1
|
Yang Y, Li X, Lu J, Ge J, Chen M, Yao R, Tian M, Wang J, Liu F, Zuo C. Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism. Neural Regen Res 2025; 20:93-106. [PMID: 38767479 PMCID: PMC11246150 DOI: 10.4103/1673-5374.391180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/18/2023] [Indexed: 05/22/2024] Open
Abstract
Nowadays, presynaptic dopaminergic positron emission tomography, which assesses deficiencies in dopamine synthesis, storage, and transport, is widely utilized for early diagnosis and differential diagnosis of parkinsonism. This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism. We conducted a thorough literature search using reputable databases such as PubMed and Web of Science. Selection criteria involved identifying peer-reviewed articles published within the last 5 years, with emphasis on their relevance to clinical applications. The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis. Moreover, when employed in conjunction with other imaging modalities and advanced analytical methods, presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker. This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion. In summary, the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials, ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Arrhythmias, Ministry of Education, Department of Medical Genetics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingjia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruixin Yao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Tian
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Kalia LV, Asis A, Arbour N, Bar-Or A, Bove R, Di Luca DG, Fon EA, Fox S, Gan-Or Z, Gommerman JL, Kang UJ, Klawiter EC, Koch M, Kolind S, Lang AE, Lee KK, Lincoln MR, MacDonald PA, McKeown MJ, Mestre TA, Miron VE, Ontaneda D, Rousseaux MWC, Schlossmacher MG, Schneider R, Stoessl AJ, Oh J. Disease-modifying therapies for Parkinson disease: lessons from multiple sclerosis. Nat Rev Neurol 2024:10.1038/s41582-024-01023-0. [PMID: 39375563 DOI: 10.1038/s41582-024-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The development of disease-modifying therapies (DMTs) for neurological disorders is an important goal in modern neurology, and the associated challenges are similar in many chronic neurological conditions. Major advances have been made in the multiple sclerosis (MS) field, with a range of DMTs being approved for relapsing MS and the introduction of the first DMTs for progressive MS. By contrast, people with Parkinson disease (PD) still lack such treatment options, relying instead on decades-old therapeutic approaches that provide only symptomatic relief. To address this unmet need, an in-person symposium was held in Toronto, Canada, in November 2022 for international researchers and experts in MS and PD to discuss strategies for advancing DMT development. In this Roadmap article, we highlight discussions from the symposium, which focused on therapeutic targets and preclinical models, disease spectra and subclassifications, and clinical trial design and outcome measures. From these discussions, we propose areas for novel or deeper exploration in PD using lessons learned from therapeutic development in MS. In addition, we identify challenges common to the PD and MS fields that need to be addressed to further advance the discovery and development of effective DMTs.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | - Nathalie Arbour
- Department of Neurosciences, Université de Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
| | - Amit Bar-Or
- Division of MS and Related Disorders, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Di Luca
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward A Fon
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Susan Fox
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcus Koch
- University of Calgary MS Clinic, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Shannon Kolind
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Matthew R Lincoln
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Penny A MacDonald
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Veronique E Miron
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- The United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Schlossmacher
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
4
|
Pérez-Carbonell L, Iranzo A. REM sleep and neurodegeneration. J Sleep Res 2024:e14263. [PMID: 38867555 DOI: 10.1111/jsr.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Several brainstem, subcortical and cortical areas are involved in the generation of rapid eye movement (REM) sleep. The alteration of these structures as a result of a neurodegenerative process may therefore lead to REM sleep anomalies. REM sleep behaviour disorder is associated with nightmares, dream-enacting behaviours and increased electromyographic activity in REM sleep. Its isolated form is a harbinger of synucleinopathies such as Parkinson's disease or dementia with Lewy bodies, and neuroprotective interventions are advocated. This link might also be present in patients taking antidepressants, with post-traumatic stress disorder, or with a history of repeated traumatic head injury. REM sleep likely contributes to normal memory processes. Its alteration has also been proposed to be part of the neuropathological changes occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Alex Iranzo
- Neurology Service, Sleep Disorders Centre, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Di Luca DG, Perlmutter JS. Time for Clinical Dopamine Transporter Scans in Parkinsonism?: Not DAT Yet. Neurology 2024; 102:e209558. [PMID: 38759140 PMCID: PMC11175627 DOI: 10.1212/wnl.0000000000209558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Affiliation(s)
- Daniel G Di Luca
- From the Department of Neurology, Washington University in St. Louis, MO
| | - Joel S Perlmutter
- From the Department of Neurology, Washington University in St. Louis, MO
| |
Collapse
|
6
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Liu P, Chen L, He X, Mao L. Predictors of the Rapid Progression in Prodromal Parkinson's Disease: A Longitudinal Follow-Up Study. Gerontology 2024; 70:595-602. [PMID: 38565088 DOI: 10.1159/000538515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by a prodromal phase preceding the onset of classic motor symptoms. The duration and clinical manifestations of prodromal PD vary widely, indicating underlying heterogeneity within this stage. This discrepancy prompts the question of whether specific factors contribute to the divergent rates of progression in prodromal PD. METHODS This study included prodromal PD patients from the Parkinson's progression marker initiative. They were followed up to assess the disease progression. The data collected during the follow-up period were analyzed to identify potential predictors of rapid disease progression in prodromal PD. RESULTS In this study, 61 individuals with prodromal PD were enrolled. Among them, 43 patients presented with both RBD and hyposmia, 17 had hyposmia alone, and 1 had RBD alone at baseline. 13 (21.3%) prodromal PD participants exhibited rapid disease progression, with two of these cases advancing to non-neurological diseases. Significant differences were observed between the rapid progression group and no rapid progression group in terms of MDS-UPDRS II score and UPSIT score. Longitudinal analysis showed a significant increase in the MDS-UPDRS III score and MDS-UPDRS total score in the rapid progression group. Regression analyses identified the MDS-UPDRS II score and UPSIT score as predictors of rapid disease progression in prodromal PD. CONCLUSION Our study findings suggest that the MDS-UPDRS II score and UPSIT score may serve as clinical markers associated with rapid disease progression. Further research and development of precise biomarkers and advanced assessment methods are needed to enhance our understanding of prodromal PD and its progression patterns.
Collapse
Affiliation(s)
- Peng Liu
- Department of Neurology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Linxi Chen
- Department of Neurology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
- Department of Pathology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Xinwei He
- Department of Neurology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| |
Collapse
|
8
|
Marrie RA, Maxwell CJ, Rotstein DL, Tsai CC, Tremlett H. Prodromes in demyelinating disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer's dementia. Rev Neurol (Paris) 2024; 180:125-140. [PMID: 37567819 DOI: 10.1016/j.neurol.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
A prodrome is an early set of symptoms, which indicates the onset of a disease; these symptoms are often non-specific. Prodromal phases are now recognized in multiple central nervous system diseases. The depth of understanding of the prodromal phase varies across diseases, being more nascent for multiple sclerosis for example, than for Parkinson disease or Alzheimer's disease. Key challenges when identifying the prodromal phase of a disease include the lack of specificity of prodromal symptoms, and consequent need for accessible and informative biomarkers. Further, heterogeneity of the prodromal phase may be influenced by age, sex, genetics and other poorly understood factors. Nonetheless, recognition that an individual is in the prodromal phase of disease offers the opportunity for earlier diagnosis and with it the opportunity for earlier intervention.
Collapse
Affiliation(s)
- R A Marrie
- Departments of Internal Medicine and Community Health Sciences, Rady Faculty of Health Sciences, Max-Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - C J Maxwell
- Schools of Pharmacy and Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada; ICES, Toronto, Ontario, Canada
| | - D L Rotstein
- Department of Medicine, University of Toronto, 6, Queen's Park Crescent West, 3rd floor, M5S 3H2 Toronto, Ontario, Canada; Saint-Michael's Hospital, 30, Bond Street, M5B 1W8 Toronto, Ontario, Canada
| | - C-C Tsai
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - H Tremlett
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M, Chowdhury S, Coffey C, Concha-Marambio L, Dam T, DiBiaso P, Foroud T, Frasier M, Gochanour C, Jennings D, Kieburtz K, Kopil CM, Merchant K, Mollenhauer B, Montine T, Nudelman K, Pagano G, Seibyl J, Sherer T, Singleton A, Stephenson D, Stern M, Soto C, Tanner CM, Tolosa E, Weintraub D, Xiao Y, Siderowf A, Dunn B, Marek K. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol 2024; 23:178-190. [PMID: 38267190 DOI: 10.1016/s1474-4422(23)00405-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
Parkinson's disease and dementia with Lewy bodies are currently defined by their clinical features, with α-synuclein pathology as the gold standard to establish the definitive diagnosis. We propose that, given biomarker advances enabling accurate detection of pathological α-synuclein (ie, misfolded and aggregated) in CSF using the seed amplification assay, it is time to redefine Parkinson's disease and dementia with Lewy bodies as neuronal α-synuclein disease rather than as clinical syndromes. This major shift from a clinical to a biological definition of Parkinson's disease and dementia with Lewy bodies takes advantage of the availability of tools to assess the gold standard for diagnosis of neuronal α-synuclein (n-αsyn) in human beings during life. Neuronal α-synuclein disease is defined by the presence of pathological n-αsyn species detected in vivo (S; the first biological anchor) regardless of the presence of any specific clinical syndrome. On the basis of this definition, we propose that individuals with pathological n-αsyn aggregates are at risk for dopaminergic neuronal dysfunction (D; the second biological anchor). Our biological definition establishes a staging system, the neuronal α-synuclein disease integrated staging system (NSD-ISS), rooted in the biological anchors (S and D) and the degree of functional impairment caused by clinical signs or symptoms. Stages 0-1 occur without signs or symptoms and are defined by the presence of pathogenic variants in the SNCA gene (stage 0), S alone (stage 1A), or S and D (stage 1B). The presence of clinical manifestations marks the transition to stage 2 and beyond. Stage 2 is characterised by subtle signs or symptoms but without functional impairment. Stages 2B-6 require both S and D and stage-specific increases in functional impairment. A biological definition of neuronal α-synuclein disease and an NSD-ISS research framework are essential to enable interventional trials at early disease stages. The NSD-ISS will evolve to include the incorporation of data-driven definitions of stage-specific functional anchors and additional biomarkers as they emerge and are validated. Presently, the NSD-ISS is intended for research use only; its application in the clinical setting is premature and inappropriate.
Collapse
Affiliation(s)
- Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Teresa Buracchio
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Campbell
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sohini Chowdhury
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | | | - Peter DiBiaso
- Patient Advisory Council, New York, NY, USA; Clinical Solutions and Strategic Partnerships, WCG Clinical, Princeton, NJ, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Gochanour
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | - Karl Kieburtz
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine M Kopil
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Thomas Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Singleton
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Diane Stephenson
- Critical Path for Parkinson's, Critical Path Institute, Tucson, AZ, USA
| | - Matthew Stern
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Soto
- Amprion, San Diego, CA, USA; Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Caroline M Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA; Parkinson's Disease Research Education and Clinical Center, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Weintraub
- University of Pennsylvania and the Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - Yuge Xiao
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy Dunn
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
10
|
Yan S, Jiang C, Janzen A, Barber TR, Seger A, Sommerauer M, Davis JJ, Marek K, Hu MT, Oertel WH, Tofaris GK. Neuronally Derived Extracellular Vesicle α-Synuclein as a Serum Biomarker for Individuals at Risk of Developing Parkinson Disease. JAMA Neurol 2024; 81:59-68. [PMID: 38048087 PMCID: PMC10696516 DOI: 10.1001/jamaneurol.2023.4398] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/28/2023] [Indexed: 12/05/2023]
Abstract
IMPORTANCE Nonmotor symptoms of Parkinson disease (PD) often predate the movement disorder by decades. Currently, there is no blood biomarker to define this prodromal phase. OBJECTIVE To investigate whether α-synuclein in neuronally derived serum-extracellular vesicles identifies individuals at risk of developing PD and related dementia. DESIGN, SETTING, and PARTICIPANTS This retrospective, cross-sectional multicenter study of serum samples included the Oxford Discovery, Marburg, Cologne, and Parkinson's Progression Markers Initiative cohorts. Participants were recruited from July 2013 through August 2023 and samples were analyzed from April 2022 through September 2023. The derivation group (n = 170) included participants with isolated rapid eye movement sleep behavior disorder (iRBD) and controls. Two validation groups were used: the first (n = 122) included participants with iRBD and controls and the second (n = 263) included nonmanifest GBA1N409S gene carriers, participants with iRBD or hyposmia, and available dopamine transporter single-photon emission computed tomography, healthy controls, and patients with sporadic PD. Overall the study included 199 participants with iRBD, 20 hyposmic participants with available dopamine transporter single-photon emission computed tomography, 146 nonmanifest GBA1N409S gene carriers, 21 GBA1N409S gene carrier patients with PD, 50 patients with sporadic PD, and 140 healthy controls. In the derivation group and validation group 1, participants with polysomnographically confirmed iRBD were included. In the validation group 2, at-risk participants with available Movement Disorder Society prodromal markers and serum samples were included. Among 580 potential participants, 4 were excluded due to alternative diagnoses. EXPOSURES Clinical assessments, imaging, and serum collection. MAIN OUTCOME AND MEASURES L1CAM-positive extracellular vesicles (L1EV) were immunocaptured from serum. α-Synuclein and syntenin-1 were measured by electrochemiluminescence. Area under the receiver operating characteristic (ROC) curve (AUC) with 95% CIs evaluated biomarker performance. Probable prodromal PD was determined using the updated Movement Disorder Society research criteria. Multiple linear regression models assessed the association between L1EV α-synuclein and prodromal markers. RESULTS Among 576 participants included, the mean (SD) age was 64.30 (8.27) years, 394 were male (68.4%), and 182 were female (31.6%). A derived threshold of serum L1EV α-synuclein distinguished participants with iRBD from controls (AUC = 0.91; 95% CI, 0.86-0.96) and those with more than 80% probability of having prodromal PD from participants with less than 5% probability (AUC = 0.80; 95% CI, 0.71-0.89). Subgroup analyses revealed that specific combinations of prodromal markers were associated with increased L1EV α-synuclein levels. Across all cohorts, L1EV α-synuclein differentiated participants with more than 80% probability of having prodromal PD from current and historic healthy control populations (AUC = 0.90; 95% CI, 0.87-0.93), irrespective of initial diagnosis. L1EV α-synuclein was increased in at-risk participants with a positive cerebrospinal fluid seed amplification assay and was above the identified threshold in 80% of cases (n = 40) that phenoconverted to PD or related dementia. CONCLUSIONS AND RELEVANCE L1EV α-synuclein in combination with prodromal markers should be considered in the stratification of those at high risk of developing PD and related Lewy body diseases.
Collapse
Affiliation(s)
- Shijun Yan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Annette Janzen
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Thomas R. Barber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Aline Seger
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Michael Sommerauer
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, Connecticut
| | - Michele T. Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | | | - George K. Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Crotty GF, Ayer SJ, Schwarzschild MA. Designing the First Trials for Parkinson's Prevention. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S381-S393. [PMID: 39302381 PMCID: PMC11491995 DOI: 10.3233/jpd-240164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 09/22/2024]
Abstract
For decades the greatest goal of Parkinson's disease (PD) research has often been distilled to the discovery of treatments that prevent the disease or its progression. However, until recently only the latter has been realistically pursued through randomized clinical trials of candidate disease-modifying therapy (DMT) conducted on individuals after they received traditional clinical diagnosis of PD (i.e., tertiary prevention trials). Now, in light of major advances in our understanding of the prodromal stages of PD, as well as its genetics and biomarkers, the first secondary prevention trials for PD are beginning. In this review, we take stock of DMT trials to date, summarize the breakthroughs that allow the identification of cohorts at high risk of developing a traditional diagnosis of PD, and describe key design elements of secondary prevention trials and how they depend on the prodromal stage being targeted. These elements address whom to enroll, what interventions to test, and how to measure secondary prevention (i.e., slowed progression during the prodromal stages of PD). Although these design strategies, along with the biological definition, subtype classification, and staging of the disease are evolving, all are driven by continued progress in the underlying science and integrated by a broad motivated community of stakeholders. While considerable methodological challenges remain, opportunities to move clinical trials of DMT to earlier points in the disease process than ever before have begun to unfold, and the prospects for PD prevention are nowtangible.
Collapse
Affiliation(s)
- Grace F. Crotty
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Present address: Department of Neurology, Cork University Hospital, Cork, Ireland
| | - Samuel J. Ayer
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michael A. Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Mahlknecht P, Poewe W. Pharmacotherapy for Disease Modification in Early Parkinson's Disease: How Early Should We Be? JOURNAL OF PARKINSON'S DISEASE 2024; 14:S407-S421. [PMID: 38427503 PMCID: PMC11492107 DOI: 10.3233/jpd-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Slowing or halting progression continues to be a major unmet medical need in Parkinson's disease (PD). Numerous trials over the past decades have tested a broad range of interventions without ultimate success. There are many potential reasons for this failure and much debate has focused on the need to test 'disease-modifying' candidate drugs in the earliest stages of disease. While generally accepted as a rational approach, it is also associated with significant challenges around the selection of trial populations as well as trial outcomes and durations. From a health care perspective, intervening even earlier and before at-risk subjects have gone on to develop overt clinical disease is at the heart of preventive medicine. Recent attempts to develop a framework for a biological definition of PD are aiming to enable 'preclinical' and subtype-specific diagnostic approaches. The present review addresses past efforts towards disease-modification, including drug targets and reasons for failure, as well as novel targets that are currently being explored in disease-modification trials in early established PD. The new biological definitions of PD may offer new opportunities to intervene even earlier. We critically discuss the potential and challenges around planning 'disease-prevention' trials in subjects with biologically defined 'preclinical' or prodromal PD.
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
13
|
Hu M, Skjærbæk C, Borghammer P. Approaches to Early Parkinson's Disease Subtyping. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S297-S306. [PMID: 39331104 PMCID: PMC11492007 DOI: 10.3233/jpd-230419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
Parkinson's disease (PD) unfolds with pathological processes and neurodegeneration well before the emergence of noticeable motor symptoms, providing a window for early identification. The extended prodromal phase allows the use of risk stratification measures and prodromal markers to pinpoint individuals likely to develop PD. Importantly, a growing body of evidence emphasizes the heterogeneity within prodromal and clinically diagnosed PD. The disease likely comprises distinct subtypes exhibiting diverse clinical manifestations, pathophysiological mechanisms, and patterns of α-synuclein progression in the central and peripheral nervous systems. There is a pressing need to refine the definition and early identification of these prodromal subtypes. This requires a comprehensive strategy that integrates genetic, pathological, imaging, and multi-omics markers, alongside careful observation of subtle motor and non-motor symptoms. Such multi-dimensional classification of early PD subtypes will improve our understanding of underlying disease pathophysiology, improve predictions of clinical endpoints, progression trajectory and medication response, contribute to drug discovery and personalized medicine by identifying subtype-specific disease mechanisms, and facilitate drug trials by reducing confounding effects of heterogeneity. Here we explore different subtyping methodologies in prodromal and clinical PD, focusing on clinical, imaging, genetic and molecular subtyping approaches. We also emphasize the need for refined, theoretical a priori disease models. These will be prerequisite to understanding the biological underpinnings of biological subtypes, which have been defined by large scale data-driven approaches and multi-omics fingerprints.
Collapse
Affiliation(s)
- Michele Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Casper Skjærbæk
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Orso B, Brosse S, Frasnelli J, Arnaldi D. Opportunities and Pitfalls of REM Sleep Behavior Disorder and Olfactory Dysfunction as Early Markers in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S275-S285. [PMID: 38517805 PMCID: PMC11494648 DOI: 10.3233/jpd-230348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
During its pre-motor stage, Parkinson's disease (PD) presents itself with a multitude of non-motor symptoms with different degrees of specificity and sensitivity. The most important among them are REM sleep behavior disorder (RBD) and olfactory dysfunction. RBD is a parasomnia characterized by the loss of REM sleep muscle atonia and dream-enacting behaviors. Olfactory dysfunction in individuals with prodromal PD is usually described as hyposmia (reduced sense of smell) or anosmia (complete loss of olfactory function). These symptoms can precede the full expression of motor symptoms by decades. A close comprehension of these symptoms and the underlying mechanisms may enable early screening as well as interventions to improve patients' quality of life. Therefore, these symptoms have unmatched potential for identifying PD patients in prodromal stages, not only allowing early diagnosis but potentially opening a window for early, possibly disease-modifying intervention. However, they come with certain challenges. This review addresses some of the key opportunities and pitfalls of both RBD and olfactory dysfunction as early markers of PD.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
| | - Sarah Brosse
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Research Center, Sacré-Coeur Hospital of Montreal, Montréal, Québec, Canada
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Research Center, Sacré-Coeur Hospital of Montreal, Montréal, Québec, Canada
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
15
|
Schaeffer E, Yilmaz R, St. Louis EK, Noyce AJ. Ethical Considerations for Identifying Individuals in the Prodromal/Early Phase of Parkinson's Disease: A Narrative Review. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S307-S319. [PMID: 38995800 PMCID: PMC11492008 DOI: 10.3233/jpd-230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
The ability to identify individuals in the prodromal phase of Parkinson's disease has improved in recent years, raising the question of whether and how those affected should be informed about the risk of future disease. Several studies investigated prognostic counselling for individuals with isolated REM sleep behavior disorder and have shown that most patients want to receive information about prognosis, but autonomy and individual preferences must be respected. However, there are still many unanswered questions about risk disclosure or early diagnosis of PD, including the impact on personal circumstances, cultural preferences and specific challenges associated with different profiles of prodromal symptoms, genetic testing or biomarker assessments. This narrative review aims to summarize the current literature on prognostic counselling and risk disclosure in PD, as well as highlight future perspectives that may emerge with the development of new biomarkers and their anticipated impact on the definition of PD.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Rezzak Yilmaz
- Department of Neurology, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Brain Research Center, Ankara, Turkey
| | - Erik K. St. Louis
- Mayo Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Health System Southwest Wisconsin, La Crosse, WI, USA
| | - Alastair J. Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Woo KA, Kim H, Yoon EJ, Shin JH, Nam H, Jeon B, Kim YK, Lee J. Brain olfactory-related atrophy in isolated rapid eye movement sleep behavior disorder. Ann Clin Transl Neurol 2023; 10:2192-2207. [PMID: 37743764 PMCID: PMC10723229 DOI: 10.1002/acn3.51905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE To investigate structural and functional connectivity changes in brain olfactory-related structures in a longitudinal prospective cohort of isolated REM sleep behavior disorder (iRBD) and their clinical correlations, longitudinal evolution, and predictive values for phenoconversion to overt synucleinopathies, especially Lewy body diseases. METHODS The cohort included polysomnography-confirmed iRBD patients and controls. Participants underwent baseline assessments including olfactory tests, neuropsychological evaluations, the Movement Disorders Society-Unified Parkinson's Disease Rating Scale, 3T brain MRI, and 18 F-FP-CIT PET scans. Voxel-based morphometry (VBM) was performed to identify regions of atrophy in iRBD, and volumes of relevant olfactory-related regions of interest (ROI) were estimated. Subgroups of patients underwent repeated volumetric MRI and resting-state functional MRI (fMRI) scans after four years. RESULTS A total of 51 iRBD patients were included, with 20 of them converting to synucleinopathy (mean time to conversion 3.08 years). Baseline VBM analysis revealed atrophy in the right olfactory cortex and gyrus rectus in iRBD. Subsequent ROI comparisons with controls showed atrophy in the amygdala. These olfactory-related atrophies tended to be associated with worse depression, anxiety, and urinary problems in iRBD. Amygdala 18 F-FP-CIT uptake tended to be reduced in iRBD patients with hyposmia (nonsignificant after multiple comparison correction) and correlated with urinary problems. Resting-state fMRI of 23 patients and 32 controls revealed multiple clusters with aberrant olfactory-related functional connectivity. Hypoconnectivity between the putamen and olfactory cortex was associated with mild parkinsonian signs in iRBD. Longitudinal analysis of volumetric volumetric MRI in 22 iRBD patients demonstrated four-year progression of olfactory-related atrophy. Cox regression analysis revealed that this atrophy significantly predicted phenoconversion. INTERPRETATION Progressive atrophy of central olfactory structures may be a potential indicator of Lewy body disease progression in iRBD.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Heejung Kim
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Radiation Medicine, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Eun Jin Yoon
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Memory Network Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Jung Hwan Shin
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hyunwoo Nam
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Beomseok Jeon
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
17
|
Jackson H, Anzures-Cabrera J, Simuni T, Postuma RB, Marek K, Pagano G. Identifying prodromal symptoms at high specificity for Parkinson's disease. Front Aging Neurosci 2023; 15:1232387. [PMID: 37810617 PMCID: PMC10556459 DOI: 10.3389/fnagi.2023.1232387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction To test drugs with the potential to prevent the onset of Parkinson's disease (PD), it is key to identify individuals in the general population at high risk of developing PD. This is often difficult because most of the clinical markers are non-specific, common in PD but also common in older adults (e.g., sleep problems). Objective We aimed to identify the clinical markers at high specificity for developing PD by comparing individuals with PD or prodromal PD to healthy controls. Methods We investigated motor and non-motor symptoms (Movement Disorder Society Unified Parkinson's Disease Rating Scale Part 1 and 2 items) in 64 prodromal PD and 422 PD individuals calculating the odds ratios, adjusting for age and gender, for PD and prodromal PD versus 195 healthy controls. Symptoms at high specificity were defined as having an adjusted odds ratio ≥ 6. Results Constipation had an adjusted odds ratio, 6.14 [95% CI: 2.94-12.80] showing high specificity for prodromal PD, and speech difficulties had an adjusted odds ratio, 9.61 [95% CI: 7.88-48.81] showing high specificity for PD. The proportion of participants showing these specific markers was moderate (e.g., prevalence of constipation was 43.75% in prodromal PD, and speech difficulties was 33.89% in PD), suggesting these symptoms may make robust predictors of prodromal PD and PD, respectively. Discussion Clinical markers at high specificity for developing PD could be used as tools in the screening of general populations to identify individuals at higher risk of developing PD.
Collapse
Affiliation(s)
- Holly Jackson
- Roche Products Ltd, Welwyn Garden City, United Kingdom
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
| | | | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ronald B. Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, United States
| | - Gennaro Pagano
- Roche Pharma Research and Early Development (pRED), Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
- University of Exeter Medical School, London, United Kingdom
| |
Collapse
|
18
|
Park DG, Kim JY, Kim MS, Kim MH, An YS, Chang J, Yoon JH. Neurofilament light chain and cardiac MIBG uptake as predictors for phenoconversion in isolated REM sleep behavior disorder. J Neurol 2023; 270:4393-4402. [PMID: 37233802 DOI: 10.1007/s00415-023-11785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD) is considered as a prodromal stage of either multiple system atrophy (MSA) or Lewy body disease (LBD; Parkinson's disease and dementia with Lewy bodies). However, current knowledge is limited in predicting and differentiating the type of future phenoconversion in iRBD patients. We investigated the role of plasma neurofilament light chain (NfL) and cardiac metaiodobenzylguanidine (MIBG) uptake as predictors for phenoconversion. METHODS Forty patients with iRBD were enrolled between April 2018 and October 2019 and prospectively followed every 3 months to determine phenoconversion to either MSA or LBD. Plasma NfL levels were measured at enrollment. Cardiac MIBG uptake and striatal dopamine transporter uptake were assessed at baseline. RESULTS Patients were followed for a median of 2.92 years. Four patients converted to MSA and 7 to LBD. Plasma NfL level at baseline was significantly higher in future MSA-converters (median 23.2 pg/mL) when compared with the rest of the samples (median 14.1 pg/mL, p = 0.003). NfL level above 21.3 pg/mL predicted phenoconversion to MSA with the sensitivity of 100% and specificity of 94.3%. Baseline MIBG heart-to-mediastinum ratio of LBD-converters (median 1.10) was significantly lower when compared with the rest (median 2.00, p < 0.001). Heart-to-mediastinum ratio below 1.545 predicted phenoconversion to LBD with the sensitivity of 100% and specificity of 92.9%. CONCLUSIONS Plasma NfL and cardiac MIBG uptake may be useful biomarkers in predicting phenoconversion of iRBD. Elevated plasma NfL levels may suggest imminent phenoconversion to MSA, whereas low cardiac MIBG uptake suggests phenoconversion to LBD.
Collapse
Affiliation(s)
- Don Gueu Park
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Ju Yeong Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon-Si, Republic of Korea
| | - Min Seung Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Mi Hee Kim
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Young-Sil An
- Department of Nuclear Medicine, Ajou University School of Medicine, Suwon-Si, Republic of Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon-Si, Republic of Korea.
- Department of Brain Science, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| |
Collapse
|
19
|
Langley J, Hwang KS, Huddleston DE, Hu XP. Nigral volume loss in prodromal, early, and moderate Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.19.23294281. [PMID: 37645770 PMCID: PMC10462207 DOI: 10.1101/2023.08.19.23294281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The loss of melanized neurons in the substantia nigra pars compacta (SNc) is a hallmark pathology in Parkinson's disease (PD). Melanized neurons in SNc can be visualized in vivo using magnetization transfer (MT) effects. Nigral volume was extracted in data acquired with a MT-prepared gradient echo sequence in 33 controls, 83 non-manifest carriers (42 LRRK2 and 41 GBA nonmanifest carriers), 65 prodromal hyposmic participants, 105 de novo PD patients and 26 48-month PD patients from the Parkinson's Progressive Markers Initiative. No difference in nigral volume was seen between controls and LRRK2 and GBA non-manifest carriers (F=0.076; P=0.927). A significant main effect in group was observed between controls, prodromal hyposmic participants, and overt PD patients (F=5.192; P=0.002). Longer disease duration significantly correlated with lower nigral volume (r=-0.252; P=0.010). This study shows that nigral depigmentation can be robustly detected in prodromal hyposmic participants and overt PD patients.
Collapse
Affiliation(s)
- Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
| | - Kristy S. Hwang
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | | | - Xiaoping P. Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
20
|
Neilson LE, Quinn JF, Lim MM. Screening and Targeting Risk Factors for Prodromal Synucleinopathy: Taking Steps toward a Prescriptive Multi-modal Framework. Aging Dis 2023; 14:1243-1263. [PMID: 37307836 PMCID: PMC10389816 DOI: 10.14336/ad.2022.1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 06/14/2023] Open
Abstract
As the prevalence of Parkinson's disease (PD) grows, so too does the population at-risk of developing PD, those in the so-called prodromal period. This period can span from those experiencing subtle motor deficits yet not meeting full diagnostic criteria or those with physiologic markers of disease alone. Several disease-modifying therapies have failed to show a neuroprotective effect. A common criticism is that neurodegeneration, even in the early motor stages, has advanced too far for neuro-restoration-based interventions to be effective. Therefore, identifying this early population is essential. Once identified, these patients could then potentially benefit from sweeping lifestyle modifications to alter their disease trajectory. Herein, we review the literature on risk factors for, and prodromal symptoms of, PD with an emphasis on ones which may be modifiable in the earliest possible stages. We propose a process for identifying this population and speculate on some strategies which may modulate disease trajectory. Ultimately, this proposal warrants prospective studies.
Collapse
Affiliation(s)
- Lee E Neilson
- Department of Neurology, Veterans Affairs Portland Healthcare System, Portland, OR 97239, USA.
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Joseph F Quinn
- Department of Neurology, Veterans Affairs Portland Healthcare System, Portland, OR 97239, USA.
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Miranda M Lim
- Department of Neurology, Veterans Affairs Portland Healthcare System, Portland, OR 97239, USA.
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA.
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
21
|
Kunz D, Stotz S, de Zeeuw J, Papakonstantinou A, Dümchen S, Haberecht M, Plotkin M, Bes F. Prognostic biomarkers in prodromal α-synucleinopathies: DAT binding and REM sleep without atonia. J Neurol Neurosurg Psychiatry 2023; 94:532-540. [PMID: 36725328 PMCID: PMC10314035 DOI: 10.1136/jnnp-2022-330048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Isolated rapid eye movement (REM) sleep behaviour disorder (iRBD) is a prodromal state of clinical α-synucleinopathies such as Parkinson's disease and Lewy body dementia. The lead-time until conversion is unknown. The most reliable marker of progression is reduced striatal dopamine transporter (DAT) binding, but low availability of imaging facilities limits general use. Our prospective observational study aimed to relate metrics of REM sleep without atonia (RWA)-a hallmark of RBD-to DAT-binding ratios in a large, homogeneous sample of patients with RBD to explore the utility of RWA as a marker of progression in prodromal α-synucleinopathies. METHODS DAT single-photon emission CT (SPECT) and video polysomnography (vPSG) were performed in 221 consecutive patients with clinically suspected RBD. RESULTS vPSG confirmed RBD in 176 patients (162 iRBD, 14 phenoconverted, 45 non-synucleinopathies). Specific DAT-binding ratios differed significantly between groups, but showed considerable overlap. Most RWA metrics correlated significantly with DAT-SPECT ratios (eg, Montreal tonic vs most-affected-region: r=-0.525; p<0.001). In patients taking serotonergic/noradrenergic antidepressants or dopaminergic substances or with recent alcohol abuse, correlations were weaker, suggesting a confounding influence, unlike other possible confounders such as beta-blocker use or comorbid sleep apnoea. CONCLUSIONS In this large single-centre prospective observational study, we found evidence that DAT-binding ratios in patients with iRBD can be used to describe a continuum in the neurodegenerative process. Overlap with non-synucleinopathies and clinical α-synucleinopathies, however, precludes the use of DAT-binding ratios as a precise diagnostic marker. The parallel course of RWA metrics and DAT-binding ratios suggests in addition to existing data that RWA, part of the routine diagnostic workup in these patients, may represent a marker of progression. Based on our findings, we suggest ranges of RWA values to estimate whether patients are in an early, medium or advanced state within the prodromal phase of α-synucleinopathies, providing them with important information about time until possible conversion.
Collapse
Affiliation(s)
- Dieter Kunz
- Sleep Research & Clinical Chronobiology, Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Clinic for Sleep- & Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany
| | - Sophia Stotz
- Sleep Research & Clinical Chronobiology, Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Clinic for Sleep- & Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany
| | - Jan de Zeeuw
- Sleep Research & Clinical Chronobiology, Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Clinic for Sleep- & Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany
| | - Alexandra Papakonstantinou
- Sleep Research & Clinical Chronobiology, Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Clinic for Sleep- & Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany
| | - Susanne Dümchen
- Clinic for Sleep- & Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany
| | - Martin Haberecht
- Clinic for Sleep- & Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany
| | - Michail Plotkin
- Institute of Nuclear Medicine, Vivantes Hospitals, Berlin, Germany
| | - Frederik Bes
- Sleep Research & Clinical Chronobiology, Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Clinic for Sleep- & Chronomedicine, St. Hedwig-Krankenhaus, Berlin, Germany
| |
Collapse
|
22
|
Siderowf A, Concha-Marambio L, Lafontant DE, Farris CM, Ma Y, Urenia PA, Nguyen H, Alcalay RN, Chahine LM, Foroud T, Galasko D, Kieburtz K, Merchant K, Mollenhauer B, Poston KL, Seibyl J, Simuni T, Tanner CM, Weintraub D, Videnovic A, Choi SH, Kurth R, Caspell-Garcia C, Coffey CS, Frasier M, Oliveira LMA, Hutten SJ, Sherer T, Marek K, Soto C. Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol 2023; 22:407-417. [PMID: 37059509 PMCID: PMC10627170 DOI: 10.1016/s1474-4422(23)00109-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 217.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Emerging evidence shows that α-synuclein seed amplification assays (SAAs) have the potential to differentiate people with Parkinson's disease from healthy controls. We used the well characterised, multicentre Parkinson's Progression Markers Initiative (PPMI) cohort to further assess the diagnostic performance of the α-synuclein SAA and to examine whether the assay identifies heterogeneity among patients and enables the early identification of at-risk groups. METHODS This cross-sectional analysis is based on assessments done at enrolment for PPMI participants (including people with sporadic Parkinson's disease from LRRK2 and GBA variants, healthy controls, prodromal individuals with either rapid eye movement sleep behaviour disorder (RBD) or hyposmia, and non-manifesting carriers of LRRK2 and GBA variants) from 33 participating academic neurology outpatient practices worldwide (in Austria, Canada, France, Germany, Greece, Israel, Italy, the Netherlands, Norway, Spain, the UK, and the USA). α-synuclein SAA analysis of CSF was performed using previously described methods. We assessed the sensitivity and specificity of the α-synuclein SAA in participants with Parkinson's disease and healthy controls, including subgroups based on genetic and clinical features. We established the frequency of positive α-synuclein SAA results in prodromal participants (RBD and hyposmia) and non-manifesting carriers of genetic variants associated with Parkinson's disease, and compared α-synuclein SAA to clinical measures and other biomarkers. We used odds ratio estimates with 95% CIs to measure the association between α-synuclein SAA status and categorical measures, and two-sample 95% CIs from the resampling method to assess differences in medians between α-synuclein SAA positive and negative participants for continuous measures. A linear regression model was used to control for potential confounders such as age and sex. FINDINGS This analysis included 1123 participants who were enrolled between July 7, 2010, and July 4, 2019. Of these, 545 had Parkinson's disease, 163 were healthy controls, 54 were participants with scans without evidence of dopaminergic deficit, 51 were prodromal participants, and 310 were non-manifesting carriers. Sensitivity for Parkinson's disease was 87·7% (95% CI 84·9-90·5), and specificity for healthy controls was 96·3% (93·4-99·2). The sensitivity of the α-synuclein SAA in sporadic Parkinson's disease with the typical olfactory deficit was 98·6% (96·4-99·4). The proportion of positive α-synuclein SAA was lower than this figure in subgroups including LRRK2 Parkinson's disease (67·5% [59·2-75·8]) and participants with sporadic Parkinson's disease without olfactory deficit (78·3% [69·8-86·7]). Participants with LRRK2 variant and normal olfaction had an even lower α-synuclein SAA positivity rate (34·7% [21·4-48·0]). Among prodromal and at-risk groups, 44 (86%) of 51 of participants with RBD or hyposmia had positive α-synuclein SAA (16 of 18 with hyposmia, and 28 of 33 with RBD). 25 (8%) of 310 non-manifesting carriers (14 of 159 [9%] LRRK2 and 11 of 151 [7%] GBA) were positive. INTERPRETATION This study represents the largest analysis so far of the α-synuclein SAA for the biochemical diagnosis of Parkinson's disease. Our results show that the assay classifies people with Parkinson's disease with high sensitivity and specificity, provides information about molecular heterogeneity, and detects prodromal individuals before diagnosis. These findings suggest a crucial role for the α-synuclein SAA in therapeutic development, both to identify pathologically defined subgroups of people with Parkinson's disease and to establish biomarker-defined at-risk cohorts. FUNDING PPMI is funded by the Michael J Fox Foundation for Parkinson's Research and funding partners, including: Abbvie, AcureX, Aligning Science Across Parkinson's, Amathus Therapeutics, Avid Radiopharmaceuticals, Bial Biotech, Biohaven, Biogen, BioLegend, Bristol-Myers Squibb, Calico Labs, Celgene, Cerevel, Coave, DaCapo Brainscience, 4D Pharma, Denali, Edmond J Safra Foundation, Eli Lilly, GE Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Insitro, Janssen Neuroscience, Lundbeck, Merck, Meso Scale Discovery, Neurocrine Biosciences, Prevail Therapeutics, Roche, Sanofi Genzyme, Servier, Takeda, Teva, UCB, VanquaBio, Verily, Voyager Therapeutics, and Yumanity.
Collapse
Affiliation(s)
- Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | - David-Erick Lafontant
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Carly M Farris
- Research and Development Unit, Amprion, San Diego, CA, USA
| | - Yihua Ma
- Research and Development Unit, Amprion, San Diego, CA, USA
| | - Paula A Urenia
- Research and Development Unit, Amprion, San Diego, CA, USA
| | - Hieu Nguyen
- Research and Development Unit, Amprion, San Diego, CA, USA
| | - Roy N Alcalay
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, CA, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Paracelsus-Elena Klinik, Kassel, and German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caroline M Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Parkinson's Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parkinson's Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Aleksandar Videnovic
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Ho Choi
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Ryan Kurth
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Christopher S Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Luis M A Oliveira
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Samantha J Hutten
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Claudio Soto
- Research and Development Unit, Amprion, San Diego, CA, USA; Department of Neurology, University of Texas McGovern Medical School at Houston, TX, USA
| |
Collapse
|
23
|
Hattori M, Hiraga K, Satake Y, Tsuboi T, Tamakoshi D, Sato M, Yokoi K, Suzuki K, Arahata Y, Hori A, Kawashima M, Shimizu H, Matsuda H, Kato K, Washimi Y, Katsuno M. Clinico-imaging features of subjects at risk of Lewy body disease in NaT-PROBE baseline analysis. NPJ Parkinsons Dis 2023; 9:67. [PMID: 37100802 PMCID: PMC10133289 DOI: 10.1038/s41531-023-00507-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Individuals with prodromal symptoms of Lewy body disease (LBD), such as rapid eye movement sleep behavior disorder (RBD), often showed imaging defects similar to patients with Parkinson's disease and dementia with Lewy bodies. We examined dopamine transporter (DaT) single-photon-emission computed tomography (SPECT) and metaiodobenzylguanidine (MIBG) scintigraphy in 69 high-risk subjects with ≥2 prodromal symptoms (dysautonomia, hyposmia, and probable RBD) and 32 low-risk subjects without prodromal symptoms, whom were identified through a questionnaire survey of health checkup examinees. The high-risk subjects had significantly worse scores on Stroop test, line orientation test, and the Odor Stick Identification Test for Japanese than the low-risk subjects. The prevalence of abnormalities on DaT-SPECT was higher in the high-risk group than in the low-risk group (24.6% vs. 6.3%, p = 0.030). A decreased uptake on DaT-SPECT was associated with motor impairment, and MIBG scintigraphy defects were associated with hyposmia. The simultaneous evaluation of DaT-SPECT and MIBG scintigraphy may capture a wide range of individuals with prodromal LBD.
Collapse
Affiliation(s)
- Makoto Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Hiraga
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Satake
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Tsuboi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daigo Tamakoshi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Sato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsunori Yokoi
- Department of Neurology and Center for Comprehensive Care and Research Center on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Keisuke Suzuki
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yutaka Arahata
- Department of Neurology and Center for Comprehensive Care and Research Center on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | | | | | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| | - Katsuhiko Kato
- Functional Medical Imaging, Biomedical Imaging Sciences, Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiko Washimi
- Department of Neurology and Center for Comprehensive Care and Research Center on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
24
|
Chahine LM, Merchant K, Siderowf A, Sherer T, Tanner C, Marek K, Simuni T. Proposal for a Biologic Staging System of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:297-309. [PMID: 37066922 DOI: 10.3233/jpd-225111] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The Parkinson's disease (PD) research field has seen the advent of several promising biomarkers and a deeper understanding of the clinical features of the disease from the earliest stages of pathology to manifest disease. Despite progress, a biologically based PD staging system does not exist. Such staging would be a useful framework within which to model the disease, develop and validate biomarkers, guide therapeutic development, and inform clinical trials design. We propose that the presence of aggregated neuronal α-synuclein, dopaminergic neuron dysfunction/degeneration, and clinical signs and symptoms identifies a group of individuals that have Lewy body pathology, which in early stages manifests with what is now referred to as prodromal non-motor features and later stages with the manifestations of PD and related Lewy body diseases as defined by clinical diagnostic criteria. Based on the state of the field, we herein propose a definition and staging of PD based on biology. We present the biologic basis for such a staging system and review key assumptions and evidence that support the proposed approach. We identify gaps in knowledge and delineate crucial research priorities that will inform the ultimate integrated biologic staging system for PD.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalpana Merchant
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | | | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Marras C, Alcalay RN, Siderowf A, Postuma RB. Challenges in the study of individuals at risk for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:219-229. [PMID: 36796944 DOI: 10.1016/b978-0-323-85538-9.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Identifying individuals at high risk for developing neurodegenerative disease opens the possibility of conducting clinical trials that intervene at an earlier stage of neurodegeneration than has been possible to date, and in doing so hopefully improves the odds of efficacy for interventions aimed at slowing or stopping the disease process. The long prodromal phase of Parkinson disease presents opportunities and challenges to establishing cohorts of at-risk individuals. Recruiting people with genetic variants conferring increased risk and people with REM sleep behavior disorder currently constitutes the most promising strategies, but multistage screening of the general population may also be feasible capitalizing on known risk factors and prodromal features. This chapter discusses the challenges involved in identifying, recruiting, and retaining these individuals, and provides insights into possible solutions using examples from studies to date.
Collapse
Affiliation(s)
- Connie Marras
- The Edmond J Safra Program in PD, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada.
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Division of Movement Disorders, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ronald B Postuma
- Department of Neurology, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Maiti B, Perlmutter JS. Imaging in Movement Disorders. Continuum (Minneap Minn) 2023; 29:194-218. [PMID: 36795878 DOI: 10.1212/con.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article reviews commonly used imaging modalities in movement disorders, particularly parkinsonism. The review includes the diagnostic utility, role in differential diagnosis, reflection of pathophysiology, and limitations of neuroimaging in the setting of movement disorders. It also introduces promising new imaging modalities and describes the current status of research. LATEST DEVELOPMENTS Iron-sensitive MRI sequences and neuromelanin-sensitive MRI can be used to directly assess the integrity of nigral dopaminergic neurons and thus may reflect disease pathology and progression throughout the full range of severity in Parkinson disease (PD). The striatal uptake of presynaptic radiotracers in their terminal axons as currently assessed using clinically approved positron emission tomography (PET) or single-photon emission computed tomography (SPECT) imaging correlates with nigral pathology and disease severity only in early PD. Cholinergic PET, using radiotracers that target the presynaptic vesicular acetylcholine transporter, constitutes a substantial advance and may provide crucial insights into the pathophysiology of clinical symptoms such as dementia, freezing, and falls. ESSENTIAL POINTS In the absence of valid, direct, objective biomarkers of intracellular misfolded α-synuclein, PD remains a clinical diagnosis. The clinical utility of PET- or SPECT-based striatal measures is currently limited given their lack of specificity and inability to reflect nigral pathology in moderate to severe PD. These scans may be more sensitive than clinical examination to detect nigrostriatal deficiency that occurs in multiple parkinsonian syndromes and may still be recommended for clinical use in the future to identify prodromal PD if and when disease-modifying treatments become available. Multimodal imaging to evaluate underlying nigral pathology and its functional consequences may hold the key to future advances.
Collapse
|
27
|
Nicastro N, Nencha U, Burkhard PR, Garibotto V. Dopaminergic imaging in degenerative parkinsonisms, an established clinical diagnostic tool. J Neurochem 2023; 164:346-363. [PMID: 34935143 DOI: 10.1111/jnc.15561] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) and other neurodegenerative parkinsonisms are characterised by loss of striatal dopaminergic neurons. Dopamine functional deficits can be measured in vivo using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) ligands assessing either presynaptic (e.g. dopamine synthesis and storage, transporter density) or postsynaptic terminals (i.e. D2 receptors availability). Nuclear medicine imaging thus helps the clinician to separate degenerative forms of parkinsonism with other neurological conditions, e.g. essential tremor or drug-induced parkinsonism. With the present study, we aimed at summarizing the current evidence about dopaminergic molecular imaging in the diagnostic evaluation of PD, atypical parkinsonian syndromes and dementia with Lewy bodies (DLB), as well as its potential to distinguish these conditions and to estimate disease progression. In fact, PET/SPECT methods are clinically validated and have been increasingly integrated into diagnostic guidelines (e.g. for PD and DLB). In addition, there is novel evidence on the classification properties of extrastriatal signal. Finally, dopamine imaging has an outstanding potential to detect neurodegeneration at the premotor stage, including REM-sleep behavior disorder and olfactory loss. Therefore, inclusion of subjects at an early stage for clinical trials can largely benefit from a validated in vivo biomarker such as presynaptic dopamine pathways PET/SPECT assessment.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Umberto Nencha
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre R Burkhard
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
28
|
Du S, Wang Y, Li G, Wei H, Yan H, Li X, Wu Y, Zhu J, Wang Y, Cai Z, Wang N. Olfactory functional covariance connectivity in Parkinson's disease: Evidence from a Chinese population. Front Aging Neurosci 2023; 14:1071520. [PMID: 36688163 PMCID: PMC9846552 DOI: 10.3389/fnagi.2022.1071520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Central anosmia is a potential marker of the prodrome and progression of Parkinson's disease (PD). Resting-state functional magnetic resonance imaging studies have shown that olfactory dysfunction is related to abnormal changes in central olfactory-related structures in patients with early PD. Methods This study, which was conducted at Guanyun People's Hospital, analyzed the resting-state functional magnetic resonance data using the functional covariance connection strength method to decode the functional connectivity between the white-gray matter in a Chinese population comprising 14 patients with PD and 13 controls. Results The following correlations were observed in patients with PD: specific gray matter areas related to smell (i.e., the brainstem, right cerebellum, right temporal fusiform cortex, bilateral superior temporal gyrus, right Insula, left frontal pole and right superior parietal lobule) had abnormal connections with white matter fiber bundles (i.e., the left posterior thalamic radiation, bilateral posterior corona radiata, bilateral superior corona radiata and right superior longitudinal fasciculus); the connection between the brainstem [region of interest (ROI) 1] and right cerebellum (ROI2) showed a strong correlation. Right posterior corona radiation (ROI11) showed a strong correlation with part 2 of the Unified Parkinson's Disease Rating Scale, and right superior longitudinal fasciculus (ROI14) showed a strong correlation with parts 1, 2, and 3 of the Unified Parkinson's Disease Rating Scale and Hoehn and Yahr Scale. Discussion The characteristics of olfactory-related brain networks can be potentially used as neuroimaging biomarkers for characterizing PD states. In the future, dynamic testing of olfactory function may help improve the accuracy and specificity of olfactory dysfunction in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shouyun Du
- Department of Neurology, Guanyun County People's Hospital, Lianyungang, China
| | - Yiqing Wang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China,Department of Neurology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guodong Li
- Department of Neurology, Guanyun County People's Hospital, Lianyungang, China
| | - Hongyu Wei
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaojing Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Yijie Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Jianbing Zhu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Yi Wang
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Zenglin Cai
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China,Department of Neurology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China,*Correspondence: Zenglin Cai, ✉
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China,Nizhuan Wang, ✉
| |
Collapse
|
29
|
Kayis G, Yilmaz R, Arda B, Akbostancı MC. Risk disclosure in prodromal Parkinson's disease - A survey of neurologists. Parkinsonism Relat Disord 2023; 106:105240. [PMID: 36516567 DOI: 10.1016/j.parkreldis.2022.105240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In the absence of a disease-modifying treatment and prognostic uncertainty, ethics of risk disclosure in prodromal Parkinson's disease (PD) is challenging. Previous studies highlighted several facets of these challenges from the perspective of involved parties. However, to date, the view of neurologists who may encounter individuals with prodromal PD remained unrepresented. Moreover, cross-cultural differences intrinsic to the ethics of risk disclosure are yet to be elucidated. Therefore, we investigated the attitude of neurologists toward risk disclosure in prodromal PD. METHODS In this observational study, Turkish neurologists were invited to fill out a questionnaire evaluating their stance on risk disclosure regarding an individual with polysomnography-confirmed REM sleep behavior disorder, which is the strongest risk factor for PD. RESULTS More than 90% of the participating 222 neurologists were familiar with prodromal PD. While 15.3% stated that the risk should be disclosed in any case, 6.8% chose no disclosure. The remaining 77.9% favored disclosure only under certain circumstances, the plurality of which was the individual's consent to know about the risk. After reminding the potential neuroprotective effects of exercise and diet, neurologists who chose the option of "no disclosure" decreased to 3.2% (McNemar's test p = 0.008). No significant differences among the neurologists were found regarding sex, academic title, or field of interest. CONCLUSION The majority of the neurologists found it appropriate to disclose the risk of future PD only if the individual expresses a desire to know. Also, recognition of the impact of lifestyle factors on PD is important in prognostic counseling.
Collapse
Affiliation(s)
- Gorkem Kayis
- Ankara University School of Medicine, Ankara, Turkey
| | - Rezzak Yilmaz
- Ankara University School of Medicine, Department of Neurology, Ankara, Turkey; Ankara University Brain Research Center, Ankara, Turkey.
| | - Berna Arda
- Ankara University School of Medicine, Department of History of Medicine and Ethics, Ankara, Turkey
| | - M Cenk Akbostancı
- Ankara University School of Medicine, Department of Neurology, Ankara, Turkey; Ankara University Brain Research Center, Ankara, Turkey
| |
Collapse
|
30
|
Seibyl JP. Imaging Biomarkers for Central Nervous System Drug Development and Future Clinical Utility: Lessons from Neurodegenerative Disorders. J Nucl Med 2023; 64:12-19. [PMID: 36302659 DOI: 10.2967/jnumed.122.264773] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/07/2023] Open
Abstract
Diseases of the central nervous system are common and often chronic conditions associated with significant morbidity. In particular, neurodegenerative disorders including Alzheimer and Parkinson disease constitute a major health and socioeconomic challenge, with an increasing incidence in many industrialized countries with aging populations. Recent work has established the primary role of abnormal protein accumulation and the spread of disease-specific deposits in brain as a factor in neurotoxicity and disruption of functional networks. A range of therapeutics from small molecules to antibodies targeting these proteinopathies are now in phase 2 and phase 3 clinical trials. These studies are methodologically challenging because of difficulty in accurately diagnosing early disease, the slow and variable rates of progression between individuals, and efficacy measures that may be cofounded by symptomatic improvements due to treatment but not reflecting disease course modification. Further, the ideal candidates for these treatments would be at-risk, or premanifest, persons in whom the pathologic process of the neurodegenerative disorder has begun but who are clinically normal and extremely difficult to identify. Scintigraphic imaging with PET and SPECT in trials offers the opportunity to interrogate pathophysiologic processes such as protein deposition with high specificity. This review summarizes the current implementation of these imaging biomarkers and the implications for future management of neurodegenerative disorders and central nervous system drug development in general.
Collapse
Affiliation(s)
- John P Seibyl
- Institute for Neurodegenerative Disorders, New Haven, Connecticut
| |
Collapse
|
31
|
Miller-Patterson C, Hsu JY, Chahine LM, Morley JF, Willis AW. Selected autonomic signs and symptoms as risk markers for phenoconversion and functional dependence in prodromal Parkinson's disease. Clin Auton Res 2022; 32:463-476. [PMID: 36057046 PMCID: PMC10979289 DOI: 10.1007/s10286-022-00889-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE To determine whether dysautonomia can stratify individuals with other prodromal markers of Parkinson's disease (PD) for risk of phenoconversion and functional decline, which may help identify subpopulations appropriate for experimental studies. METHODS Data were obtained from Parkinson's Progression Markers Initiative. Cohorts without PD but with at-risk features were included (hyposmia and/or rapid-eye-movement-sleep behavior disorder, LRRK2 gene mutation, GBA gene mutation). Dysautonomia measures included Scales-for-Outcomes-in-Parkinson's-Disease Autonomic (SCOPA-AUT), seven SCOPA-AUT subscales, and cardiovascular dysfunction (supine hypertension, low pulse pressure, neurogenic orthostatic hypotension). Outcome measures were phenoconversion and Schwab-and-England Activities-of-Daily-Living (SE-ADL) ≤ 70, which indicates functional dependence. Cox proportional-hazards regression was used to evaluate survival to phenoconversion/SE-ADL ≤ 70 for each dysautonomia measure. If a significant association was identified, a likelihood-ratio test was employed to evaluate whether a significant interaction existed between the measure and cohort. If so, regression analysis was repeated stratified by cohort. RESULTS Median follow-up was 30 months. On multivariable analysis, gastrointestinal and female sexual dysfunction subscales were associated with increased risk of phenoconversion, while the cardiovascular subscale and neurogenic orthostatic hypotension were associated with increased risk of SE-ADL ≤ 70; respective hazard ratios (95% confidence intervals) were 1.13 (1.01-1.27), 3.26 (1.39-7.61), 1.87 (1.16-2.99), 5.45 (1.40-21.25). Only the association between the cardiovascular subscale and SE-ADL ≤ 70 was modified by cohort. CONCLUSIONS Symptoms of gastrointestinal and female sexual dysfunction predict phenoconversion in individuals with other risk markers for PD, while signs and symptoms of cardiovascular dysfunction may be associated with functional decline.
Collapse
Affiliation(s)
- Cameron Miller-Patterson
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 3900 Woodland Ave., Philadelphia, PA, 19104, USA.
| | - Jesse Y Hsu
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Morley
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Allison W Willis
- Department of Epidemiology and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Vaswani PA, Morley JF, Jennings D, Siderowf A, Marek K, Marek K, Seibyl J, Siderowf A, Stern M, Russell D, Sethi K, Frank S, Simuni T, Hauser R, Ravina B, Richards I, Liang G, Adler C, Saunders-Pullman R, Evatt ML, Lai E, Subramanian I, Hogarth P, Chung K. Serial olfactory testing for the diagnosis of prodromal Parkinson's disease in the PARS study. Parkinsonism Relat Disord 2022; 104:15-20. [PMID: 36194902 DOI: 10.1016/j.parkreldis.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND The Parkinson Associated Risk Syndrome (PARS) study was designed to evaluate whether screening with olfactory testing and dopamine transporter (DAT) imaging could identify participants at risk for developing Parkinson's disease (PD). OBJECTIVE Hyposmia on a single test has been associated with increased risk of PD, but, taken alone, lacks specificity. We evaluated whether repeating olfactory testing improves the diagnostic characteristics of this screening approach. METHODS Participants completed up to 10 years of clinical and imaging evaluations in the PARS cohort. Olfaction was assessed with the University of Pennsylvania Smell Identification Test at baseline and on average 1.4 years later. Multiple logistic regression and Cox proportional hazards regression were used to estimate the hazard of development of clinical PD or abnormal DAT imaging. RESULTS Of 186 participants who were initially hyposmic, 28% reverted to normosmia on repeat testing (reverters). No initially normosmic subjects and only 2% of reverters developed DAT imaging progression or clinical PD, compared to 29% of subjects with persistent hyposmia who developed abnormal DAT and 20% who developed clinical PD. The relative risk of clinical conversion to PD was 8.3 (95% CI:0.92-75.2, p = 0.06) and of abnormal DAT scan was 12.5 (2.4-156.2, p = 0.005) for persistent hyposmia, compared to reversion. CONCLUSIONS Persistent hyposmia on serial olfactory testing significantly increases the risk of developing clinical PD and abnormal DAT imaging, compared to hyposmia on a single test. Repeat olfactory testing may be an efficient and cost-effective strategy to improve identification of at-risk patients for early diagnosis and disease modification studies.
Collapse
Affiliation(s)
- Pavan A Vaswani
- Parkinson's Disease Research, Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - James F Morley
- Parkinson's Disease Research, Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danna Jennings
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chahine LM. Prodromal α-Synucleinopathies. Continuum (Minneap Minn) 2022; 28:1268-1280. [DOI: 10.1212/con.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Macklin EA, Coffey CS, Brumm MC, Seibyl JP. Statistical Considerations in the Design of Clinical Trials Targeting Prodromal Parkinson Disease. Neurology 2022; 99:68-75. [PMID: 35970588 DOI: 10.1212/wnl.0000000000200897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Clinical trials testing interventions for prodromal Parkinson disease (PD) hold particular promise for preserving neuronal function and thereby slowing or even forestalling progression to overt PD. Selection of the appropriate target population and outcome measures presents challenges unique to prodromal PD. We propose 3 clinical trial designs, spanning phase 2a, phase 2b, and phase 3 development, that might serve as templates for prodromal PD trials. The proposed phase 2a trial is of a 3-arm design of short duration and focuses on proof of concept with respect to target engagement and change in a motor outcome in a subset of prodromal participants who already manifest asymptomatic but measurable motor dysfunction as an exploratory aim. The proposed phase 2b trial suggests progression of dopamine transporter imaging specific binding ratio as a primary outcome evaluated annually over 2 years with phenoconversion to PD as a key secondary outcome. The proposed phase 3 trial is a large, simple design of a nutraceutical or behavioral intervention with remote administration and phenoconversion as the primary outcome. We then consider what additional data are needed in the short term to better design prodromal PD trials and examine what longer-term goals would accelerate discovery of safe and effective therapies for individuals at risk of PD. Clear and potentially context-specific definitions of phenoconversion and validation of intermediate endpoints are needed in the short term. The use of adaptive trial designs, master protocols, and research registries would help accelerate therapy development in the long term.
Collapse
Affiliation(s)
- Eric A Macklin
- From the Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Biostatistics (C.S.C., M.C.B.), College of Public Health, University of Iowa, Iowa City; and Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT.
| | - Christopher S Coffey
- From the Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Biostatistics (C.S.C., M.C.B.), College of Public Health, University of Iowa, Iowa City; and Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT
| | - Michael C Brumm
- From the Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Biostatistics (C.S.C., M.C.B.), College of Public Health, University of Iowa, Iowa City; and Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT
| | - John Peter Seibyl
- From the Biostatistics Center (E.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Biostatistics (C.S.C., M.C.B.), College of Public Health, University of Iowa, Iowa City; and Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT
| |
Collapse
|
35
|
Molsberry SA, Hughes KC, Schwarzschild MA, Ascherio A. Who to Enroll in Parkinson Disease Prevention Trials? The Case for Composite Prodromal Cohorts. Neurology 2022; 99:26-33. [PMID: 35970591 DOI: 10.1212/wnl.0000000000200788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Significant progress has been made in expanding our understanding of prodromal Parkinson disease (PD), particularly for recognition of early motor and nonmotor signs and symptoms. Although identification of these prodromal features may improve our understanding of the earliest stages of PD, they are individually insufficient for early disease detection and enrollment of participants in prevention trials in most cases because of low sensitivity, specificity, and positive predictive value. Composite cohorts, composed of individuals with multiple co-occurring prodromal features, are an important resource for conducting prodromal PD research and eventual prevention trials because they are more representative of the population at risk for PD, allow investigators to evaluate the efficacy of an intervention across individuals with varying prodromal feature patterns, are able to produce larger sample sizes, and capture individuals at different stages of prodromal PD. A key challenge in identifying individuals with prodromal disease for composite cohorts and prevention trial participation is that we know little about the natural history of prodromal PD. To move toward prevention trials, it is critical that we better understand common prodromal feature patterns and be able to predict the probability of progression and phenoconversion. Ongoing research in cohort studies and administrative databases is beginning to address these questions, but further longitudinal analyses in a large population-based sample are necessary to provide a convincing and definitive strategy for identifying individuals to be enrolled in a prevention trial.
Collapse
Affiliation(s)
- Samantha A Molsberry
- From the Department of Nutrition (S.A.M., A.A.), Harvard T.H. Chan School of Public Health; Epidemiology (K.C.H.), Optum; Department of Neurology (M.A.S.), and MassGeneral Institute for Neurodegenerative Disease (M.A.S.), Massachusetts General Hospital; Department of Epidemiology (A.A.), Harvard T.H. Chan School of Public Health; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | - Katherine C Hughes
- From the Department of Nutrition (S.A.M., A.A.), Harvard T.H. Chan School of Public Health; Epidemiology (K.C.H.), Optum; Department of Neurology (M.A.S.), and MassGeneral Institute for Neurodegenerative Disease (M.A.S.), Massachusetts General Hospital; Department of Epidemiology (A.A.), Harvard T.H. Chan School of Public Health; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Michael A Schwarzschild
- From the Department of Nutrition (S.A.M., A.A.), Harvard T.H. Chan School of Public Health; Epidemiology (K.C.H.), Optum; Department of Neurology (M.A.S.), and MassGeneral Institute for Neurodegenerative Disease (M.A.S.), Massachusetts General Hospital; Department of Epidemiology (A.A.), Harvard T.H. Chan School of Public Health; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Alberto Ascherio
- From the Department of Nutrition (S.A.M., A.A.), Harvard T.H. Chan School of Public Health; Epidemiology (K.C.H.), Optum; Department of Neurology (M.A.S.), and MassGeneral Institute for Neurodegenerative Disease (M.A.S.), Massachusetts General Hospital; Department of Epidemiology (A.A.), Harvard T.H. Chan School of Public Health; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Crotty GF, Keavney JL, Alcalay RN, Marek K, Marshall GA, Rosas HD, Schwarzschild MA. Planning for Prevention of Parkinson Disease: Now Is the Time. Neurology 2022; 99:1-9. [PMID: 36219787 PMCID: PMC10519135 DOI: 10.1212/wnl.0000000000200789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson disease (PD) is a chronic progressive neurodegenerative disease with increasing worldwide prevalence. Despite many trials of neuroprotective therapies in manifest PD, no disease-modifying therapy has been established. Over the past several decades, a series of breakthroughs have identified discrete populations at substantially increased risk of developing PD. Based on this knowledge, now is the time to design and implement PD prevention trials. This endeavor builds on experience gained from early prevention trials in Alzheimer disease and Huntington disease. This article first reviews prevention trial precedents in these other neurodegenerative diseases before focusing on the critical design elements for PD prevention trials, including whom to enroll for these trials, what therapeutics to test, and how to measure outcomes in prevention trials. Our perspective reflects progress and remaining challenges that motivated a 2021 conference, "Planning for Prevention of Parkinson: A Trial Design Symposium and Workshop."
Collapse
Affiliation(s)
- Grace F Crotty
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| | - Jessi L Keavney
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Roy N Alcalay
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kenneth Marek
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gad A Marshall
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - H Diana Rosas
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael A Schwarzschild
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Miyamoto T, Miyamoto M. Odor identification predicts the transition of patients with isolated RBD: A retrospective study. Ann Clin Transl Neurol 2022; 9:1177-1185. [PMID: 35767550 PMCID: PMC9380141 DOI: 10.1002/acn3.51615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION To determine if the severity of olfactory dysfunction in isolated REM sleep behavior disorder (IRBD) predicts conversion to Parkinson's disease (PD) or dementia with Lewy bodies (DLB). METHODS Olfaction was tested using the Japanese version of the University of Pennsylvania Smell Identification Test (UPSIT-J) in 155 consecutive patients with polysomnography-confirmed IRBD and 34 healthy controls. IRBD patients were followed up for 5.8 ± 3.2 (range 0.2-11) years. Thirty-eight patients underwent repeat UPSIT-J evaluation at 2.7 ± 1.3 years after the baseline test. RESULTS UPSIT-J score was lower in IRBD patients than in age- and sex-matched controls. The receiver operating characteristic curve analysis showed that the optimal cutoff score of 22.5 in UPSIT-J discriminated between IRBD patients and controls with a sensitivity of 94.3% and specificity of 81.8%. Anosmia (UPSIT-J score < 19) was present in 54.2% of IRBD patients. In total, 42 patients developed a neurodegenerative disease, of whom 17 had PD, 22 DLB, and 3 MSA. Kaplan-Meier analysis showed that the short-term risk of Lewy body disease (LBD) was higher in patients with anosmia than in those without anosmia. At baseline, the UPSIT-J score was similar between patients who developed PD and DLB (p = 0.136). All three IRBD patients (100%) who developed MSA did not have anosmia. CONCLUSIONS In IRBD patients, anosmia predicts a higher short-term risk of transition to LBD but cannot distinguish between PD and DLB. At baseline, preserved odor identification may occur in latent MSA. Future IRBD neuroprotective trials should evaluate anosmia as a marker of prodromal LBD.
Collapse
Affiliation(s)
- Tomoyuki Miyamoto
- Department of NeurologyDokkyo Medical University Saitama Medical CenterJapan
| | - Masayuki Miyamoto
- Department of NeurologyCenter of Sleep Medicine, Dokkyo Medical UniversityJapan
- Dokkyo Medical UniversitySchool of NursingJapan
| |
Collapse
|
38
|
Otani RTV, Yamamoto JYS, Nunes DM, Haddad MS, Parmera JB. Magnetic resonance and dopamine transporter imaging for the diagnosis of Parkinson´s disease: a narrative review. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:116-125. [PMID: 35976320 PMCID: PMC9491424 DOI: 10.1590/0004-282x-anp-2022-s130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND the diagnosis of Parkinson's disease (PD) can be challenging, especially in the early stages, albeit its updated and validated clinical criteria. Recent developments on neuroimaging in PD, altogether with its consolidated role of excluding secondary and other neurodegenerative causes of parkinsonism, provide more confidence in the diagnosis across the different stages of the disease. This review highlights current knowledge and major recent advances in magnetic resonance and dopamine transporter imaging in aiding PD diagnosis. OBJECTIVE This study aims to review current knowledge about the role of magnetic resonance imaging and neuroimaging of the dopamine transporter in diagnosing Parkinson's disease. METHODS We performed a non-systematic literature review through the PubMed database, using the keywords "Parkinson", "magnetic resonance imaging", "diffusion tensor", "diffusion-weighted", "neuromelanin", "nigrosome-1", "single-photon emission computed tomography", "dopamine transporter imaging". The search was restricted to articles written in English, published between January 2010 and February 2022. RESULTS The diagnosis of Parkinson's disease remains a clinical diagnosis. However, new neuroimaging biomarkers hold promise for increased diagnostic accuracy, especially in earlier stages of the disease. CONCLUSION Future validation of new imaging biomarkers bring the expectation of an increased neuroimaging role in the diagnosis of PD in the following years.
Collapse
Affiliation(s)
- Rafael Tomio Vicentini Otani
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| | - Joyce Yuri Silvestre Yamamoto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| | - Douglas Mendes Nunes
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departmento de Radiologia e Oncologia, Instituto de Radiologia, São Paulo SP, Brazil
| | - Mônica Santoro Haddad
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| | - Jacy Bezerra Parmera
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| |
Collapse
|
39
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Mahlknecht P, Marini K, Werkmann M, Poewe W, Seppi K. Prodromal Parkinson's disease: hype or hope for disease-modification trials? Transl Neurodegener 2022; 11:11. [PMID: 35184752 PMCID: PMC8859908 DOI: 10.1186/s40035-022-00286-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The ultimate goal in Parkinson's disease (PD) research remains the identification of treatments that are capable of slowing or even halting the progression of the disease. The failure of numerous past disease-modification trials in PD has been attributed to a variety of factors related not only to choosing wrong interventions, but also to using inadequate trial designs and target populations. In patients with clinically established PD, neuronal pathology may already have advanced too far to be modified by any intervention. Based on such reasoning, individuals in yet prediagnostic or prodromal disease stages, may provide a window of opportunity to test disease-modifying strategies. There is now sufficient evidence from prospective studies to define diagnostic criteria for prodromal PD and several approaches have been studied in observational cohorts. These include the use of PD-risk algorithms derived from multiple established risk factors for disease as well as follow-up of cohorts with single defined prodromal markers like hyposmia, rapid eye movement sleep behavior disorders, or PD gene carriers. In this review, we discuss recruitment strategies for disease-modification trials in various prodromal PD cohorts, as well as potential trial designs, required trial durations, and estimated sample sizes. We offer a concluding outlook on how the goal of implementing disease-modification trials in prodromal cohorts might be achieved in the future.
Collapse
|
41
|
Multimodal brain and retinal imaging of dopaminergic degeneration in Parkinson disease. Nat Rev Neurol 2022; 18:203-220. [PMID: 35177849 DOI: 10.1038/s41582-022-00618-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Parkinson disease (PD) is a progressive disorder characterized by dopaminergic neurodegeneration in the brain. The development of parkinsonism is preceded by a long prodromal phase, and >50% of dopaminergic neurons can be lost from the substantia nigra by the time of the initial diagnosis. Therefore, validation of in vivo imaging biomarkers for early diagnosis and monitoring of disease progression is essential for future therapeutic developments. PET and single-photon emission CT targeting the presynaptic terminals of dopaminergic neurons can be used for early diagnosis by detecting axonal degeneration in the striatum. However, these techniques poorly differentiate atypical parkinsonian syndromes from PD, and their availability is limited in clinical settings. Advanced MRI in which pathological changes in the substantia nigra are visualized with diffusion, iron-sensitive susceptibility and neuromelanin-sensitive sequences potentially represents a more accessible imaging tool. Although these techniques can visualize the classic degenerative changes in PD, they might be insufficient for phenotyping or prognostication of heterogeneous aspects of PD resulting from extranigral pathologies. The retina is an emerging imaging target owing to its pathological involvement early in PD, which correlates with brain pathology. Retinal optical coherence tomography (OCT) is a non-invasive technique to visualize structural changes in the retina. Progressive parafoveal thinning and fovea avascular zone remodelling, as revealed by OCT, provide potential biomarkers for early diagnosis and prognostication in PD. As we discuss in this Review, multimodal imaging of the substantia nigra and retina is a promising tool to aid diagnosis and management of PD.
Collapse
|
42
|
Xing Y, Sapuan AH, Martín-Bastida A, Naidu S, Tench C, Evans J, Sare G, Schwarz ST, Al-Bachari S, Parkes LM, Kanavou S, Raw J, Silverdale M, Bajaj N, Pavese N, Burn D, Piccini P, Grosset DG, Auer DP. Neuromelanin-MRI to Quantify and Track Nigral Depigmentation in Parkinson's Disease: A Multicenter Longitudinal Study Using Template-Based Standardized Analysis. Mov Disord 2022; 37:1028-1039. [PMID: 35165920 PMCID: PMC9303322 DOI: 10.1002/mds.28934] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/24/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background Clinical diagnosis and monitoring of Parkinson's disease (PD) remain challenging because of the lack of an established biomarker. Neuromelanin‐magnetic resonance imaging (NM‐MRI) is an emerging biomarker of nigral depigmentation indexing the loss of melanized neurons but has unknown prospective diagnostic and tracking performance in multicenter settings. Objectives The aim was to investigate the diagnostic accuracy of NM‐MRI in early PD in a multiprotocol setting and to determine and compare serial NM‐MRI changes in PD and controls. Methods In this longitudinal case–control 3 T MRI study, 148 patients and 97 controls were included from six UK clinical centers, of whom 140 underwent a second scan after 1.5 to 3 years. An automated template‐based analysis was applied for subregional substantia nigra NM‐MRI contrast and volume assessment. A point estimate of the period of prediagnostic depigmentation was computed. Results All NM metrics performed well to discriminate patients from controls, with receiver operating characteristic showing 85% accuracy for ventral NM contrast and 83% for volume. Generalizability using a priori volume cutoff was good (79% accuracy). Serial MRI demonstrated accelerated NM loss in patients compared to controls. Ventral NM contrast loss was point estimated to start 5 to 6 years before clinical diagnosis. Ventral nigral depigmentation was greater in the most affected side, more severe cases, and nigral NM volume change correlated with change in motor severity. Conclusions We demonstrate that NM‐MRI provides clinically useful diagnostic information in early PD across protocols, platforms, and sites. It provides methods and estimated depigmentation rates that highlight the potential to detect preclinical PD and track progression for biomarker‐enabled clinical trials. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Yue Xing
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Abdul Halim Sapuan
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Antonio Martín-Bastida
- Division of Neurology, Imperial College London, London, United Kingdom.,Department of Neurology and Neurosciences, Clínica Universidad de Navarra, Pamplona-Madrid, Spain
| | - Saadnah Naidu
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,Neurology, Nottingham University Hospital Trust, Nottingham, United Kingdom
| | - Christopher Tench
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Jonathan Evans
- Neurology, Nottingham University Hospital Trust, Nottingham, United Kingdom
| | - Gillian Sare
- Neurology, Nottingham University Hospital Trust, Nottingham, United Kingdom
| | - Stefan T Schwarz
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,Department of Radiology, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Sarah Al-Bachari
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.,Department of Neurology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Laura M Parkes
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sofia Kanavou
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jason Raw
- Pennine Acute Hospitals NHS Trust, Oldham, United Kingdom
| | - Monty Silverdale
- Division of Neurology, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nin Bajaj
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Spire Nottingham Hospital, Nottingham, United Kingdom
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre and Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Burn
- Faculty of Medical Sciences, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paola Piccini
- Division of Neurology, Imperial College London, London, United Kingdom.,Department of Brain Science, Imperial College London, London, United Kingdom
| | - Donald G Grosset
- Institute for Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Dorothee P Auer
- School of Medicine, Mental Health & Clinical Neurosciences, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| |
Collapse
|
43
|
Goodwin GR, Bestwick JP, Noyce AJ. The potential utility of smell testing to screen for neurodegenerative disorders. Expert Rev Mol Diagn 2022; 22:139-148. [PMID: 35129037 DOI: 10.1080/14737159.2022.2037424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Loss of smell is a common early feature of neurodegenerative diseases including Alzheimer's and Parkinson's disease. Identifying these conditions in their early stages is important to understand more about early pathophysiological events and the development of disease modifying therapies. Smell testing may be an effective future tool for screening large populations for early neurodegeneration. AREAS COVERED : In this review, we appraise the evidence for, and discuss the likelihood of, the use of smell testing in large screening programs to detect early neurodegeneration. We evaluate the predictive power of smell tests for neurodegenerative disease, compare performance to other established screening programs, and discuss ethical and practical considerations and limitations. EXPERT OPINION : Even if disease modifying therapies were available for neurodegenerative disease, smell tests alone are unlikely to have high enough predictive power to be used in a future screening program. However, we believe they could be a valuable component of a short battery of tests or part of a stepwise process that together could more accurately identify early neurodegeneration in large populations.
Collapse
Affiliation(s)
- Gregory R Goodwin
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK
| | - Jonathan P Bestwick
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
44
|
Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2022; 23:115-128. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.
Collapse
|
45
|
Felix C, Chahine LM, Hengenius J, Chen H, Rosso AL, Zhu X, Cao Z, Rosano C. Diffusion Tensor Imaging of the Olfactory System in Older Adults With and Without Hyposmia. Front Aging Neurosci 2021; 13:648598. [PMID: 34744681 PMCID: PMC8569942 DOI: 10.3389/fnagi.2021.648598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives: To compare gray matter microstructural characteristics of higher-order olfactory regions among older adults with and without hyposmia. Methods: Data from the Brief Smell Identification Test (BSIT) were obtained in 1998–99 for 265 dementia-free adults from the Health, Aging, and Body Composition study (age at BSIT: 74.9 ± 2.7; 62% White; 43% male) who received 3T diffusion tensor imaging in 2006–08 [Interval of time: mean (SD): 8.01 years (0.50)], Apolipoprotein (ApoEε4) genotypes, and repeated 3MS assessments until 2011–12. Cognitive status (mild cognitive impairment, dementia, normal cognition) was adjudicated in 2011–12. Hyposmia was defined as BSIT ≤ 8. Microstructural integrity was quantified by mean diffusivity (MD) in regions of the primary olfactory cortex amygdala, orbitofrontal cortex (including olfactory cortex, gyrus rectus, the orbital parts of the superior, middle, and inferior frontal gyri, medial orbital part of the superior frontal gyrus), and hippocampus. Multivariable regression models were adjusted for total brain atrophy, demographics, cognitive status, and ApoEε4 genotype. Results: Hyposmia in 1998–99 (n = 57, 21.59%) was significantly associated with greater MD in 2006–08, specifically in the orbital part of the middle frontal gyrus, and amygdala, on the right [adjusted beta (p value): 0.414 (0.01); 0.527 (0.01); respectively]. Conclusion: Older adults with higher mean diffusivity in regions important for olfaction are more likely to have hyposmia up to ten years prior. Future studies should address whether hyposmia can serve as an early biomarker of brain microstructural abnormalities for older adults with a range of cognitive functions, including those with normal cognition.
Collapse
Affiliation(s)
- Cynthia Felix
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James Hengenius
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaonan Zhu
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zichun Cao
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R. Dopamine Transporter Imaging, Current Status of a Potential Biomarker: A Comprehensive Review. Int J Mol Sci 2021; 22:11234. [PMID: 34681899 PMCID: PMC8538800 DOI: 10.3390/ijms222011234] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
A major goal of current clinical research in Parkinson's disease (PD) is the validation and standardization of biomarkers enabling early diagnosis, predicting outcomes, understanding PD pathophysiology, and demonstrating target engagement in clinical trials. Molecular imaging with specific dopamine-related tracers offers a practical indirect imaging biomarker of PD, serving as a powerful tool to assess the status of presynaptic nigrostriatal terminals. In this review we provide an update on the dopamine transporter (DAT) imaging in PD and translate recent findings to potentially valuable clinical practice applications. The role of DAT imaging as diagnostic, preclinical and predictive biomarker is discussed, especially in view of recent evidence questioning the incontrovertible correlation between striatal DAT binding and nigral cell or axon counts.
Collapse
Affiliation(s)
- Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Sara Giannoni
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Unit of Neurology, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson’s Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
47
|
Mitchell T, Lehéricy S, Chiu SY, Strafella AP, Stoessl AJ, Vaillancourt DE. Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease: A Review. JAMA Neurol 2021; 78:1262-1272. [PMID: 34459865 PMCID: PMC9017381 DOI: 10.1001/jamaneurol.2021.1312] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Imaging biomarkers in Parkinson disease (PD) are increasingly important for monitoring progression in clinical trials and also have the potential to improve clinical care and management. This Review addresses a critical need to make clear the temporal relevance for diagnostic and progression imaging biomarkers to be used by clinicians and researchers over the clinical course of PD. Magnetic resonance imaging (diffusion imaging, neuromelanin-sensitive imaging, iron-sensitive imaging, T1-weighted imaging), positron emission tomography/single-photon emission computed tomography dopaminergic, serotonergic, and cholinergic imaging as well as metabolic and cerebral blood flow network neuroimaging biomarkers in the preclinical, prodromal, early, and moderate to late stages are characterized. Observations If a clinical trial is being carried out in the preclinical and prodromal stages, potentially useful disease-state biomarkers include dopaminergic imaging of the striatum; metabolic imaging; free-water, neuromelanin-sensitive, and iron-sensitive imaging in the substantia nigra; and T1-weighted structural magnetic resonance imaging. Disease-state biomarkers that can distinguish atypical parkinsonisms are metabolic imaging, free-water imaging, and T1-weighted imaging; dopaminergic imaging and other molecular imaging track progression in prodromal patients, whereas other established progression biomarkers need to be evaluated in prodromal cohorts. Progression in early-stage PD can be monitored using dopaminergic imaging in the striatum, metabolic imaging, and free-water and neuromelanin-sensitive imaging in the posterior substantia nigra. Progression in patients with moderate to late-stage PD can be monitored using free-water imaging in the anterior substantia nigra, R2* of substantia nigra, and metabolic imaging. Cortical thickness and gyrification might also be useful markers or predictors of progression. Dopaminergic imaging and free-water imaging detect progression over 1 year, whereas other modalities detect progression over 18 months or longer. The reliability of progression biomarkers varies with disease stage, whereas disease-state biomarkers are relatively consistent in individuals with preclinical, prodromal, early, and moderate to late-stage PD. Conclusions and Relevance Imaging biomarkers for various stages of PD are readily available to be used as outcome measures in clinical trials and are potentially useful in multimodal combination with routine clinical assessment. This Review provides a critically important template for considering disease stage when implementing diagnostic and progression biomarkers in both clinical trials and clinical care settings.
Collapse
Affiliation(s)
- Trina Mitchell
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
| | - Stéphane Lehéricy
- Paris Brain Institute, Centre de NeuroImagerie de Recherche, INSERM 1127, CNRS 7225, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Shannon Y Chiu
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville
| | - Antonio P Strafella
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Research Imaging Centre, Campbell Family Mental Health, Toronto, Ontario, Canada
- Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and Parkinson's Foundation Centre of Excellence, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville
| |
Collapse
|
48
|
Sharabi Y, Vatine GD, Ashkenazi A. Parkinson's disease outside the brain: targeting the autonomic nervous system. Lancet Neurol 2021; 20:868-876. [PMID: 34536407 DOI: 10.1016/s1474-4422(21)00219-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 01/09/2023]
Abstract
Patients with Parkinson's disease present with signs and symptoms of dysregulation of the peripheral autonomic nervous system that can even precede motor deficits. This dysregulation might reflect early pathology and therefore could be targeted for the development of prodromal or diagnostic biomarkers. Only a few objective clinical tests assess disease progression and are used to evaluate the entire spectrum of autonomic dysregulation in patients with Parkinson's disease. However, results from epidemiological studies and findings from new animal models suggest that the dysfunctional autonomic nervous system is a probable route by which Parkinson's disease pathology can spread both to and from the CNS. The autonomic innervation of the gut, heart, and skin is affected by α-synuclein pathology in the early stages of the disease and might initiate α-synuclein spread via the autonomic connectome to the CNS. The development of easy-to-use and reliable clinical tests of autonomic nervous system function seems crucial for early diagnosis, and for developing strategies to stop or prevent neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Yehonatan Sharabi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Hypertension Unit, Chaim Sheba Medical Center, Tel-HaShomer, Israel
| | - Gad D Vatine
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Regenerative Medicine and Stem Cell (RMSC) Research Center and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Avraham Ashkenazi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Dan X, Wechter N, Gray S, Mohanty JG, Croteau DL, Bohr VA. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res Rev 2021; 70:101416. [PMID: 34325072 PMCID: PMC8373788 DOI: 10.1016/j.arr.2021.101416] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Alterations in olfactory functions are proposed to be early biomarkers for neurodegeneration. Many neurodegenerative diseases are age-related, including two of the most common, Parkinson's disease (PD) and Alzheimer's disease (AD). The establishment of biomarkers that promote early risk identification is critical for the implementation of early treatment to postpone or avert pathological development. Olfactory dysfunction (OD) is seen in 90% of early-stage PD patients and 85% of patients with early-stage AD, which makes it an attractive biomarker for early diagnosis of these diseases. Here, we systematically review widely applied smelling tests available for humans as well as olfaction assessments performed in some animal models and the relationships between OD and normal aging, PD, AD, and other conditions. The utility of OD as a biomarker for neurodegenerative disease diagnosis and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiuli Dan
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noah Wechter
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Gray
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joy G Mohanty
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
50
|
Miglis MG, Adler CH, Antelmi E, Arnaldi D, Baldelli L, Boeve BF, Cesari M, Dall'Antonia I, Diederich NJ, Doppler K, Dušek P, Ferri R, Gagnon JF, Gan-Or Z, Hermann W, Högl B, Hu MT, Iranzo A, Janzen A, Kuzkina A, Lee JY, Leenders KL, Lewis SJG, Liguori C, Liu J, Lo C, Ehgoetz Martens KA, Nepozitek J, Plazzi G, Provini F, Puligheddu M, Rolinski M, Rusz J, Stefani A, Summers RLS, Yoo D, Zitser J, Oertel WH. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol 2021; 20:671-684. [PMID: 34302789 DOI: 10.1016/s1474-4422(21)00176-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving α-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might develop.
Collapse
Affiliation(s)
- Mitchell G Miglis
- Department of Neurology and Neurological Sciences and Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA, USA.
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dario Arnaldi
- Clinical Neurology, DINOGMI, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Baldelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Bradley F Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Dall'Antonia
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Nico J Diederich
- Department of Neuroscience, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Kathrin Doppler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Petr Dušek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | | | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal-Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Ziv Gan-Or
- The Neuro-Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Research Site Rostock, Rostock, Germany
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Annette Janzen
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany
| | | | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Klaus L Leenders
- Department of Nuclear Medicine and Biomedical Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Claudio Liguori
- Sleep Medicine Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jun Liu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Lo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kaylena A Ehgoetz Martens
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; UOC Clinica Neurologica Rete Metropolitana NEUROMET, Bellaria Hospital, Bologna, Italy
| | - Monica Puligheddu
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Michal Rolinski
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Seoul, South Korea
| | - Jennifer Zitser
- Department of Neurology and Neurological Sciences, University of California, San Francisco, CA, USA; Department of Neurology, Tel Aviv Sourasky Medical Center, Affiliate of Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wolfgang H Oertel
- Department of Neurology and Section on Clinical Neuroscience, Philipps University Marburg, Marburg, Germany; Institute for Neurogenomics, Helmholtz Center for Health and Environment, München-Neuherberg, Germany
| |
Collapse
|