1
|
Brett BL, Sullivan ME, Asken BM, Terry DP, Meier TB, McCrea MA. Long-term neurobehavioral and neuroimaging outcomes in athletes with prior concussion(s) and head impact exposure. Clin Neuropsychol 2025:1-29. [PMID: 39797596 DOI: 10.1080/13854046.2024.2442427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Objective: The long-term health of former athletes with a history of multiple concussions and/or repetitive head impact (RHI) exposure has been of growing interest among the public. The true proportion of dementia cases attributable to neurotrauma and the neurobehavioral profile/sequelae of multiple concussion and RHI exposure among athletes has been difficult to determine. Methods: Across three exposure paradigms (i.e. group comparisons of athletes vs. controls, number of prior concussions, and level of RHI exposure), this review characterizes the prevalence of neurodegenerative/neurological disease, changes in cognitive and psychiatric function, and alterations on neuroimaging. We highlight sources of variability across studies and provide suggested directions for future investigations. Results: The most robust finding reported in the literature suggests a higher level of symptom endorsement (general, psychiatric, and cognitive) among those with a greater history of sport-related concussion from adolescence to older adulthood. Pathological processes (e.g. atrophy, tau deposition, and hypometabolism) may be more likely to occur within select regions (frontal and temporal cortices) and structures (thalamus and hippocampus). However, studies examining concussion(s) and RHI exposure with imaging outcomes have yet to identify consistent associations or evidence of a dose-response relationship or a threshold at which associations are observed. Discussion: Studies have not observed a simple dose-response relationship between multiple concussions and/or RHI exposure with cognitive, psychiatric, or in vivo neurobiological outcomes, particularly at lower levels of play. The relationship between prior concussion and RHI exposure with long-term outcomes in former athletes is complex and likely influenced by -several non-injury-related factors.
Collapse
Affiliation(s)
- Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mikaela E Sullivan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Breton M Asken
- Department of Clinical and Health Psychology, University of Florida, 1Florida Alzheimer's Disease Research Center, Gainesville, FL, USA
| | - Douglas P Terry
- Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Meier TB, Savitz J, España LY, Goeckner BD, Kent Teague T, van der Horn HJ, Tugan Muftuler L, Mayer AR, Brett BL. Association of concussion history with psychiatric symptoms, limbic system structure, and kynurenine pathway metabolites in healthy, collegiate-aged athletes. Brain Behav Immun 2025; 123:619-630. [PMID: 39414174 PMCID: PMC11624060 DOI: 10.1016/j.bbi.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Psychiatric outcomes are commonly observed in individuals with repeated concussions, though their underlying mechanism is unknown. One potential mechanism linking concussion with psychiatric symptoms is inflammation-induced activation of the kynurenine pathway, which is thought to play a role in the pathogenesis of mood disorders. Here, we investigated the association of prior concussion with multiple psychiatric-related outcomes in otherwise healthy male and female collegiate-aged athletes (N = 212) with varying histories of concussion recruited from the community. Specially, we tested the hypotheses that concussion history is associated with worse psychiatric symptoms, limbic system structural abnormalities (hippocampal volume, white matter microstructure assessed using neurite orientation dispersion and density imaging; NODDI), and elevations in kynurenine pathway (KP) metabolites (e.g., Quinolinic acid; QuinA). Given known sex-effects on concussion risk and recovery, psychiatric outcomes, and the kynurenine pathway, the moderating effect of sex was considered for all analyses. More concussions were associated with greater depression, anxiety, and anhedonia symptoms in female athletes (ps ≤ 0.005) and greater depression symptoms in male athletes (p = 0.011). More concussions were associated with smaller bilateral hippocampal tail (ps < 0.010) and left hippocampal body (p < 0.001) volumes across male and female athletes. Prior concussion was also associated with elevations in the orientation dispersion index (ODI) and lower intracellular volume fraction in several white matter tracts including the in uncinate fasciculus, cingulum-gyrus, and forceps major and minor, with evidence of female-specific associations in select regions. Regarding serum KP metabolites, more concussions were associated with elevated QuinA in females and lower tryptophan in males (ps ≤ 0.010). Finally, serum levels of QuinA were associated with elevated ODI (male and female athletes) and worse anxiety symptoms (females only), while higher ODI in female athletes and smaller hippocampal volumes in male athletes were associated with more severe anxiety and depression symptoms (ps ≤ 0.05). These data suggest that cumulative concussion is associated with psychiatric symptoms and limbic system structure in healthy athletes, with increased susceptibility to these effects in female athletes. Moreover, the associations of outcomes with serum KP metabolites highlight the KP as one potential molecular pathway underlying these observations.
Collapse
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, the United States of America.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, the United States of America; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, the United States of America
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - T Kent Teague
- Department of Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Surgery, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135, the United States of America
| | - Harm Jan van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; University of Groningen, University Medical Center Groningen, the Netherlands
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, the United States of America; Department of Psychology, University of New Mexico, Albuquerque, NM, the United States of America
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| |
Collapse
|
3
|
Datoc A, Sanders GD, Tarkenton Allen T, Schaffert J, Didehbani N, Cullum CM. Relationship between self-reported concussion history, cognition, and mood among former collegiate athletes. Clin Neuropsychol 2024:1-14. [PMID: 39690455 DOI: 10.1080/13854046.2024.2440113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Objective: This study explored the relationship between concussion history and cognition/mood in former collegiate athletes in middle-to-later adulthood. Method: 407 former collegiate athletes aged 50+ (M = 61.4; 62.7% male) participated in the College Level Aging AThlete Study (CLEAATS) and completed the Cognitive Function Instrument (CFI), 40-item Telephone Interview for Cognitive Status (TICS-40), PHQ-8, GAD-7, and self-report questionnaires, including concussion history. Kruskal-Wallis tests assessed for differences among groups based on concussion history (0, 1-2, 3-4, 5+ concussions). Hierarchical multiple regressions including demographic factors as covariates examined relationships between concussion history, emotional symptoms, and subjective/objective cognition. Results: Participants with 5+ concussions reported significantly greater subjective cognitive concerns and depressive symptoms than other concussion groups, but no differences were found in objective cognition. Hierarchical regression revealed concussion history and emotional symptoms explained 29% and 15% of the variance in subjective and objective cognition, respectively. The number of concussions accounted for unique variance in subjective cognition but was not significantly associated when mood symptoms were added to the model. Neither diagnosed concussions nor emotional symptoms were associated with objective cognition. Conclusions: When accounting for concussion history, those with 5+ concussions reported greater subjective cognitive symptoms than those with 0-2 concussions, and greater depressive symptoms than those with 0 concussions. Concussion history was not significantly related to subjective cognition when compared to mood, and concussion history and mood symptoms were not associated with objective cognition. Results highlight the importance of considering mood symptoms when evaluating the relationship between concussion history and cognition in former athletes.
Collapse
Affiliation(s)
- Alison Datoc
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Health Andrews Institute, Plano, TX, USA
| | - Gavin D Sanders
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tahnae Tarkenton Allen
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cook Children's Medical Center, Fort Worth, TX, USA
| | - Jeff Schaffert
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nyaz Didehbani
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Arciniega H, Baucom ZH, Tuz-Zahra F, Tripodis Y, John O, Carrington H, Kim N, Knyazhanskaya EE, Jung LB, Breedlove K, Wiegand TLT, Daneshvar DH, Rushmore RJ, Billah T, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer LJ, Alosco ML, Koerte IK, Lin AP, Cummings JL, Reiman EM, Stern RA, Shenton ME, Bouix S. Brain morphometry in former American football players: findings from the DIAGNOSE CTE research project. Brain 2024; 147:3596-3610. [PMID: 38533783 PMCID: PMC11449133 DOI: 10.1093/brain/awae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Exposure to repetitive head impacts in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE), which currently can be diagnosed only at post-mortem. American football players are at higher risk of developing CTE given their exposure to repetitive head impacts. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at post-mortem in living individuals using structural MRI. MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 54, age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each traumatic encephalopathy syndrome (TES) diagnosis, core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, insula, temporal pole and superior frontal gyrus. Post hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus, amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe Age × Group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggested that MRI morphometrics detect abnormalities in individuals with a history of repetitive head impact exposure that resemble the anatomic distribution of pathological findings from post-mortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggested that brain morphometry must be complemented by other types of measures to characterize individuals with repetitive head impacts.
Collapse
Affiliation(s)
- Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Concussion Center, NYU Langone Health, New York, NY 10016, USA
| | - Zachary H Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Omar John
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Concussion Center, NYU Langone Health, New York, NY 10016, USA
| | - Holly Carrington
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Nicholas Kim
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Evdokiya E Knyazhanskaya
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Leonard B Jung
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
| | - Katherine Breedlove
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tim L T Wiegand
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02115, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
| | - R Jarrett Rushmore
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Laura J Balcer
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10017, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10017, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- cBRAIN, Department of Child and Adolescent Psychiatry Psychosomatics and Psychotherapy, University Hospital Ludwig-Maximilians-Universität, Munich, Bavaria 80336, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, 82152 Munich, Bavaria, Germany
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Eric M Reiman
- Banner Alzheimer’s Institute and Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA
- Department of Psychiatry, University of Arizona, Phoenix, AZ 85004, USA
- Department of Psychiatry, Arizona State University, Phoenix, AZ 85008, USA
- Neurogenomics Division, Translational Genomics Research Institute and Alzheimer’s Consortium, Phoenix, AZ 85004, USA
| | - Robert A Stern
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada
| |
Collapse
|
5
|
Vasilevskaya A, Anastassiadis C, Thapa S, Taghdiri F, Khodadadi M, Multani N, Rusjan P, Ozzoude M, Tarazi A, Mushtaque A, Wennberg R, Houle S, Green R, Colella B, Vasdev N, Blennow K, Zetterberg H, Karikari T, Sato C, Moreno D, Rogaeva E, Mikulis D, Davis KD, Tator C, Tartaglia MC. 18F-Flortaucipir (AV1451) imaging identifies grey matter atrophy in retired athletes. J Neurol 2024; 271:6068-6079. [PMID: 39037476 PMCID: PMC11377597 DOI: 10.1007/s00415-024-12573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The long-term consequences of concussions may include pathological neurodegeneration as seen in Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Tau-PET showed promise as a method to detect tau pathology of CTE, but more studies are needed OBJECTIVE: This study aimed (1) to assess the association of imaging evidence of tau pathology with brain volumes in retired athletes and (2) to examine the relationship between tau-PET and neuropsychological functioning. METHODS Former contact sport athletes were recruited through the Canadian Football League Alumni Association or the Canadian Concussion Centre clinic. Athletes completed MRI, [18F]flortaucipir tau-PET, and a neuropsychological battery. Memory composite was created by averaging the Rey Auditory Verbal Learning Test and Rey Visual Design Learning Test z-scores. Grey matter (GM) volumes were age/intracranial volume corrected using normal control MRIs. Tau-PET % positivity in GM was calculated as the number of positive voxels (≥ 1.3 standardized uptake value ratio (SUVR)/total voxels). RESULTS 47 retired contact sport athletes negative for AD (age:51 ± 14; concussions/athlete:15 ± 2) and 54 normal controls (age:50 ± 13) were included. Tau-PET positive voxels had significantly lower GM volumes, compared to tau-PET negative voxels (- 0.37 ± 0.41 vs. - 0.31 ± 0.37, paired p = .006). There was a significant relationship between GM tau-PET % positivity and memory composite score (r = - .366, p = .02), controlled for age, PET scanner, and PET scan duration. There was no relationship between tau-PET measures and concussion number, or years of sport played. CONCLUSION A higher tau-PET signal was associated with reduced GM volumes and lower memory scores. Tau-PET may be useful for identifying those at risk for neurodegeneration.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Chloe Anastassiadis
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Simrika Thapa
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Mozhgan Khodadadi
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Pablo Rusjan
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Miracle Ozzoude
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
| | - Apameh Tarazi
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Asma Mushtaque
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Richard Wennberg
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robin Green
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- KITE Research Institute, University Health Network, Toronto, ON, Canada
| | - Brenda Colella
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- KITE Research Institute, University Health Network, Toronto, ON, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada
| | - David Mikulis
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Karen Deborah Davis
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Charles Tator
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th Floor 6KD-407, Toronto, ON, M5T 2S8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
6
|
Garcia-Cordero I, Vasilevskaya A, Taghdiri F, Khodadadi M, Mikulis D, Tarazi A, Mushtaque A, Anssari N, Colella B, Green R, Rogaeva E, Sato C, Grinberg M, Moreno D, Hussain MW, Blennow K, Zetterberg H, Davis KD, Wennberg R, Tator C, Tartaglia MC. Functional connectivity changes in neurodegenerative biomarker-positive athletes with repeated concussions. J Neurol 2024; 271:4180-4190. [PMID: 38589629 DOI: 10.1007/s00415-024-12340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Multimodal biomarkers may identify former contact sports athletes with repeated concussions and at risk for dementia. Our study aims to investigate whether biomarker evidence of neurodegeneration in former professional athletes with repetitive concussions (ExPro) is associated with worse cognition and mood/behavior, brain atrophy, and altered functional connectivity. Forty-one contact sports athletes with repeated concussions were divided into neurodegenerative biomarker-positive (n = 16) and biomarker-negative (n = 25) groups based on positivity of serum neurofilament light-chain. Six healthy controls (negative for biomarkers) with no history of concussions were also analyzed. We calculated cognitive and mood/behavior composite scores from neuropsychological assessments. Gray matter volume maps and functional connectivity of the default mode, salience, and frontoparietal networks were compared between groups using ANCOVAs, controlling for age, and total intracranial volume. The association between the connectivity networks and sports characteristics was analyzed by multiple regression analysis in all ExPro. Participants presented normal-range mean performance in executive function, memory, and mood/behavior tests. The ExPro groups did not differ in professional years played, age at first participation in contact sports, and number of concussions. There were no differences in gray matter volume between groups. The neurodegenerative biomarker-positive group had lower connectivity in the default mode network (DMN) compared to the healthy controls and the neurodegenerative biomarker-negative group. DMN disconnection was associated with increased number of concussions in all ExPro. Biomarkers of neurodegeneration may be useful to detect athletes that are still cognitively normal, but with functional connectivity alterations after concussions and at risk of dementia.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mozhgan Khodadadi
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - David Mikulis
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Apameh Tarazi
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Asma Mushtaque
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Neda Anssari
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
- Brain Vision and Concussion Clinic, Winnipeg, Canada
| | - Brenda Colella
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Robin Green
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mohammed W Hussain
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Karen D Davis
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
- Krembil Brain Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Richard Wennberg
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles Tator
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada.
| |
Collapse
|
7
|
Khoury MA, Churchill NW, Di Battista A, Graham SJ, Symons S, Troyer AK, Roberts A, Kumar S, Tan B, Arnott SR, Ramirez J, Tartaglia MC, Borrie M, Pollock B, Rajji TK, Pasternak SH, Frank A, Tang-Wai DF, Scott CJM, Haddad SMH, Nanayakkara N, Orange JB, Peltsch A, Fischer CE, Munoz DG, Schweizer TA. History of traumatic brain injury is associated with increased grey-matter loss in patients with mild cognitive impairment. J Neurol 2024; 271:4540-4550. [PMID: 38717612 DOI: 10.1007/s00415-024-12369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES To investigate whether a history of traumatic brain injury (TBI) is associated with greater long-term grey-matter loss in patients with mild cognitive impairment (MCI). METHODS 85 patients with MCI were identified, including 26 with a previous history of traumatic brain injury (MCI[TBI-]) and 59 without (MCI[TBI+]). Cortical thickness was evaluated by segmenting T1-weighted MRI scans acquired longitudinally over a 2-year period. Bayesian multilevel modelling was used to evaluate group differences in baseline cortical thickness and longitudinal change, as well as group differences in neuropsychological measures of executive function. RESULTS At baseline, the MCI[TBI+] group had less grey matter within right entorhinal, left medial orbitofrontal and inferior temporal cortex areas bilaterally. Longitudinally, the MCI[TBI+] group also exhibited greater longitudinal declines in left rostral middle frontal, the left caudal middle frontal and left lateral orbitofrontal areas sover the span of 2 years (median = 1-2%, 90%HDI [-0.01%: -0.001%], probability of direction (PD) = 90-99%). The MCI[TBI+] group also displayed greater longitudinal declines in Trail-Making-Test (TMT)-derived ratio (median: 0.737%, 90%HDI: [0.229%: 1.31%], PD = 98.8%) and differences scores (median: 20.6%, 90%HDI: [-5.17%: 43.2%], PD = 91.7%). CONCLUSIONS Our findings support the notion that patients with MCI and a history of TBI are at risk of accelerated neurodegeneration, displaying greatest evidence for cortical atrophy within the left middle frontal and lateral orbitofrontal frontal cortex. Importantly, these results suggest that long-term TBI-mediated atrophy is more pronounced in areas vulnerable to TBI-related mechanical injury, highlighting their potential relevance for diagnostic forms of intervention in TBI.
Collapse
Affiliation(s)
- Marc A Khoury
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Physics Department, Toronto Metropolitan University, Toronto, Canada
| | - Alex Di Battista
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sean Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Angela K Troyer
- Neuropsychology and Cognitive Health Program, Baycrest Hospital, Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Angela Roberts
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- Department of Computer Science, Western University, London, ON, Canada
- Canadian Centre for Activity and Aging, London, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Joel Ramirez
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Michael Borrie
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- . Joseph's Healthcare Centre, London, ON, Canada
| | - Bruce Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen H Pasternak
- . Joseph's Healthcare Centre, London, ON, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON, Canada
| | - Andrew Frank
- Bruyère Research Institute, Ottawa, ON, Canada
- University of Ottawa, Ottawa, ON, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christopher J M Scott
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | | | | | - Joseph B Orange
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- University of Western, London, ON, Canada
| | | | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David G Munoz
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Tech (iBEST), A Partnership Between St. Michael's Hospital and Ryerson University, Toronto, ON, M5V 1T8, Canada
- Division of Neurosurgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Glaser J, Jaeckle S, Beblo T, Mueller G, Eidenmueller AM, Schulz P, Schmehl I, Rogge W, Hollander K, Toepper M, Gonschorek AS. The effect of repeated concussions on clinical and neurocognitive symptom severity in different contact sports. Scand J Med Sci Sports 2024; 34:e14626. [PMID: 38610121 DOI: 10.1111/sms.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION The potential consequences of repeated concussions in sport are well documented. However, it remains unclear whether the cumulative impact of sports-related concussions differs between different contact sports. Therefore, the aim of the current study was to investigate the cumulative effects of sports-related concussions on clinical and neurocognitive health in different contact sports. MATERIALS AND METHODS In a prospective multicenter study, we examined 507 (74 females) active professional athletes between 18 and 40 years of age from five different contact sports (soccer, handball, American football, basketball, and ice hockey). Data collection involved concussion history, clinical symptom evaluation, neurocognitive assessment, and the collection of other sports-related information. Composite scores were built for clinical symptoms (such as neck pain and balance disturbances) and for neurocognitive symptoms (such as memory and attention impairments). RESULTS Athletes having suffered 3+ concussions in the past showed disproportionally higher clinical symptom severity than athletes with less than three concussions across all sports. The level of clinical symptom burden in athletes with 3+ concussions indicated mild impairment. The number of past concussions did not affect neurocognitive performance. DISCUSSION Repeated sports-related concussions appear to have a cumulative impact on clinical-but not cognitive-symptom severity. Although clinical symptom burden in athletes with 3+ concussions in the past was not alarmingly high yet in our sample, increased caution should be advised at this point. Despite few exceptions, results are similar for different contact sports, suggesting a similar multidisciplinary concussion management across all types of sport.
Collapse
Affiliation(s)
- Jennifer Glaser
- Concussion Center Hamburg, Neurozentrum, BG Klinikum Hamburg, Hamburg, Germany
| | - Sarah Jaeckle
- Concussion Center Würzburg, Praxis für Sport-Neuropsychologie Würzburg, Wuerzburg, Germany
| | - Thomas Beblo
- Evangelisches Klinikum Bethel gGmbH, University Hospital of Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
| | - Gerhard Mueller
- Concussion Center Würzburg, Praxis für Sport-Neuropsychologie Würzburg, Wuerzburg, Germany
| | - Andreas M Eidenmueller
- Concussion Center Würzburg, Praxis für Sport-Neuropsychologie Würzburg, Wuerzburg, Germany
| | - Philipp Schulz
- Evangelisches Klinikum Bethel gGmbH, University Hospital of Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
| | - Ingo Schmehl
- Concussion Center Berlin, Klinik für Neurologie, BG Klinikum Unfallkrankenhaus Berlin GmbH, Berlin, Germany
| | - Witold Rogge
- Concussion Center Berlin, Klinik für Neurologie, BG Klinikum Unfallkrankenhaus Berlin GmbH, Berlin, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Max Toepper
- Evangelisches Klinikum Bethel gGmbH, University Hospital of Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
9
|
Miyata M, Takahata K, Sano Y, Yamamoto Y, Kurose S, Kubota M, Endo H, Matsuoka K, Tagai K, Oya M, Hirata K, Saito F, Mimura M, Kamagata K, Aoki S, Higuchi M. Association between mammillary body atrophy and memory impairment in retired athletes with a history of repetitive mild traumatic brain injury. Sci Rep 2024; 14:7129. [PMID: 38531908 DOI: 10.1038/s41598-024-57383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Cognitive dysfunction, especially memory impairment, is a typical clinical feature of long-term symptoms caused by repetitive mild traumatic brain injury (rmTBI). The current study aims to investigate the relationship between regional brain atrophy and cognitive impairments in retired athletes with a long history of rmTBI. Overall, 27 retired athletes with a history of rmTBI (18 boxers, 3 kickboxers, 2 wrestlers, and 4 others; rmTBI group) and 23 age/sex-matched healthy participants (control group) were enrolled. MPRAGE on 3 T MRI was acquired and segmented. The TBV and TBV-adjusted regional brain volumes were compared between groups, and the relationship between the neuropsychological test scores and the regional brain volumes were evaluated. Total brain volume (TBV) and regional brain volumes of the mammillary bodies (MBs), hippocampi, amygdalae, thalami, caudate nuclei, and corpus callosum (CC) were estimated using the SPM12 and ITK-SNAP tools. In the rmTBI group, the regional brain volume/TBV ratio (rmTBI vs. control group, Mann-Whitney U test, p < 0.05) underwent partial correlation analysis, adjusting for age and sex, to assess its connection with neuropsychological test results. Compared with the control group, the rmTBI group showed significantly lower the MBs volume/TBV ratio (0.13 ± 0.05 vs. 0.19 ± 0.03 × 10-3, p < 0.001). The MBs volume/TBV ratio correlated with visual memory, as assessed, respectively, by the Rey-Osterrieth Complex Figure test delayed recall (ρ = 0.62, p < 0.001). In conclusion, retired athletes with rmTBI have MB atrophy, potentially contributing to memory impairment linked to the Papez circuit disconnection.
Collapse
Affiliation(s)
- Mari Miyata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| | - Yasunori Sano
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yasuharu Yamamoto
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shin Kurose
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Manabu Kubota
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Masaki Oya
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kosei Hirata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Fumie Saito
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
10
|
Turner M, Belli A, Castellani RJ. Changes in Brain Structure and Function in a Multisport Cohort of Retired Female and Male Athletes, Many Years after Suffering a Concussion: Implications for Neuroplasticity and Neurodegenerative Disease Pathogenesis. J Alzheimers Dis Rep 2024; 8:501-516. [PMID: 38549627 PMCID: PMC10977461 DOI: 10.3233/adr-240021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 03/08/2025] Open
Abstract
Background Cumulative effects of traumatic brain injury is of increasing concern, especially with respect to its role in the etiology and pathogenesis of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Objective Compare regional brain volume and connectivity between athletes with a history of concussion and controls. Methods We evaluated whole-brain volumetric effects with Bayesian regression models and functional connectivity with network-based statistics, in 125 retired athletes (a mean of 11 reported concussions) and 36 matched controls. Results Brain regions significantly lower in volume in the concussed group included the middle frontal gyrus, hippocampus, supramarginal gyrus, temporal pole, and inferior frontal gyrus. Conversely, brain regions significantly larger included the hippocampal and collateral sulcus, middle occipital gyrus, medial orbital gyrus, caudate nucleus, lateral orbital gyrus, and medial postcentral gyrus. Functional connectivity analyses revealed increased edge strength, most marked in motor domains. Numerous edges of this network strengthened in athletes were significantly weakened with concussion. Aligned to meta-analytic neuroimaging data, the observed changes suggest functional enhancement within the motor, sensory, coordination, balance, and visual processing domains in athletes, attenuated by concussive head injury with a negative impact on memory and language. Conclusions These findings suggest that engagement in sport may benefit the brain across numerous domains, but also highlights the potentially damaging effects of concussive head injury. Future studies with longitudinal cohorts including autopsy examination are needed to determine whether the latter reflects tissue loss from brain shearing, or the onset of a progressive Alzheimer's disease like proteinopathy.
Collapse
Affiliation(s)
- Michael Turner
- The International Concussion and Head Injury Research Foundation (ICHIRF), The Institute of Sport, Exercise and Health, University College London, London, UK
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Marker Diagnostics UK Limited, the BioHub, Birmingham Research Park, Birmingham, UK
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, UK
| | | |
Collapse
|
11
|
Mayer AR, Meier TB, Ling JM, Dodd AB, Brett BL, Robertson-Benta CR, Huber DL, Van der Horn HJ, Broglio SP, McCrea MA, McAllister T. Increased brain age and relationships with blood-based biomarkers following concussion in younger populations. J Neurol 2023; 270:5835-5848. [PMID: 37594499 PMCID: PMC10632216 DOI: 10.1007/s00415-023-11931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Brain age is increasingly being applied to the spectrum of brain injury to define neuropathological changes in conjunction with blood-based biomarkers. However, data from the acute/sub-acute stages of concussion are lacking, especially among younger cohorts. METHODS Predicted brain age differences were independently calculated in large, prospectively recruited cohorts of pediatric concussion and matched healthy controls (total N = 446), as well as collegiate athletes with sport-related concussion and matched non-contact sport controls (total N = 184). Effects of repetitive head injury (i.e., exposure) were examined in a separate cohort of contact sport athletes (N = 82), as well as by quantifying concussion history through semi-structured interviews and years of contact sport participation. RESULTS Findings of increased brain age during acute and sub-acute concussion were independently replicated across both cohorts, with stronger evidence of recovery for pediatric (4 months) relative to concussed athletes (6 months). Mixed evidence existed for effects of repetitive head injury, as brain age was increased in contact sport athletes, but was not associated with concussion history or years of contact sport exposure. There was no difference in brain age between concussed and contact sport athletes. Total tau decreased immediately (~ 1.5 days) post-concussion relative to the non-contact group, whereas pro-inflammatory markers were increased in both concussed and contact sport athletes. Anti-inflammatory markers were inversely related to brain age, whereas markers of axonal injury (neurofilament light) exhibited a trend positive association. CONCLUSION Current and previous findings collectively suggest that the chronicity of brain age differences may be mediated by age at injury (adults > children), with preliminary findings suggesting that exposure to contact sports may also increase brain age.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cidney R Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Daniel L Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harm J Van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Bloomington, IN, USA
| |
Collapse
|
12
|
Ulyanova AV, Adam CD, Cottone C, Maheshwari N, Grovola MR, Fruchet OE, Alamar J, Koch PF, Johnson VE, Cullen DK, Wolf JA. Hippocampal interneuronal dysfunction and hyperexcitability in a porcine model of concussion. Commun Biol 2023; 6:1136. [PMID: 37945934 PMCID: PMC10636018 DOI: 10.1038/s42003-023-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Cognitive impairment is a common symptom following mild traumatic brain injury (mTBI or concussion) and can persist for years in some individuals. Hippocampal slice preparations following closed-head, rotational acceleration injury in swine have previously demonstrated reduced axonal function and hippocampal circuitry disruption. However, electrophysiological changes in hippocampal neurons and their subtypes in a large animal mTBI model have not been examined. Using in vivo electrophysiology techniques, we examined laminar oscillatory field potentials and single unit activity in the hippocampal network 7 days post-injury in anesthetized minipigs. Concussion altered the electrophysiological properties of pyramidal cells and interneurons differently in area CA1. While the firing rate, spike width and amplitude of CA1 interneurons were significantly decreased post-mTBI, these parameters were unchanged in CA1 pyramidal neurons. In addition, CA1 pyramidal neurons in TBI animals were less entrained to hippocampal gamma (40-80 Hz) oscillations. Stimulation of the Schaffer collaterals also revealed hyperexcitability across the CA1 lamina post-mTBI. Computational simulations suggest that reported changes in interneuronal physiology may be due to alterations in voltage-gated sodium channels. These data demonstrate that a single concussion can lead to significant neuronal and circuit level changes in the hippocampus, which may contribute to cognitive dysfunction following mTBI.
Collapse
Affiliation(s)
- Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Nikhil Maheshwari
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Michael R Grovola
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Oceane E Fruchet
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Jami Alamar
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Paul F Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA.
| |
Collapse
|
13
|
Hiskens MI, Li KM, Schneiders AG, Fenning AS. Repetitive mild traumatic brain injury-induced neurodegeneration and inflammation is attenuated by acetyl-L-carnitine in a preclinical model. Front Pharmacol 2023; 14:1254382. [PMID: 37745053 PMCID: PMC10514484 DOI: 10.3389/fphar.2023.1254382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) may contribute to the development of neurodegenerative diseases through secondary injury pathways. Acetyl-L-carnitine (ALC) shows neuroprotection through anti-inflammatory effects and via regulation of neuronal synaptic plasticity by counteracting post-trauma excitotoxicity. This study aimed to investigate mechanisms implicated in the etiology of neurodegeneration in rmTBI mice treated with ALC. Adult male C57BL/6J mice were allocated to sham, rmTBI or ALC + rmTBI groups. 15 rmTBIs were administered across 23 days using a modified weight drop model. Neurological testing and spatial learning and memory assessments via the Morris Water Maze (MWM) were undertaken at 48 h and 3 months. RT-PCR analysis of the cortex and hippocampus was undertaken for MAPT, GFAP, AIF1, GRIA, CCL11, TDP43, and TNF genes. Gene expression in the cortex showed elevated mRNA levels of MAPT, TNF, and GFAP in the rmTBI group that were reduced by ALC treatment. In the hippocampus, mRNA expression was elevated for GRIA1 in the rmTBI group but not the ALC + rmTBI treatment group. ALC treatment showed protective effects against the deficits displayed in neurological testing and MWM assessment observed in the rmTBI group. While brain structures display differential vulnerability to insult as evidenced by location specific postimpact disruption of key genes, this study shows correlative mRNA neurodegeneration and functional impairment that was ameliorated by ALC treatment in several key genes. ALC may mitigate damage inflicted in the various secondary neurodegenerative cascades and contribute to functional protection following rmTBI.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Katy M. Li
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| |
Collapse
|
14
|
Karimpoor M, Georgiadis M, Zhao MY, Goubran M, Moein Taghavi H, Mills BD, Tran D, Mouchawar N, Sami S, Wintermark M, Grant G, Camarillo DB, Moseley ME, Zaharchuk G, Zeineh MM. Longitudinal Alterations of Cerebral Blood Flow in High-Contact Sports. Ann Neurol 2023; 94:457-469. [PMID: 37306544 DOI: 10.1002/ana.26718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Repetitive head trauma is common in high-contact sports. Cerebral blood flow (CBF) can measure changes in brain perfusion that could indicate injury. Longitudinal studies with a control group are necessary to account for interindividual and developmental effects. We investigated whether exposure to head impacts causes longitudinal CBF changes. METHODS We prospectively studied 63 American football (high-contact cohort) and 34 volleyball (low-contact controls) male collegiate athletes, tracking CBF using 3D pseudocontinuous arterial spin labeling magnetic resonance imaging for up to 4 years. Regional relative CBF (rCBF, normalized to cerebellar CBF) was computed after co-registering to T1-weighted images. A linear mixed effects model assessed the relationship of rCBF to sport, time, and their interaction. Within football players, we modeled rCBF against position-based head impact risk and baseline Standardized Concussion Assessment Tool score. Additionally, we evaluated early (1-5 days) and delayed (3-6 months) post-concussion rCBF changes (in-study concussion). RESULTS Supratentorial gray matter rCBF declined in football compared with volleyball (sport-time interaction p = 0.012), with a strong effect in the parietal lobe (p = 0.002). Football players with higher position-based impact-risk had lower occipital rCBF over time (interaction p = 0.005), whereas players with lower baseline Standardized Concussion Assessment Tool score (worse performance) had relatively decreased rCBF in the cingulate-insula over time (interaction effect p = 0.007). Both cohorts showed a left-right rCBF asymmetry that decreased over time. Football players with an in-study concussion showed an early increase in occipital lobe rCBF (p = 0.0166). INTERPRETATION These results suggest head impacts may result in an early increase in rCBF, but cumulatively a long-term decrease in rCBF. ANN NEUROL 2023;94:457-469.
Collapse
Affiliation(s)
| | | | - Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences Platform & Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | | | - Brian D Mills
- Department of Radiology, Stanford University, Stanford, CA
| | - Dean Tran
- Department of Radiology, Stanford University, Stanford, CA
| | | | - Sohrab Sami
- Department of Radiology, Stanford University, Stanford, CA
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, CA
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA
| | | | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA
| | | |
Collapse
|
15
|
Strong RW, Grashow R, Roberts AL, Passell E, Scheuer L, Terry DP, Cohan S, Pascual-Leone A, Weisskopf MG, Zafonte RD, Germine LT. Association of Retrospectively Reported Concussion Symptoms with Objective Cognitive Performance in Former American-Style Football Players. Arch Clin Neuropsychol 2023; 38:875-890. [PMID: 36861317 DOI: 10.1093/arclin/acad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE Sustaining concussions has been linked to health issues later in life, yet evidence for associations between contact sports exposure and long-term cognitive performance is mixed. This cross-sectional study of former professional American-style football players tested the association of several measures of football exposure with later life cognitive performance, while also comparing the cognitive performance of former players to nonplayers. METHODS In total, 353 former professional football players (Mage = 54.3) completed both (1) an online cognitive test battery measuring objective cognitive performance and (2) a survey querying demographic information, current health conditions, and measures of past football exposure, including recollected concussion symptoms playing professional football, diagnosed concussions, years of professional play, and age of first football exposure. Testing occurred an average of 29 years after former players' final season of professional play. In addition, a comparison sample of 5,086 male participants (nonplayers) completed one or more cognitive tests. RESULTS Former players' cognitive performance was associated with retrospectively reported football concussion symptoms (rp = -0.19, 95% CI -0.09 to -0.29; p < 0.001), but not with diagnosed concussions, years of professional play, or age of first football exposure. This association could be due to differences in pre-concussion cognitive functioning, however, which could not be estimated based on available data. CONCLUSIONS Future investigations of the long-term outcomes of contact sports exposure should include measures of sports-related concussion symptoms, which were more sensitive to objective cognitive performance than other football exposure measures, including self-reported diagnosed concussions.
Collapse
Affiliation(s)
- Roger W Strong
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rachel Grashow
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Football Players Health Study, Harvard Medical School, Boston, MA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eliza Passell
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Luke Scheuer
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Douglas P Terry
- Department of Neurologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Cohan
- Football Players Health Study, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Football Players Health Study, Harvard Medical School, Boston, MA, USA
| | - Ross D Zafonte
- Football Players Health Study, Harvard Medical School, Boston, MA, USA
- Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura T Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
17
|
Liang B, Alosco ML, Armañanzas R, Martin BM, Tripodis Y, Stern RA, Prichep LS. Long-Term Changes in Brain Connectivity Reflected in Quantitative Electrophysiology of Symptomatic Former National Football League Players. J Neurotrauma 2023; 40:309-317. [PMID: 36324216 PMCID: PMC9902050 DOI: 10.1089/neu.2022.0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to repetitive head impacts (RHI) has been associated with long-term disturbances in cognition, mood, and neurobehavioral dysregulation, and reflected in neuroimaging. Distinct patterns of changes in quantitative features of the brain electrical activity (quantitative electroencephalogram [qEEG]) have been demonstrated to be sensitive to brain changes seen in neurodegenerative disorders and in traumatic brain injuries (TBI). While these qEEG biomarkers are highly sensitive at time of injury, the long-term effects of exposure to RHI on brain electrical activity are relatively unexplored. Ten minutes of eyes closed resting EEG data were collected from a frontal and frontotemporal electrode montage (BrainScope Food and Drug Administration-cleared EEG acquisition device), as well as assessments of neuropsychiatric function and age of first exposure (AFE) to American football. A machine learning methodology was used to derive a qEEG-based algorithm to discriminate former National Football League (NFL) players (n = 87, 55.40 ± 7.98 years old) from same-age men without history of RHI (n = 68, 54.94 ± 7.63 years old), and a second algorithm to discriminate former players with AFE <12 years (n = 33) from AFE ≥12 years (n = 54). The algorithm separating NFL retirees from controls had a specificity = 80%, a sensitivity = 60%, and an area under curve (AUC) = 0.75. Within the NFL population, the algorithm separating AFE <12 from AFE ≥12 resulted in a sensitivity = 76%, a specificity = 52%, and an AUC = 0.72. The presence of a profile of EEG abnormalities in the NFL retirees and in those with younger AFE includes features associated with neurodegeneration and the disruption of neuronal transmission between regions. These results support the long-term consequences of RHI and the potential of EEG as a biomarker of persistent changes in brain function.
Collapse
Affiliation(s)
- Bo Liang
- BrainScope Company, Chevy Chase, Maryland, USA
| | - Michael L. Alosco
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Ruben Armañanzas
- BrainScope Company, Chevy Chase, Maryland, USA
- Institute for Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain
- Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Brett M. Martin
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
| | - Yorghos Tripodis
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
| | - Robert A. Stern
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
- Departments of Neurosurgery and Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
18
|
Ahmed BZ, Benton AH, Serra-Jovenich M, Toldi JP. Postconcussion Symptoms and Neuropsychological Performance in Athletes: A Literature Review. Curr Sports Med Rep 2023; 22:19-23. [PMID: 36606632 DOI: 10.1249/jsr.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ABSTRACT Neuropsychological assessment is a common part of concussion evaluation and plays an important role within the context of a comprehensive multidisciplinary approach to managing sports-related concussion. A literature review has shown an assortment of cognitive domains used for evaluation of PCS with their corresponding tests. This review focuses on the various cognitive domains following single or multiple TBIs in athletes. Decreases in memory, executive function, language, psychomotor function, and self-reported cognitive function reached statistical significance in concussed athletes versus controls. Length of time since onset of symptoms correlated with worse memory function in chronic concussion athletes and more headache symptoms correlated with a worse outcome as well. However, some treatments are shown to be beneficial for restoration of cognitive function. When analyzing these results, it is imperative to be cognizant of the bias in the current literature. Further well-designed studies are needed to replicate these findings in larger more diverse samples.
Collapse
Affiliation(s)
- By Zoubair Ahmed
- Orthopedic Hospitalist Division, Franciscan Health Orthopedic Hospital, Carmel, IN
| | - Angela H Benton
- Department of Microbiology and Immunology, Lake Erie College of Osteopathic Medicine, Bradenton Campus, Bradenton, FL
| | | | - James P Toldi
- Department of Clinical Education, Lake Erie College of Osteopathic Medicine, Bradenton Campus, Bradenton, FL
| |
Collapse
|
19
|
Nozari A, Sharma A, Wang Z, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Wiklund L, Sharma HS. Co-administration of Nanowired Oxiracetam and Neprilysin with Monoclonal Antibodies to Amyloid Beta Peptide and p-Tau Thwarted Exacerbation of Brain Pathology in Concussive Head Injury at Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:271-313. [PMID: 37480464 DOI: 10.1007/978-3-031-32997-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AβP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.
Collapse
Affiliation(s)
- Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Schaffert J, Didehbani N, LoBue C, Hart J, Motes M, Rossetti H, Wilmoth K, Goette W, Lacritz L, Cullum CM. Neurocognitive outcomes of older National Football League retirees. Brain Inj 2022; 36:1364-1371. [PMID: 36437496 DOI: 10.1080/02699052.2022.2143567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Determine if head-injury exposure relates to later-in-life cognitive decline in older National Football League (NFL) retirees. METHOD NFL retirees (aged 50+) with or without cognitive impairment underwent baseline (n = 53) and follow-up (n = 29; 13-59 months later) neuropsychological evaluations. Cognitively normal (CN) retirees (n = 26) were age- and education-matched to healthy controls (n = 26). Cognitively impaired (CI) retirees with mild cognitive impairment or dementia (n = 27) were matched to a clinical sample (CS) by age, sex, education, and diagnosis (n = 83). ANOVAs compared neuropsychological composites at baseline and over time between retirees and their matched groups. Regression models evaluated whether concussions, concussions with loss of consciousness (LOC), or games played predicted neuropsychological functioning. RESULTS At baseline, CN retirees had slightly worse memory than controls (MCN retirees = 50.69, SECN retirees = 1.320; MHealthy controls = 57.08, SEHealthy controls = 1.345; p = 0.005). No other group diferences were observed, and head-injury exposure did not predict neurocognitive performance at baseline or over time. CONCLUSIONS Head-injury exposure was not associated with later-in-life cognition, regardless of cognitive diagnosis. Some retirees may exhibit lower memory scores compared to age-matched peers, though this is of unclear clinical significance.
Collapse
Affiliation(s)
- Jeff Schaffert
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nyaz Didehbani
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christian LoBue
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John Hart
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael Motes
- Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Heidi Rossetti
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kristin Wilmoth
- Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Will Goette
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura Lacritz
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - C Munro Cullum
- Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Functional, but Minimal Microstructural Brain Changes Present in Aging Canadian Football League Players Years After Retirement. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Phelps A, Alosco ML, Baucom Z, Hartlage K, Palmisano JN, Weuve J, Mez J, Tripodis Y, Stern RA. Association of Playing College American Football With Long-term Health Outcomes and Mortality. JAMA Netw Open 2022; 5:e228775. [PMID: 35442450 PMCID: PMC9021915 DOI: 10.1001/jamanetworkopen.2022.8775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IMPORTANCE Exposure to repetitive head impacts from playing American football (including impacts resulting in symptomatic concussions and subconcussive trauma) is associated with increased risk for later-life health problems, including cognitive and neuropsychiatric decline and neurodegenerative disease. Most research on long-term health consequences of playing football has focused on former professional athletes, with limited studies of former college players. OBJECTIVES To estimate the prevalence of self-reported health conditions among former college football players compared with a sample of men in the general population as well as standardized mortality ratios (SMRs) among former college football players. DESIGN, SETTING, AND PARTICIPANTS This cohort study included data from 447 former University of Notre Dame (ND) football players aged 59 to 75 years who were seniors on the rosters from 1964 to 1980. A health outcomes survey was distributed to living players and next of kin of deceased players for whom contact information was available. The survey was completed from December 2018 to May 2019. EXPOSURE Participation in football at ND. MAIN OUTCOMES AND MEASURES Prevalence of health outcomes was compared between living former players who completed the survey and propensity score-matched participants in the Health and Retirement Study (HRS). Standardized mortality ratios of all causes and specific causes of death among all former players were compared with those among men in the general US population. RESULTS A total of 216 living players completed the health survey (median age, 67 years; IQR, 63-70 years) and were compared with 638 participants in the HRS (median age, 66 years; IQR, 63-70 years). Former players reported a higher prevalence of cognitive impairment (10 [5%] vs 8 [1%]; P = .02), headaches (22 [10%] vs 22 [4%]; P = .001), cardiovascular disease (70 [33%] vs 128 [20%]; P = .001), hypercholesterolemia (111 [52%] vs 182 [29%]; P = .001), and alcohol use (185 [86%] vs 489 [77%]; P = .02) and a lower prevalence of diabetes (24 [11%] vs 146 [23%]; P = .001). All-cause mortality (SMR, 0.54; 95% CI, 0.42-0.67) and mortality from heart (SMR, 0.64; 95% CI, 0.39-0.99), circulatory (SMR, 0.23; 95% CI, 0.03-0.83), respiratory (SMR, 0.13; 95% CI, 0.00-0.70), and digestive system (SMR, 0.13; 95% CI, 0.00-0.74) disorders; lung cancer (SMR, 0.26; 95% CI, 0.05-0.77); and violence (SMR, 0.10; 95% CI, 0.00-0.58) were significantly lower in the ND cohort than in the general population. Mortality from brain and other nervous system cancers was significantly higher in the ND cohort (SMR, 3.82; 95% CI, 1.04-9.77). Whereas point estimates were greater for all neurodegenerative causes (SMR, 1.42; 95% CI, 0.29-4.18), amyotrophic lateral sclerosis (SMR, 2.93; 95% CI, 0.36-10.59), and Parkinson disease (SMR, 2.07; 95% CI, 0.05-11.55), the difference did not reach statistical significance. CONCLUSIONS AND RELEVANCE In this cohort study of former college football players, both positive and negative health outcomes were observed. With more than 800 000 former college players living in the US, additional research appears to be needed to provide stakeholders with guidance to maximize factors that improve health outcomes and minimize factors that may increase risk for later-life morbidity and mortality.
Collapse
Affiliation(s)
- Alyssa Phelps
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Zachary Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Kaitlin Hartlage
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph N. Palmisano
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
23
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
24
|
Iverson GL, Merz ZC, Terry DP. High-School Football and Midlife Brain Health Problems. Clin J Sport Med 2022; 32:86-94. [PMID: 35234740 PMCID: PMC8868212 DOI: 10.1097/jsm.0000000000000898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/31/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine whether middle-aged men who played high-school football experience worse mental health or cognitive functioning than men who did not play high-school football. DESIGN Cross-sectional cohort study. SETTING Online survey completed remotely. PARTICIPANTS A total of 435 men between the ages of 35 and 55 completed the study, of whom 407 were included in the analyses after excluding participants who answered embedded validity items incorrectly (n = 16), played semiprofessional football (n = 2), or experienced a recent concussion (n = 10). ASSESSMENT OF RISK FACTORS Self-reported high school football participation, compared with those who played contact sports, noncontact sports, and no sports. MAIN OUTCOME MEASURES A lifetime history of depression or anxiety; mental health or cognitive problems in the past year; current depression symptoms, and post-concussion-like symptoms. RESULTS Middle-aged men who played high-school football did not have a higher prevalence of being prescribed medication for anxiety or depression or receiving treatment from a mental health professional. Similarly, there were no significant differences between groups on the rates in which they endorsed depression, anxiety, anger, concentration problems, memory problems, headaches, migraines, neck or back pain, or chronic pain over the past year. A greater proportion of those who played football reported sleep problems over the past year and reported being prescribed medication for chronic pain and for headaches. CONCLUSIONS Men who played high-school football did not report worse brain health compared with those who played other contact sports, noncontact sports, or did not participate in sports during high school.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Spaulding Research Institute, MassGeneral Hospital for Children Sports Concussion Program, and Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts and
| | - Zachary C. Merz
- Department of Physical Medicine and Rehabilitation, University of North Carolina at Chapel Hill, UNC Memorial Hospital, Chapel Hill, North Carolina
| | - Douglas P. Terry
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Spaulding Research Institute, MassGeneral Hospital for Children Sports Concussion Program, and Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts and
| |
Collapse
|
25
|
Mayer AR, Quinn DK. Neuroimaging Biomarkers of New-Onset Psychiatric Disorders Following Traumatic Brain Injury. Biol Psychiatry 2022; 91:459-469. [PMID: 34334188 PMCID: PMC8665933 DOI: 10.1016/j.biopsych.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) has traditionally been associated with cognitive and behavioral changes during both the acute and chronic phases of injury. Because of its noninvasive nature, neuroimaging has the potential to provide unique information on underlying macroscopic and microscopic biological mechanisms that may serve as causative agents for these neuropsychiatric sequelae. This broad scoping review identifies at least 4 common macroscopic pathways that exist between TBI and new-onset psychiatric disorders, as well as several examples of how neuroimaging is currently being utilized in clinical research. The review then critically examines the strengths and limitations of neuroimaging for elucidating TBI-related microscopic pathology, such as microstructural changes, neuroinflammation, proteinopathies, blood-brain barrier damage, and disruptions in cellular signaling. A summary is then provided for how neuroimaging is currently being used to investigate TBI-related pathology in new-onset neurocognitive disorders, depression, and posttraumatic stress disorder. Identified gaps in the literature include a lack of prospective studies to definitively associate imaging findings with the development of new-onset psychiatric disorders, as well as antemortem imaging studies subsequently confirmed with postmortem correlates in the same study cohort. Although the spatial resolution and specificity of imaging biomarkers has greatly improved over the last 2 decades, we conclude that neuroimaging biomarkers do not yet exist for the definitive in vivo diagnosis of cellular pathology. This represents a necessary next step for further elucidating causal relationships between TBI and new-onset psychiatric disorders.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychology, University of New Mexico, Albuquerque, NM 87131,Corresponding author: Andrew Mayer, Ph.D., The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106 USA; Tel: 505-272-0769; Fax: 505-272-8002;
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
26
|
Brett BL, Walton S, Meier T, Nencka AS, Powell JR, Giovanello KS, Guskiewicz KK, McCrea M. Head impact exposure, grey matter volume, and moderating effects of estimated IQ and educational attainment in former athletes at midlife. J Neurotrauma 2022; 39:497-507. [PMID: 35044240 PMCID: PMC8978573 DOI: 10.1089/neu.2021.0449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repetitive head impact (RHI) exposure has been associated with differences in brain structure among younger active athletes, most often within the hippocampus. Studies of former athletes at early-midlife are limited. We investigated the association between RHI exposure and grey matter structure, as well as moderating factors, among former athletes in early-midlife. Former collegiate football players (N=55; age=37.9+1.5 years) completed magnetic resonance imaging to quantify grey matter morphometry and extensive structured interviews of RHI history (Head Impact Exposure Estimate). Linear regression models tested the association between RHI exposure and GM structures of interest. Interactions were tested for moderators: two estimates of IQ (single word reading and picture vocabulary) and education history. Greater RHI exposure was associated with smaller hippocampal volume, β=-.36, p=.004. Conversely, RHI exposure was not significantly associated with other GM outcomes ps>.05. Education history significantly moderated the association between RHI exposure and hippocampal volume, β=.69, p=.047. Among those with a bachelor's degree, greater RHI exposure was significantly associated with smaller hippocampal volumes, β=-.58, p<.001. For those with graduate/professional degrees, the association between RHI and hippocampal volume was not significant, β=-.33, p=.134. Consistent with studies involving younger, active athletes, smaller hippocampal volumes were selectively associated with greater RHI exposure among former collegiate football players at midlife. This relationship was moderated by higher levels of education. Future longitudinal studies are needed to investigate the course of possible changes that can occur between early-midlife to older ages, as well as the continued protective effect of education and other potential influential factors.
Collapse
Affiliation(s)
- Benjamin L Brett
- Medical College of Wisconsin, 5506, Neurosurgery and Neurology, 8701 W Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226;
| | - Samuel Walton
- University of North Carolina at Chapel Hill College of Arts and Sciences, 169101, Department of Exercise and Sport Science, Chapel Hill, North Carolina, United States;
| | - Timothy Meier
- Medical College of Wisconsin, Neurosurgery, 8701 Watertown Plank Road, Milwaukee, Wisconsin, United States, 53226;
| | - Andrew S Nencka
- Medical College of Wisconsin, Biophysics, Milwaukee, Wisconsin, United States;
| | - Jacob R Powell
- University of North Carolina at Chapel Hill College of Arts and Sciences, 169101, Department of Exercise and Sport Science, Chapel Hill, North Carolina, United States;
| | - Kelly S Giovanello
- University of North Carolina at Chapel Hill, Psychology, Chapel Hill, North Carolina, United States;
| | - Kevin K Guskiewicz
- University of North Carolina, Exercise and Sport Science, CB#8700, Chapel Hill, North Carolina, United States, 27599-8700;
| | - Michael McCrea
- Medical College of Wisconsin, Neurosurgery, Hub for Collaborative Medicine, 8701 Watertown Plank Road, Milwaukee, Wisconsin, United States, 53226;
| |
Collapse
|
27
|
Mitoquinone supplementation alleviates oxidative stress and pathologic outcomes following repetitive mild traumatic brain injury at a chronic time point. Exp Neurol 2022; 351:113987. [DOI: 10.1016/j.expneurol.2022.113987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
|
28
|
Alosco ML, Mian AZ, Buch K, Farris CW, Uretsky M, Tripodis Y, Baucom Z, Martin B, Palmisano J, Puzo C, Ang TFA, Joshi P, Goldstein LE, Au R, Katz DI, Dwyer B, Daneshvar DH, Nowinski C, Cantu RC, Kowall NW, Huber BR, Alvarez VE, Stern RA, Stein TD, Killiany RJ, McKee AC, Mez J. Structural MRI profiles and tau correlates of atrophy in autopsy-confirmed CTE. Alzheimers Res Ther 2021; 13:193. [PMID: 34876229 PMCID: PMC8653514 DOI: 10.1186/s13195-021-00928-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/31/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy, cannot currently be diagnosed during life. Atrophy patterns on magnetic resonance imaging could be an effective in vivo biomarker of CTE, but have not been characterized. Mechanisms of neurodegeneration in CTE are unknown. Here, we characterized macrostructural magnetic resonance imaging features of brain donors with autopsy-confirmed CTE. The association between hyperphosphorylated tau (p-tau) and atrophy on magnetic resonance imaging was examined. METHODS Magnetic resonance imaging scans were obtained by medical record requests for 55 deceased symptomatic men with autopsy-confirmed CTE and 31 men (n = 11 deceased) with normal cognition at the time of the scan, all >60 years Three neuroradiologists visually rated regional atrophy and microvascular disease (0 [none]-4 [severe]), microbleeds, and cavum septum pellucidum presence. Neuropathologists rated tau severity and atrophy at autopsy using semi-quantitative scales. RESULTS Compared to unimpaired males, donors with CTE (45/55=stage III/IV) had greater atrophy of the orbital-frontal (mean diff.=1.29), dorsolateral frontal (mean diff.=1.31), superior frontal (mean diff.=1.05), anterior temporal (mean diff.=1.57), and medial temporal lobes (mean diff.=1.60), and larger lateral (mean diff.=1.72) and third (mean diff.=0.80) ventricles, controlling for age at scan (ps<0.05). There were no effects for posterior atrophy or microvascular disease. Donors with CTE had increased odds of a cavum septum pellucidum (OR = 6.7, p < 0.05). Among donors with CTE, greater tau severity across 14 regions corresponded to greater atrophy on magnetic resonance imaging (beta = 0.68, p < 0.01). CONCLUSIONS These findings support frontal-temporal atrophy as a magnetic resonance imaging finding of CTE and show p-tau accumulation is associated with atrophy in CTE.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Asim Z Mian
- Department of Radiology, Boston University School of Medicine, Boston, USA
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Chad W Farris
- Department of Radiology, Boston University School of Medicine, Boston, USA
- Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Zachary Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Joseph Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Christian Puzo
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Ting Fang Alvin Ang
- Framingham Heart Study, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Prajakta Joshi
- Framingham Heart Study, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Radiology, Boston University School of Medicine, Boston, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, USA
| | - Rhoda Au
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Framingham Heart Study, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, USA
| | - Douglas I Katz
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
| | | | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, USA
- Department of Neurosurgery, Emerson Hospital, Concord, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Boston, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Boston, USA
- National Center for PTSD, VA Boston Healthcare, Boston, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Boston, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Framingham Heart Study, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Boston, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ronald J Killiany
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
- Center for Biomedical Imaging, Boston University School of Medicine, Boston, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Framingham Heart Study, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- US Department of Veteran Affairs, VA Boston Healthcare System, Boston, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA.
- Framingham Heart Study, Boston University School of Medicine, 72 E Concord Street, Suite B7800, Boston, MA, 02118, USA.
| |
Collapse
|
29
|
Iverson GL, Büttner F, Caccese JB. Age of First Exposure to Contact and Collision Sports and Later in Life Brain Health: A Narrative Review. Front Neurol 2021; 12:727089. [PMID: 34659092 PMCID: PMC8511696 DOI: 10.3389/fneur.2021.727089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
A controversial theory proposes that playing tackle football before the age of 12 causes later in life brain health problems. This theory arose from a small study of 42 retired National Football League (NFL) players, which reported that those who started playing tackle football at a younger age performed worse on selected neuropsychological tests and a word reading test. The authors concluded that these differences were likely due to greater exposure to repetitive neurotrauma during a developmentally sensitive maturational period in their lives. Several subsequent studies of current high school and collegiate contact/collision sports athletes, and former high school, collegiate, and professional tackle football players have not replicated these findings. This narrative review aims to (i) discuss the fundamental concepts, issues, and controversies surrounding existing research on age of first exposure (AFE) to contact/collision sport, and (ii) provide a balanced interpretation, including risk of bias assessment findings, of this body of evidence. Among 21 studies, 11 studies examined former athletes, 8 studies examined current athletes, and 2 studies examined both former and current athletes. Although the literature on whether younger AFE to tackle football is associated with later in life cognitive, neurobehavioral, or mental health problems in former NFL players is mixed, the largest study of retired NFL players (N = 3,506) suggested there was not a significant association between earlier AFE to organized tackle football and worse subjectively experienced cognitive functioning, depression, or anxiety. Furthermore, no published studies of current athletes show a significant association between playing tackle football (or other contact/collision sports) before the age of 12 and cognitive, neurobehavioral, or mental health problems. It is important to note that all studies were judged to be at high overall risk of bias, indicating that more methodologically rigorous research is needed to understand whether there is an association between AFE to contact/collision sports and later in life brain health. The accumulated research to date suggests that earlier AFE to contact/collision sports is not associated with worse cognitive functioning or mental health in (i) current high school athletes, (ii) current collegiate athletes, or (iii) middle-aged men who played high school football. The literature on former NFL players is mixed and does not, at present, clearly support the theory that exposure to tackle football before age 12 is associated with later in life cognitive impairment or mental health problems.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, MA, United States
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States
| | - Fionn Büttner
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Jaclyn B. Caccese
- School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
30
|
Thompson XD, Erdman NK, Walton SR, Broshek DK, Resch JE. Reevaluating clinical assessment outcomes after unrestricted return to play following sport-related concussion. Brain Inj 2021; 35:1577-1584. [PMID: 34543089 DOI: 10.1080/02699052.2021.1975818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PRIMARY OBJECTIVE The objective of this study was to examine neurocognition, postural control, and symptomology at multiple timepoints following concussion. We hypothesized that collegiate athletes would perform similar to or better than their baseline in terms of each outcome at both timepoints. RESEARCH DESIGN This was a retrospective study of 71 collegiate athletes (18.3 ± 0.89 years old; 182.2 ± 10.05 cm; 84.2 ± 20.07 kg) to observe changes in outcomes from a previously established clinical protocol. METHODS AND PROCEDURES Participants were administered ImPACT™, the Sensory Organization Test (SOT), and the revised head injury scale (HIS-r) prior to their seasons (baseline); upon reporting symptom-free following concussion (post-injury); and approximately 8-months after return-to-play to establish a new baseline. MAIN OUTCOMES AND RESULTS There were no changes in ImPACT scores or HIS-r reporting over time. ImPACT total symptom score (TSS) decreased over time (p = .002, ηp2 = 0.08). Significant main effects occurred for the SOT equilibrium score (p < .01, ηp2 = 0.34) and Vestibular sensory ratio (p < .001, ηp2 = 0.22). CONCLUSIONS Our data suggest no decline in neurocognition, balance, or symptom burden approximately eight months post-injury. As clinicians continue to explore "best practices" for concussion management and potential long-term implications of these injuries it is important to monitor outcome measures longitudinally.
Collapse
Affiliation(s)
- Xavier D Thompson
- UVA Department of Kinesiology, The University of Virginia, Charlottesville, Virginia, USA
| | - Nicholas K Erdman
- Postdoctoral Research Fellow, George Mason University Sports Medicine, Research and Testing Lab, Fairfax, Virginia, USA
| | - Samuel R Walton
- Postdoctoral Research Associate, UNC Center for the Study of Retired Athletes & Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Chapel Hill, North Carolina, USA
| | - Donna K Broshek
- UVA Department of Psychiatry and Neurobehavioral Sciences, UVA Health, Charlottesville, Virginia, USA
| | - Jacob E Resch
- UVA Department of Kinesiology, The University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
31
|
Symons GF, Clough M, Fielding J, O'Brien WT, Shepherd CE, Wright DK, Shultz SR. The Neurological Consequences of Engaging in Australian Collision Sports. J Neurotrauma 2021; 37:792-809. [PMID: 32056505 DOI: 10.1089/neu.2019.6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collision sports are an integral part of Australian culture. The most common collision sports in Australia are Australian rules football, rugby union, and rugby league. Each of these sports often results in participants sustaining mild brain traumas, such as concussive and subconcussive injuries. However, the majority of previous studies and reviews pertaining to the neurological implications of sustaining mild brain traumas, while engaging in collision sports, have focused on those popular in North America and Europe. As part of this 2020 International Neurotrauma Symposium special issue, which highlights Australian neurotrauma research, this article will therefore review the burden of mild brain traumas in Australian collision sports athletes. Specifically, this review will first provide an overview of the consequences of mild brain trauma in Australian collision sports, followed by a summary of the previous studies that have investigated neurocognition, ocular motor function, neuroimaging, and fluid biomarkers, as well as neuropathological outcomes in Australian collision sports athletes. A review of the literature indicates that although Australians have contributed to the field, several knowledge gaps and limitations currently exist. These include important questions related to sex differences, the identification and implementation of blood and imaging biomarkers, the need for consistent study designs and common data elements, as well as more multi-modal studies. We conclude that although Australia has had an active history of investigating the neurological impact of collision sports participation, further research is clearly needed to better understand these consequences in Australian athletes and how they can be mitigated.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, The University of New South Wales, Sydney, New South Wales, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Major B, Symons GF, Sinclair B, O'Brien WT, Costello D, Wright DK, Clough M, Mutimer S, Sun M, Yamakawa GR, Brady RD, O'Sullivan MJ, Mychasiuk R, McDonald SJ, O'Brien TJ, Law M, Kolbe S, Shultz SR. White and Gray Matter Abnormalities in Australian Footballers With a History of Sports-Related Concussion: An MRI Study. Cereb Cortex 2021; 31:5331-5338. [PMID: 34148076 DOI: 10.1093/cercor/bhab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Sports-related concussion (SRC) is a form of mild traumatic brain injury that has been linked to long-term neurological abnormalities. Australian rules football is a collision sport with wide national participation and is growing in popularity worldwide. However, the chronic neurological consequences of SRC in Australian footballers remain poorly understood. This study investigated the presence of brain abnormalities in Australian footballers with a history of sports-related concussion (HoC) using multimodal MRI. Male Australian footballers with HoC (n = 26), as well as noncollision sport athletes with no HoC (n = 27), were recruited to the study. None of the footballers had sustained a concussion in the preceding 6 months, and all players were asymptomatic. Data were acquired using a 3T MRI scanner. White matter integrity was assessed using diffusion tensor imaging. Cortical thickness, subcortical volumes, and cavum septum pellucidum (CSP) were analyzed using structural MRI. Australian footballers had evidence of widespread microstructural white matter damage and cortical thinning. No significant differences were found regarding subcortical volumes or CSP. These novel findings provide evidence of persisting white and gray matter abnormalities in Australian footballers with HoC, and raise concerns related to the long-term neurological health of these athletes.
Collapse
Affiliation(s)
- Brendan Major
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Ben Sinclair
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - William T O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Steven Mutimer
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Michael J O'Sullivan
- Department of Faculty of Medicine, UQ Centre for Clinical Research and Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Meng Law
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Scott Kolbe
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
33
|
Asken BM, Rabinovici GD. Identifying degenerative effects of repetitive head trauma with neuroimaging: a clinically-oriented review. Acta Neuropathol Commun 2021; 9:96. [PMID: 34022959 PMCID: PMC8141132 DOI: 10.1186/s40478-021-01197-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND SCOPE OF REVIEW Varying severities and frequencies of head trauma may result in dynamic acute and chronic pathophysiologic responses in the brain. Heightened attention to long-term effects of head trauma, particularly repetitive head trauma, has sparked recent efforts to identify neuroimaging biomarkers of underlying disease processes. Imaging modalities like structural magnetic resonance imaging (MRI) and positron emission tomography (PET) are the most clinically applicable given their use in neurodegenerative disease diagnosis and differentiation. In recent years, researchers have targeted repetitive head trauma cohorts in hopes of identifying in vivo biomarkers for underlying biologic changes that might ultimately improve diagnosis of chronic traumatic encephalopathy (CTE) in living persons. These populations most often include collision sport athletes (e.g., American football, boxing) and military veterans with repetitive low-level blast exposure. We provide a clinically-oriented review of neuroimaging data from repetitive head trauma cohorts based on structural MRI, FDG-PET, Aβ-PET, and tau-PET. We supplement the review with two patient reports of neuropathology-confirmed, clinically impaired adults with prior repetitive head trauma who underwent structural MRI, FDG-PET, Aβ-PET, and tau-PET in addition to comprehensive clinical examinations before death. REVIEW CONCLUSIONS Group-level comparisons to controls without known head trauma have revealed inconsistent regional volume differences, with possible propensity for medial temporal, limbic, and subcortical (thalamus, corpus callosum) structures. Greater frequency and severity (i.e., length) of cavum septum pellucidum (CSP) is observed in repetitive head trauma cohorts compared to unexposed controls. It remains unclear whether CSP predicts a particular neurodegenerative process, but CSP presence should increase suspicion that clinical impairment is at least partly attributable to the individual's head trauma exposure (regardless of underlying disease). PET imaging similarly has not revealed a prototypical metabolic or molecular pattern associated with repetitive head trauma or predictive of CTE based on the most widely studied radiotracers. Given the range of clinical syndromes and neurodegenerative pathologies observed in a subset of adults with prior repetitive head trauma, structural MRI and PET imaging may still be useful for differential diagnosis (e.g., assessing suspected Alzheimer's disease).
Collapse
Affiliation(s)
- Breton M. Asken
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143 USA
| | - Gil D. Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143 USA
| |
Collapse
|
34
|
Alosco ML, Culhane J, Mez J. Neuroimaging Biomarkers of Chronic Traumatic Encephalopathy: Targets for the Academic Memory Disorders Clinic. Neurotherapeutics 2021; 18:772-791. [PMID: 33847906 PMCID: PMC8423967 DOI: 10.1007/s13311-021-01028-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts, such as those from contact sports. The pathognomonic lesion for CTE is the perivascular accumulation of hyper-phosphorylated tau in neurons and other cell process at the depths of sulci. CTE cannot be diagnosed during life at this time, limiting research on risk factors, mechanisms, epidemiology, and treatment. There is an urgent need for in vivo biomarkers that can accurately detect CTE and differentiate it from other neurological disorders. Neuroimaging is an integral component of the clinical evaluation of neurodegenerative diseases and will likely aid in diagnosing CTE during life. In this qualitative review, we present the current evidence on neuroimaging biomarkers for CTE with a focus on molecular, structural, and functional modalities routinely used as part of a dementia evaluation. Supporting imaging-pathological correlation studies are also presented. We targeted neuroimaging studies of living participants at high risk for CTE (e.g., aging former elite American football players, fighters). We conclude that an optimal tau PET radiotracer with high affinity for the 3R/4R neurofibrillary tangles in CTE has not yet been identified. Amyloid PET scans have tended to be negative. Converging structural and functional imaging evidence together with neuropathological evidence show frontotemporal and medial temporal lobe neurodegeneration, and increased likelihood for a cavum septum pellucidum. The literature offers promising neuroimaging biomarker targets of CTE, but it is limited by cross-sectional studies of small samples where the presence of underlying CTE is unknown. Imaging-pathological correlation studies will be important for the development and validation of neuroimaging biomarkers of CTE.
Collapse
Affiliation(s)
- Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA.
| | - Julia Culhane
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA
- Framingham Heart Study, Boston University School of Medicine, MA, Boston, USA
| |
Collapse
|
35
|
Cusimano MD, Saha A, Zhang D, Zhang S, Casey J, Rabski J, Carpino M, Hwang SW. Cognitive Dysfunction, Brain Volumes, and Traumatic Brain Injury in Homeless Persons. Neurotrauma Rep 2021; 2:136-148. [PMID: 33796876 PMCID: PMC8006590 DOI: 10.1089/neur.2020.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although homeless persons experience traumatic brain injury (TBI) frequently, little is known about the structural and functional brain changes in this group. We aimed to describe brain volume changes and related cognitive/motor deficits in homeless persons with or without TBI versus controls. Participants underwent T1-weighted magnetic resonance imaging (MRI), neuropsychological (NP) tests (the Grooved Pegboard Test [GPT]/Finger Tapping Test [FTT]), alcohol/drug use screens (the Alcohol Use Disorders Identification Test [AUDIT]/Drug Abuse Screening Test [DAST]), and questionnaires (the Brain Injury Screening Questionnaire [BISQ]/General Information Questionnaire [GIQ]) to determine TBI. Normalized volumes of brain substructures from MRI were derived from FreeSurfer. Comparisons were tested by Mann-Whitney U and Kruskal-Wallis rank sum tests. Leave-one-out cross-validation using random forest classifier was applied to determine the ability of predicting TBI. Diagnostic ability of this classifier was assessed using area under the receiver operating characteristic curve (AUC). Fifty-one participants—25 homeless persons (9 with TBI) and 26 controls—were included. The homeless group had higher AUDIT scores and smaller thalamus and brainstem volumes (p < 0.001) than controls. Within homeless participants, the TBI group had reduced normalized volumes of nucleus accumbens, thalamus, ventral diencephalon, and brainstem compared with the non-TBI group (p < 0.001). Homeless participants took more time on the GPT compared with controls using both hands (p < 0.0001); but the observed effects were more pronounced in the homeless group with TBI in the non-dominant hand. Homeless persons with TBI had fewer dominant hand finger taps than controls (p = 0.0096), and homeless participants with (p = 0.0148) or without TBI (p = 0.0093) tapped less than controls with their non-dominant hand. In all participants, TBI was predicted with an AUC of 0.95 (95% confidence interval [CI]: 0.89-1.00) by the classifier modeled on MRI, NP tests, and screening data combined. The MRI-data-based classifier was the best predictor of TBI within the homeless group (AUC: 0.76, 95% CI: 0.53-0.99). Normalized volumes of specific brain substructures were important indicators of TBI in homeless participants and they are important indicators of TBI in the state of homelessness itself. They may improve predictive ability of NP and screening tests in determining these outcomes.
Collapse
Affiliation(s)
- Michael D Cusimano
- Injury Prevention Research Office, Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Ashirbani Saha
- Injury Prevention Research Office, Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Daniel Zhang
- Injury Prevention Research Office, Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Stanley Zhang
- Injury Prevention Research Office, Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Julia Casey
- Injury Prevention Research Office, Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jessica Rabski
- Injury Prevention Research Office, Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Melissa Carpino
- Injury Prevention Research Office, Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Stephen W Hwang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Centre for Urban Health Solutions, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Brett BL, Walton SR, Kerr ZY, Nelson LD, Chandran A, Defreese JD, Echemendia RJ, Guskiewicz KM, Meehan Iii WP, McCrea MA. Distinct latent profiles based on neurobehavioural, physical and psychosocial functioning of former National Football League (NFL) players: an NFL-LONG Study. J Neurol Neurosurg Psychiatry 2021; 92:282-290. [PMID: 33483350 DOI: 10.1136/jnnp-2020-324244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To identify subgroups of former National Football League (NFL) players using latent profile analysis (LPA) and examine their associations with total years of participation (TYP) and self-reported lifetime sport-related concussion history (SR-CHx). METHODS Former NFL players (N=686) aged 50-70 years, with an average 18.0 TYP (±4.5) completed a questionnaire. SR-CHx distributions included: low (0-3; n=221); intermediate (4-8; n=209) and high (9+; n=256). LPA measures included: Quality of Life in Neurological Disorders Emotional-Behavioral Dyscontrol, Patient Reported Outcomes Measurement Information System Cognitive Function, Emotional Support, Self-Efficacy, Meaning and Purpose, Physical Function, Pain Interference, Participation in Social Roles and Activities, Anxiety, Depression, Fatigue, and Sleep Disturbance. Demographic, medical/psychiatric history, current psychosocial stressors, TYP and SR-CHx were compared across latent profiles (LPs). RESULTS A five profile solution emerged: (LP1) global higher functioning (GHF; 26.5%); (LP2) average functioning (10.2%); (LP3) mild somatic (pain and physical functioning) concerns (22.0%); (LP4) somatic and cognitive difficulties with mild anxiety (SCA; 27.5%); LP5) global impaired functioning (GIF; 13.8%). The GIF and SCA groups reported the largest number ofe- medical/psychiatric conditions and higher psychosocial stressor levels. SR-CHx was associated with profile group (χ2(8)=100.38, p<0.001); with a higher proportion of GIF (72.6%) and SCA (43.1%) groups reporting being in the high SR-CHx category, compared with GHF (23.1%), average (31.4%) and somatic (27.8%) groups. TYP was not significantly associated with group (p=0.06), with greater TYP reported by the GHF group. CONCLUSIONS Five distinct profiles of self-reported functioning were identified among former NFL players. Several comorbid factors (ie, medical/psychiatric diagnoses and psychosocial stressors) and SR-CHx were associated with greater neurobehavioural and psychosocial dysfunction.
Collapse
Affiliation(s)
- Benjamin L Brett
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA .,Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Samuel R Walton
- Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zachery Y Kerr
- Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsay D Nelson
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Avinash Chandran
- NCAA Injury Surveillance Program, Datalys Center for Sports Injury Research and Prevention, Indianapolis, Indiana, USA
| | - J D Defreese
- Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ruben J Echemendia
- Psychological and Neurobehavioral Associates, State College, Pennsylvania, USA
| | - Kevin M Guskiewicz
- Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Michael A McCrea
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
37
|
Walton SR, Kerr ZY, Brett BL, Chandran A, DeFreese JD, Smith-Ryan AE, Stoner L, Echemendia RJ, McCrea M, Meehan Iii WP, Guskiewicz KM. Health-promoting behaviours and concussion history are associated with cognitive function, mood-related symptoms and emotional-behavioural dyscontrol in former NFL players: an NFL-LONG Study. Br J Sports Med 2021; 55:683-690. [PMID: 33397673 DOI: 10.1136/bjsports-2020-103400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To examine the relationships among self-reported sport-related concussion (SRC) history and current health-promoting behaviours (exercise frequency, diet quality and sleep duration) with self-reported measures of brain health (cognitive function, symptoms of depression and anxiety and emotional-behavioural dyscontrol) in former NFL players. METHODS In this cross-sectional study, a questionnaire was sent to former NFL players. Respondents reported SRC history (categorical: 0; 1-2; 3-5; 6-9; 10+ concussions), number of moderate-to-vigorous aerobic and resistance exercise sessions per week, diet quality (Rapid Eating Assessment for Participants-Shortened) and average nightly sleep duration. Outcomes were Patient-Reported Outcomes Measurement Information System Cognitive Function, Depression, and Anxiety, and Neuro-QoL Emotional-Behavioral Dyscontrol domain T-scores. Multivariable linear regression models were fit for each outcome with SRC history, exercise frequency, diet quality and sleep duration as explanatory variables alongside select covariates. RESULTS Multivariable regression models (n=1784) explained approximately 33%-38% of the variance in each outcome. For all outcomes, SRC history (0.144≤|β|≤0.217) was associated with poorer functioning, while exercise frequency (0.064≤|β|≤0.088) and diet quality (0.057≤|β|≤0.086) were associated with better functioning. Sleeping under 6 hours per night (0.061≤|β|≤0.093) was associated with worse depressive symptoms, anxiety and emotional-behavioural dyscontrol. CONCLUSION Several variables appear to be associated with mood and perceived cognitive function in former NFL players. SRC history is non-modifiable in former athletes; however, the effects of increasing postplaying career exercise frequency, making dietary improvements, and obtaining adequate sleep represent important potential opportunities for preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Samuel R Walton
- Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zachary Y Kerr
- Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Benjamin L Brett
- Neurosurgery/Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Avinash Chandran
- Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- NCAA Injury Surveillance Program, Datalys Center for Sports Injury Research and Prevention, Indianapolis, Indiana, USA
| | - J D DeFreese
- Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Abbie E Smith-Ryan
- Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lee Stoner
- Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruben J Echemendia
- Psychology, University of Missouri Kansas City, Kansas City, Missouri, USA
- Neuropsychology, University Orthopedics Center Concussion Clinic, State College, PA, USA
| | - Michael McCrea
- Neurosurgery/Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - William P Meehan Iii
- Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kevin M Guskiewicz
- Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
38
|
Prien A, Feddermann-Demont N, Verhagen E, Twisk J, Junge A. Neurocognitive performance and mental health of retired female football players compared to non-contact sport athletes. BMJ Open Sport Exerc Med 2020; 6:e000952. [PMID: 33312682 PMCID: PMC7716672 DOI: 10.1136/bmjsem-2020-000952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background Adverse long-term effects of playing football due to repetitive head impact exposure on neurocognition and mental health are controversial. To date, no studies have evaluated such effects in women. Aims To (1) compare neurocognitive performance, cognitive symptoms and mental health in retired elite female football players (FB) with retired elite female non-contact sport athletes (CON), and to (2) assess whether findings are related to history of concussion and/or heading exposure in FB. Methods Neurocognitive performance, mental health and cognitive symptoms were assessed using computerised tests (CNS-vital signs), paper pen tests (Category fluency, Trail-Making Test, Digit Span, Paced Auditory Serial Addition Test), questionnaires (Hospital Anxiety and Depression Scale, SF-36v2 Health Survey) and a symptom checklist. Heading exposure and concussion history were self-reported in an online survey and in a clinical interview, respectively. Linear regression was used to analyse the effect of football, concussion and heading exposure on outcomes adjusted for confounders. Results FB (n=66) performed similar to CON (n=45) on neurocognitive tests, except for significantly lower scores on verbal memory (mean difference (MD)=−7.038, 95% CI −12.98 to –0.08, p=0.038) and verbal fluency tests (MD=−7.534, 95% CI –13.75 to –0.46, p=0.016). Among FB weaker verbal fluency performance was significantly associated with ≥2 concussions (MD=−10.36, 95% CI –18.48 to –2.83, p=0.017), and weaker verbal memory performance with frequent heading (MD=−9.166, 95% CI –17.59 to –0.123, p=0.041). The depression score differed significantly between study populations, and was significantly associated with frequent heading but not with history of concussion in FB. Conclusion Further studies should investigate the clinical relevance of our findings and whether the observed associations point to a causal link between repetitive head impacts and verbal memory/fluency or mental health.
Collapse
Affiliation(s)
- Annika Prien
- Fakultät Humanwissenschaften, MSH Medical School Hamburg, Hamburg, Germany.,Amsterdam Collaboration on Health & Safety in Sports, Public and Occupational Health, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Nina Feddermann-Demont
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Swiss Concussion Center (SCC), Schulthess Klinik, Zurich, Switzerland
| | - Evert Verhagen
- Amsterdam Collaboration on Health & Safety in Sports, Public and Occupational Health, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Department of Human Biology, Division of Exercise Science and Sports Medicine, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Jos Twisk
- Epidemiology and Biostatistics, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Astrid Junge
- Fakultät Humanwissenschaften, MSH Medical School Hamburg, Hamburg, Germany.,Swiss Concussion Center (SCC), Schulthess Klinik, Zurich, Switzerland
| |
Collapse
|
39
|
Willer BS, Haider MN, Wilber C, Esopenko C, Turner M, Leddy J. Long-Term Neurocognitive, Mental Health Consequences of Contact Sports. Clin Sports Med 2020; 40:173-186. [PMID: 33187607 DOI: 10.1016/j.csm.2020.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This article presents a brief history and literature review of chronic traumatic encephalopathy (CTE) in professional athletes that played contact sports. The hypothesis that CTE results from concussion or sub-concussive blows is based largely on several case series investigations with considerable bias. Evidence of CTE in its clinical presentation has not been generally noted in studies of living retired athletes. However, these studies also demonstrated limitation in research methodology. This paper aims to present a balanced perspective amidst a politically charged subject matter.
Collapse
Affiliation(s)
- Barry S Willer
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, Concussion Management Clinic and Research Center, State University of New York at Buffalo, 160 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Mohammad Nadir Haider
- UBMD Department of Orthopaedics and Sports Medicine, Concussion Management Clinic and Research Center, State University of New York at Buffalo, 160 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Charles Wilber
- UBMD Department of Orthopaedics and Sports Medicine, Concussion Management Clinic and Research Center, State University of New York at Buffalo, 160 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Rutgers University, 65 Bergen Street, Newark, NJ 07107, USA
| | - Michael Turner
- International Concussion and Head Injury Foundation, Institute of Sport, Exercise and Health, University College London, 170 Tottenham Court Road, W1T 7HA, UK
| | - John Leddy
- UBMD Department of Orthopaedics and Sports Medicine, Concussion Management Clinic and Research Center, State University of New York at Buffalo, 160 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
40
|
Snowden TM, Hinde AK, Reid HM, Christie BR. Does Mild Traumatic Brain Injury Increase the Risk for Dementia? A Systematic Review and Meta-Analysis. J Alzheimers Dis 2020; 78:757-775. [DOI: 10.3233/jad-200662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Mild traumatic brain injury (mTBI) is a putative risk factor for dementia; however, despite having apparent face validity, the evidence supporting this hypothesis remains inconclusive. Understanding the role of mTBI as a risk factor is becoming increasingly important given the high prevalence of mTBI, and the increasing societal burden of dementia. Objective: Our objective was to use the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) format to determine if an association exists between mTBI and dementia and related factors, and to quantify the degree of risk. Methods: In this format, two authors conducted independent database searches of PubMed, PsycInfo, and CINAHL using three search blocks to find relevant papers published between 2000 and 2020. Relevant studies were selected using pre-defined inclusion/exclusion criteria, and bias scoring was performed independently by the two authors before a subset of studies was selected for meta-analysis. Twenty-one studies met the inclusion criteria for this systematic review. Results: The meta-analysis yielded a pooled odds ratio of 1.96 (95% CI 1.698–2.263), meaning individuals were 1.96 times more likely to be diagnosed with dementia if they had a prior mTBI. Most studies examining neuropsychiatric and neuroimaging correlates of dementia found subtle, persistent changes after mTBI. Conclusion: These results indicate that mTBI is a risk factor for the development of dementia and causes subtle changes in performance on neuropsychiatric testing and brain structure in some patients.
Collapse
Affiliation(s)
- Taylor M. Snowden
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Anthony K. Hinde
- Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Hannah M.O. Reid
- Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Island Medical Program, University of British Columbia, Victoria, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
The Relations Among Depression, Cognition, and Brain Volume in Professional Boxers: A Preliminary Examination Using Brief Clinical Measures. J Head Trauma Rehabil 2020; 34:E29-E39. [PMID: 31033751 DOI: 10.1097/htr.0000000000000495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Depression, neuropathology, and cognitive decline are commonly observed with repetitive head injuries (RHIs). We examined whether in boxers (a) clinically significant depression is associated with structural brain changes and cognition; (b) minimal symptoms of depression moderate the relations among RHI and brain volumes and cognition; and (c) baseline depression is associated with longitudinal cognitive changes. SETTING Clinical Research Center. PARTICIPANTS A total of 205 male professional boxers. DESIGN Cross-sectional and longitudinal (subsample: n = 45; first visit to follow-up range = 1-6 years; mean = 2.61 years). MAIN MEASURES Patient Health Questionnaire-9 depression; CNS Vital Signs cognitive battery; brain imaging. RESULTS Clinically significant depression was associated with smaller regional volumes in insula, cingulate, orbitofrontal cortex, thalami, and middle corpus-callosum subregions; and with poorer verbal memory and psychomotor speed performance. Depression symptoms moderated the relations between RHI and bilateral thalami, left hippocampus, left medial orbitofrontal cortex, and bilateral insula volumes; but not cognition. Baseline depression was associated with poorer psychomotor speed and reaction time longitudinally and improved verbal memory performance longitudinally. CONCLUSION Clinical depression is associated with volumetric and cognitive changes occasioning RHI exposure, and even minimal depressive symptoms may moderate the relations between exposure and brain volumes in key regions. Longitudinally, there is preliminary evidence that depression precedes cognitive changes.
Collapse
|
42
|
LoBue C, Munro C, Schaffert J, Didehbani N, Hart J, Batjer H, Cullum CM. Traumatic Brain Injury and Risk of Long-Term Brain Changes, Accumulation of Pathological Markers, and Developing Dementia: A Review. J Alzheimers Dis 2020; 70:629-654. [PMID: 31282414 DOI: 10.3233/jad-190028] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injuries (TBI) have received widespread media attention in recent years as being a risk factor for the development of dementia and chronic traumatic encephalopathy (CTE). This has sparked fears about the potential long-term effects of TBI of any severity on cognitive aging, leading to a public health concern. This article reviews the evidence surrounding TBI as a risk factor for the later development of changes in brain structure and function, and an increased risk of neurodegenerative disorders. A number of studies have shown evidence of long-term brain changes and accumulation of pathological biomarkers (e.g., amyloid and tau proteins) related to a history of moderate-to-severe TBI, and research has also demonstrated that individuals with moderate-to-severe injuries have an increased risk of dementia. While milder injuries have been found to be associated with an increased risk for dementia in some recent studies, reports on long-term brain changes have been mixed and often are complicated by factors related to injury exposure (i.e., number of injuries) and severity/complications, psychiatric conditions, and opioid use disorder. CTE, although often described as a neurodegenerative disorder, remains a neuropathological condition that is poorly understood. Future research is needed to clarify the significance of CTE pathology and determine whether that can explain any clinical symptoms. Overall, it is clear that most individuals who sustain a TBI (particularly milder injuries) do not experience worse outcomes with aging, as the incidence for dementia is found to be less than 7% across the literature.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Munro
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Schaffert
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nyaz Didehbani
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hunt Batjer
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
43
|
Brett BL, Savitz J, Nitta M, España L, Teague TK, Nelson LD, McCrea MA, Meier TB. Systemic inflammation moderates the association of prior concussion with hippocampal volume and episodic memory in high school and collegiate athletes. Brain Behav Immun 2020; 89:380-388. [PMID: 32717401 PMCID: PMC7572869 DOI: 10.1016/j.bbi.2020.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND There is a need to determine why prior concussion has been associated with adverse outcomes in some retired and active athletes. We examined whether serum inflammatory markers moderate the associations of prior concussion with hippocampal volumes and neurobehavioral functioning in active high school and collegiate athletes. METHODS Athletes (N = 201) completed pre-season clinical testing and serum collection (C-reactive protein [CRP]; Interleukin-6 [IL]-6; IL-1 receptor antagonist [RA]) and in-season neuroimaging. Linear mixed-effects models examined associations of prior concussion with inflammatory markers, self-reported symptoms, neurocognitive function, and hippocampal volumes. Models examined whether inflammatory markers moderated associations of concussion history and hippocampal volume and/or clinical measures. RESULTS Concussion history was significantly associated with higher symptom severity, p = 0.012, but not hippocampal volume or inflammatory markers (ps > 0.05). A significant interaction of prior concussion and CRP was observed for hippocampal volume, p = 0.006. Follow-up analyses showed that at high levels of CRP, athletes with two or more prior concussions had smaller hippocampal volume compared to athletes without prior concussion, p = 0.008. There was a significant interaction between prior concussion and levels of IL-1RA on memory scores, p = 0.044, i.e., at low levels of IL-1RA, athletes with two or more concussions had worse memory performance than those without prior concussion (p = 0.014). CONCLUSION Findings suggest that certain markers of systemic inflammation moderate the association between prior concussion and hippocampal volume and episodic memory performance. Current findings highlight potential markers for predicting at-risk individuals and identify therapeutic targets for mitigating the long-term adverse consequences of cumulative concussion.
Collapse
Affiliation(s)
- Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, United States; Oxley College of Health Sciences, Tulsa, OK, United States
| | - Morgan Nitta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Lezlie España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - T Kent Teague
- Departments of Surgery and Psychiatry, The University of Oklahoma, School of Community Medicine, United States; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, United States
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
44
|
Fields L, Didehbani N, Hart J, Cullum CM. No Linear Association Between Number of Concussions or Years Played and Cognitive Outcomes in Retired NFL Players. Arch Clin Neuropsychol 2020; 35:233-239. [PMID: 30844072 DOI: 10.1093/arclin/acz008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/17/2018] [Accepted: 02/05/2019] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE The aim of the current study is to examine whether concussion history and years played are linearly associated with cognitive outcomes in retired National Football League (NFL) players. METHOD Thirty-five retired NFL players over the age of 50 who had sustained at least one concussion completed a clinical interview and brief neuropsychological battery. Correlational analyses were conducted between exposure variables [number of total concussions, concussions with loss of consciousness (LOC), and years played] and cognitive performance as characterized by cognitive composite scores based on performance on neuropsychological measures (attention/processing speed, language, memory, and overall composite scores). RESULTS Correlational analyses corrected for multiple comparisons did not reveal any statistically significant correlations between exposure variables and cognitive outcomes. CONCLUSIONS We did not find a significant linear association between cognitive outcomes and either number of total concussions, concussions with LOC, or years played in the NFL. These findings do not support a dose-response relationship between sports-related exposure to head impacts and cognitive outcomes later in life. Rather, the findings suggest that cognitive difficulties experienced by some retired players later in life are not directly linearly associated with quantified exposure to head impacts sustained throughout a football career, but related to factors or combinations of factors that have yet to be elucidated.
Collapse
Affiliation(s)
- Lindy Fields
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nyaz Didehbani
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- University of Texas Southwestern Medical Center, Dallas, TX, USA.,University of Texas at Dallas, Dallas, TX, USA
| | - C Munro Cullum
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
45
|
Mild Cognitive Impairment in Retired Professional Football Players With a History of Mild Traumatic Brain Injury: A Pilot Investigation. Cogn Behav Neurol 2020; 33:208-217. [PMID: 32889953 DOI: 10.1097/wnn.0000000000000240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a known risk factor for neurodegenerative dementias such as Alzheimer disease (AD); however, the potential risk of mild cases of TBI, such as concussions, remains unclear. OBJECTIVE To explore whether a small sample of retired professional athletes with a diagnosis of mild cognitive impairment (MCI)-the prodromal stage of AD-and a history of multiple mild TBIs exhibit greater neuropsychological impairment than age-matched nonathletes with MCI and no history of TBI. METHOD Ten retired National Football League players diagnosed with MCI and reporting multiple mild TBIs, and 10 nonathletes, also diagnosed with MCI but with no history of TBI, completed a standard neurologic examination and neuropsychological testing. Independent samples t tests were conducted to examine differences in neuropsychological performance between the two groups. RESULTS The retired athletes with a history of mild TBI obtained generally similar scores to the nonathlete controls on measures of verbal learning and memory, verbal fluency, and processing speed. However, the retired athletes scored lower than the controls on tests of confrontation naming and speeded visual attention. CONCLUSION Retired athletes with MCI and a history of mild TBI demonstrated similar neuropsychological profiles as nonathlete controls despite lower scores on measures of confrontation naming and speeded visual attention. These findings suggest that a history of multiple mild TBIs does not significantly alter the overall neuropsychological profile of individuals with MCI; confirmation of this will require longitudinal research with larger sample sizes.
Collapse
|
46
|
Cognitive Ageing in Top-Level Female Soccer Players Compared to a Normative Sample from the General Population: A Cross-sectional Study. J Int Neuropsychol Soc 2020; 26:645-653. [PMID: 32098636 DOI: 10.1017/s1355617720000119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There is an ongoing debate on the potential negative effect of contact sport participation on long-term neurocognitive performance due to inherent exposure to concussive and subconcussive head impacts. The aim of the present study was to investigate whether cognitive ageing is exacerbated in elite soccer players compared to the general population. METHOD Neurocognitive performance in 6 domains was compared between 240 elite soccer players and a normative sample from the general population (n = 585) using the computerised test battery CNS Vital Signs. We used two-way factorial ANOVA to analyse the interaction between age groups (15-19, 20-29, 30-39, 40-49 years) and study population (female soccer players vs. norm sample) in their effects on neurocognitive performance. RESULTS We found no significant interaction effect of age group and study population in five of six test domains. For processing speed, the effect of age was more pronounced in female soccer players (F = 16.89, p = .002). Further, there was a clear main effect of study population on neurocognitive performance with generally better scores in soccer players. CONCLUSIONS Elite female soccer players generally performed better than the norm sample on tests of cognitive function, and further, cognitive ageing effects were similar in elite soccer players and controls in all but one domain. A lifespan approach may facilitate insightful future research regarding questions related to long-term neurocognitive health in contact sport athletes.
Collapse
|
47
|
Brett BL, Bobholz SA, España LY, Huber DL, Mayer AR, Harezlak J, Broglio SP, McAllister TW, McCrea MA, Meier TB. Cumulative Effects of Prior Concussion and Primary Sport Participation on Brain Morphometry in Collegiate Athletes: A Study From the NCAA-DoD CARE Consortium. Front Neurol 2020; 11:673. [PMID: 32849177 PMCID: PMC7399344 DOI: 10.3389/fneur.2020.00673] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Prior studies have reported long-term differences in brain structure (brain morphometry) as being associated with cumulative concussion and contact sport participation. There is emerging evidence to suggest that similar effects of prior concussion and contact sport participation on brain morphometry may be present in younger cohorts of active athletes. We investigated the relationship between prior concussion and primary sport participation with subcortical and cortical structures in active collegiate contact sport and non-contact sport athletes. Contact sport athletes (CS; N = 190) and matched non-contact sport athletes (NCS; N = 95) completed baseline clinical testing and participated in up to four serial neuroimaging sessions across a 6-months period. Subcortical and cortical structural metrics were derived using FreeSurfer. Linear mixed-effects (LME) models examined the effects of years of primary sport participation and prior concussion (0, 1+) on brain structure and baseline clinical variables. Athletes with prior concussion across both groups reported significantly more baseline concussion and psychological symptoms (all ps < 0.05). The relationship between years of primary sport participation and thalamic volume differed between CS and NCS (p = 0.015), driven by a significant inverse association between primary years of participation and thalamic volume in CS (p = 0.007). Additional analyses limited to CS alone showed that the relationship between years of primary sport participation and dorsal striatal volume was moderated by concussion history (p = 0.042). Finally, CS with prior concussion had larger hippocampal volumes than CS without prior concussion (p = 0.015). Years of contact sport exposure and prior concussion(s) are associated with differences in subcortical volumes in young-adult, active collegiate athletes, consistent with prior literature in retired, primarily symptomatic contact sport athletes. Longitudinal follow-up studies in these athletes are needed to determine clinical significance of current findings.
Collapse
Affiliation(s)
- Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Samuel A Bobholz
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daniel L Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States.,Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, United States
| | - Steven P Broglio
- School of Kinesiology and Michigan Concussion Center, University of Michigan, Ann Arbor, MI, United States
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Bloomington, IN, United States
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
48
|
Phelps A, Mez J, Stern RA, Alosco ML. Risk Factors for Chronic Traumatic Encephalopathy: A Proposed Framework. Semin Neurol 2020; 40:439-449. [PMID: 32674182 DOI: 10.1055/s-0040-1713633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that has been neuropathologically diagnosed in contact and collision sport athletes, military veterans, and others with a history of exposure to repetitive head impacts (RHI). Identifying methods to diagnose and prevent CTE during life is a high priority. Timely diagnosis and implementation of treatment and preventative strategies for neurodegenerative diseases, including CTE, partially hinge upon early and accurate risk characterization. Here, we propose a framework of risk factors that influence the neuropathological development of CTE. We provide an up-to-date review of the literature examining cumulative exposure to RHI as the environmental trigger for CTE. Because not all individuals exposed to RHI develop CTE, the direct and/or indirect influence of nonhead trauma exposure characteristics (e.g., age, sex, race, genetics) on the pathological development of CTE is reviewed. We conclude with recommendations for future directions, as well as opinions for preventative strategies that could mitigate risk.
Collapse
Affiliation(s)
- Alyssa Phelps
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Robert A Stern
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
49
|
Wright DK, Gardner AJ, Wojtowicz M, Iverson GL, O'Brien TJ, Shultz SR, Stanwell P. White Matter Abnormalities in Retired Professional Rugby League Players with a History of Concussion. J Neurotrauma 2020; 38:983-988. [PMID: 32245344 DOI: 10.1089/neu.2019.6886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The topic of potential long-term neurological consequences from having multiple concussions during a career in collision sports is controversial. We sought to investigate white matter microstructure using diffusion tensor imaging (DTI) in retired professional Australian National Rugby League (NRL) players (n = 11) with a history of multiple self-reported concussions compared with age- and education-matched controls (n = 13) who have had no history of brain trauma. Diffusion-weighted images were acquired with a Siemens 3T scanner. All participants completed a clinical interview. There were no significant differences between groups on measures of depression, anxiety, stress, or post-concussion symptoms; however, NRL players scored significantly higher on the alcohol use disorder identification test (AUDIT). Voxelwise analyses of DTI measures were performed using tract-based spatial statistics (TBSS) with age and AUDIT scores included as covariates. TBSS revealed significantly reduced fractional anisotropy (FA), and increased radial diffusivity (RD), axial diffusivity (AD), and trace (TR) in white matter regions of recently retired NRL players compared with controls. FA was significantly reduced in the right superior longitudinal fasciculus and right corticospinal tract while TR, RD, and AD were increased in these regions, as well as the corpus callosum, forceps major, right uncinate fasciculus, and left corticospinal tract. In summary, DTI in a small cohort of recently retired professional NRL players with a history of multiple concussions showed differences in white matter microstructure compared with age- and education-matched controls with no history of brain trauma.
Collapse
Affiliation(s)
- David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew J Gardner
- Hunter New England Local Health District Sports Concussion Program, New Lambton Heights, New South Wales, Australia
| | | | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, Massachusetts, USA.,MassGeneral Hospital for ChildrenTM Sport Concussion Program Foundation, and Massachusetts General Hospital Home Base Program, Boston, Massachusetts, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Stanwell
- School of Health Sciences, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
50
|
Guell X, Arnold Anteraper S, Gardner AJ, Whitfield-Gabrieli S, Kay-Lambkin F, Iverson GL, Gabrieli J, Stanwell P. Functional Connectivity Changes in Retired Rugby League Players: A Data-Driven Functional Magnetic Resonance Imaging Study. J Neurotrauma 2020; 37:1788-1796. [PMID: 32183583 DOI: 10.1089/neu.2019.6782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is considerable interest in the long-term brain health of retired contact and collision sport athletes; however, little is known about possible underlying changes in functional brain connectivity in this group. We evaluated whole-brain functional connectivity patterns using multi-voxel pattern analysis (MVPA) to determine whether alterations in functional connectivity distinguish retired professional athletes from a matched group of healthy community control subjects. Thirty-two retired athletes with a history of multiple self-reported sport-related concussions and 36 healthy community control subjects who were similar in age and education, completed functional magnetic resonance imaging. We identified brain regions with abnormal functional connectivity patterns using whole-brain MVPA as implemented in the Conn toolbox. First-level MVPA was performed using 64 principal component analysis (PCA) components. Second-level F test was performed using the first three MVPA components for retired athletes > controls group contrast. Post hoc seed-to-voxel analyses using the MVPA cluster results as seeds were performed to characterize functional connectivity abnormalities from brain regions identified by MVPA. MVPA revealed one cluster of abnormal functional connectivity located in cerebellar lobule V. This region of lobule V corresponded to the ventral attention network. Post hoc seed-to-voxel analysis using the cerebellar MVPA cluster as a seed revealed multiple areas of cerebral cortical hyper-connectivity and hypo-connectivity in retired athletes when compared with controls. This initial report suggests that cerebellar dysfunction might be present and clinically important in some retired athletes.
Collapse
Affiliation(s)
- Xavier Guell
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Andrew J Gardner
- Hunter New England Local Health District Sport Concussion Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia.,Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Frances Kay-Lambkin
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - John Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter Stanwell
- School of Health Science, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|