1
|
Zhong X, Tai W, Liu ML, Ma S, Shen T, Zou Y, Zhang CL. The Citron homology domain of MAP4Ks improves outcomes of traumatic brain injury. Neural Regen Res 2025; 20:3233-3244. [PMID: 39314140 PMCID: PMC11881717 DOI: 10.4103/nrr.nrr-d-24-00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00027/figure1/v/2024-12-20T164640Z/r/image-tiff The mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults. Whether targeting this pathway is beneficial to brain injury remains unclear. In this study, we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis, tauopathy, lesion size, and behavioral deficits. Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain. Mechanistically, the Citron homology domain acted as a dominant-negative mutant, impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway. These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Lisi I, Moro F, Mazzone E, Marklund N, Pischiutta F, Kobeissy F, Mao X, Corrigan F, Helmy A, Nasrallah F, Pietro VD, Ngwenya LB, Portela LV, Semple BD, Schneider ALC, Arrastia RD, Menon DK, Smith DH, Wellington C, Loane DJ, Wang KKW, Zanier ER. Exploiting blood-based biomarkers to align preclinical models with human traumatic brain injury. Brain 2025; 148:1062-1080. [PMID: 39514789 PMCID: PMC11967814 DOI: 10.1093/brain/awae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Rodent models are important research tools for studying the pathophysiology of traumatic brain injury (TBI) and developing new therapeutic interventions for this devastating neurological disorder. However, the failure rate for the translation of drugs from animal testing to human treatments for TBI is 100%. While there are several potential explanations for this, previous clinical trials have relied on extrapolation from preclinical studies for critical design considerations, including drug dose optimization, post-injury drug treatment initiation and duration. Incorporating clinically relevant biomarkers in preclinical studies may provide an opportunity to calibrate preclinical models to identical (or similar) measurements in humans, link to human TBI biomechanics and pathophysiology, and guide therapeutic decisions. To support this translational goal, we conducted a systematic literature review of preclinical TBI studies in rodents measuring blood levels of clinically used GFAP, UCH-L1, NfL, total-Tau (t-Tau) or phosphorylated-Tau (p-Tau) published in PubMed/EMBASE up to 10 April 2024. Although many factors influence clinical TBI outcomes, many of those cannot routinely be assessed in rodent studies (e.g. intracranial pressure monitoring). Thus we focused on blood biomarkers' temporal trajectories and discuss our findings in the context of the latest clinical TBI biomarker data. Of 805 original preclinical studies, 74 met the inclusion criteria, with a median quality score of 5 (25th-75th percentiles: 4-7) on the CAMARADES checklist. GFAP was measured in 43 studies, UCH-L1 in 21, NfL in 20, t-Tau in 19 and p-Tau in seven. Data from rodent models indicate that all biomarkers exhibited injury severity-dependent elevations with distinct temporal profiles. GFAP and UCH-L1 peaked within the first day after TBI (30- and 4-fold increases, respectively, in moderate-to-severe TBI versus sham), with the highest levels observed in the contusion TBI model. NfL peaked within days (18-fold increase) and remained elevated up to 6 months post-injury. GFAP and NfL show a pharmacodynamic response in 64.7% and 60%, respectively, of studies evaluating neuroprotective therapies in preclinical models. However, GFAP's rapid decline post-injury may limit its utility for understanding the response to new therapeutics beyond the hyperacute phase after experimental TBI. Furthermore, as in humans, subacute NfL levels inform on chronic white matter loss after TBI. t-Tau and p-Tau levels increased over weeks after TBI (up to 6- and 16-fold, respectively); however, their relationship with underlying neurodegeneration has yet to be addressed. Further investigation into biomarker levels in the subacute and chronic phases after TBI will be needed to fully understand the pathomechanisms underpinning blood biomarkers' trajectories and select the most suitable experimental model to optimally relate preclinical mechanistic studies to clinical observations in humans. This new approach could accelerate the translation of neuroprotective treatments from laboratory experiments to real-world clinical practices.
Collapse
Affiliation(s)
- Ilaria Lisi
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Edoardo Mazzone
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University and Skåne University Hospital, Lund 222 42, Sweden
| | - Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Frances Corrigan
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 670715, USA
| | - Luis V Portela
- Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul—UFRGS, Porto Alegre, RS 90040-060, Brasil
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Andrea L C Schneider
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6021, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramon Diaz Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Douglas H Smith
- Center for Brain Injury and Repair and the Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl Wellington
- Department of Pathology, Djavad Mowafaghain Centre for Brain Health, International Collaboration on Repair Discoveries, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David J Loane
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 152-160, Ireland
| | - Kevin K W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| |
Collapse
|
3
|
Goh Y, Jang Y, Shin SJ, Ahn SH, Mon SY, Shin YH, Chu K, Lee SK, Lee ST. CSF Tau Is a Biomarker of Hippocampal Injury in Cryptogenic New-Onset Refractory Status Epilepticus. Ann Clin Transl Neurol 2025. [PMID: 40164513 DOI: 10.1002/acn3.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVE Cryptogenic new-onset refractory status epilepticus (cNORSE) is a devastating condition characterized by the de novo onset of status epilepticus with unclear etiology. The identification of relevant early biomarkers in cNORSE is important to elucidate pathophysiology, aid clinical decision-making, and prognosticate outcomes in cNORSE. METHODS CSF samples were obtained within 7 days of NORSE onset from an adult cNORSE cohort in a national referral center in South Korea. Nineteen patients with cNORSE were studied: 9 were male (47.4%) and the median age was 35.0 [IQR: 27.0-54.3] years. CSF from 21 patients with other neurological diseases (atypical parkinsonism, postural orthostatic hypotension syndrome, epilepsy, and cerebellar ataxia) was used as controls. Proteomic analysis was conducted using the Olink platform, and potential biomarker candidates were correlated with clinical data and MRI findings. RESULTS Based on correlation analyses between proteomic data and clinical outcomes, total tau (t-tau) was selected as a potential biomarker. Patients with cNORSE had higher CSF t-tau levels than controls (p < 0.001). Early detection of high CSF t-tau was associated with the presence of hippocampal atrophy in the postacute phase of cNORSE (p = 0.044). The initial elevation of t-tau levels also correlated with a higher number of anti-seizure medications used (p = 0.031) and less improvement in Clinical Assessment Scale in Autoimmune Encephalitis (CASE) scores 1 month after NORSE onset (p = 0.066). T-tau levels were correlated with CSF pro-inflammatory cytokines/chemokines and mediators of neuronal damage. INTERPRETATION Elevated CSF t-tau levels detected early after cNORSE onset may be a useful marker of initial brain injury and predict subsequent hippocampal atrophy.
Collapse
Affiliation(s)
- Yihui Goh
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Division of Neurology, Department of Medicine, National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yoonhyuk Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- The National Strategic Technology Research Institute, Seoul, South Korea
| | - Soo Jean Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Soo Hyun Ahn
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Su Yee Mon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Hee Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Payne E, Gonzalez-Ortiz F, Kramer K, Payne T, Marathe S, Mahajan N, Liu A, Barry J, Duckworth A, Brookes M, de Vries B, Moran B, Manning H, Gordon A, Blennow K, Zetterberg H, Zalcberg D, Sanders RD. Umbilical cord blood pTau217 and BD-tau are associated with markers of neonatal hypoxia: a prospective cohort study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.20.24319360. [PMID: 40196268 PMCID: PMC11974770 DOI: 10.1101/2024.12.20.24319360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Objective Current methods for early detection of hypoxic-ischemic encephalopathy (HIE) are limited by lack of specificity, cost, and time constraints. Blood tau protein concentrations reflect neuropathology in adults. This study examines tau as a potential HIE biomarker in neonates by relating cord blood levels to short-term fetomaternal outcomes. We aimed to examine 1) association of BD-tau with non-reassuring fetal status; 2) correlations between cord blood tau and other hypoxia biomarkers; 3) associations between tau levels and risk factors for fetomaternal morbidity; 4) associations between tau levels and short-term fetomaternal outcome. Methods 107 maternal participants were prospectively recruited at Royal Prince Alfred Hospital-a large Australian tertiary referral centre. Simoa analysis detected umbilical cord blood pTau217 and brain-derived (BD)-tau levels. Results Of 509 deliveries, cord blood was analysed in 107/110 recruited maternal participants. BD-tau correlated with non-reassuring fetal status (OR=3.0;95%CI=1.6- 5.7;p=0.001), though not when adjusting for mode of delivery and gestational age. BD-tau was higher in vaginal deliveries, and positively associated with pTau217, NfL, and lactate (p<0.001), and negatively associated with pH and base excess. pTau217 was higher in preterm neonates and was associated with neurofilament light chain (Spearman's rho=0.44,p<0.001). BD-tau and pTau217 were associated with maternal hypertension and placental abnormalities. Conclusions Cord blood BD-tau correlates with surrogate markers of fetal hypoxia, whilst pTau217 may represent a marker of neurodevelopment. Further studies could explore whether these findings translate to clinical use of tau as an HIE biomarker. Funding US National Institutes of Health (grant:R01AG063849-01).
Collapse
Affiliation(s)
- Emma Payne
- St George Hospital, South Eastern Sydney Local Health District, New South Wales, Australia
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaitlin Kramer
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Thomas Payne
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Shreeya Marathe
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Neha Mahajan
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Ashly Liu
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Jessica Barry
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Andrew Duckworth
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Mitchell Brookes
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Bradley de Vries
- Sydney Institute for Women, Children and their Babies, Sydney Local Health District, New South Wales, Australia
- NHMRC Clinical Trials Centre, The University of Sydney, New South Wales, Australia
| | - Benjamin Moran
- Critical Care Program, The George Institute of Global Health, Sydney, Australia
- Department of Intensive Care, Gosford Hospital, Gosford, Australia
| | - Helen Manning
- Dept of Obstetrics and Gynaecology, Central coast local health district, NSW
| | - Adrienne Gordon
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Sydney Institute for Women, Children and their Babies, Sydney Local Health District, New South Wales, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - David Zalcberg
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| | - Robert D. Sanders
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, New South Wales, Australia
| |
Collapse
|
5
|
Li LM, Kodosaki E, Heslegrave A, Zetterberg H, Graham N, Zimmerman K, Soreq E, Parker T, Garbero E, Moro F, Magnoni S, Bertolini G, Loane DJ, Sharp DJ. High-dimensional proteomic analysis for pathophysiological classification of traumatic brain injury. Brain 2025; 148:1015-1030. [PMID: 39323289 PMCID: PMC11884744 DOI: 10.1093/brain/awae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Pathophysiology and outcomes after traumatic brain injury (TBI) are complex and heterogeneous. Current classifications are uninformative about pathophysiology. Proteomic approaches with fluid-based biomarkers are ideal for exploring complex disease mechanisms, because they enable sensitive assessment of an expansive range of processes potentially relevant to TBI pathophysiology. We used novel high-dimensional, multiplex proteomic assays to assess altered plasma protein expression in acute TBI. We analysed samples from 88 participants from the BIO-AX-TBI cohort [n = 38 moderate-severe TBI (Mayo Criteria), n = 22 non-TBI trauma and n = 28 non-injured controls] on two platforms: Alamar NULISA™ CNS Diseases and OLINK® Target 96 Inflammation. Patient participants were enrolled after hospital admission, and samples were taken at a single time point ≤10 days post-injury. Participants also had neurofilament light, GFAP, total tau, UCH-L1 (all Simoa®) and S100B (Millipore) data. The Alamar panel assesses 120 proteins, most of which were previously unexplored in TBI, plus proteins with known TBI specificity, such as GFAP. A subset (n = 29 TBI and n = 24 non-injured controls) also had subacute (10 days to 6 weeks post-injury) 3 T MRI measures of lesion volume and white matter injury (fractional anisotropy). Differential expression analysis identified 16 proteins with TBI-specific significantly different plasma expression. These were neuronal markers (calbindin 2, UCH-L1 and visinin-like protein 1), astroglial markers (S100B and GFAP), neurodegenerative disease proteins (total tau, pTau231, PSEN1, amyloid-beta-42 and 14-3-3γ), inflammatory cytokines (IL16, CCL2 and ficolin 2) and cell signalling- (SFRP1), cell metabolism- (MDH1) and autophagy-related (sequestome 1) proteins. Acute plasma levels of UCH-L1, PSEN1, total tau and pTau231 were correlated with subacute lesion volume. Sequestome 1 was positively correlated with white matter fractional anisotropy, whereas CCL2 was inversely correlated. Neuronal, astroglial, tau and neurodegenerative proteins were correlated with each other, IL16, MDH1 and sequestome 1. Exploratory clustering (k means) by acute protein expression identified three TBI subgroups that differed in injury patterns, but not in age or outcome. One TBI cluster had significantly lower white matter fractional anisotropy than control-predominant clusters but had significantly lower lesion subacute lesion volumes than another TBI cluster. Proteins that overlapped on two platforms had excellent (r > 0.8) correlations between values. We identified TBI-specific changes in acute plasma levels of proteins involved in neurodegenerative disease, inflammatory and cellular processes. These changes were related to patterns of injury, thus demonstrating that processes previously studied only in animal models are also relevant in human TBI pathophysiology. Our study highlights how proteomic approaches might improve classification and understanding of TBI pathophysiology, with implications for prognostication and treatment development.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 45, Sweden
| | - Neil Graham
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Eyal Soreq
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Thomas Parker
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Elena Garbero
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - Sandra Magnoni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Guido Bertolini
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - David J Loane
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology (STAR) Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| |
Collapse
|
6
|
Lockhart SN, Sutphen CL, Tanley J, Gonzalez-Ortiz F, Kac PR, Habes M, Heckbert SR, Ashton NJ, Mielke MM, Koeppe R, Rudolph MD, Whitlow CT, Hiatt KD, Craft S, Register TC, Hayden KM, Rapp SR, Sachs BC, Zetterberg H, Blennow K, Karikari TK, Hughes TM. Plasma and neuroimaging biomarkers of small vessel disease and Alzheimer's disease in a diverse cohort: MESA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.11.25322109. [PMID: 39990571 PMCID: PMC11844615 DOI: 10.1101/2025.02.11.25322109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Little is known about how Alzheimer's disease (AD) plasma biomarkers relate to cerebral small vessel disease (cSVD) neuroimaging biomarkers. METHODS The study involved 251 Wake Forest Multi-Ethnic Study of Atherosclerosis (MESA) Exam 6 participants with plasma AD biomarkers, MRI, amyloid PET, and adjudicated cognitive status. Multivariable models examined cross-sectional relationships between plasma and neuroimaging biomarkers, considering comorbidities. RESULTS Lower Aβ42/Aβ40, and higher GFAP, NfL, and p-tau217 were associated with greater neurodegeneration. Lower plasma Aβ42/Aβ40 and higher p-tau217 and p-tau231 were associated with greater Aβ PET deposition. NfL was positively associated with WMH and WM Free Water. P-tau measures were positively associated with WM Free Water. Lower Aβ42/Aβ40 was associated with presence of microbleeds. GFAP was positively associated with WMH. DISCUSSION We observed expected associations of plasma biomarkers with cognitive status and imaging biomarkers. GFAP, NfL, p-tau181, p-tau217, and p-tau231 are associated with cSVD in addition to AD-related pathology.
Collapse
Affiliation(s)
- Samuel N Lockhart
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Perceptive Inc., Burlington, MA, USA
| | | | - Jordan Tanley
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Mohamad Habes
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Nicholas J Ashton
- University of Gothenburg, Mölndal, Sweden
- King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
- Stavanger University Hospital, Stavanger, Norway
| | | | | | - Marc D Rudolph
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Kevin D Hiatt
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Stephen R Rapp
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bonnie C Sachs
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Henrik Zetterberg
- University of Gothenburg, Mölndal, Sweden
- Sahlgrenska University Hospital, Mölndal, Sweden
- University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- University of Gothenburg, Mölndal, Sweden
- Sahlgrenska University Hospital, Mölndal, Sweden
- Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Thomas K Karikari
- University of Gothenburg, Mölndal, Sweden
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy M Hughes
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Mayer AR, Wick TV, McQuaid JR, Boucher ML, Dodd AB, Robertson-Benta CR, van der Horn HJ, Erhardt EB, Sapien RE, Tarawneh R, Mannix R. Blood-based biomarkers suggest prolonged axonal Injury following pediatric mild traumatic brain injury. Sci Rep 2025; 15:4189. [PMID: 39905097 PMCID: PMC11794578 DOI: 10.1038/s41598-024-84053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Pediatric mild traumatic brain injury (pmTBI) affects millions of youth annually but underlying pathophysiology and time for physiological recovery remains unknown. Non-fasting plasma samples were obtained in 59 pmTBI (28 females; age 14.9 ± 2.7) at approximately 7 days and 4 months post-injury and in 41 matched healthy controls (HC: 20 females; age 14.3 ± 2.8). Samples were analyzed for GFAP, NFL, Tau, pTau181 and UCH-L1 protein concentrations in conjunction with a clinical battery. Significant effects of diagnosis (pmTBI > HC) existed at ~ 7 days (p < 0.001; Cohen's d = 0.72) and ~ 4 months (p = 0.015; Cohen's d = 0.41) post-injury for NFL. NFL was also elevated in pmTBI with significant alterations to mental status (e.g., post-traumatic amnesia) relative to patients without (p = 0.014; Cohen's d = 0.77). UCH-L1, GFAP and pTau181 did not differ between groups, but demonstrated negative associations with days post-injury (small to medium effect sizes) suggestive of a more rapid release/clearance. Post-concussive symptoms had the best diagnostic classification accuracy at ~ 7 days, but NFL ranked higher at 4 months post-injury. Preliminary findings highlight dynamic fluctuations in blood-based biomarkers in the first week of pmTBI, with ongoing evidence of protein release (NFL) at 4 months. NFL demonstrated additional promise for delineating injury severity within the spectrum of pmTBI.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA.
- Departments of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
- Division of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Neurology, University of New Mexico, Albuquerque, NM, 87131, USA.
- The Mind Research Network, Pete & Nancy Domenici Hall , Albuquerque, 1101 Yale Blvd. NE, NM, 87106, USA.
| | - Tracey V Wick
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Jessica R McQuaid
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Cidney R Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Harm J van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik B Erhardt
- Department of Math and Statistics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert E Sapien
- Departments of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
- Departments of Emergency Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rawan Tarawneh
- Department of Neurology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Mastandrea P, Mengozzi S, Bernardini S. Systematic review and meta-analysis of observational studies evaluating glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL1) as blood biomarkers of mild acute traumatic brain injury (mTBI) or sport-related concussion (SRC) in adult subjects. Diagnosis (Berl) 2025; 12:1-16. [PMID: 39167371 DOI: 10.1515/dx-2024-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/14/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Neurotrauma is the leading cause of death in individuals <45 years old. Many of the published articles on UCHL1 and GFAP lack rigorous methods and reporting. CONTENT Due to the high heterogeneity between studies, we evaluated blood GFAP and UCHL1 levels in the same subjects. We determined the biomarker congruence among areas under the ROC curves (AUCs), sensitivities, specificities, and laboratory values in ng/L to avoid spurious results. The definitive meta-analysis included 1,880 subjects in eight studies. The items with the highest risk of bias were as follows: cut-off not prespecified and case-control design not avoided. The AUC of GFAP was greater than the AUC of UCHL1, with a lower prediction interval (PI) limit of 50.1 % for GFAP and 37.3 % for UCHL1, and a significantly greater percentage of GFAP Sp. The PI of laboratory results for GFAP and UCHL1 were 0.517-7,518 ng/L (diseased), 1.2-255 ng/L (nondiseased), and 3-4,180 vs. 3.2-1,297 ng/L, respectively. SUMMARY Only the GFAP positive cut-off (255 ng/L) appears to be reliable. The negative COs appear unreliable. OUTLOOK GFAP needs better standardization. However, the AUCs of the phospho-Tau and phospho-Tau/Tau proteins resulted not significantly lower than AUC of GFAP, but this result needs further verifications.
Collapse
Affiliation(s)
- Paolo Mastandrea
- Department of Clinical Pathology, 90384 Azienda Ospedaliera di Rilievo Nazionale e di Alta Specialità San Giuseppe Moscati , Salerno, Italy
| | - Silvia Mengozzi
- U.O. Patologia Clinica, AUSL della Romagna, Laboratorio Unico, Cesena, Forli'-Cesena, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, "Tor Vergata" University Hospital, Rome, Rome, Italy
| |
Collapse
|
9
|
Stellpflug SJ, Dalrymple KA, Stone D, Southgate S, Bachman DS, LeFevere RC, Hasan J, Zwank MD. Impact of repeated sportive chokes on carotid intima media thickness and brain injury biomarkers in grappling athletes. PHYSICIAN SPORTSMED 2025; 53:18-26. [PMID: 38857060 DOI: 10.1080/00913847.2024.2366154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Vascular neck compression techniques, referred to as 'chokes' in combat sports, reduce cerebral perfusion, causing loss of consciousness or voluntary submission by the choked athlete. Despite these chokes happening millions of times yearly around the world, there is scant research on their long-term effects. This pilot study evaluated whether repeated choking in submission grappling impacts the carotid intima media thickness (CIMT) and brain injury biomarkers (NFL, hGFAP, t-Tau, and UCH-L1). METHODS Participants (n = 39, 29 male; ages 27-60 years) were assigned to one of two study arms: Grapplers (n = 20, 15 male) and 19 age/sex/body size matched controls. Grapplers had been exposed to >500 choke events while training for >5 years in a choke-inclusive sport. Exclusion criteria were recent TBI or deficits from a past TBI or stroke. Bilateral ultrasound measurement of the CIMT was performed, and blood was collected for quantitative analysis of four brain injury markers. Subgroup analyses were performed within the Grappler group to account for blunt head trauma as a possible confounder. RESULTS There was no overall difference in CIMT measurements between Grapplers (mean 0.55 mm, SD 0.07) and Controls (mean 0.57 mm, SD 0.10) p = 0.498 [95% CI -0.04-0.08], nor were there CIMT differences between Grappler subgroups of blunt Trauma and No-Trauma. There were no significant differences in any biomarkers comparing Grapplers and Controls or comparing Grappler subgroups of Trauma and No-Trauma. CONCLUSION This study found no significant difference in CIMT and serum brain injury biomarkers between controls and grapplers with extensive transient choke experience, nor between grapplers with extensive past blunt head trauma and those without.
Collapse
Affiliation(s)
| | | | - Daniel Stone
- Department of Emergency Medicine, Regions Hospital, Saint Paul, MN, USA
| | - Samuel Southgate
- Department of Emergency Medicine, Regions Hospital, Saint Paul, MN, USA
| | - David S Bachman
- Critical Care Research Center, HealthPartners, Saint Paul, MN, USA
| | - Robert C LeFevere
- Department of Emergency Medicine, Regions Hospital, Saint Paul, MN, USA
| | - Jaan Hasan
- Department of Emergency Medicine, Wyckoff Heights Medical Center, Brooklyn, NY, USA
| | - Michael D Zwank
- Department of Emergency Medicine, Regions Hospital, Saint Paul, MN, USA
| |
Collapse
|
10
|
Koivikko P, Katila AJ, Takala RSK, Hossain I, Luoto TM, Raj R, Koivisto M, Tenovuo O, Blennow K, Hutchinson P, Maanpää HR, Mohammadian M, Newcombe VF, Sanchez JC, Tallus J, van Gils M, Zetterberg H, Posti JP. Blood biomarkers to identify patients with different intracranial lesion combinations after traumatic brain injury. BRAIN & SPINE 2025; 5:104195. [PMID: 40007799 PMCID: PMC11850735 DOI: 10.1016/j.bas.2025.104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Introduction There is a lack of studies examining the most promising blood biomarkers for traumatic brain injury (TBI) in relation to gross pathology types. Research question To examine whether the admission levels of blood biomarkers can discriminate patients with different combinations of traumatic intracranial findings from patients with negative computed tomography (CT) scans. Material and methods One hundred thirty patients with all severities of TBI were studied. Seventy-five had CT-positive and 55 CT-negative findings. CT-positive patients were divided into three clusters (CL) using the Helsinki CT score: focal lesions (CL1), mixed lesions (CL2) and mixed lesions + intraventricular haemorrhage (CL3). CT scans were obtained upon admission and blood samples taken within 24 h from admission. S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP), heart fatty-acid binding protein (H-FABP), neurofilament light (NF-L), interleukin-10 (IL-10), total-tau (t-tau), and β-amyloids 1-40 (Aβ40) and 1-42 (Aβ42) were analysed from plasma samples. CT-negative cluster was used as control. Results GFAP, Aβ40 and Aβ42 levels differed between the clusters, but not significantly. NF-L and t-tau discriminated CL1 from CT-negative cluster with AUCs of 0.737 and 0.771, respectively. NF-L, t-tau and GFAP discriminated CL2 from CT-negative cluster with AUCs of 0.839, 0.781 and 0.840, respectively. All biomarkers analysed were able to discriminate CL3 and CT-negative cluster. Discussion and conclusion All studied biomarkers distinguished the most severely injured cluster, CL3, from CT-negative cluster. The results may reflect the severity of TBI but also show that biomarkers have a variable ability to identify patients with combinations of intracranial traumatic lesions in the examined time window.
Collapse
Affiliation(s)
- Pia Koivikko
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Rakennus 11 A 5, FI20520, Turku, Finland
- Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Kiinamyllynkatu 4-8, Rakennus 11 A 5, FI20520, Turku, Finland
| | - Ari J. Katila
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Rakennus 11 A 5, FI20520, Turku, Finland
- Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Kiinamyllynkatu 4-8, Rakennus 11 A 5, FI20520, Turku, Finland
| | - Riikka SK. Takala
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Rakennus 11 A 5, FI20520, Turku, Finland
- Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Kiinamyllynkatu 4-8, Rakennus 11 A 5, FI20520, Turku, Finland
| | - Iftakher Hossain
- Turku Brain Injury Center, Turku University Hospital, Hämeentie 11, FI20521, Turku, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Hämeentie 11, FI20521, Turku, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Hills Road, CB2 0QQ, Cambridge, United Kingdom
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, PL 2000, FI33521, Tampere, Finland
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, PL 320, FI00029, HUS, Helsinki, Finland
| | - Mari Koivisto
- Department of Biostatistics, University of Turku and Turku University Hospital, Medisiina A, FI20014, Turku, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Turku University Hospital, Hämeentie 11, FI20521, Turku, Finland
- Neurocenter, University of Turku, Hämeentie 11, FI20521, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 47 Boulevard de l’Hôpital, CS 21 414-75646, Paris Cedex 13, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, 230026, China
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Hills Road, CB2 0QQ, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Hämeentie 11, FI20521, Turku, Finland
- Neurocenter, University of Turku, Hämeentie 11, FI20521, Turku, Finland
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital, Hämeentie 11, FI20521, Turku, Finland
- Neurocenter, University of Turku, Hämeentie 11, FI20521, Turku, Finland
| | - Virginia F. Newcombe
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, CB2 0QQ, Cambridge, United Kingdom
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, 1 Michel Servet, 1211, Geneva, Switzerland
| | - Jussi Tallus
- Neurocenter, University of Turku, Hämeentie 11, FI20521, Turku, Finland
- Department of Radiology, Turku University Hospital, Hämeentie 11, FI20521, Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Kalevantie 4, FI33100, Tampere, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1E 6BT, United Kingdom
- UK Dementia Research Institute at UCL, London, WC1E 6BT, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Units 1501-1502, 1512-1518, 15/F Building 17W, 17 Science Park W Ave, Science Park, Hong Kong, 0000, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, MC 2420, Madison, WI, 53792-2420, USA
| | - Jussi P. Posti
- Turku Brain Injury Center, Turku University Hospital, Hämeentie 11, FI20521, Turku, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Hämeentie 11, FI20521, Turku, Finland
| |
Collapse
|
11
|
Radabaugh HL, Harris NG, Wanner IB, Burns MP, McCabe JT, Korotcov AV, Dardzinski BJ, Zhou J, Koehler RC, Wan J, Allende Labastida J, Moghadas B, Bibic A, Febo M, Kobeissy FH, Zhu J, Rubenstein R, Hou J, Bose PK, Apiliogullari S, Beattie MS, Bresnahan JC, Rosi S, Huie JR, Ferguson AR, Wang KKW. Translational Outcomes Project in Neurotrauma (TOP-NT) Pre-Clinical Consortium Study: A Synopsis. J Neurotrauma 2025. [PMID: 39841551 DOI: 10.1089/neu.2023.0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Traumatic brain injury (TBI) has long been a leading cause of death and disability, yet research has failed to successfully translate findings from the pre-clinical, animal setting into the clinic. One factor that contributes significantly to this struggle is the heterogeneity observed in the clinical setting where patients present with injuries of varying types, severities, and comorbidities. Modeling this highly varied population in the laboratory remains challenging. Given feasibility constraints, individual laboratories often focus on single injury types and are limited to an abridged set of outcome measures. Furthermore, laboratories tend to use different injury or outcome methodologies from one another, making it difficult to compare studies and identify which pre-clinical findings may be best suited for clinical translation. The NINDS-funded Translational Outcomes Project in Neurotrauma (TOP-NT) is a multi-site consortium designed to address the reproducibility, rigor, and transparency of pre-clinical development and validation of clinically relevant biomarkers for TBI. The current overview article provides a detailed description of the infrastructure and strategic approach undertaken by the consortium. We outline the TOP-NT strategy to address three goals: (1) selection and cross-center validation of biomarker tools, (2) development and population of a data infrastructure to allow for the sharing and reuse of pre-clinical, animal research following findable, accessible, interoperable, and reusable data guidelines, and (3) demonstration of feasibility, reproducibility, and transparency in conducting a multi-center, pre-clinical research trial for TBI biomarker development. The synthesized scientific analysis and results of the TOP-NT efforts will be the topic of future articles.
Collapse
Affiliation(s)
| | - Neil G Harris
- University of California Los Angeles, Los Angeles, California, USA
| | - Ina B Wanner
- University of California Los Angeles, Los Angeles, California, USA
| | | | - Joseph T McCabe
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | - Jinyuan Zhou
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jieru Wan
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Adnan Bibic
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Marcelo Febo
- University of Florida, Gainesville, Florida, USA
| | | | - Jiepei Zhu
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | | | - Jiamei Hou
- University of Florida and Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Prodip K Bose
- University of Florida and Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | | | - Michael S Beattie
- University of California San Francisco, San Francisco, California, USA
| | | | - Susanna Rosi
- University of California San Francisco, San Francisco, California, USA
- Altos Labs, Redwood City, California, USA
| | - J Russell Huie
- University of California San Francisco, San Francisco, California, USA
| | - Adam R Ferguson
- University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
12
|
Dahlén SC, Bjørneboe J, Sandmo SK, Bache-Mathisen L, Filipcik P, Howe EI, Høgestøl EA, Selbæk G, Straume-Næsheim T, Westlye LT, Bahr R, Andersen TE. Brain health in Norwegian female former top-level football players: a protocol for a longitudinal cohort study. BMJ Open 2025; 15:e092456. [PMID: 39800397 PMCID: PMC11751818 DOI: 10.1136/bmjopen-2024-092456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Repetitive head impacts (RHI) in sports may represent a risk factor for long-term cognitive and neurological sequelae. Recent studies have identified an association between playing football at the top level and an elevated risk of cognitive impairment and neurodegenerative disease. However, these were conducted on men, and there is a knowledge gap regarding these risks in female athletes. This study aims to investigate the effect of head impacts on brain health in female former top-level football players. METHODS AND ANALYSIS This is a prospective cohort study, enroling female former football players and top-level athletes from sports without an inherent risk of RHI. All participants are born in 1980 or earlier. We plan to perform follow-up assessments at least three times over 20 years.The protocol includes neurocognitive assessments, self-reported neurocognitive outcomes, neurological examination, advanced brain MRI, and fluid biomarkers. ETHICS AND DISSEMINATION The study has been approved by the South-East Regional Ethics Committee for Medical Research in Norway (2023/178330) and the Norwegian Agency for Shared Services in Education and Research (SIKT). A Data Protection Impact Assessment was developed by the research group and approved by SIKT and the Norwegian School of Sport Sciences. We will disseminate the results through peer-reviewed publications, academic conference presentations and webinars. We will communicate with the public and key stakeholders in football worldwide to inform and promote the development and implementation of potential preventive measures based on our study findings.
Collapse
Affiliation(s)
- Sara Christina Dahlén
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
| | - John Bjørneboe
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Stian Kirkerud Sandmo
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Oslo, Norway
| | - Lena Bache-Mathisen
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Emilie Isager Howe
- Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Einar August Høgestøl
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Oslo University Hospital, Oslo, Norway
| | - Geir Selbæk
- Centre for Ageing and Health, Vestfold Hospital Trust, Tonsberg, Vestfold, Norway
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Truls Straume-Næsheim
- Oslo Sports Trauma Research Centre, Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
- Department of Orthopaedic surgery, Akershus University Hospital, Lorenskog, Norway
| | - Lars T Westlye
- Department of Psychology, Oslo University Hospital, Oslo, Norway
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Roald Bahr
- Department of Sports Medicine, Norwegian School of Sports Medicine, Oslo Sports Trauma Research Centre, Oslo, Norway
| | - Thor Einar Andersen
- Oslo Sports Trauma Research Centre, Department of Sport Sciences, Norwegian School of Sports Sciences, Oslo, Oslo, Norway
| |
Collapse
|
13
|
Mavroudis I, Petridis F, Ciobica A, Kamal FZ, Padurariu M, Kazis D. Advancements in diagnosing Post-concussion Syndrome: insights into epidemiology, pathophysiology, neuropathology, neuroimaging, and salivary biomarkers. Acta Neurol Belg 2025:10.1007/s13760-024-02695-7. [PMID: 39776059 DOI: 10.1007/s13760-024-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Post-Concussion Syndrome (PCS) represents a complex constellation of symptoms that persist following a concussion or mild traumatic brain injury (mTBI), with significant implications for patient care and outcomes. Despite its prevalence, diagnosing PCS presents considerable challenges due to the subjective nature of symptoms, the absence of specific diagnostic tests, and the overlap with other neurological and psychiatric conditions. This review explores the multifaceted diagnostic challenges associated with PCS, including the heterogeneity of symptom presentation, the limitations of current neuroimaging techniques, and the overlap of PCS symptoms with other disorders. We also discuss the potential of emerging biomarkers and advanced imaging modalities to enhance diagnostic accuracy and provide a more objective basis for PCS identification. Additionally, the review highlights the importance of a multidisciplinary approach in the diagnosis and management of PCS, integrating clinical evaluation with innovative diagnostic tools to improve patient outcomes. Through a comprehensive analysis of current practices and future directions, this review aims to shed light on the complexities of PCS diagnosis and pave the way for improved strategies in the identification and treatment of this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds University, Leeds, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 20A, Iasi, 700505, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, Iasi, 700506, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, Bucharest, 050094, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat, 26000, Morocco.
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco.
| | - Manuela Padurariu
- Socola Institute of Psychiatry, Șoseaua Bucium 36, Iași, 700282, Romania
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Zhang H, Wang J, Qu Y, Yang Y, Guo ZN. Brain injury biomarkers and applications in neurological diseases. Chin Med J (Engl) 2025; 138:5-14. [PMID: 38915214 PMCID: PMC11717530 DOI: 10.1097/cm9.0000000000003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 06/26/2024] Open
Abstract
ABSTRACT Neurological diseases are a major health concern, and brain injury is a typical pathological process in various neurological disorders. Different biomarkers in the blood or the cerebrospinal fluid are associated with specific physiological and pathological processes. They are vital in identifying, diagnosing, and treating brain injuries. In this review, we described biomarkers for neuronal cell body injury (neuron-specific enolase, ubiquitin C-terminal hydrolase-L1, αII-spectrin), axonal injury (neurofilament proteins, tau), astrocyte injury (S100β, glial fibrillary acidic protein), demyelination (myelin basic protein), autoantibodies, and other emerging biomarkers (extracellular vesicles, microRNAs). We aimed to summarize the applications of these biomarkers and their related interests and limits in the diagnosis and prognosis for neurological diseases, including traumatic brain injury, status epilepticus, stroke, Alzheimer's disease, and infection. In addition, a reasonable outlook for brain injury biomarkers as ideal detection tools for neurological diseases is presented.
Collapse
Affiliation(s)
- Han Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jing Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
15
|
Olesen MA, Villavicencio-Tejo F, Cuevas-Espinoza V, Quintanilla RA. Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives. Ageing Res Rev 2025; 103:102594. [PMID: 39577774 DOI: 10.1016/j.arr.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Víctor Cuevas-Espinoza
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
16
|
Amabebe E, Huang Z, Jash S, Krishnan B, Cheng S, Nakashima A, Li Y, Li Z, Wang R, Menon R, Zhou XZ, Lu KP, Sharma S. Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia. Biomedicines 2024; 13:29. [PMID: 39857613 PMCID: PMC11763151 DOI: 10.3390/biomedicines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Zheping Huang
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Sukanta Jash
- Department of Molecular Biology, Cell Biology and Biochemistry, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Shibin Cheng
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Zhixong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Surendra Sharma
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| |
Collapse
|
17
|
Spitz G, Hicks AJ, McDonald SJ, Dore V, Krishnadas N, O’Brien TJ, O’Brien WT, Vivash L, Law M, Ponsford JL, Rowe C, Shultz SR. Plasma biomarkers in chronic single moderate-severe traumatic brain injury. Brain 2024; 147:3690-3701. [PMID: 39315931 PMCID: PMC11531850 DOI: 10.1093/brain/awae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Blood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases. Here, we examine plasma biomarkers in the chronic period following TBI and their association with amyloid and tau PET, white matter microarchitecture, brain age and cognition. We recruited participants ≥40 years of age who had suffered a single moderate-severe TBI ≥10 years previously between January 2018 and March 2021. We measured plasma biomarkers using single molecule array technology [ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light (NfL), tau, glial fibrillary acidic protein (GFAP) and phosphorylated tau (P-tau181)]; PET tracers to measure amyloid-β (18F-NAV4694) and tau neurofibrillary tangles (18F-MK6240); MRI to assess white matter microstructure and brain age; and the Rey Auditory Verbal Learning Test to measure verbal-episodic memory. A total of 90 post-TBI participants (73% male; mean = 58.2 years) were recruited on average 22 years (range = 10-33 years) post-injury, and 32 non-TBI control participants (66% male; mean = 57.9 years) were recruited. Plasma UCH-L1 levels were 67% higher {exp(b) = 1.67, P = 0.018, adjusted P = 0.044, 95% confidence interval (CI) [10% to 155%], area under the curve = 0.616} and P-tau181 were 27% higher {exp(b) = 1.24, P = 0.011, adjusted P = 0.044, 95% CI [5% to 46%], area under the curve = 0.632} in TBI participants compared with controls. Amyloid and tau PET were not elevated in TBI participants. Higher concentrations of plasma P-tau181, UCH-L1, GFAP and NfL were significantly associated with worse white matter microstructure but not brain age in TBI participants. For TBI participants, poorer verbal-episodic memory was associated with higher concentration of P-tau181 {short delay: b = -2.17, SE = 1.06, P = 0.043, 95% CI [-4.28, -0.07]; long delay: bP-tau = -2.56, SE = 1.08, P = 0.020, 95% CI [-4.71, -0.41]}, tau {immediate memory: bTau = -6.22, SE = 2.47, P = 0.014, 95% CI [-11.14, -1.30]} and UCH-L1 {immediate memory: bUCH-L1 = -2.14, SE = 1.07, P = 0.048, 95% CI [-4.26, -0.01]}, but was not associated with functional outcome. Elevated plasma markers related to neuronal damage and accumulation of phosphorylated tau suggest the presence of ongoing neuropathology in the chronic phase following a single moderate-severe TBI. Plasma biomarkers were associated with measures of microstructural brain disruption on MRI and disordered cognition, further highlighting their utility as potential objective tools to monitor evolving neuropathology post-TBI.
Collapse
Affiliation(s)
- Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Stuart J McDonald
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
| | - Vincent Dore
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha Krishnadas
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Terence J O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William T O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meng Law
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Christopher Rowe
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- The Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
18
|
Friberg S, Lindblad C, Zeiler FA, Zetterberg H, Granberg T, Svenningsson P, Piehl F, Thelin EP. Fluid biomarkers of chronic traumatic brain injury. Nat Rev Neurol 2024; 20:671-684. [PMID: 39363129 DOI: 10.1038/s41582-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a clinical syndrome possibly associated with the neurodegenerative disease chronic traumatic encephalopathy, which is commonly associated with sports concussion, have been defined only recently. However, these criteria do not fit all individuals living with chronic consequences of TBI. The pathophysiology of chronic TBI shares many similarities with other neurodegenerative and neuroinflammatory conditions, such as Alzheimer disease. As with Alzheimer disease, advancements in fluid biomarkers represent one of the most promising paths for unravelling the chain of pathophysiological events to enable discrimination between these conditions and, with time, provide prediction modelling and therapeutic end points. This Review summarizes fluid biomarker findings in the chronic phase of TBI (≥6 months after injury) that demonstrate the involvement of inflammation, glial biology and neurodegeneration in the long-term complications of TBI. We explore how the biomarkers associate with outcome and imaging findings and aim to establish mechanistic differences in biomarker patterns between types of chronic TBI and other neurodegenerative conditions. Finally, current limitations and areas of priority for future fluid biomarker research are highlighted.
Collapse
Affiliation(s)
- Susanna Friberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
19
|
Pollaci G, Potenza A, Gorla G, Carrozzini T, Marinoni G, De Toma C, Canavero I, Rifino N, Boncoraglio GB, Difrancesco JC, Damavandi PT, Stanziano M, Erbetta A, Caroppo P, Di Fede G, Catania M, Zulueta A, Parati EA, Bersano A, Gatti L, Storti B. CSF and Plasma Biomarkers in Patients With Iatrogenic Cerebral Amyloid Angiopathy. Neurology 2024; 103:e209828. [PMID: 39284112 PMCID: PMC11399065 DOI: 10.1212/wnl.0000000000209828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVES Recently, a subset of patients affected by cerebral amyloid angiopathy (CAA) distinguished by atypical juvenile onset and a hypothesized iatrogenic origin (iatrogenic CAA, iCAA) has emerged. β-Amyloid (Aβ) accumulation evidenced by amyloid PET positivity or CSF Aβ decrease was included in the iCAA diagnostic criteria. Conversely, diagnostic criteria for sporadic CAA (sCAA) do not involve biomarker analysis. The aim of this study was to assess CSF and plasma levels of Aβ and tau in iCAA and sCAA cohorts. METHODS Patients affected by probable or possible CAA according to established criteria (Boston 2.0) were prospectively recruited at Fondazione IRCCS Carlo Besta and San Gerardo dei Tintori from May 2021 to January 2024. Patients with probable and possible iCAA or sCAA with available plasma and/or CSF samples were included. Clinical and neurologic data were collected, and levels of Aβ40, Aβ42, total tau, and phospho-tau (p-tau) were assessed in CSF and plasma by SiMoA and Lumipulse. RESULTS 21 patients with iCAA (72% male, mean age at symptom onset 50 years [36-74]) and 32 patients with sCAA (44% male, mean age at symptom onset 68 years [52-80]) were identified. Cognitive impairment and cardiovascular risk factors in the sCAA cohort were more common compared with the iCAA cohort. Patients with sCAA and iCAA showed similar CSF levels for Aβ40 (p = 0.5 [sCAA, 95% CI 2,604-4,228; iCAA, 95% CI 1,958-3,736]), Aβ42 (p = 0.7 [sCAA, 95% CI 88-157; iCAA, 95% CI 83-155]), and total tau (p = 0.08 [sCAA, 95% CI 80-134; iCAA, 95% CI 37-99]). Plasma levels of Aβ40 (p = 0.08, 95% CI 181-222), Aβ42 (p = 0.3, 95% CI 6-8), and total tau (p = 0.4, 95% CI 3-6) were not statistically different in patients with sCAA compared with iCAA ones (Aβ40, 95% CI 153-193; Aβ42, 95% CI 6-7 and total tau, 95% CI 2-4). DISCUSSION Despite presenting with a younger age at onset, fewer cardiovascular risk factors, and lower cognitive impairment, patients with iCAA demonstrated Aβ and tau levels comparable with elderly patients with sCAA, supporting a common molecular paradigm between the 2 CAA forms.
Collapse
Affiliation(s)
- Giuliana Pollaci
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Antonella Potenza
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Gemma Gorla
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Tatiana Carrozzini
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Giulia Marinoni
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Carolina De Toma
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Isabella Canavero
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Nicola Rifino
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Giorgio B Boncoraglio
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Jacopo C Difrancesco
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Payam Tabaee Damavandi
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Mario Stanziano
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Alessandra Erbetta
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Paola Caroppo
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Giuseppe Di Fede
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Marcella Catania
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Aida Zulueta
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Eugenio Agostino Parati
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Anna Bersano
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Laura Gatti
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| | - Benedetta Storti
- From the Cerebrovascular Unit (G.P., A.P., G.G., T.C., G.M., C.T., I.C., N.R., G.B.B., A.B., L.G., B.S.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Department of Pharmacological and Biomolecular Sciences (G.P., A.P.), University of Milan; Department of Neurology (J.C.D., P.T.D.), Fondazione IRCCS San Gerardo dei Tintori, Monza; Neuroradiology Unit (M.S., A.E.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; ALS Centre (M.S.), "Rita Levi Montalcini" Department of Neuroscience, University of Turin; Neuropathology Unit (P.C., G.D.F., M.C.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; and Istituti Clinici Scientifici Maugeri IRCCS (A.Z., E.A.P.), Neurorehabilitation Unit of Milan Institute, Italy
| |
Collapse
|
20
|
Rindler RS, Robertson H, De Yampert L, Khatri V, Texakalidis P, Eshraghi S, Grey S, Schobel S, Elster EA, Boulis N, Grossberg JA. Predicting Vasospasm and Early Mortality in Severe Traumatic Brain Injury: A Model Using Serum Cytokines, Neuronal Proteins, and Clinical Data. Neurosurgery 2024:00006123-990000000-01390. [PMID: 39471078 DOI: 10.1227/neu.0000000000003224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prediction of patient outcomes after severe traumatic brain injury (sTBI) is limited with current clinical tools. This study aimed to improve such prognostication by combining clinical data and serum inflammatory and neuronal proteins in patients with sTBI to develop predictive models for post-traumatic vasospasm (PTV) and mortality. METHODS Fifty-three adult civilian patients were prospectively enrolled in the sTBI arm of the Surgical Critical Care Initiative (SC2i). Clinical, serum inflammatory, and neuronal protein data were combined using the parsimonious machine learning methods of least absolute shrinkage and selection operator (LASSO) and classification and regression trees (CART) to construct parsimonious models for predicting development of PTV and mortality. RESULTS Thirty-six (67.9%) patients developed vasospasm and 10 (18.9%) died. The mean age was 39.2 years; 22.6% were women. CART identified lower IL9, lower presentation pulse rate, and higher eotaxin as predictors of vasospasm development (full data area under curve (AUC) = 0.89, mean cross-validated AUC = 0.47). LASSO identified higher Rotterdam computed tomography score and lower age as risk factors for vasospasm development (full data AUC 0.94, sensitivity 0.86, and specificity 0.94; cross-validation AUC 0.87, sensitivity 0.79, and specificity 0.93). CART identified high levels of eotaxin as most predictive of mortality (AUC 0.74, cross-validation AUC 0.57). LASSO identified higher serum IL6, lower IL12, and higher glucose as predictive of mortality (full data AUC 0.9, sensitivity 1.0, and specificity 0.72; cross-validation AUC 0.8, sensitivity 0.85, and specificity 0.79). CONCLUSION Inflammatory cytokine levels after sTBI may have predictive value that exceeds conventional clinical variables for certain outcomes. IL-9, pulse rate, and eotaxin as well as Rotterdam score and age predict development of PTV. Eotaxin, IL-6, IL-12, and glucose were predictive of mortality. These results warrant validation in a prospective cohort.
Collapse
Affiliation(s)
- Rima S Rindler
- Sierra Neurosurgery Group, Reno, Nevada, USA
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Henry Robertson
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, North Bethesda, Maryland, USA
| | | | - Vivek Khatri
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, North Bethesda, Maryland, USA
| | - Pavlos Texakalidis
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
- Department of Neurosurgery, Northwestern University, Chicago, Illinois, USA
| | - Sheila Eshraghi
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Scott Grey
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, North Bethesda, Maryland, USA
| | - Seth Schobel
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Eric A Elster
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
21
|
Bosse M, Bélik F, van Pesch V, Bayart JL. Phosphorylated tau 181 (p-tau 181) as an innovative, fast and robust biomarker for cerebrospinal fluid leaks. J Neurol 2024; 271:6724-6728. [PMID: 39162804 DOI: 10.1007/s00415-024-12624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) leaks can lead to serious complications if left untreated, making rapid and accurate diagnosis essential. Biomarkers such as β2-transferrin (B2TRF) and β-trace protein are used to detect CSF leaks, but their limitations warrant the exploration of alternative markers. This study investigates the potential of phosphorylated tau at threonine 181 (p-tau181) as a biomarker for CSF leaks. METHODS Samples from 56 subjects were analyzed for B2TRF and p-tau181 using immunoaffinity blotting and chemiluminescent enzyme immunoassay, respectively. Data analysis included Mann-Whitney test to assess the overall difference in median p-tau181 concentrations between B2TRF positive and negative patients and a receiver operating characteristic (ROC) curve analysis to determine optimal p-tau181 cutoff values for predicting B2TRF positivity. RESULTS p-tau181 levels were significantly higher in B2TRF positive samples compared to negative samples (p < 0.001). ROC analysis showed high diagnostic performance for p-tau181, with an optimal cutoff of 13.22 pg/mL providing 92.0% sensitivity and 93.1% specificity. Excluding hemolyzed samples improved further the diagnostic performances, maintaining high sensitivity (90.9%) and achieving perfect specificity (100.0%). CONCLUSIONS This study highlights the potential of p-tau181 as a valuable biomarker for the detection of CSF leaks due to its high diagnostic accuracy and practical advantages over the current biomarkers. The characteristics of p-tau181 assay being both quantitative and rapid, with high diagnostic accuracy, suggest that it could be a valuable tool for the detection of CSF leaks. Further research are now needed to validate these findings.
Collapse
Affiliation(s)
- Maxime Bosse
- Department of Laboratory Medicine, Clinique Saint-Pierre, 1340, Ottignies, Belgium
| | - Florian Bélik
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Vincent van Pesch
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Louis Bayart
- Department of Laboratory Medicine, Clinique Saint-Pierre, 1340, Ottignies, Belgium.
- Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
22
|
Schöll M, Verberk IMW, Del Campo M, Delaby C, Therriault J, Chong JR, Palmqvist S, Alcolea D. Challenges in the practical implementation of blood biomarkers for Alzheimer's disease. THE LANCET. HEALTHY LONGEVITY 2024; 5:100630. [PMID: 39369727 DOI: 10.1016/j.lanhl.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 10/08/2024] Open
Abstract
Blood biomarkers have emerged as accessible, cost-effective, and highly promising tools for advancing the diagnostics of Alzheimer's disease. However, transitioning from cerebrospinal fluid biomarkers to blood biomarkers-eg, to verify amyloid β pathology-requires careful consideration. This Series paper highlights the main challenges in the implementation of blood biomarkers for Alzheimer's disease in different possible contexts of use. Despite the robustness of measuring blood biomarker concentrations, the widespread adoption of blood biomarkers requires rigorous standardisation efforts to address inherent challenges in diverse contexts of use. The challenges include understanding the effect of pre-analytical and analytical conditions, potential confounding factors, and comorbidities that could influence outcomes of blood biomarkers and their use in diverse populations. Additionally, distinct scenarios present their own specific challenges. In memory clinics, the successful integration of blood biomarkers in diagnostic tests will require well-established diagnostic accuracy and comprehensive assessments of the effect of blood biomarkers on the diagnostic confidence and patient management of clinicians. In primary care settings, and even more when implemented in population-based screening programmes for which no experience with any biomarkers for Alzheimer's disease currently exists, the implementation of blood biomarkers will be challenged by the need for education of primary care clinical staff and clear guidelines. However, despite the challenges, blood biomarkers hold great promise for substantially enhancing the diagnostic accuracy and effectively streamlining referral processes, leading to earlier diagnosis and access to treatments. The ongoing efforts that are shaping the integration of blood biomarkers across diverse clinical settings pave the way towards precision medicine in Alzheimer's disease.
Collapse
Affiliation(s)
- Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK; Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marta Del Campo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Constance Delaby
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health Systems, Singapore
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Clinical Sciences in Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
23
|
Behzadi F, Luy DD, Schaible PA, Zywiciel JF, Puccio AM, Germanwala AV. A systematic review and meta-analysis of major blood protein biomarkers that predict unfavorable outcomes in severe traumatic brain injury. Clin Neurol Neurosurg 2024; 242:108312. [PMID: 38733758 DOI: 10.1016/j.clineuro.2024.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION Severe traumatic brain injury (TBI) presentation and late clinical outcomes are usually evaluated by the Glasgow Outcome Scale-Extended (GOS-E), which lacks strong prognostic predictability. Several blood biomarkers have been linked to TBI, such as Tau, GFAP, UCH-L1, S-100B, and NSE. Clinical values of TBI biomarkers have yet to be evaluated in a focused multi-study meta-analysis. We reviewed relevant articles evaluating potential relationships between TBI biomarkers and both early and 6-month outcomes. METHODS All PubMed article publications from January 2000 to November 2023 with the search criteria "Protein Biomarker" AND "Traumatic Brain Injury" were included. Amongst all comparative studies, the sensitivity means and range values of biomarkers in predicting CT Rotterdam scores, ICU admission in the early period, or predicting GOS-E < 4 at the 6-month period were calculated from confusion matrices. Sensitivity values were modeled for each biomarker across studies and compared statistically for heterogeneity and differences. RESULTS From the 65 articles that met the criteria, 13 were included in this study. Six articles involved early-period TBI outcomes and seven involved 6-month outcomes. In the early period TBI outcomes, GFAP had a superior sensitivity to UCH-L1 and S-100B, and similar sensitivity to the CT Rotterdam score. In the 6-month period TBI outcomes, total Tau and NSE both had significant interstudy heterogeneity, making them inferior to GFAP, phosphorylated Tau, UCH-L1, and S-100B, all four of which had similar sensitivities at 75 %. This sensitivity range at 6-month outcomes was still relatively inferior to the CT Rotterdam score. Total Tau did not show any prognostic advantage at six months with GOS-E < 4, and phosphorylated Tau was similar in its sensitivity to other biomarkers such as GFAP and UCH-L1 and still inferior to the CT Rotterdam score. CONCLUSION This data suggests that TBI protein biomarkers do not possess better prognostic value with regards to outcomes.
Collapse
Affiliation(s)
- Faraz Behzadi
- Loyola University Medical Center, Department of Neurological Surgery, USA
| | - Diego D Luy
- Loyola University Medical Center, Department of Neurological Surgery, USA
| | - Peter A Schaible
- Midwestern University Chicago, College of Osteopathic Medicine, USA
| | | | - Ava M Puccio
- University of Pittsburgh Medical Center, Department of Neurological Surgery, USA
| | - Anand V Germanwala
- Loyola University Medical Center, Department of Neurological Surgery, USA; Loyola University Chicago, Stritch School of Medicine, USA.
| |
Collapse
|
24
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
25
|
Singh AK, Asif S, Pandey DK, Chaudhary A, Kapoor V, Verma PK. Biomarkers in Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e63020. [PMID: 39050316 PMCID: PMC11268976 DOI: 10.7759/cureus.63020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Traumatic brain injury (TBI) stands as a significant contributor to traumatic death and disability worldwide. In recent years, researchers have identified biomarkers to gauge useful outcomes in TBI patients. However, the enigma of timely sample collection to measure the biomarkers remains a controversial point in the case of TBI, unlike other degenerative diseases like Alzheimer's disease and Parkinson's disease, where we can collect the sample at any point in time. The purpose of this study is to evaluate the sensitivity of biomarkers in TBI concerning time of injury by analyzing recent available data on biomarkers in the medical literature. A total of 2,256 studies were initially retrieved from the search engine. After an initial screening, only 1,750 unique articles remained. After excluding review articles, animal studies, meta-analysis, and studies with children (screened by title and abstract), 30 kinds of literature were found relevant to search the required variables. Further 16 studies were excluded due to the nonavailability of complete variables or data. Finally, 14 studies remained and were included in the analysis. This study has analyzed the four most commonly described biomarkers for TBI in the literature: glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B, ubiquitin carboxy-terminal hydrolase L1, and Tau. According to this statistical analysis, all biomarkers included in the study have shown their serum levels after trauma. So, all these biomarkers can be used for further study in the outcome prediction and diagnosis of TBI patients. The meta-analysis suggests that the best biomarker for TBI is Tau in cases where sample collection is done within 24 hours, while GFAP is the best biomarker to be studied for TBI if sample collection is done 24 hours after trauma.
Collapse
Affiliation(s)
- Adarsh Kumar Singh
- Department of Biotechnology, Centre of BioMedical Research (CBMR) Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Shafaque Asif
- Department of Molecular Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Deepika Kumari Pandey
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Akash Chaudhary
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Vishwas Kapoor
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Pawan Kumar Verma
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| |
Collapse
|
26
|
Clarke GJB, Follestad T, Skandsen T, Zetterberg H, Vik A, Blennow K, Olsen A, Håberg AK. Chronic immunosuppression across 12 months and high ability of acute and subacute CNS-injury biomarker concentrations to identify individuals with complicated mTBI on acute CT and MRI. J Neuroinflammation 2024; 21:109. [PMID: 38678300 PMCID: PMC11056044 DOI: 10.1186/s12974-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1β and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.
Collapse
Affiliation(s)
- Gerard Janez Brett Clarke
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, N-7491, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Sha Tin, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Vik
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexander Olsen
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
- Department of Neuromedicine and Movement Sciences, NTNU, Trondheim, Norway.
| |
Collapse
|
27
|
Lai JD, Berlind JE, Fricklas G, Lie C, Urenda JP, Lam K, Sta Maria N, Jacobs R, Yu V, Zhao Z, Ichida JK. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell 2024; 31:519-536.e8. [PMID: 38579683 DOI: 10.1016/j.stem.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.
Collapse
Affiliation(s)
- Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA.
| | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Gabriella Fricklas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Cecilia Lie
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kelsey Lam
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naomi Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Russell Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Violeta Yu
- Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Qiu C, Li Z, Leigh DA, Duan B, Stucky JE, Kim N, Xie G, Lu KP, Zhou XZ. The role of the Pin1- cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front Cell Dev Biol 2024; 12:1343962. [PMID: 38628595 PMCID: PMC11019028 DOI: 10.3389/fcell.2024.1343962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zhixiong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - David A. Leigh
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph E. Stucky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nami Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, and Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
29
|
Clarke GJB, Skandsen T, Zetterberg H, Follestad T, Einarsen CE, Vik A, Mollnes TE, Pischke SE, Blennow K, Håberg AK. Longitudinal Associations Between Persistent Post-Concussion Symptoms and Blood Biomarkers of Inflammation and CNS-Injury After Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:862-878. [PMID: 38117157 DOI: 10.1089/neu.2023.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The aim of our study was to investigate the biological underpinnings of persistent post-concussion symptoms (PPCS) at 3 months following mild traumatic brain injury (mTBI). Patients (n = 192, age 16-60 years) with mTBI, defined as Glasgow Coma Scale (GCS) score between 13 and 15, loss of consciousness (LOC) <30 min, and post-traumatic amnesia (PTA) <24 h were included. Blood samples were collected at admission (within 72 h), 2 weeks, and 3 months. Concentrations of blood biomarkers associated with central nervous system (CNS) damage (glial fibrillary acidic protein [GFAP], neurofilament light [NFL], and tau) and inflammation (interferon gamma [IFNγ], interleukin [IL]-8, eotaxin, macrophage inflammatory protein-1-beta [MIP]-1β, monocyte chemoattractant protein [MCP]-1, interferon-gamma-inducible protein [IP]-10, IL-17A, IL-9, tumor necrosis factor [TNF], basic fibroblast growth factor [FGF]-basic platelet-derived growth factor [PDGF], and IL-1 receptor antagonist [IL-1ra]) were obtained. Demographic and injury-related factors investigated were age, sex, GCS score, LOC, PTA duration, traumatic intracranial finding on magnetic resonance imaging (MRI; within 72 h), and extracranial injuries. Delta values, that is, time-point differences in biomarker concentrations between 2 weeks minus admission and 3 months minus admission, were also calculated. PPCS was assessed with the British Columbia Post-Concussion Symptom Inventory (BC-PSI). In single variable analyses, longer PTA duration and a higher proportion of intracranial findings on MRI were found in the PPCS group, but no single biomarker differentiated those with PPCS from those without. In multi-variable models, female sex, longer PTA duration, MRI findings, and lower GCS scores were associated with increased risk of PPCS. Inflammation markers, but not GFAP, NFL, or tau, were associated with PPCS. At admission, higher concentrations of IL-8 and IL-9 and lower concentrations of TNF, IL-17a, and MCP-1 were associated with greater likelihood of PPCS; at 2 weeks, higher IL-8 and lower IFNγ were associated with PPCS; at 3 months, higher PDGF was associated with PPCS. Higher delta values of PDGF, IL-17A, and FGF-basic at 2 weeks compared with admission, MCP-1 at 3 months compared with admission, and TNF at 2 weeks and 3 months compared with admission were associated with greater likelihood of PPCS. Higher IL-9 delta values at both time-point comparisons were negatively associated with PPCS. Discriminability of individual CNS-injury and inflammation biomarkers for PPCS was around chance level, whereas the optimal combination of biomarkers yielded areas under the curve (AUCs) between 0.62 and 0.73. We demonstrate a role of biological factors on PPCS, including both positive and negative effects of inflammation biomarkers that differed based on sampling time-point after mTBI. PPCS was associated more with acute inflammatory processes, rather than ongoing inflammation or CNS-injury biomarkers. However, the modest discriminative ability of the models suggests other factors are more important in the development of PPCS.
Collapse
Affiliation(s)
- Gerard Janez Brett Clarke
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Sciences, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinical Research Unit Central Norway, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cathrine Elisabeth Einarsen
- Department of Neuromedicine and Movement Sciences, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Sciences, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Department of Anesthesiology and Intensive Care Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Søren Erik Pischke
- Department of Immunology, Department of Anesthesiology and Intensive Care Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
- Clinic for Emergencies and Critical Care, Department of Anesthesiology and Intensive Care Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Asta Kristine Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, Department of Clinical and Molecular Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
30
|
Graham N, Zimmerman K, Heslegrave AJ, Keshavan A, Moro F, Abed-Maillard S, Bernini A, Dunet V, Garbero E, Nattino G, Chieregato A, Fainardi E, Baciu C, Gradisek P, Magnoni S, Oddo M, Bertolini G, Schott JM, Zetterberg H, Sharp D. Alzheimer's disease marker phospho-tau181 is not elevated in the first year after moderate-to-severe TBI. J Neurol Neurosurg Psychiatry 2024; 95:356-359. [PMID: 37833041 PMCID: PMC10958285 DOI: 10.1136/jnnp-2023-331854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is associated with the tauopathies Alzheimer's disease and chronic traumatic encephalopathy. Advanced immunoassays show significant elevations in plasma total tau (t-tau) early post-TBI, but concentrations subsequently normalise rapidly. Tau phosphorylated at serine-181 (p-tau181) is a well-validated Alzheimer's disease marker that could potentially seed progressive neurodegeneration. We tested whether post-traumatic p-tau181 concentrations are elevated and relate to progressive brain atrophy. METHODS Plasma p-tau181 and other post-traumatic biomarkers, including total-tau (t-tau), neurofilament light (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP), were assessed after moderate-to-severe TBI in the BIO-AX-TBI cohort (first sample mean 2.7 days, second sample within 10 days, then 6 weeks, 6 months and 12 months, n=42). Brain atrophy rates were assessed in aligned serial MRI (n=40). Concentrations were compared patients with and without Alzheimer's disease, with healthy controls. RESULTS Plasma p-tau181 concentrations were significantly raised in patients with Alzheimer's disease but not after TBI, where concentrations were non-elevated, and remained stable over one year. P-tau181 after TBI was not predictive of brain atrophy rates in either grey or white matter. In contrast, substantial trauma-associated elevations in t-tau, NfL, GFAP and UCH-L1 were seen, with concentrations of NfL and t-tau predictive of brain atrophy rates. CONCLUSIONS Plasma p-tau181 is not significantly elevated during the first year after moderate-to-severe TBI and levels do not relate to neuroimaging measures of neurodegeneration.
Collapse
Affiliation(s)
- Neil Graham
- Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| | - Karl Zimmerman
- Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| | | | - Ashvini Keshavan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Federico Moro
- Laboratory of Acute Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Dipartimento di Anestesia e Rianimazione, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Samia Abed-Maillard
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adriano Bernini
- Department of Clinical Neurosciences, CHUV Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Medical Radiology, CHUV Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elena Garbero
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Giovanni Nattino
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Arturo Chieregato
- Terapia Intensiva ad indirizzo Neurologico & Neurochirurgico, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Enrico Fainardi
- Department of Experimental and Clinical Sciences, Careggi University Hospital and University of Firenze, Florence, Italy
| | - Camelia Baciu
- Terapia Intensiva ad indirizzo Neurologico & Neurochirurgico, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Primoz Gradisek
- Clinical Department of Anaesthesiology and Intensive Therapy, University Medical Center, Ljubljana, Slovenia
| | - Sandra Magnoni
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy
| | - Mauro Oddo
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Directorate for Innovation and Clinical Research, CHUV Lausanne University Hospital, Lausanne, Switzerland
| | - Guido Bertolini
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Jonathan M Schott
- UK Dementia Research Institute, University College London, London, UK
- Dementia Research Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - David Sharp
- Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK
| |
Collapse
|
31
|
Formisano R, D’Ippolito M, Giustini M, Catani S, Mondello S, Piccolino I, Iannuzzi F, Wang KK, Hayes RL. The Prognostic Role of Candidate Serum Biomarkers in the Post-Acute and Chronic Phases of Disorder of Consciousness: A Preliminary Study. Brain Sci 2024; 14:239. [PMID: 38539627 PMCID: PMC10968965 DOI: 10.3390/brainsci14030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
INTRODUCTION Serum biomarkers, such as Neurofilament Light (NF-L), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase (UCH-L1), and Total-tau (T-Tau) have been proposed for outcome prediction in the acute phase of severe traumatic brain injury, but they have been less investigated in patients with prolonged DoC (p-DoC). METHODS We enrolled 25 p-DoC patients according to the Coma Recovery Scale-Revised (CRS-R). We identified different time points: injury onset (t0), first blood sampling at admission in Neurorehabilitation (t1), and second blood sampling at discharge (t2). Patients were split into improved (improved level of consciousness from t1 to t2) and not-improved (unchanged or worsened level of consciousness from t1 to t2). RESULTS All biomarker levels decreased over time, even though each biomarker reveals typical features. Serum GFAP showed a weak correlation between t1 and t2 (p = 0.001), while no correlation was observed for serum NF-L (p = 0.955), UCH-L1 (p = 0.693), and T-Tau (p = 0.535) between t1 and t2. Improved patients showed a significant decrease in the level of NF-L (p = 0.0001), UCH-L1 (p = 0.001), and T-Tau (p = 0.002), but not for serum GFAP (p = 0.283). No significant statistical differences were observed in the not-improved group. CONCLUSIONS A significant correlation was found between the level of consciousness improvement and decreased NF-L, UCH-L1, and T-Tau levels. Future studies on the association of serum biomarkers with neurophysiological and neuroimaging prognostic indicators are recommended.
Collapse
Affiliation(s)
- Rita Formisano
- Neurorehabilitation 2, Post-Coma Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | | | - Marco Giustini
- Environmental and Social Epidemiology Unit, National Institute of Health, 00161 Rome, Italy;
| | - Sheila Catani
- Multiple Sclerosis Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy;
| | - Iliana Piccolino
- Experimental Neuro-Psychobiology Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (I.P.); (F.I.)
| | - Filomena Iannuzzi
- Experimental Neuro-Psychobiology Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (I.P.); (F.I.)
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GE 30310, USA;
- Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA 30033, USA
| | | |
Collapse
|
32
|
Wu YC, Bogale TA, Koistinaho J, Pizzi M, Rolova T, Bellucci A. The contribution of β-amyloid, Tau and α-synuclein to blood-brain barrier damage in neurodegenerative disorders. Acta Neuropathol 2024; 147:39. [PMID: 38347288 PMCID: PMC10861401 DOI: 10.1007/s00401-024-02696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
Central nervous system (CNS) accumulation of fibrillary deposits made of Amyloid β (Aβ), hyperphosphorylated Tau or α-synuclein (α-syn), present either alone or in the form of mixed pathology, characterizes the most common neurodegenerative diseases (NDDs) as well as the aging brain. Compelling evidence supports that acute neurological disorders, such as traumatic brain injury (TBI) and stroke, are also accompanied by increased deposition of toxic Aβ, Tau and α-syn species. While the contribution of these pathological proteins to neurodegeneration has been experimentally ascertained, the cellular and molecular mechanisms driving Aβ, Tau and α-syn-related brain damage remain to be fully clarified. In the last few years, studies have shown that Aβ, Tau and α-syn may contribute to neurodegeneration also by inducing and/or promoting blood-brain barrier (BBB) disruption. These pathological proteins can affect BBB integrity either directly by affecting key BBB components such as pericytes and endothelial cells (ECs) or indirectly, by promoting brain macrophages activation and dysfunction. Here, we summarize and critically discuss key findings showing how Aβ, Tau and α-syn can contribute to BBB damage in most common NDDs, TBI and stroke. We also highlight the need for a deeper characterization of the role of these pathological proteins in the activation and dysfunction of brain macrophages, pericytes and ECs to improve diagnosis and treatment of acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tizibt Ashine Bogale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy
- Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy.
| |
Collapse
|
33
|
Pulliam A, Gier EC, Gaul DA, Moore SG, Fernández FM, LaPlaca MC. Comparing Brain and Blood Lipidome Changes following Single and Repetitive Mild Traumatic Brain Injury in Rats. ACS Chem Neurosci 2024; 15:300-314. [PMID: 38179922 PMCID: PMC10797623 DOI: 10.1021/acschemneuro.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Traumatic brain injury (TBI) is a major health concern in the United States and globally, contributing to disability and long-term neurological problems. Lipid dysregulation after TBI is underexplored, and a better understanding of lipid turnover and degradation could point to novel biomarker candidates and therapeutic targets. Here, we investigated overlapping lipidome changes in the brain and blood using a data-driven discovery approach to understand lipid alterations in the brain and serum compartments acutely following mild TBI (mTBI) and the potential efflux of brain lipids to peripheral blood. The cortices and sera from male and female Sprague-Dawley rats were analyzed via ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) in both positive and negative ion modes following single and repetitive closed head impacts. The overlapping lipids in the data sets were identified with an in-house data dictionary for investigating lipid class changes. MS-based lipid profiling revealed overall increased changes in the serum compartment, while the brain lipids primarily showed decreased changes. Interestingly, there were prominent alterations in the sphingolipid class in the brain and blood compartments after single and repetitive injury, which may suggest efflux of brain sphingolipids into the blood after TBI. Genetic algorithms were used for predictive panel selection to classify injured and control samples with high sensitivity and specificity. These overlapping lipid panels primarily mapped to the glycerophospholipid metabolism pathway with Benjamini-Hochberg adjusted q-values less than 0.05. Collectively, these results detail overlapping lipidome changes following mTBI in the brain and blood compartments, increasing our understanding of TBI-related lipid dysregulation while identifying novel biomarker candidates.
Collapse
Affiliation(s)
- Alexis
N. Pulliam
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric C. Gier
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A. Gaul
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G. Moore
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michelle C. LaPlaca
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
34
|
Martin SP, Leeman-Markowski BA. Proposed mechanisms of tau: relationships to traumatic brain injury, Alzheimer's disease, and epilepsy. Front Neurol 2024; 14:1287545. [PMID: 38249745 PMCID: PMC10797726 DOI: 10.3389/fneur.2023.1287545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI), Alzheimer's disease (AD), and epilepsy share proposed mechanisms of injury, including neuronal excitotoxicity, cascade signaling, and activation of protein biomarkers such as tau. Although tau is typically present intracellularly, in tauopathies, phosphorylated (p-) and hyper-phosphorylated (hp-) tau are released extracellularly, the latter leading to decreased neuronal stability and neurofibrillary tangles (NFTs). Tau cleavage at particular sites increases susceptibility to hyper-phosphorylation, NFT formation, and eventual cell death. The relationship between tau and inflammation, however, is unknown. In this review, we present evidence for an imbalanced endoplasmic reticulum (ER) stress response and inflammatory signaling pathways resulting in atypical p-tau, hp-tau and NFT formation. Further, we propose tau as a biomarker for neuronal injury severity in TBI, AD, and epilepsy. We present a hypothesis of tau phosphorylation as an initial acute neuroprotective response to seizures/TBI. However, if the underlying seizure pathology or TBI recurrence is not effectively treated, and the pathway becomes chronically activated, we propose a "tipping point" hypothesis that identifies a transition of tau phosphorylation from neuroprotective to injurious. We outline the role of amyloid beta (Aβ) as a "last ditch effort" to revert the cell to programmed death signaling, that, when fails, transitions the mechanism from injurious to neurodegenerative. Lastly, we discuss targets along these pathways for therapeutic intervention in AD, TBI, and epilepsy.
Collapse
Affiliation(s)
- Samantha P. Martin
- Comprehensive Epilepsy Center, New York University Langone Health, New York, NY, United States
- Department of Neurology, New York University Langone Health, New York, NY, United States
- New York University Grossman School of Medicine, New York, NY, United States
- VA New York Harbor Healthcare System, New York, NY, United States
| | - Beth A. Leeman-Markowski
- Comprehensive Epilepsy Center, New York University Langone Health, New York, NY, United States
- Department of Neurology, New York University Langone Health, New York, NY, United States
- VA New York Harbor Healthcare System, New York, NY, United States
| |
Collapse
|
35
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Kobeissy F, Arja RD, Munoz JC, Shear DA, Gilsdorf J, Zhu J, Yadikar H, Haskins W, Tyndall JA, Wang KK. The game changer: UCH-L1 and GFAP-based blood test as the first marketed in vitro diagnostic test for mild traumatic brain injury. Expert Rev Mol Diagn 2024; 24:67-77. [PMID: 38275158 DOI: 10.1080/14737159.2024.2306876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Major organ-based in vitro diagnostic (IVD) tests like ALT/AST for the liver and cardiac troponins for the heart are established, but an approved IVD blood test for the brain has been missing, highlighting a gap in medical diagnostics. AREAS COVERED In response to this need, Abbott Diagnostics secured FDA clearance in 2021 for the i-STAT Alinity™, a point-of-care plasma blood test for mild traumatic brain injury (TBI). BioMerieux VIDAS, also approved in Europe, utilizes two brain-derived protein biomarkers: neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP). These biomarkers, which are typically present in minimal amounts in healthy individuals, are instrumental in diagnosing mild TBI with potential brain lesions. The study explores how UCH-L1 and GFAP levels increase significantly in the bloodstream following traumatic brain injury, aiding in early and accurate diagnosis. EXPERT OPINION The introduction of the i-STAT Alinity™ and the Biomerieux VIDAS TBI blood tests mark a groundbreaking development in TBI diagnosis. It paves the way for the integration of TBI biomarker tools into clinical practice and therapeutic trials, enhancing the precision medicine approach by generating valuable data. This advancement is a critical step in addressing the long-standing gap in brain-related diagnostics and promises to revolutionize the management and treatment of mild TBI.
Collapse
Affiliation(s)
- Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rawad Daniel Arja
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jennifer C Munoz
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection & Neurorestoration (BTNN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection & Neurorestoration (BTNN) Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jiepei Zhu
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | | | | | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Neorobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Mavroudis I, Jabeen S, Balmus IM, Ciobica A, Burlui V, Romila L, Iordache A. Exploring the Potential of Exosomal Biomarkers in Mild Traumatic Brain Injury and Post-Concussion Syndrome: A Systematic Review. J Pers Med 2023; 14:35. [PMID: 38248736 PMCID: PMC10817245 DOI: 10.3390/jpm14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Alongside their long-term effects, post-concussion syndrome (PCS) and mild traumatic brain injuries (mTBI) are significant public health concerns. Currently, there is a lack of reliable biomarkers for diagnosing and monitoring mTBI and PCS. Exosomes are small extracellular vesicles secreted by cells that have recently emerged as a potential source of biomarkers for mTBI and PCS due to their ability to cross the blood-brain barrier and reflect the pathophysiology of brain injury. In this study, we aimed to investigate the role of salivary exosomal biomarkers in mTBI and PCS. METHODS A systematic review using the PRISMA guidelines was conducted, and studies were selected based on their relevance to the topic. RESULTS The analyzed studies have shown that exosomal tau, phosphorylated tau (p-tau), amyloid beta (Aβ), and microRNAs (miRNAs) are potential biomarkers for mTBI and PCS. Specifically, elevated levels of exosomal tau and p-tau have been associated with mTBI and PCS as well as repetitive mTBI. Dysregulated exosomal miRNAs have also been observed in individuals with mTBI and PCS. Additionally, exosomal Prion cellular protein (PRPc), coagulation factor XIII (XIIIa), synaptogyrin-3, IL-6, and aquaporins have been identified as promising biomarkers for mTBI and PCS. CONCLUSION Salivary exosomal biomarkers have the potential to serve as non-invasive and easily accessible diagnostic and prognostic tools for mTBI and PCS. Further studies are needed to validate these biomarkers and develop standardized protocols for their use in clinical settings. Salivary exosomal biomarkers can improve the diagnosis, monitoring, and treatment of mTBI and PCS, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
| | - Sidra Jabeen
- Liaquat National Hospital and Medical College, Karachi 74800, Pakistan
| | - Ioana Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 26th Alexandru Lapusneanu Street, 700057 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iași, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Alin Iordache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| |
Collapse
|
38
|
Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. BRAIN & SPINE 2023; 4:102735. [PMID: 38510630 PMCID: PMC10951700 DOI: 10.1016/j.bas.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024]
Abstract
Introduction A blood-based biomarker (BBBM) test could help to better stratify patients with traumatic brain injury (TBI), reduce unnecessary imaging, to detect and treat secondary insults, predict outcomes, and monitor treatment effects and quality of care. Research question What evidence is available for clinical applications of BBBMs in TBI and how to advance this field? Material and methods This narrative review discusses the potential clinical applications of core BBBMs in TBI. A literature search in PubMed, Scopus, and ISI Web of Knowledge focused on articles in English with the words "traumatic brain injury" together with the words "blood biomarkers", "diagnostics", "outcome prediction", "extracranial injury" and "assay method" alone-, or in combination. Results Glial fibrillary acidic protein (GFAP) combined with Ubiquitin C-terminal hydrolase-L1(UCH-L1) has received FDA clearance to aid computed tomography (CT)-detection of brain lesions in mild (m) TBI. Application of S100B led to reduction of head CT scans. GFAP may also predict magnetic resonance imaging (MRI) abnormalities in CT-negative cases of TBI. Further, UCH-L1, S100B, Neurofilament light (NF-L), and total tau showed value for predicting mortality or unfavourable outcome. Nevertheless, biomarkers have less role in outcome prediction in mTBI. S100B could serve as a tool in the multimodality monitoring of patients in the neurointensive care unit. Discussion and conclusion Largescale systematic studies are required to explore the kinetics of BBBMs and their use in multiple clinical groups. Assay development/cross validation should advance the generalizability of those results which implicated GFAP, S100B and NF-L as most promising biomarkers in the diagnostics of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, Neurotrauma Research Group, Szentagothai Research Centre, And HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Andras Buki
- Department of Neurosurgery, University of Örebro, Örebro, Sweden
| |
Collapse
|
39
|
Lantero-Rodriguez J, Tissot C, Snellman A, Servaes S, Benedet AL, Rahmouni N, Montoliu-Gaya L, Therriault J, Brum WS, Stevenson J, Lussier FZ, Bezgin G, Macedo AC, Chamoun M, Mathotaarachi SS, Pascoal TA, Ashton NJ, Zetterberg H, Neto PR, Blennow K. Plasma and CSF concentrations of N-terminal tau fragments associate with in vivo neurofibrillary tangle burden. Alzheimers Dement 2023; 19:5343-5354. [PMID: 37190913 DOI: 10.1002/alz.13119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Fluid biomarkers capable of specifically tracking tau tangle pathology in vivo are greatly needed. METHODS We measured cerebrospinal fluid (CSF) and plasma concentrations of N-terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD cohort, consisting of 272 individuals assessed with amyloid beta (Aβ) positron emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive assessments. RESULTS CSF and plasma NTA-tau concentrations were specifically increased in cognitively impaired Aβ-positive groups. CSF and plasma NTA-tau concentrations displayed stronger correlations with tau PET than with Aβ PET and MRI, both in global uptake and at the voxel level. Regression models demonstrated that both CSF and plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma NTA-tau was associated with longitudinal tau PET accumulation across the aging and Alzheimer's disease (AD) spectrum. DISCUSSION NTA-tau is a biomarker closely associated with in vivo tau deposition in the AD continuum and has potential as a tau tangle biomarker in clinical settings and trials. HIGHLIGHTS An assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was evaluated. NTA-tau is more closely associated with tau PET than amyloid PET or neurodegeneration. NTA-tau can successfully track in vivo tau deposition across the AD continuum. Plasma NTA-tau increased over time only in cognitively impaired amyloid-β positive individuals.
Collapse
Affiliation(s)
- Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Sulantha S Mathotaarachi
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pedro Rosa Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Douglas Mental Health Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest de l'Île de Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
40
|
Tong S, Xie L, Xie X, Xu J, You Y, Sun Y, Zhou S, Ma C, Jiang G, Ma F, Wang Z, Gao X, Chen J. Nano-Plumber Reshapes Glymphatic-Lymphatic System to Sustain Microenvironment Homeostasis and Improve Long-Term Prognosis after Traumatic Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304284. [PMID: 37867233 PMCID: PMC10700187 DOI: 10.1002/advs.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Indexed: 10/24/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Long-term changes in the microenvironment of the brain contribute to the degeneration of neurological function following TBI. However, current research focuses primarily on short-term modulation during the early phases of TBI, not on the critical significance of long-term homeostasis in the brain microenvironment. Notably, dysfunction of the glymphatic-lymphatic system results in the accumulation of danger/damage-associated molecular patterns (DAMPs) in the brain, which is regarded as the leading cause of long-term microenvironmental disturbances following TBI. Here, a nanostructure, Nano-plumber, that co-encapsulates the microenvironment regulator pro-DHA and the lymphatic-specific growth factor VEGF-C is developed, allowing for a sustainable and orderly regulation of the microenvironment to promote long-term neurological recovery. Nano-plumber reverses the injury microenvironment by suppressing microglia and astrocytes activation and maintaining reduced activation via enhanced glymphatic-lymphatic drainage, and significantly improves the neurological function of rodents with TBI. This study demonstrates that glymphatic-lymphatic system reconstruction is essential for enhancing long-term prognosis following TBI, and that the Nano-plumber developed here may serve as a clinically translatable treatment option for TBI.
Collapse
Affiliation(s)
- Shiqiang Tong
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Laozhi Xie
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Xiaoying Xie
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Jianpei Xu
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Yang You
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Yinzhe Sun
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Songlei Zhou
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Chuchu Ma
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Gan Jiang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Fenfen Ma
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
- Department of PharmacyShanghai Pudong HospitalFudan UniversityShanghai201399China
| | - Zhihua Wang
- Department of EmergencyShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jun Chen
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
41
|
Kobeissy F, Goli M, Yadikar H, Shakkour Z, Kurup M, Haidar MA, Alroumi S, Mondello S, Wang KK, Mechref Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Front Neurol 2023; 14:1288740. [PMID: 38073638 PMCID: PMC10703396 DOI: 10.3389/fneur.2023.1288740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Hamad Yadikar
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Zaynab Shakkour
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | - Milin Kurup
- Alabama College of Osteopathic Medicine, Dothan, AL, United States
| | | | - Shahad Alroumi
- Department of Biological Sciences Faculty of Science, Kuwait University, Safat, Kuwait
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kevin K. Wang
- Department of Neurobiology, School of Medicine, Neuroscience Institute, Atlanta, GA, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
42
|
Harris G, Stickland CA, Lim M, Goldberg Oppenheimer P. Raman Spectroscopy Spectral Fingerprints of Biomarkers of Traumatic Brain Injury. Cells 2023; 12:2589. [PMID: 37998324 PMCID: PMC10670390 DOI: 10.3390/cells12222589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient's biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 (σ2 = 0.000164) and the highest for sulfatide (σ2 = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.
Collapse
Affiliation(s)
- Georgia Harris
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Clarissa A. Stickland
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Lim
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
43
|
Bernick C, Shan G, Ritter A, Ashton NJ, Blennow K, Lantero-Rodriguez J, Snellman A, Zetterberg H. Blood biomarkers and neurodegeneration in individuals exposed to repetitive head impacts. Alzheimers Res Ther 2023; 15:173. [PMID: 37828595 PMCID: PMC10571311 DOI: 10.1186/s13195-023-01310-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND It is unknown if fluid biomarkers reflective of brain pathologies are useful in detecting and following a neurodegenerative process in individuals exposed to repetitive head impacts. This study explores the relationship between blood biomarkers and longitudinal change in cognitive function and regional brain volumes in a cohort of professional fighters. METHODS Participants are drawn from a convenience sample of active and retired professional boxers and Mixed Martial Arts fighters and a control group with no prior exposure to head impacts. 3 T MRI brain imaging, plasma samples, and computerized cognitive testing were obtained at baseline and, for a subset, annually. MRI regional volumes were extracted, along with plasma levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), p-tau231, and N-terminal tau (NTA). Statistical analyses were performed to assess the relationship between plasma levels and regional brain volumes and cognitive performance at baseline and longitudinally. RESULTS One hundred forty active boxers (mean age: 31 with standard deviation (SD) of 8), 211 active MMA (mean age of 30 with SD of 5), 69 retired boxers (mean age 49 with SD of 9), and 52 control participants (mean age 36 with SD of 12) were included in the analyses. Baseline GFAP levels were highest in the retired boxers (retired boxers v. active MMA: p = 0.0191), whereas active boxers had higher levels of NfL (active boxers v. MMA: p = 0.047). GFAP showed an increase longitudinally in retired boxers that was associated with decreasing volumes of multiple cortical and subcortical structures (e.g., hippocampus: B = - 1.25, 95% CI, - 1.65 to - 0.85) and increase in lateral ventricle size (B = 1.75, 95% CI, 1.46 to 2.04). Furthermore, performance on cognitive domains including memory, processing speed, psychomotor speed, and reaction time declined over time with increasing GFAP (e.g., processing speed: B = - 0.04, 95% CI, - 0.07 to - 0.02; reaction time: B = 0.52, 95% CI, 0.28 to 0.76). Among active fighters, increasing levels of GFAP were correlated with lower thalamic (B = - 1.42, 95% CI, - 2.34 to -0.49) and corpus callosum volumes, along with worsening scores on psychomotor speed (B = 0.14, 95% CI, 0.01 to 0.27). CONCLUSION Longitudinal plasma GFAP levels may have a role in identifying individuals exposed to repetitive head impacts who are at risk of showing progressive regional atrophy and cognitive decline.
Collapse
Affiliation(s)
- Charles Bernick
- Neurological Institute, Cleveland Clinic, Las Vegas, NV, USA.
| | - Guogen Shan
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Aaron Ritter
- Neurological Institute, Cleveland Clinic, Las Vegas, NV, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
44
|
Tabor JB, Galarneau JM, Penner LC, Cooper J, Ghodsi M, Fraser DD, Wellington CL, Debert CT, Emery CA. Use of Biostatistical Models to Manage Replicate Error in Concussion Biomarker Research. JAMA Netw Open 2023; 6:e2339733. [PMID: 37870831 PMCID: PMC10594140 DOI: 10.1001/jamanetworkopen.2023.39733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023] Open
Abstract
Importance Advancing research on fluid biomarkers associated with sport-related concussion (SRC) highlights the importance of detecting low concentrations using ultrasensitive platforms. However, common statistical practices may overlook replicate errors and specimen exclusion, emphasizing the need to explore robust modeling approaches that consider all available replicate data for comprehensive understanding of sample variation and statistical inferences. Objective To evaluate the impact of replicate error and different biostatistical modeling approaches on SRC biomarker interpretation. Design, Setting, and Participants This cross-sectional study within the Surveillance in High Schools to Reduce the Risk of Concussions and Their Consequences study used data from healthy youth athletes (ages 11-18 years) collected from 3 sites across Canada between September 2019 and November 2021. Data were analyzed from November 2022 to February 2023. Exposures Demographic variables included age, sex, and self-reported history of previous concussion. Main Outcomes and Measures Outcomes of interest were preinjury plasma glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament-light (NFL), total tau (t-tau) and phosphorylated-tau-181 (p-tau-181) assayed in duplicate. Bland-Altman analysis determined the 95% limits of agreement (LOAs) for each biomarker. The impact of replicate error was explored using 3 biostatistical modeling approaches assessing the associations of age, sex, and previous concussion on biomarker concentrations: multilevel regression using all available replicate data, single-level regression using the means of replicate data, and single-level regression with replicate means, excluding specimens demonstrating more than 20% coefficient variation (CV). Results The sample included 149 healthy youth athletes (78 [52%] male; mean [SD] age, 15.74 [1.41] years; 51 participants [34%] reporting ≥1 previous concussions). Wide 95% LOAs were observed for GFAP (-17.74 to 18.20 pg/mL), UCH-L1 (-13.80 to 14.77 pg/mL), and t-tau (65.27% to 150.03%). GFAP and UCH-L1 were significantly associated with sex in multilevel regression (GFAP: effect size, 15.65%; β = -0.17; 95% CI, -0.30 to -0.04]; P = .02; UCH-L1: effect size, 17.24%; β = -0.19; 95% CI, -0.36 to -0.02]; P = .03) and single-level regression using the means of replicate data (GFAP: effect size, 15.56%; β = -0.17; 95% CI, -0.30 to -0.03]; P = .02; UCH-L1: effect size, 18.02%; β = -0.20; 95% CI, -0.37 to -0.03]; P = .02); however, there was no association for UCH-L1 after excluding specimens demonstrating more than 20% CV. Excluding specimens demonstrating more than 20% CV resulted in decreased differences associated with sex in GFAP (effect size, 12.29%; β = -0.14; 95% CI, -0.273 to -0.004]; P = .04) and increased sex differences in UCH-L1 (effect size, 23.59%; β = -0.27; 95% CI, -0.55 to 0.01]; P = .06), with the widest 95% CIs (ie, least precision) found in UCH-L1. Conclusions and Relevance In this cross-sectional study of healthy youth athletes, varying levels of agreement between SRC biomarker technical replicates suggested that means of measurements may not optimize precision for population values. Multilevel regression modeling demonstrated how incorporating all available biomarker data could capture replicate variation, avoiding challenges associated with means and percentage of CV exclusion thresholds to produce more representative estimates of association.
Collapse
Affiliation(s)
- Jason B. Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Michel Galarneau
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Linden C. Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Cooper
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad Ghodsi
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas D. Fraser
- Department of Pediatrics and Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chantel T. Debert
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A. Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Lepinay E, Cicchetti F. Tau: a biomarker of Huntington's disease. Mol Psychiatry 2023; 28:4070-4083. [PMID: 37749233 DOI: 10.1038/s41380-023-02230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.
Collapse
Affiliation(s)
- Eva Lepinay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
46
|
Jash S, Banerjee S, Cheng S, Wang B, Qiu C, Kondo A, Ernerudh J, Zhou XZ, Lu KP, Sharma S. Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia. Nat Commun 2023; 14:5414. [PMID: 37669931 PMCID: PMC10480164 DOI: 10.1038/s41467-023-41144-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Preeclampsia (PE) is the leading cause of maternal and fetal mortality globally and may trigger dementia later in life in mothers and their offspring. However, the etiological drivers remain elusive. Cis P-tau is an early etiological driver and blood biomarker in pre-clinical Alzheimer's and after vascular or traumatic brain injury, which can be targeted by stereo-specific antibody, with clinical trials ongoing. Here we find significant cis P-tau in the placenta and serum of PE patients, and in primary human trophoblasts exposed to hypoxia or sera from PE patients due to Pin1 inactivation. Depletion of cis P-tau from PE patient sera by the antibody prevents their ability to disrupt trophoblast invasion and endovascular activity and to cause the PE-like pathological and clinical features in pregnant humanized tau mice. Our studies uncover that cis P-tau is a central circulating etiological driver and its stereo-specific antibody is valuable for early PE diagnosis and treatment.
Collapse
Affiliation(s)
- Sukanta Jash
- Departments of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School, Brown University, Providence, RI, 02905, USA
| | - Sayani Banerjee
- Departments of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School, Brown University, Providence, RI, 02905, USA
| | - Shibin Cheng
- Departments of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School, Brown University, Providence, RI, 02905, USA
| | - Bin Wang
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Chenxi Qiu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Asami Kondo
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jan Ernerudh
- Department of Biomedical and Clinical Sciences, Linköping University, SE 58183, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, SE 58183, Linköping, Sweden
| | - Xiao Zhen Zhou
- Departments of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, N6G 2V4, Canada.
- Departments of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6G 2V4, Canada.
- Departments of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6G 2V4, Canada.
- Lawson Health Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON, N6G 2V4, Canada.
| | - Kun Ping Lu
- Departments of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, N6G 2V4, Canada.
- Departments of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6G 2V4, Canada.
- Robarts Research Institute, Schulich School of Medicine & Dentistry Western University, London, ON, N6G 2V4, Canada.
| | - Surendra Sharma
- Departments of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School, Brown University, Providence, RI, 02905, USA.
- Departments of Pathology, Women and Infants Hospital, Warren Alpert Medical School, Brown University, Providence, RI, 02905, USA.
| |
Collapse
|
47
|
Wang R, Lu KP, Zhou XZ. Function and regulation of cis P-tau in the pathogenesis and treatment of conventional and nonconventional tauopathies. J Neurochem 2023; 166:904-914. [PMID: 37638382 DOI: 10.1111/jnc.15909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 08/29/2023]
Abstract
Conventional tauopathies are a group of disease characterized by tau inclusions in the brains, including Alzheimer's disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and certain types of frontotemporal dementia (FTD), among which AD is the most prevalent. Extensive post-translational modifications, especially hyperphosphorylation, and abnormal aggregation of tau protein underlie tauopathy. Cis-trans isomerization of protein plays an important role in protein folding, function, and degradation, which is regulated by peptidyl-proline isomerases (PPIases). Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), the only PPIase found to isomerize Pro following phosphorylated Ser or Thr residues, alters phosphorylated tau protein conformation at pT231-P motif. The cis P-tau but not trans P-tau serves as an early driver of multiple neurodegenerative disease, encompassing AD, traumatic brain injury (TBI), chronic traumatic encephalopathy (CTE), and vascular contributions to cognitive impairment and dementia (VCID). Cis but not trans P-tau is resistant to protein dephosphorylation and degradation, and also prone to protein aggregation. Cis P-tau loses its ability to stabilize microtubule, causing and spreading tauopathy mainly in axons, a pathological process called cistauosis. The conformation-specific monoclonal antibody that targets only the cis P-tau serves as a very early diagnosis method and a potential treatment of not only conventional tauopathies but also nonconventional tauopathies such as VCID, with clinical trials ongoing. Notably, cis P-tau antibody is the only clinical-stage Alzheimer's therapeutic that has shown the efficacy in animal models of not only AD but also TBI and stroke, which are very early stages of dementia. Here we review the identification and pathological consequences of cis pt231-tau, the role of its regulator Pin1, as well as the clinical implication of cis pt231-tau conformation-specific antibody in conventional and nonconventional tauopathies.
Collapse
Affiliation(s)
- Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, and Oncology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
48
|
Buh FC, Taiwe GS, Kobeissy FH, Wang KW, Maas AIR, Motah M, Meh BK, Youm E, Hutchinson PJA, Sumbele IUN. Serum Biomarker Concentrations upon Admission in Acute Traumatic Brain Injury: Associations with TBI Severity, Toxoplasma gondii Infection, and Outcome in a Referral Hospital Setting in Cameroon. NEUROSCI 2023; 4:164-177. [PMID: 39483201 PMCID: PMC11523680 DOI: 10.3390/neurosci4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 11/03/2024] Open
Abstract
Despite the available literature on traumatic brain injury (TBI) biomarkers elsewhere, data are limited or non-existent in sub-Saharan Africa (SSA). The aim of the study was to analyse associations in acute TBI between the admission serum biomarker concentrations and TBI severity, CT-scan findings, and outcome, as well as to explore the influence of concurrent Toxoplasma gondii infection. The concentrations of serum biomarkers (GFAP, NFL Tau, UCH-L1, and S100B) were measured and Toxoplasma gondii were detected in the samples obtained <24 h post injury. GOSE was used to evaluate the 6-month outcome. All of the biomarker levels increased with the severity of TBI, but this increase was significant only for NFL (p = 0.01). The GFAP values significantly increased (p = 0.026) in those with an unfavourable outcome. The Tau levels were higher in those who died (p = 0.017). GFAP and NFL were sensitive to CT-scan pathology (p values of 0.004 and 0.002, respectively). The S100B levels were higher (p < 0.001) in TBI patients seropositive to Toxoplasma gondii. In conclusion, NFL was found to be sensitive to TBI severity, while NFL and GFAP were predictive of CT intracranial abnormalities. Increased levels of GFAP and Tau were associated with poorer outcomes 6 months after TBI, and the S100B levels were significantly affected by concurrent T. gondii infection in TBI patients compared with the seronegative patients.
Collapse
Affiliation(s)
- Franklin Chu Buh
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.S.T.); (B.K.M.); (I.U.N.S.)
- Panafrican Hospital Center, Douala P.O. Box 13152, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.S.T.); (B.K.M.); (I.U.N.S.)
| | - Firas H Kobeissy
- Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310-1458, USA; (F.H.K.); (K.W.W.)
| | - Kevin W Wang
- Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310-1458, USA; (F.H.K.); (K.W.W.)
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital, University of Antwerp, 2000 Edegem, Belgium;
| | - Mathieu Motah
- Department of Surgery, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon;
| | - Basil Kum Meh
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.S.T.); (B.K.M.); (I.U.N.S.)
| | - Eric Youm
- Holo Healthcare, Nairobi 00400, Kenya;
| | - Peter J A Hutchinson
- Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Irene Ule Ngole Sumbele
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.S.T.); (B.K.M.); (I.U.N.S.)
| |
Collapse
|
49
|
Devoto C, Vorn R, Mithani S, Meier TB, Lai C, Broglio SP, McAllister T, Giza CC, Huber D, Harezlak J, Cameron KL, McGinty G, Jackson J, Guskiewicz K, Mihalik JP, Brooks A, Duma S, Rowson S, Nelson LD, Pasquina P, Turtzo C, Latour L, McCrea MA, Gill JM. Plasma phosphorylated tau181 as a biomarker of mild traumatic brain injury: findings from THINC and NCAA-DoD CARE Consortium prospective cohorts. Front Neurol 2023; 14:1202967. [PMID: 37662031 PMCID: PMC10470112 DOI: 10.3389/fneur.2023.1202967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Objective The aim of this study was to investigate phosphorylated tau (p-tau181) protein in plasma in a cohort of mild traumatic brain injury (mTBI) patients and a cohort of concussed athletes. Methods This pilot study comprised two independent cohorts. The first cohort-part of a Traumatic Head Injury Neuroimaging Classification (THINC) study-with a mean age of 46 years was composed of uninjured controls (UIC, n = 30) and mTBI patients (n = 288) recruited from the emergency department with clinical computed tomography (CT) and research magnetic resonance imaging (MRI) findings. The second cohort-with a mean age of 19 years-comprised 133 collegiate athletes with (n = 112) and without (n = 21) concussions. The participants enrolled in the second cohort were a part of a multicenter, prospective, case-control study conducted by the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium at six CARE Advanced Research Core (ARC) sites between 2015 and 2019. Blood was collected within 48 h of injury for both cohorts. Plasma concentration (pg/ml) of p-tau181 was measured using the Single Molecule Array ultrasensitive assay. Results Concentrations of plasma p-tau181 in both cohorts were significantly elevated compared to controls within 48 h of injury, with the highest concentrations of p-tau181 within 18 h of injury, with an area under the curve (AUC) of 0.690-0.748, respectively, in distinguishing mTBI patients and concussed athletes from controls. Among the mTBI patients, the levels of plasma p-tau181 were significantly higher in patients with positive neuroimaging (either CT+/MRI+, n = 74 or CT-/MRI+, n = 89) compared to mTBI patients with negative neuroimaging (CT-/MRI-, n = 111) findings and UIC (P-values < 0.05). Conclusion These findings indicate that plasma p-tau181 concentrations likely relate to brain injury, with the highest levels in patients with neuroimaging evidence of injury. Future research is needed to replicate and validate this protein assay's performance as a possible early diagnostic biomarker for mTBI/concussions.
Collapse
Affiliation(s)
- Christina Devoto
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Rany Vorn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
| | - Sara Mithani
- School of Nursing, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University and Health Science, Bethesda, MD, United States
| | - Steven P. Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, United States
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Christopher C. Giza
- Departments of Pediatrics and Neurosurgery, UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Kenneth L. Cameron
- John A. Feagin Sports Medicine Fellowship, Keller Army Hospital, West Point, NY, United States
| | - Gerald McGinty
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Jonathan Jackson
- United States Air Force Academy, Colorado Springs, CO, United States
| | - Kevin Guskiewicz
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason P. Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison Brooks
- Department of Orthopedics and Sports Medicine, University of Wisconsin, Madison, WI, United States
| | - Stefan Duma
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Steven Rowson
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Lindsay D. Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul Pasquina
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University and Health Science, Bethesda, MD, United States
| | - Christine Turtzo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence Latour
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica M. Gill
- School of Nursing, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
50
|
Halicki MJ, Hind K, Chazot PL. Blood-Based Biomarkers in the Diagnosis of Chronic Traumatic Encephalopathy: Research to Date and Future Directions. Int J Mol Sci 2023; 24:12556. [PMID: 37628736 PMCID: PMC10454393 DOI: 10.3390/ijms241612556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disease consistently associated with repetitive traumatic brain injuries (TBIs), which makes multiple professions, such as contact sports athletes and the military, especially susceptible to its onset. There are currently no approved biomarkers to diagnose CTE, thus it can only be confirmed through a post-mortem brain autopsy. Several imaging and cerebrospinal fluid biomarkers have shown promise in the diagnosis. However, blood-based biomarkers can be more easily obtained and quantified, increasing their clinical feasibility and potential for prophylactic use. This article aimed to comprehensively review the studies into potential blood-based biomarkers of CTE, discussing common themes and limitations, as well as suggesting future research directions. While the interest in blood-based biomarkers of CTE has recently increased, the research is still in its early stages. The main issue for many proposed biomarkers is their lack of selectivity for CTE. However, several molecules, such as different phosphorylated tau isoforms, were able to discern CTE from different neurodegenerative diseases. Further, the results from studies on exosomal biomarkers suggest that exosomes are a promising source of biomarkers, reflective of the internal environment of the brain. Nonetheless, more longitudinal studies combining imaging, neurobehavioral, and biochemical approaches are warranted to establish robust biomarkers for CTE.
Collapse
Affiliation(s)
| | - Karen Hind
- Durham Wolfson Research Institute for Health and Wellbeing, Stockton-on-Tees TS17 6BH, UK;
| | - Paul L. Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| |
Collapse
|