universitaire Méditerranée Infection, Unité des Virus Émergents, Aix Marseille Université, Marseille, France
| | | | - Eric Tartour
- AP-HP, Hôpital Européen Georges Pompidou, INSERM U970, Paris Cardiovascular Research Center, Université Paris Cité, Paris, France
| | - Stéphane Paul
- INSERM, U1111, CNRS, UMR 5308, CIRI-GIMAP, Université Claude Bernard Lyon 1, Université Jean Monnet, Immunology and Immunomonitoring Laboratory, iBiothera, CIC 1408, Saint-Étienne, France
| |
Collapse
|
5
|
Bello-Chavolla OY, Fermín-Martínez CA, Ramírez-García D, Vargas-Vázquez A, Fernández-Chirino L, Basile-Alvarez MR, Sánchez-Castro P, Núñez-Luna A, Antonio-Villa NE. Prevalence and determinants of post-acute sequelae after SARS-CoV-2 infection (Long COVID) among adults in Mexico during 2022: a retrospective analysis of nationally representative data. LANCET REGIONAL HEALTH. AMERICAS 2024; 30:100688. [PMID: 38327277 PMCID: PMC10847769 DOI: 10.1016/j.lana.2024.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/26/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Background Post-acute sequelae after SARS-CoV-2 infection (PASC) remains a concerning long-term complication of COVID-19. Here, we aimed to characterize the epidemiology of PASC in Mexico during 2022 and identify potential associations of covariates with PASC prevalence using nationally representative data. Methods We analyzed data from the 2022 Mexican National Health and Nutrition Survey (ENSANUT) from 24,434 participants, representing 85,521,661 adults ≥20 years. PASC was defined using both the National Institute for Health and Care Excellence (NICE) definition and a PASC score ≥12. Estimates of PASC prevalence were stratified by age, sex, rural vs. urban setting, social lag quartiles, number of reinfections, vaccination status and periods of predominance of SARS-CoV-2 circulating variants. Determinants of PASC were assessed using log-binomial regression models adjusted by survey weights. Findings Persistent symptoms after SARS-CoV-2 infection were reported by 12.44% (95% CI 11.89-12.99) of adults ≥20 years in Mexico in 2022. The most common persistent symptoms were fatigue, musculoskeletal pain, headache, cough, loss of smell or taste, fever, post-exertional malaise, brain fog, anxiety, and chest pain. PASC was present in 21.21% (95% CI 19.74-22.68) of subjects with previously diagnosed COVID-19. Over 28.6% of patients with PASC reported symptoms persistence ≥6 months and 14.05% reported incapacitating symptoms. Higher PASC prevalence was associated with SARS-CoV-2 reinfections, depressive symptoms and living in states with high social lag. PASC prevalence, particularly its more severe forms, decreased with COVID-19 vaccination and for infections during periods of Omicron variant predominance. Interpretation PASC remains a significant public health burden in Mexico as the COVID-19 pandemic transitions into endemic. Promoting SARS-CoV-2 reinfection prevention and booster vaccination may be useful in reducing PASC burden. Funding This research was supported by Instituto Nacional de Geriatría in Mexico.
Collapse
Affiliation(s)
| | - Carlos A. Fermín-Martínez
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Ramírez-García
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Martín Roberto Basile-Alvarez
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paulina Sánchez-Castro
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Núñez-Luna
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
6
|
Carlson J, Simeone RM, Ellington S, Galang R, DeSisto CL, Fleming-Dutra K, Riley L, Meaney-Delman D, Tong VT. Pre-Delta, Delta, and Omicron Periods of the Coronavirus Disease 2019 (COVID-19) Pandemic and Health Outcomes During Delivery Hospitalization. Obstet Gynecol 2024; 143:131-138. [PMID: 37917932 PMCID: PMC10949122 DOI: 10.1097/aog.0000000000005449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE To examine the relationship between coronavirus disease 2019 (COVID-19) diagnosis at delivery and adverse maternal health and pregnancy outcomes during pre-Delta, Delta, and Omicron variant predominance, with a focus on the time period of Omicron variant predominance. METHODS We conducted a cross-sectional observational study with data from delivery hospitalizations in the Premier Healthcare Database from February 2020 to August 2023. The pre-Delta (February 2020-June 2021), Delta (July 2021-December 2021), and Omicron (January 2022-August 2023) periods of variant predominance were examined. Exposure to COVID-19 was identified by having a diagnostic code for COVID-19 during the delivery hospitalization. Adjusted prevalence ratios (aPRs) were calculated to compare the risks of adverse maternal and pregnancy outcomes for women with and without COVID-19 diagnoses at the time of delivery for each variant period. RESULTS Among 2,990,973 women with delivery hospitalizations, 1.9% (n=56,618) had COVID-19 diagnoses noted at delivery admission discharge, including 26,053 during the Omicron period. Across all variant time periods, the prevalence of many adverse maternal and pregnancy outcomes during the delivery hospitalization was significantly higher for pregnant women with COVID-19 compared with pregnant women without COVID-19. In adjusted models, COVID-19 during the Omicron period was associated with significant increased risks for maternal sepsis (COVID-19: 0.4% vs no COVID-19: 0.1%; aPR 3.32, 95% CI, 2.70-4.08), acute respiratory distress syndrome (0.6% vs 0.1%; aPR 6.19, 95% CI, 5.26-7.29), shock (0.2% vs 0.1%; aPR 2.14, 95% CI, 1.62-2.84), renal failure (0.5% vs 0.2%; aPR 2.08, 95% CI, 1.73-2.49), intensive care unit admission (2.7% vs 1.7%; aPR 1.64, 95% CI, 1.52-1.77), mechanical ventilation (0.3% vs 0.1%; aPR 3.15, 95% CI, 2.52-3.93), in-hospital death (0.03% vs 0.01%; aPR 5.00, 95% CI, 2.30-10.90), stillbirth (0.7% vs 0.6%; aPR 1.17, 95% CI, 1.01-1.36), and preterm delivery (12.3% vs 9.6%; aPR 1.28, 95% CI, 1.24-1.33). CONCLUSION Despite the possibility of some level of immunity due to previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or testing differences, risks of adverse outcomes associated with COVID-19 diagnosis at delivery remained elevated during the Omicron variant time period.
Collapse
Affiliation(s)
- Jeffrey Carlson
- Eagle Global Scientific, LLC, and the Division of Birth Defects and Infant Disorders, the Coronavirus and Other Respiratory Viruses Division, the Influenza Division, the Division of Reproductive Health, and the Division of Viral Disease, Centers for Disease Control and Prevention, Atlanta, Georgia; and Weill Cornell Medicine, New York, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mak WA, Visser W, van der Vliet M, Markus HY, Koeleman JGM, Ong DSY. Ancestral SARS-CoV-2 and Omicron BA.5-specific neutralizing antibody and T-cell responses after Omicron bivalent booster vaccination in previously infected and infection-naive individuals. J Med Virol 2023; 95:e28989. [PMID: 37565645 DOI: 10.1002/jmv.28989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
Coronavirus disease-2019 (COVID-19) bivalent ancestral/Omicron messenger RNA (mRNA) booster vaccinations became available to boost and expand the immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron infections. In a prospective cohort study including 59 healthcare workers, we assessed SARS-CoV-2 ancestral and Omicron BA.5-specific neutralizing antibody and T-cell responses in previously infected and infection-naive individuals. Also, we assessed the effect of an ancestral/Omicron BA.1 bivalent mRNA booster vaccination on these immune responses. 10 months after previous monovalent mRNA vaccinations, ancestral SARS-CoV-2 S1-specific T-cell and anti-RBD IgG responses remained detectable in most individuals and a previous SARS-CoV-2 infection was associated with increased T-cell responses. T-cell responses, anti-RBD IgG, and Omicron BA.5 neutralization activity increased after receiving an ancestral/Omicron BA.1 bivalent booster mRNA vaccination. An Omicron BA.5 infection in addition to bivalent vaccination, led to a higher ratio of Omicron BA.5 to ancestral strain neutralization activity compared to no bivalent vaccination and no recent SARS-CoV-2 infection. In conclusion, SARS-CoV-2 T-cell and antibody responses persist for up to 10 months after a monovalent booster mRNA vaccination. An ancestral/Omicron BA.1 bivalent booster mRNA vaccination increases these immune responses and also induces Omicron BA.5 cross-neutralization antibody activity. Finally, our data indicate that hybrid immunity is associated with improved preservation of T-cell immunity.
Collapse
Affiliation(s)
- Willem A Mak
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Wendy Visser
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Marijke van der Vliet
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Hilde Y Markus
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Johannes G M Koeleman
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - David S Y Ong
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|