1
|
Ruiz-Vico M, Wetterskog D, Orlando F, Thakali S, Wingate A, Jayaram A, Cremaschi P, Vainauskas O, Brighi N, Castellano-Gauna D, Åström L, Matveev VB, Bracarda S, Esen A, Feyerabend S, Senkus E, López-Brea Piqueras M, Gupta S, Wenstrup R, Boysen G, Martins K, Iwata K, Chowdhury S, Gourgioti G, Serikoff A, Gonzalez-Billalabeitia E, Merseburger AS, Demichelis F, Attard G. Liquid Biopsy in Progressing Prostate Cancer Patients Starting Docetaxel with or Without Enzalutamide: A Biomarker Study of the PRESIDE Phase 3b Trial. Eur Urol Oncol 2024:S2588-9311(24)00188-3. [PMID: 39261236 DOI: 10.1016/j.euo.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND OBJECTIVE The PRESIDE (NCT02288247) randomized trial demonstrated prolonged progression-free survival (PFS) with continuing enzalutamide beyond progression in metastatic castration-resistant prostate cancer (mCRPC) patients starting docetaxel. This study aims to test the associations of PFS and circulating tumor DNA (ctDNA) prior to and after one cycle (cycle 2 day 1 [C2D1]) of docetaxel and with a liquid biopsy resistance biomarker (LBRB; plasma androgen receptor [AR] gain and/or circulating tumor cells [CTCs] expressing AR splice variant 7 [CTC-AR-V7]) prior to continuation of enzalutamide/placebo. METHODS Patients consenting to the biomarker substudy and donating blood before starting docetaxel with enzalutamide/placebo (N = 157) were included. Sequential plasma DNA samples were characterized with a prostate-cancer bespoke next-generation-sequencing capture panel (PCF_SELECT), and CTCs were assessed for AR-V7 (Epic Sciences, San Diego, CA, USA). Cox models, Kaplan-Meier, and restricted mean survival time (RMST) at 18 mo were calculated. KEY FINDINGS AND LIMITATIONS There was a significant association of worse PFS with pre-docetaxel ctDNA detection (N = 86 (55%), 8.1 vs 10.8 mo hazard ratio [HR] = 1.78, p = 0.004) or persistence/rise of ctDNA at C2D1 (N = 35/134, 5.5 vs 10.9 mo, HR = 1.95, 95% confidence interval [CI] = 1.15-3.30, p = 0.019). LBRB-positive patients (N = 62) had no benefit from continuing enzalutamide with docetaxel (HR = 0.78, 95% CI = 0.41-1.48, p = 0.44; RMST: 7.9 vs 7.1 mo, p = 0.50). Conversely, resistance biomarker-negative patients (N = 87) had significantly prolonged PFS (HR = 0.49, 95% CI = 0.29-0.82, p = 0.006; RMST: 11.5 vs 8.9 mo, p = 0.005). Eight patients were unevaluable. An exploratory analysis identified increased copy-number gains (CDK6/CDK4) at progression on docetaxel. Limitations included relatively low detection of CTC-AR-V7. Validation of impact on overall survival is required. CONCLUSIONS AND CLINICAL IMPLICATIONS Liquid biopsy gives an early indication of docetaxel futility, could guide patient selection for continuing enzalutamide, and identifies cell cycle gene alterations as a potential cause of docetaxel resistance in mCRPC. PATIENT SUMMARY In the PRESIDE biomarker study, we found that detecting circulating tumor DNA in plasma after starting treatment with docetaxel (chemotherapy) for metastatic prostate cancer resistant to androgen deprivation therapy can predict early how long patients will take to respond to treatment. Patients negative for a liquid biopsy resistance biomarker (based on the status of androgen receptor (AR) gene and AR splice variant 7 in circulating tumor cells) benefit from continuing enzalutamide in combination with docetaxel, while patients positive for the resistance biomarker did not. Additionally, we identified alterations in the cell cycle genes CDK6 and CDK4 as a potential genetic cause of resistance to docetaxel, which may support testing of specific drugs targeting these alterations.
Collapse
Affiliation(s)
- Maria Ruiz-Vico
- Oncology Department, University College London Cancer Institute, London, UK; PhD Program in Biomedicine Research, Universidad Complutense de Madrid, Madrid, Spain; Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Daniel Wetterskog
- Oncology Department, University College London Cancer Institute, London, UK
| | - Francesco Orlando
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Suparna Thakali
- Oncology Department, University College London Cancer Institute, London, UK
| | - Anna Wingate
- Oncology Department, University College London Cancer Institute, London, UK
| | - Anuradha Jayaram
- Oncology Department, University College London Cancer Institute, London, UK
| | - Paolo Cremaschi
- Oncology Department, University College London Cancer Institute, London, UK
| | | | - Nicole Brighi
- Oncology Department, University College London Cancer Institute, London, UK
| | | | - Lennart Åström
- Department of Immunology, Genetics and Pathology, University of Uppsala, Uppsala, Sweden
| | | | - Sergio Bracarda
- Medical Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Adil Esen
- Department of Urology, Dokuz Eylul University, Konak, Turkey
| | - Susan Feyerabend
- Studienpraxis Urologie, Medius Klinik Nürtingen, Nürtingen, Germany
| | - Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | | | - Santosh Gupta
- Translational Research, Epic Sciences Inc, San Diego, CA, USA
| | - Rick Wenstrup
- Translational Research, Epic Sciences Inc, San Diego, CA, USA
| | | | | | | | - Simon Chowdhury
- Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | | | | | - Enrique Gonzalez-Billalabeitia
- PhD Program in Biomedicine Research, Universidad Complutense de Madrid, Madrid, Spain; Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Axel S Merseburger
- Department of Urology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gerhardt Attard
- Oncology Department, University College London Cancer Institute, London, UK.
| |
Collapse
|
2
|
Kunath F, Heidegger I, Heck M, Mayr R, Becker C, Rausch S. [Molecular tumor boards in uro-oncology-prostate cancer]. UROLOGIE (HEIDELBERG, GERMANY) 2024; 63:899-907. [PMID: 39107624 DOI: 10.1007/s00120-024-02399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
The rapid development of molecular medicine has opened up new perspectives for the diagnosis and treatment of urological tumors. Urology faces the challenge of effectively treating advanced cancer, especially in view of the genetic diversity of urological tumors. The molecular tumor board offers an innovative approach to identify targeted therapy options based on the individual genetic signatures of tumor cells or tumor microenvironment-based treatment options. In this article, the concept of the molecular tumor board in urology is presented using the example of prostate cancer. We discuss the principles, applications, and future prospects of this promising approach.
Collapse
Affiliation(s)
- Frank Kunath
- Klinik für Urologie und Kinderurologie, Klinikum Bayreuth GmbH, Bayreuth, Deutschland
- Fachgruppe Molekulare Urologie, Arbeitsgruppe urologische Forschung (AuF), Deutsche Gesellschaft für Urologie e. V., Düsseldorf, Deutschland
| | - Isabel Heidegger
- Abteilung für Urologie, Medizinische Universität Innsbruck, Innsbruck, Österreich
- Fachgruppe Molekulare Urologie, Arbeitsgruppe urologische Forschung (AuF), Deutsche Gesellschaft für Urologie e. V., Düsseldorf, Deutschland
| | - Matthias Heck
- Klinik und Poliklinik für Urologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
- Fachgruppe Molekulare Urologie, Arbeitsgruppe urologische Forschung (AuF), Deutsche Gesellschaft für Urologie e. V., Düsseldorf, Deutschland
| | - Roman Mayr
- Klinik für Urologie, Caritas-Krankenhaus St. Josef, Universität Regensburg, Regensburg, Deutschland
- Fachgruppe Molekulare Urologie, Arbeitsgruppe urologische Forschung (AuF), Deutsche Gesellschaft für Urologie e. V., Düsseldorf, Deutschland
| | - Christoph Becker
- Ressort Forschungsförderung, Deutsche Gesellschaft für Urologie e. V., Düsseldorf, Deutschland.
- Fachgruppe Molekulare Urologie, Arbeitsgruppe urologische Forschung (AuF), Deutsche Gesellschaft für Urologie e. V., Düsseldorf, Deutschland.
- Forschungskoordination, Geschäftsstelle Düsseldorf, Deutsche Gesellschaft für Urologie e. V., Uerdinger Str. 64, 40474, Düsseldorf, Deutschland.
| | - Steffen Rausch
- Klinik für Urologie, Universitätsklinik Tübingen, Tübingen, Deutschland
- Fachgruppe Molekulare Urologie, Arbeitsgruppe urologische Forschung (AuF), Deutsche Gesellschaft für Urologie e. V., Düsseldorf, Deutschland
| |
Collapse
|
3
|
Rahman M, Akter K, Ahmed KR, Fahim MMH, Aktary N, Park MN, Shin SW, Kim B. Synergistic Strategies for Castration-Resistant Prostate Cancer: Targeting AR-V7, Exploring Natural Compounds, and Optimizing FDA-Approved Therapies. Cancers (Basel) 2024; 16:2777. [PMID: 39199550 PMCID: PMC11352813 DOI: 10.3390/cancers16162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains a significant therapeutic challenge due to its resistance to standard androgen deprivation therapy (ADT). The emergence of androgen receptor splice variant 7 (AR-V7) has been implicated in CRPC progression, contributing to treatment resistance. Current treatments, including first-generation chemotherapy, androgen receptor blockers, radiation therapy, immune therapy, and PARP inhibitors, often come with substantial side effects and limited efficacy. Natural compounds, particularly those derived from herbal medicine, have garnered increasing interest as adjunctive therapeutic agents against CRPC. This review explores the role of AR-V7 in CRPC and highlights the promising benefits of natural compounds as complementary treatments to conventional drugs in reducing CRPC and overcoming therapeutic resistance. We delve into the mechanisms of action underlying the anti-CRPC effects of natural compounds, showcasing their potential to enhance therapeutic outcomes while mitigating the side effects associated with conventional therapies. The exploration of natural compounds offers promising avenues for developing novel treatment strategies that enhance therapeutic outcomes and reduce the adverse effects of conventional CRPC therapies. These compounds provide a safer, more effective approach to managing CRPC, representing a significant advancement in improving patient care.
Collapse
Affiliation(s)
- Muntajin Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Khadija Akter
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Md. Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Nahida Aktary
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Sang-Won Shin
- Department of Humanities & Social Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
4
|
Wang J, Liu H, Yu Z, Zhou Q, Sun F, Han J, Gao L, Dou B, Zhang H, Fu J, Jia W, Chen W, Hu J, Han B. Reciprocal regulation between RACGAP1 and AR contributes to endocrine therapy resistance in prostate cancer. Cell Commun Signal 2024; 22:339. [PMID: 38898473 PMCID: PMC11186203 DOI: 10.1186/s12964-024-01703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Endocrine resistance driven by sustained activation of androgen receptor (AR) signaling pathway in advanced prostate cancer (PCa) is fatal. Characterization of mechanisms underlying aberrant AR pathway activation to search for potential therapeutic strategy is particularly important. Rac GTPase-activating protein 1 (RACGAP1) is one of the specific GTPase-activating proteins. As a novel tumor proto-oncogene, overexpression of RACGAP1 was related to the occurrence of various tumors. METHODS Bioinformatics methods were used to analyze the relationship of expression level between RACGAP1 and AR as well as AR pathway activation. qRT-PCR and western blotting assays were performed to assess the expression of AR/AR-V7 and RACGAP1 in PCa cells. Immunoprecipitation and immunofluorescence experiments were conducted to detect the interaction and co-localization between RACGAP1 and AR/AR-V7. Gain- and loss-of-function analyses were conducted to investigate the biological roles of RACGAP1 in PCa cells, using MTS and colony formation assays. In vivo experiments were conducted to evaluate the effect of RACGAP1 inhibition on the tumor growth. RESULTS RACGAP1 was a gene activated by AR, which was markedly upregulated in PCa patients with CRPC and enzalutamide resistance. AR transcriptionally activated RACGAP1 expression by binding to its promoter region. Reciprocally, nuclear RACGAP1 bound to the N-terminal domain (NTD) of both AR and AR-V7, blocking their interaction with the E3 ubiquitin ligase MDM2. Consequently, this prevented the degradation of AR/AR-V7 in a ubiquitin-proteasome-dependent pathway. Notably, the positive feedback loop between RACGAP1 and AR/AR-V7 contributed to endocrine therapy resistance of CRPC. Combination of enzalutamide and in vivo cholesterol-conjugated RIG-I siRNA drugs targeting RACGAP1 induced potent inhibition of xenograft tumor growth of PCa. CONCLUSION In summary, our results reveal that reciprocal regulation between RACGAP1 and AR/AR-V7 contributes to the endocrine resistance in PCa. These findings highlight the therapeutic potential of combined RACGAP1 inhibition and enzalutamide in treatment of advanced PCa.
Collapse
Affiliation(s)
- Jiajia Wang
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Hui Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Zeyuan Yu
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Qianqian Zhou
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Feifei Sun
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jingying Han
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Baokai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Jiawei Fu
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Wenqiao Jia
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Ang D, Chan J, Ong WS, Tan HS, Ng QS, Yuen J, Chen K, Tay KJ, Wong SW, Saad M, Nagata M, Horie S, Chansriwong P, Ng CF, Wong A, Chua MLK, Toh CK, Tan MH, Lim T, Bhagat AAS, Kanesvaran R. Androgen Receptor Splice Variant 7 in Asian Patients With Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 2024; 8:e2300694. [PMID: 38905583 DOI: 10.1200/po.23.00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 06/23/2024] Open
Abstract
PURPOSE Androgen receptor splice variant 7 (ARV-7) is a resistance mechanism to hormonal therapy in metastatic castrate-resistant prostate cancer (mCRPC). It has been associated with poor outcomes. On progression to castrate resistance, ARV-7 positivity has been identified in global populations at an incidence of 17.8%-28.8%. Here, we characterize the incidence of ARV-7 positivity in Asian patients with mCRPC in a prospective fashion and evaluate its implications on treatment outcomes. METHODS Patients with mCRPC from multiple centers in Southeast and East Asia were enrolled in a prospective manner before initiation of androgen receptor signaling inhibitors or docetaxel. ARV-7 status was evaluated at baseline with three commercially available assays: AdnaTest Prostate Cancer platform, Clearbridge method, and IBN method. Clinical outcomes at progression were assessed. The primary end point of this study was prevalence of ARV-7 positivity; secondary end points were incidence of ARV-7 positivity, prostate specific antigen (PSA) response rate, PSA progression-free survival (PFS), and overall survival (OS). RESULTS A total of 102 patients with a median age of 72 years at enrollment participated. Overall, an incidence of ARV-7 positivity of between 14.3% and 33.7% in Asian patients with mCRPC was demonstrated depending on the assay used. Patients found to have ARV-7 positivity at enrollment had a numerically worse PSA PFS compared with ARV-7 negative patients. CONCLUSION In this study, the incidence of ARV-7 positivity in Asian patients with mCRPC was shown to be similar to the global population. Patients with ARV-7 positivity appear to have more aggressive disease with numerically worse PSA PFS and OS. Further prospective studies are needed to fully characterize the relationship that ARV-7 positivity has on prognosis of Asian patients with mCRPC.
Collapse
Affiliation(s)
- Daniel Ang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- SingHealth Duke-NUS Oncology ACP, Singapore, Singapore
| | - Johan Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- SingHealth Duke-NUS Oncology ACP, Singapore, Singapore
| | - Whee Sze Ong
- Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Hui Shan Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- SingHealth Duke-NUS Oncology ACP, Singapore, Singapore
| | - Quan Sing Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- SingHealth Duke-NUS Oncology ACP, Singapore, Singapore
| | - John Yuen
- Division of Surgery and Surgical Oncology, Department of Urology, National Cancer Centre Singapore, Singapore, Singapore
| | - Kenneth Chen
- Division of Surgery and Surgical Oncology, Department of Urology, National Cancer Centre Singapore, Singapore, Singapore
| | - Kae Jack Tay
- Division of Surgery and Surgical Oncology, Department of Urology, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Marniza Saad
- Department of Clinical Oncology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Shigeo Horie
- Department of Urology, Juntendo University, Tokyo, Japan
| | | | - Chi-Fai Ng
- Division of Urology, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Alvin Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Melvin L K Chua
- SingHealth Duke-NUS Oncology ACP, Singapore, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Min-Han Tan
- Lucence Diagnostics Pte Ltd, Singapore, Singapore
| | - Tony Lim
- Division of Pathology, Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Ali Asgar S Bhagat
- Biolidics Limited, Singapore, Singapore
- Institute of Health Innovation and Technology (iHealthtech), National University Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- SingHealth Duke-NUS Oncology ACP, Singapore, Singapore
| |
Collapse
|
6
|
Stitz R, Stoiber F, Silye R, Vlachos G, Andaloro S, Rebhan E, Dunzinger M, Pühringer F, Gallo C, El-Heliebi A, Heitzer E, Hauser-Kronberger C. Clinical Implementation of a Noninvasive, Multi-Analyte Droplet Digital PCR Test to Screen for Androgen Receptor Alterations. J Mol Diagn 2024; 26:467-478. [PMID: 38522838 DOI: 10.1016/j.jmoldx.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 03/26/2024] Open
Abstract
Alterations of the androgen receptor (AR) are associated with resistance to AR-directed therapy in prostate cancer. Thus, it is crucial to develop robust detection methods for AR alterations as predictive biomarkers to enable applicability in clinical practice. We designed and validated five multiplex droplet digital PCR assays for reliable detection of 12 AR targets including AR amplification, AR splice variant 7, and 10 AR hotspot mutations, as well as AR and KLK3 gene expression from plasma-derived cell-free DNA and cell-free RNA. The assays demonstrated excellent analytical sensitivity and specificity ranging from 95% to 100% (95% CI, 75% to 100%). Intrarun and interrun variation analyses revealed a high level of repeatability and reproducibility. The developed assays were applied further in peripheral blood samples from 77 patients with advanced prostate cancer to assess their feasibility in a real-world scenario. Optimizing the reverse transcription of RNA increased the yield of plasma-derived cell-free RNA by 30-fold. Among 23 patients with castration-resistant prostate cancer, 6 patients (26.1%) had one or a combination of several AR alterations, whereas only 2 of 54 patients (3.7%) in the hormone-sensitive stage showed AR alterations. These findings were consistent with other studies and suggest that implementation of comprehensive AR status detection in clinical practice is feasible and can support the treatment decision-making process.
Collapse
Affiliation(s)
- Regina Stitz
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria; Doctoral Program Medical Science, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Franz Stoiber
- Department of Urology Medicine, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Renè Silye
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Silvia Andaloro
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Elisabeth Rebhan
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Michael Dunzinger
- Department of Urology Medicine, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Franz Pühringer
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Caroline Gallo
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| | - Cornelia Hauser-Kronberger
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria; Department of Anatomy and Cell Biology, Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
7
|
Baboudjian M, Peyrottes A, Dariane C, Fromont G, Denis JA, Fiard G, Kassab D, Ladoire S, Lehmann-Che J, Ploussard G, Rouprêt M, Barthélémy P, Roubaud G, Lamy PJ. Circulating Biomarkers Predictive of Treatment Response in Patients with Hormone-sensitive or Castration-resistant Metastatic Prostate Cancer: A Systematic Review. Eur Urol Oncol 2024:S2588-9311(24)00132-9. [PMID: 38824003 DOI: 10.1016/j.euo.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Metastatic prostate cancer (mPCa) harbors genomic alterations that may predict targeted therapy efficacy. These alterations can be identified not only in tissue but also directly in biologic fluids (ie, liquid biopsies), mainly blood. Liquid biopsies may represent a safer and less invasive alternative for monitoring patients treated for mPCa. Current research focuses on the description and validation of novel predictive biomarkers to improve precision medicine in mPCa. Our aim was to systematically review the current evidence on liquid biopsy biomarkers for predicting treatment response in mPCa. METHODS We systematically searched Medline, Web of Science, and evidence-based websites for publications on circulating biomarkers in mPCa between March 2013 and February 2024 for review. Endpoints were: prediction of overall survival, biochemical or radiographic progression-free survival after treatment (chemotherapy, androgen deprivation therapy, androgen receptor pathway inhibitors [ARPIs], immunotherapy, or PARP inhibitors [PARPIs]). For each biomarker, the level of evidence (LOE) for clinical validity was attributed: LOE IA and IB, high level of evidence; LOE IIB and IIC, intermediate level; and LOE IIIC and LOE IV-VD, weak level. KEY FINDINGS AND LIMITATIONS The predictive value of each biomarker for the response to several therapies was evaluated in both metastatic hormone-sensitive (mHSPC) and castration-resistant prostate cancer (mCRPC). In patients with mCRPC, BRCA1/2 or ATM mutations predicted response to ARPIs (LOE IB) and PARPIs (LOE IIB), while AR-V7 transcripts or AR-V7 protein levels in circulating tumor cells (CTCs) predicted response to ARPIs and taxanes (LOE IB). CTC quantification predicted response to cabazitaxel, abiraterone, and radium-223 (LOE IIB), while TP53 alterations predicted response to 177Lu prostate-specific membrane antigen radioligand treatment (LOE IIB). AR copy number in circulating tumor DNA before the first treatment line and before subsequent lines predicted response to docetaxel, cabazitaxel, and ARPIs (LOE IIB). In mHSPC, DNA damage in lymphocytes was predictive of the response to radium-223 (LOE IIB). CONCLUSIONS AND CLINICAL IMPLICATIONS BRCA1/2, ATM, and AR alterations detected in liquid biopsies may help clinicians in management of patients with mPCa. The other circulating biomarkers did not reach the LOE required for routine clinical use and should be validated in prospective independent studies. PATIENT SUMMARY We reviewed studies assessing the value of biomarkers in blood or urine for management of metastatic prostate cancer. The evidence indicates that some biomarkers could help in selecting patients eligible for specific treatments.
Collapse
Affiliation(s)
- Michael Baboudjian
- Department of Urology, North Academic Hospital, AP-HM, Marseille, France
| | - Arthur Peyrottes
- Service d'Urologie et de Transplantation Rénale, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France
| | - Charles Dariane
- Department of Urology, European Hospital Georges-Pompidou, University Paris Cité, Paris, France; UMR-S1151, CNRS UMR-S8253 Institut Necker Enfants Malades, Paris, France
| | - Gaëlle Fromont
- INSERM UMR1069, Nutrition Croissance et Cancer, University of Tours, Tours, France; Department of Pathology, CHRU de Tours, Tours, France
| | - Jérôme Alexandre Denis
- INSERM UMR_S938, CRSA, Biologie et Thérapeutiques du Cancer, Saint-Antoine University Hospital, Sorbonne Université, Paris, France; Service de Biochimie Endocrinienne et Oncologique, Oncobiologie Cellulaire et Moléculaire, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Gaëlle Fiard
- Department of Urology, CHU Grenoble Alpes, University of Grenoble Alpes CNRS, Grenoble INP, TIMC, Grenoble, France
| | | | - Sylvain Ladoire
- Department of Medical Oncology, Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France; University of Burgundy-Franche Comté, Dijon, France; INSERM U1231, Dijon, France
| | - Jacqueline Lehmann-Che
- INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie, Université Paris Cité, Paris, France; UF Oncologie Moléculaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, Quint-Fonsegrives, France; Department of Urology, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Morgan Rouprêt
- Department of Urology, University Hospital Pitié-Salpêtrière, Paris, France; Faculty of Medicine, Sorbonne University, Paris, France
| | - Philippe Barthélémy
- Medical Oncology Department, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Pierre-Jean Lamy
- Biopathologie et Génétique des Cancers, Institut Médical d'Analyse Génomique, Imagenome, Inovie, Montpellier, France; Unité de Recherche Clinique, Clinique Beausoleil, Montpellier, France.
| |
Collapse
|
8
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
9
|
Yi Q, Han X, Yu HG, Chen HY, Qiu D, Su J, Lin R, Batist G, Wu JH. SC912 inhibits AR-V7 activity in castration-resistant prostate cancer by targeting the androgen receptor N-terminal domain. Oncogene 2024; 43:1522-1533. [PMID: 38532114 DOI: 10.1038/s41388-024-02944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 03/28/2024]
Abstract
Androgen deprivation therapies (ADT) are the mainstay treatments for castration-resistant prostate cancer (CRPC). ADT suppresses the androgen receptor (AR) signaling by blocking androgen biosynthesis or inhibiting AR with antiandrogens that target AR's ligand-binding domain (LBD). However, the ADT's effect is short-lived, as the AR signaling inevitably arises again, which is frequently coupled with AR-V7 overexpression. AR-V7 is a truncated form of AR that lacks the LBD, thus being constitutively active in the absence of androgens and irresponsive to AR-LBD-targeting inhibitors. Though compelling evidence has tied AR-V7 to drug resistance in CRPC, pharmacological inhibition of AR-V7 is still an unmet need. Here, we discovered a small molecule, SC912, which binds to full-length AR as well as AR-V7 through AR N-terminal domain (AR-NTD). This pan-AR targeting relies on the amino acids 507-531 in the AR-NTD. SC912 also disrupted AR-V7 transcriptional activity, impaired AR-V7 nuclear localization and DNA binding. In the AR-V7 positive CRPC cells, SC912 suppressed proliferation, induced cell-cycle arrest, and apoptosis. In the AR-V7 expressing CRPC xenografts, SC912 attenuated tumor growth and antagonized intratumoral AR signaling. Together, these results suggested the therapeutic potential of SC912 for CRPC.
Collapse
Affiliation(s)
- Qianhui Yi
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaojun Han
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
| | - Henry G Yu
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Huei-Yu Chen
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dinghong Qiu
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
| | - Jie Su
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
| | - Rongtuan Lin
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Gerald Batist
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Jian Hui Wu
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine, Rd, Montreal, QC, H3T 1E2, Canada.
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Rawat C, Heemers HV. Alternative splicing in prostate cancer progression and therapeutic resistance. Oncogene 2024; 43:1655-1668. [PMID: 38658776 PMCID: PMC11136669 DOI: 10.1038/s41388-024-03036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Prostate cancer (CaP) remains the second leading cause of cancer deaths in western men. CaP mortality results from diverse molecular mechanisms that mediate resistance to the standard of care treatments for metastatic disease. Recently, alternative splicing has been recognized as a hallmark of CaP aggressiveness. Alternative splicing events cause treatment resistance and aggressive CaP behavior and are determinants of the emergence of the two major types of late-stage treatment-resistant CaP, namely castration-resistant CaP (CRPC) and neuroendocrine CaP (NEPC). Here, we review recent multi-omics data that are uncovering the complicated landscape of alternative splicing events during CaP progression and the impact that different gene transcript isoforms can have on CaP cell biology and behavior. We discuss renewed insights in the molecular machinery by which alternative splicing occurs and contributes to the failure of systemic CaP therapies. The potential for alternative splicing events to serve as diagnostic markers and/or therapeutic targets is explored. We conclude by considering current challenges and promises associated with splicing-modulating therapies, and their potential for clinical translation into CaP patient care.
Collapse
Affiliation(s)
- Chitra Rawat
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
11
|
Paul AK, Melson JW, Hirani S, Muthusamy S. Systemic therapy landscape of advanced prostate cancer. Adv Cancer Res 2024; 161:367-402. [PMID: 39032954 DOI: 10.1016/bs.acr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is the most commonly diagnosed cancer in American men and 2nd leading cause of cancer-related deaths in the United States. Androgen deprivation therapy (ADT) is the backbone of treatment for advanced prostate cancer. Over the past several decades a number of new therapeutics, such as novel androgen receptor pathway inhibitors, targeted agents and radionuclide therapies, have been introduced for the treatment of prostate cancers. These agents have been demonstrated to improve clinical outcomes of prostate cancer patients in randomized clinical trials. In addition, new therapeutic strategies, such as early intensification of ADT, novel treatment combinations, and treatment sequencing, are expected to improve outcomes further. In this clinical review, we discuss the changing treatment landscape for advanced prostate cancer with a focus on new therapeutics.
Collapse
Affiliation(s)
- Asit K Paul
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Richmond, VA, United States.
| | - John W Melson
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Richmond, VA, United States
| | - Samina Hirani
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Selvaraj Muthusamy
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Zhou X, Cao Y, Li R, Di X, Wang Y, Wang K. PEI, a new transfection method, augments the inhibitory effect of RBM5 on prostate cancer. Biochem Biophys Res Commun 2024; 704:149703. [PMID: 38402723 DOI: 10.1016/j.bbrc.2024.149703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
PEI is a cationic polymer, serving as a non-viral transfection carrier grounded in nanotechnology that enhances transfection efficiency via the proton sponge effect. RBM5 is an RNA-binding protein that can inhibit tumor development. This study involved the transfection of RBM5 in prostate cancer cells with PEI, Lipo2000, and their combination. Transwell and wound healing assays were used to observe invasion and migration of prostate cancer cells and flow cytometry was used to observe the apoptosis. Detect the expression of invasion and migration-related protein MMP9 through western blotting experiment. An activity detection kit was used to detect the activity of apoptotic protein caspase-3. We found that there was no significant difference in transfection efficiency when PEI and Lipo2000 were used alone but it significantly improved when they are combined. RBM5 reduced invasion, migration, and proliferation of prostate cancer and enhanced apoptosis. MMP9 expression was reduced, and the activity of caspase-3 was increased. PEI transfection could improve the inhibition of RBM5 on tumors more than Lipo2000. The inhibitory effect is more obvious when the two are used together. RBM5 transfected with PEI can amplify its inhibitory effect on prostate cancer, and this effect is more evident when combined with Lipo2000.
Collapse
Affiliation(s)
- Xijia Zhou
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yingshu Cao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yanqiao Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Hamid AA, Sweeney CJ, Hovens C, Corcoran N, Azad AA. Precision medicine for prostate cancer: An international perspective. Urol Oncol 2024:S1078-1439(24)00334-X. [PMID: 38614920 DOI: 10.1016/j.urolonc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
Greater personalization of cancer medicine continues to shape therapy development and patient selection accordingly. The treatment of prostate cancer has evolved considerably since the discovery of androgen deprivation therapy. The comprehensive profiling of the prostate cancer genome has mapped the targetable molecular landscape of the disease and identified opportunities for the implementation of novel and combination therapies. In this review, we provide an overview of the molecular biology of prostate cancer and tools developed to aid prognostication and prediction of therapy benefit. Modern treatment of advanced prostate cancer is reviewed as a paradigm of increasing precision-informed approach to patient care, and must be considered on a global scale with respect to the state of science and care delivery.
Collapse
Affiliation(s)
- Anis A Hamid
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Surgery, University of Melbourne, Melbourne, Australia.
| | | | | | - Niall Corcoran
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Halabi S, Guo S, Park JJ, Nanus DM, George DJ, Antonarakis ES, Danila DC, Szmulewitz RZ, McDonnell DP, Norris JD, Lu C, Luo J, Armstrong AJ. The Impact of Circulating Tumor Cell HOXB13 RNA Detection in Men with Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide. Clin Cancer Res 2024; 30:1152-1159. [PMID: 38236581 PMCID: PMC10947837 DOI: 10.1158/1078-0432.ccr-23-3017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE HOXB13 is an androgen receptor (AR) coregulator specifically expressed in cells of prostatic lineage. We sought to associate circulating tumor cell (CTC) HOXB13 expression with outcomes in men with mCRPC treated with abiraterone or enzalutamide. EXPERIMENTAL DESIGN We conducted a retrospective analysis of the multicenter prospective PROPHECY trial of mCRPC men (NCT02269982, n = 118) treated with abiraterone/enzalutamide. CTC detection and HOXB13 complementary DNA (cDNA) expression was measured using a modified Adnatest, grouping patients into 3 categories: CTC 0 (undetectable); CTC+ HOXB13 CTC low (<4 copies); or CTC+ HOXB13 CTC high. The HOXB13 threshold was determined by maximally selected rank statistics for prognostic associations with overall survival (OS) and progression-free survival (PFS). RESULTS We included 102 men with sufficient CTC HOXB13 cDNA, identifying 25%, 31%, and 44% of patients who were CTC 0, CTC+ HOXB13 low, and CTC+ HOXB13 high, respectively. Median OS were 25.7, 27.8, and 12.1 months whereas the median PFS were 9.0, 7.7, and 3.8 months, respectively. In subgroup analysis among men with CellSearch CTCs ≥5 copies/mL and adjusting for prior abi/enza treatment and Halabi clinical risk score, the multivariate HR for HOXB13 CTC detection was 2.39 (95% CI, 1.06-5.40) for OS and 2.78 (95% CI, 1.38-5.59) for PFS, respectively. Low HOXB13 CTC detection was associated with lower CTC PSA, PSMA, AR-FL, and AR-V7 detection, and more liver/lung metastases (41% vs. 25%). CONCLUSIONS Higher CTC HOXB13 expression is associated with AR-dependent biomarkers in CTCs and is adversely prognostic in the context of potent AR inhibition in men with mCRPC.
Collapse
Affiliation(s)
- Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Siyuan Guo
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Joseph J Park
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Daniel J George
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
| | | | - Daniel Costin Danila
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Donald P McDonnell
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - John D Norris
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Changxue Lu
- Department of Urology, Johns Hopkins University, Baltimore, Maryland
| | - Jun Luo
- Department of Urology, Johns Hopkins University, Baltimore, Maryland
| | - Andrew J Armstrong
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| |
Collapse
|
15
|
Nakamura S, Nagata M, Nagaya N, Ashizawa T, Hirano H, Lu Y, Ide H, Horie S. The Detection and Negative Reversion of Circulating Tumor Cells as Prognostic Biomarkers for Metastatic Castration-Resistant Prostate Cancer with Bone Metastases Treated by Enzalutamide. Cancers (Basel) 2024; 16:772. [PMID: 38398163 PMCID: PMC10886552 DOI: 10.3390/cancers16040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Enzalutamide is a second-generation androgen receptor inhibitor that increases overall survival (OS) rates in patients with metastatic castration-resistant prostate cancer (mCRPC). This study evaluates the efficacy of circulating tumor cell (CTC) status as a prognostic biomarker following enzalutamide administration. A retrospective subgroup analysis and prognostic survey were conducted on 43 patients with mCRPC and bone metastases treated in Juntendo University-affiliated hospitals from 2015 to 2022. Patients were treated with 160 mg enzalutamide daily. CTC analyses on blood samples were performed regularly before and every three months after treatment. The relationship between the patients' clinical factors and the OS rate was analyzed using the log-rank test; the median OS was 37 months. Patients with no detected CTCs at baseline showed significantly longer OS than those with detectable CTCs at baseline. Furthermore, patients demonstrating negative reversion of CTCs during enzalutamide treatment had significantly longer OS than patients with CTC-positivity. Two biomarkers-higher hemoglobin at baseline and achieving negative reversion of CTCs-were significantly associated with prolonged OS. This study suggests that patients achieving CTC-negative reversion during treatment for mCRPC with bone metastases exhibit improved long-term OS. Chronological measurement of CTC status might be clinically useful in the treatment of mCRPC.
Collapse
Affiliation(s)
- So Nakamura
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 1138-431, Japan; (S.N.); (M.N.); (N.N.); (T.A.); (H.H.); (Y.L.)
| | - Masayoshi Nagata
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 1138-431, Japan; (S.N.); (M.N.); (N.N.); (T.A.); (H.H.); (Y.L.)
| | - Naoya Nagaya
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 1138-431, Japan; (S.N.); (M.N.); (N.N.); (T.A.); (H.H.); (Y.L.)
| | - Takeshi Ashizawa
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 1138-431, Japan; (S.N.); (M.N.); (N.N.); (T.A.); (H.H.); (Y.L.)
| | - Hisashi Hirano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 1138-431, Japan; (S.N.); (M.N.); (N.N.); (T.A.); (H.H.); (Y.L.)
| | - Yan Lu
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 1138-431, Japan; (S.N.); (M.N.); (N.N.); (T.A.); (H.H.); (Y.L.)
| | - Hisamitsu Ide
- Department of Advanced Informatics of Genetic Diseases, Digital Therapeutics, Juntendo University Graduate School of Medicine, Tokyo 1138-421, Japan;
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 1138-431, Japan; (S.N.); (M.N.); (N.N.); (T.A.); (H.H.); (Y.L.)
- Department of Advanced Informatics of Genetic Diseases, Digital Therapeutics, Juntendo University Graduate School of Medicine, Tokyo 1138-421, Japan;
| |
Collapse
|
16
|
Tien AH, Sadar MD. Treatments Targeting the Androgen Receptor and Its Splice Variants in Breast Cancer. Int J Mol Sci 2024; 25:1817. [PMID: 38339092 PMCID: PMC10855698 DOI: 10.3390/ijms25031817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is a major cause of death worldwide. The complexity of endocrine regulation in breast cancer may allow the cancer cells to escape from a particular treatment and result in resistant and aggressive disease. These breast cancers usually have fewer treatment options. Targeted therapies for cancer patients may offer fewer adverse side effects because of specificity compared to conventional chemotherapy. Signaling pathways of nuclear receptors, such as the estrogen receptor (ER), have been intensively studied and used as therapeutic targets. Recently, the role of the androgen receptor (AR) in breast cancer is gaining greater attention as a therapeutic target and as a prognostic biomarker. The expression of constitutively active truncated AR splice variants in breast cancer is a possible mechanism contributing to treatment resistance. Therefore, targeting both the full-length AR and AR variants, either through the activation or suppression of AR function, depending on the status of the ER, progesterone receptor, or human epidermal growth factor receptor 2, may provide additional treatment options. Studies targeting AR in combination with other treatment strategies are ongoing in clinical trials. The determination of the status of nuclear receptors to classify and identify patient subgroups will facilitate optimized and targeted combination therapies.
Collapse
Affiliation(s)
- Amy H. Tien
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Marianne D. Sadar
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
17
|
Giunta EF, Malapelle U, Russo A, De Giorgi U. Blood-based liquid biopsy in advanced prostate cancer. Crit Rev Oncol Hematol 2024; 194:104241. [PMID: 38122919 DOI: 10.1016/j.critrevonc.2023.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is characterized by several genetic alterations which could impact prognosis and therapeutic decisions in the advanced disease. Tissue biopsy is still considered the gold standard approach for molecular characterization in prostate cancer, but it has several limitations, including the possibility of insufficient/inadequate tumor tissue to be analyzed. Blood-based liquid biopsy is a non-invasive method to investigate tumor cell derivatives in the bloodstream, being a valid alternative to tissue biopsy for molecular characterization but also for predictive and/or prognostic purposes. In this review, we analyze the most relevant evidence in this field, focusing on clinically relevant targets such as HRD genetic alterations and also focusing on the differences between tissue and liquid biopsy in light of the data from the latest clinical trials.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, FC, Italy.
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, FC, Italy
| |
Collapse
|
18
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
19
|
Baston C, Preda A, Iordache A, Olaru V, Surcel C, Sinescu I, Gingu C. How to Integrate Prostate Cancer Biomarkers in Urology Clinical Practice: An Update. Cancers (Basel) 2024; 16:316. [PMID: 38254807 PMCID: PMC10813985 DOI: 10.3390/cancers16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, the management of prostate cancer has become more and more challenging due to the increasing number of available treatment options, therapeutic agents, and our understanding of its carcinogenesis and disease progression. Moreover, currently available risk stratification systems used to facilitate clinical decision-making have limitations, particularly in providing a personalized and patient-centered management strategy. Although prognosis and prostate cancer-specific survival have improved in recent years, the heterogenous behavior of the disease among patients included in the same risk prognostic group negatively impacts not only our clinical decision-making but also oncological outcomes, irrespective of the treatment strategy. Several biomarkers, along with available tests, have been developed to help clinicians in difficult decision-making scenarios and guide management strategies. In this review article, we focus on the scientific evidence that supports the clinical use of several biomarkers considered by professional urological societies (and included in uro-oncological guidelines) in the diagnosis process and specific difficult management strategies for clinically localized or advanced prostate cancer.
Collapse
Affiliation(s)
- Catalin Baston
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Adrian Preda
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Alexandru Iordache
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Vlad Olaru
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Cristian Surcel
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Ioanel Sinescu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Constantin Gingu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| |
Collapse
|
20
|
Pouyiourou M, Bochtler T, Coith C, Wikman H, Kraft B, Hielscher T, Stenzinger A, Riethdorf S, Pantel K, Krämer A. Frequency and Prognostic Value of Circulating Tumor Cells in Cancer of Unknown Primary. Clin Chem 2024; 70:297-306. [PMID: 38175594 DOI: 10.1093/clinchem/hvad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cancer of unknown primary (CUP) is defined as a primary metastatic malignancy, in which the primary tumor remains elusive in spite of a comprehensive diagnostic workup. The frequency and prognostic value of circulating tumor cells (CTCs), which are considered to be the source of metastasis, has not yet been systematically evaluated in CUP. METHODS A total of 110 patients with a confirmed diagnosis of CUP according to the European Society for Medical Oncology (ESMO) guidelines, who presented to our clinic between July 2021 and May 2023, provided blood samples for CTC quantification using CellSearch methodology. CTC counts were correlated with demographic, clinical, and molecular data generated by comprehensive genomic profiling of tumor tissue. RESULTS CTCs were detected in 26% of all patients at initial presentation to our department. The highest CTC frequency was observed among patients with unfavorable CUP (35.5%), while patients with single-site/oligometastatic CUP harbored the lowest CTC frequency (11.4%). No statistically significant association between CTC positivity and the number of affected organs (P = 0.478) or disease burden (P = 0.120) was found. High CTC levels (≥5 CTCs/7.5 mL; 12/95 analyzed patients) predicted for adverse overall survival compared to negative or low CTC counts (6-months overall survival rate 90% vs 32%, log-rank P < 0.001; HR 5.43; 95% CI 2.23-13.2). CTC dynamics were also prognostic for overall survival by landmark analysis (log-rank P < 0.001, HR 10.2, 95% CI 1.95-52.9). CONCLUSIONS CTC frequency is a strong, independent predictor of survival in patients with CUP. CTC quantification provides a useful prognostic tool in the management of these patients.
Collapse
Affiliation(s)
- Maria Pouyiourou
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tilmann Bochtler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Cornelia Coith
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bianca Kraft
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), University of Heidelberg, Heidelberg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Tripathi N, Thomas VM, Sayegh N, Gebrael G, Chigarira B, Jo Y, Li H, Sahu KK, Nussenzveig R, Nordblad B, Swami U, Agarwal N, Maughan BL. Impact of androgen receptor alterations on cell-free DNA genomic profiling on survival outcomes in metastatic castration-resistant prostate cancer. Prostate 2023; 83:1602-1609. [PMID: 37644774 DOI: 10.1002/pros.24618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Androgen receptor (AR) gene alterations, as detected by circulating tumor cell-free DNA (cfDNA) genomic profiling, have been shown to emerge after a variable duration of androgen signaling inhibition. AR alterations were associated with inferior outcomes on treatment with androgen receptor pathway inhibitors (ARPI) in the first line metastatic castration-resistant prostate cancer (mCRPC) setting in a phase 2 trial. Here in, we assessed the impact of these AR alterations on survival outcomes in a real-world patient population of mCRPC experiencing disease progression on an ARPI. METHODS In this IRB-approved retrospective study, consecutively seen patients with a confirmed diagnosis of mCRPC, with disease progression on a treatment with ARPIs in the first line mCRPC setting, with no prior exposure to an ARPI in the castration sensitive setting, and with available cfDNA profiling from a CLIA certified laboratory were included. Patients were categorized based on AR status: wild-type (ARwt ) or alteration-positive (AR+ ). The objective was to correlate overall survival (OS) after disease progression on the first-line ARPI with the presence or absence of AR alterations. Kaplan-Meier and Cox Regression Tests were used as implemented in R-Studio (v.4.2). RESULTS A total of 137 mCRPC patients were eligible: 69 with ARwt versus 68 with AR+ . The median OS posttreatment with the first ARPI was significantly higher for ARwt than AR+ patients (30.1 vs. 15.2 mos; p < 0.001). Of 108 patients who received a subsequent line of therapy, 63 received an alternate ARPI (AR+ 39 vs. 24 ARwt ), while 20 received a taxane-based therapy (11 AR+ vs. 9 ARwt ). Among patients receiving an alternate ARPI, AR+ had numerically shorter OS (16.8 vs. 30.4 mos, p = 0.1). Among patients receiving taxane-based regimens, the OS was not significantly different between AR+ and ARwt (14.5 vs. 10.1 mos, p = 0.18). CONCLUSION In this real-world study, mCRPC patients with AR alterations on cfDNA had inferior OS after disease progression on the first ARPI, compared to those who did not, and may impact outcomes on a subsequent ARPI but not on subsequent taxane-based therapy received. By providing survival estimates for patients with or without AR alterations, our data may aid in patient counseling, prognostication, treatment decision, and for designing future clinical trials in this setting.
Collapse
Affiliation(s)
- Nishita Tripathi
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Vinay Mathew Thomas
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Nicolas Sayegh
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Georges Gebrael
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Beverly Chigarira
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Yeonjung Jo
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Haoran Li
- Department of Medical Oncology, University of Kansas Cancer Center, Kansas, ISA
| | - Kamal K Sahu
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Blake Nordblad
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Umang Swami
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Benjamin L Maughan
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Dai C, Dehm SM, Sharifi N. Targeting the Androgen Signaling Axis in Prostate Cancer. J Clin Oncol 2023; 41:4267-4278. [PMID: 37429011 PMCID: PMC10852396 DOI: 10.1200/jco.23.00433] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/12/2023] Open
Abstract
Activation of the androgen receptor (AR) and AR-driven transcriptional programs is central to the pathophysiology of prostate cancer. Despite successful translational efforts in targeting AR, therapeutic resistance often occurs as a result of molecular alterations in the androgen signaling axis. The efficacy of next-generation AR-directed therapies for castration-resistant prostate cancer has provided crucial clinical validation for the continued dependence on AR signaling and introduced a range of new treatment options for men with both castration-resistant and castration-sensitive disease. Despite this, however, metastatic prostate cancer largely remains an incurable disease, highlighting the need to better understand the diverse mechanisms by which tumors thwart AR-directed therapies, which may inform new therapeutic avenues. In this review, we revisit concepts in AR signaling and current understandings of AR signaling-dependent resistance mechanisms as well as the next frontier of AR targeting in prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Massachusetts General Hospital Cancer Center, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Scott M. Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
- Department of Urology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
23
|
Van-Duyne G, Blair IA, Sprenger C, Moiseenkova-Bell V, Plymate S, Penning TM. The androgen receptor. VITAMINS AND HORMONES 2023; 123:439-481. [PMID: 37717994 DOI: 10.1016/bs.vh.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.
Collapse
Affiliation(s)
- Greg Van-Duyne
- Department of Biophysics & Biochemistry, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Ian A Blair
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington and GRECC, Seattle, WA, United States
| | - Trevor M Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
24
|
Sanchez-Hernandez ES, Ochoa PT, Suzuki T, Ortiz-Hernandez GL, Unternaehrer JJ, Alkashgari HR, Diaz Osterman CJ, Martinez SR, Chen Z, Kremsky I, Wang C, Casiano CA. Glucocorticoid Receptor Regulates and Interacts with LEDGF/p75 to Promote Docetaxel Resistance in Prostate Cancer Cells. Cells 2023; 12:2046. [PMID: 37626856 PMCID: PMC10453226 DOI: 10.3390/cells12162046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with advanced prostate cancer (PCa) invariably develop resistance to anti-androgen therapy and taxane-based chemotherapy. Glucocorticoid receptor (GR) has been implicated in PCa therapy resistance; however, the mechanisms underlying GR-mediated chemoresistance remain unclear. Lens epithelium-derived growth factor p75 (LEDGF/p75, also known as PSIP1 and DFS70) is a glucocorticoid-induced transcription co-activator implicated in cancer chemoresistance. We investigated the contribution of the GR-LEDGF/p75 axis to docetaxel (DTX)-resistance in PCa cells. GR silencing in DTX-sensitive and -resistant PCa cells decreased LEDGF/p75 expression, and GR upregulation in enzalutamide-resistant cells correlated with increased LEDGF/p75 expression. ChIP-sequencing revealed GR binding sites in the LEDGF/p75 promoter. STRING protein-protein interaction analysis indicated that GR and LEDGF/p75 belong to the same transcriptional network, and immunochemical studies demonstrated their co-immunoprecipitation and co-localization in DTX-resistant cells. The GR modulators exicorilant and relacorilant increased the sensitivity of chemoresistant PCa cells to DTX-induced cell death, and this effect was more pronounced upon LEDGF/p75 silencing. RNA-sequencing of DTX-resistant cells with GR or LEDGF/p75 knockdown revealed a transcriptomic overlap targeting signaling pathways associated with cell survival and proliferation, cancer, and therapy resistance. These studies implicate the GR-LEDGF/p75 axis in PCa therapy resistance and provide a pre-clinical rationale for developing novel therapeutic strategies for advanced PCa.
Collapse
Affiliation(s)
- Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Pedro T. Ochoa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Tise Suzuki
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Greisha L. Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
| | - Juli J. Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Hossam R. Alkashgari
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Department of Physiology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Carlos J. Diaz Osterman
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Shannalee R. Martinez
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Zhong Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
25
|
Filon M, Yang B, Purohit TA, Schehr J, Singh A, Bigarella M, Lewis P, Denu J, Lang J, Jarrard DF. Development of a multiplex assay to assess activated p300/CBP in circulating prostate tumor cells. Oncotarget 2023; 14:738-746. [PMID: 37477521 PMCID: PMC10360924 DOI: 10.18632/oncotarget.28477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Reduced SIRT2 deacetylation and increased p300 acetylation activity leads to a concerted mechanism of hyperacetylation at specific histone lysine sites (H3K9, H3K14, and H3K18) in castration-resistant prostate cancer (CRPC). We examined whether circulating tumor cells (CTCs) identify patients with altered p300/CBP acetylation. CTCs were isolated from 13 advanced PC patients using Exclusion-based Sample Preparation (ESP) technology. Bound cells underwent immunofluorescent staining for histone modifying enzymes (HMEs) of interest and image capture with NIS-Elements software. Using the cBioPortal PCF/SU2C dataset, the response of CRPC to androgen receptor signaling inhibitors (ARSI) was analyzed in 50 subjects. Staining optimization and specificity revealed clear expression of acetyl-p300, acetyl-H3K18, and SIRT2 on CTCs (CK positive, CD45 negative cells). Exposure to A-485, a selective p300/CBP catalytic inhibitor, reduced p300 and H3K18 acetylation. In CRPC patients, a-p300 strongly correlated with its target acetylated H3k18 (Pearson's R = 0.61), and SIRT2 expression showed robust negative correlation with a-H3k18 (R = -0.60). A subgroup of CRPC patients (6/11; 55%) demonstrated consistent upregulation of acetylation based on these markers. To examine the clinical impact of upregulation of the CBP/p300 axis, CRPC patients with reduced deacetylase SIRT2 expression demonstrate shorter response times to ARSI therapy (5.9 vs. 12 mo; p = 0.03). A subset of CRPC patients demonstrate increased p300/CBP activity based on a novel CTC biomarker assay. With further development, this biomarker suite may be used to identify candidates for CBP/p300 acetylation inhibitors in clinical development.
Collapse
Affiliation(s)
- Mikolaj Filon
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Bing Yang
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Tanaya A. Purohit
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Jennifer Schehr
- Department of Hematology/Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Anupama Singh
- Department of Hematology/Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Marcelo Bigarella
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Peter Lewis
- Biomolecular Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - John Denu
- Biomolecular Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - Joshua Lang
- Department of Hematology/Oncology, University of Wisconsin, Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - David F. Jarrard
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
26
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Ferretti S, Mercinelli C, Marandino L, Litterio G, Marchioni M, Schips L. Metastatic Castration-Resistant Prostate Cancer: Insights on Current Therapy and Promising Experimental Drugs. Res Rep Urol 2023; 15:243-259. [PMID: 37396015 PMCID: PMC10312338 DOI: 10.2147/rru.s385257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
The therapeutic landscape of metastatic hormone sensitive and metastatic castration-resistant prostate cancer (mCRPC) is rapidly changing. We reviewed the current treatment options for mCRPC, with insights on new available therapeutic strategies. Chemotherapy with docetaxel or cabazitaxel (for patients progressing on docetaxel), as well as treatment with androgen receptor axis targeted therapies, and Radium-223 are well-established treatment options for patients with mCRPC. The advent of theragnostic in prostate cancer established Lutetium-177 (177Lu)-PSMA-617 as a new standard of care for PSMA-positive mCRPC previously treated with ARAT and taxane-based chemotherapy. Olaparib, a poly-ADP-ribose polymerase (PARP) inhibitor, is approved for selected patients with mCRPC progressed on ARATs and in combination with abiraterone acetate as first-line treatment for mCRPC. Immunotherapy showed limited efficacy in unselected patients with mCRPC and novel immunotherapy strategies need to be explored. The search for biomarkers is a growing field of interest in mCRPC, and predictive biomarkers are needed to support the choice of treatment and the development of tailored strategies.
Collapse
Affiliation(s)
- Simone Ferretti
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti, Urology Unit, Chieti, Italy
| | - Chiara Mercinelli
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Marandino
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Litterio
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti, Urology Unit, Chieti, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti, Urology Unit, Chieti, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti, Urology Unit, Chieti, Italy
| |
Collapse
|
28
|
Hirano H, Nagata M, Nagaya N, Nakamura S, Ashizawa T, Lu Y, Kawano H, Kitamura K, Sakamoto Y, Fujita K, Isobe H, Tsujimura A, Muto S, Horie S. Bone scan index (BSI) scoring by using bone scintigraphy and circulating tumor cells (CTCs): predictive factors for enzalutamide effectiveness in patients with castration-resistant prostate cancer and bone metastases. Sci Rep 2023; 13:8704. [PMID: 37248346 DOI: 10.1038/s41598-023-35790-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Reports of Bone Scan Index (BSI) calculations as imaging biomarkers to predict survival in patients with metastatic castration-resistant prostate cancer (mCRPC) have been mainly from retrospective studies. To evaluate the effectiveness of enzalutamide (ENZ) in Japanese patients with mCRPC and bone metastases using BSI (bone scintigraphy) and circulating tumor cell (CTC) analysis. Prospective, single-arm study at Juntendo University affiliated hospitals, Japan. Patients were administered 160 mg ENZ daily, with 3 monthly assessments: BSI, prostate specific antigen (PSA), CTC and androgen receptor splicing variant-7 (AR-V7) status. Primary endpoint: BSI-decreasing rate after ENZ treatment. Secondary endpoints: PSA-decreasing rate and progression free survival (PFS). Statistical analyses included the Wilcoxon t-test, Cox proportional hazard regression analysis, and log-rank test. Median observation period: 17.9 months, and median PFS: 13.8 (2.0-43.9) months (n = 90 patients). A decrease in BSI compared to baseline as best BSI change on ENZ treatment was evident in 69% patients at the end of the observation period (29% patients showed a complete response, BSI 0.00). At 3 months 67% patients showed a ≥ 50% PSA reduction, and 70% after ENZ treatment. PSA decline (3 months) significantly associated with a prolonged median PFS: 18.0 (estimated) versus 6.4 months (HR 2.977 [95% CI 1.53-5.78], p = 0.001). Best BSI decline response significantly associated with a prolonged PFS: 18.1(estimated) versus 7.8 months (HR 2.045 [95% CI: 1.07-3.90], p = 0.029). CTC negative status (n = 20) significantly associated with a prolonged PFS: 13.4 [estimated] vs 8.6 months (HR 2.366, 95% CI 0.97-5.71, p = 0.041). CTC positive/AR-V7 positive status significantly associated with a shorter PFS: 5.9 months (HR 8.56, 95% CI 2.40-30.43, p = 0.0087). -reduction (3 months) and BSI-reduction (on ENZ treatment) were significant response biomarkers, and a negative CTC status was a predictive factor for ENZ efficacy in patients with mCRPC.
Collapse
Affiliation(s)
- Hisashi Hirano
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan
| | - Masayoshi Nagata
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan
| | - Naoya Nagaya
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan
| | - So Nakamura
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan
| | - Takeshi Ashizawa
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan
| | - Yan Lu
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan
| | - Kosuke Kitamura
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan
- Department of Urology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yoshiro Sakamoto
- Department of Urology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Kazuhiko Fujita
- Department of Urology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Hideyuki Isobe
- Department of Urology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431, Japan.
| |
Collapse
|
29
|
de Jong AC, Danyi A, van Riet J, de Wit R, Sjöström M, Feng F, de Ridder J, Lolkema MP. Predicting response to enzalutamide and abiraterone in metastatic prostate cancer using whole-omics machine learning. Nat Commun 2023; 14:1968. [PMID: 37031196 PMCID: PMC10082805 DOI: 10.1038/s41467-023-37647-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/22/2023] [Indexed: 04/10/2023] Open
Abstract
Response to androgen receptor signaling inhibitors (ARSI) varies widely in metastatic castration resistant prostate cancer (mCRPC). To improve treatment guidance, biomarkers are needed. We use whole-genomics (WGS; n = 155) with matching whole-transcriptomics (WTS; n = 113) from biopsies of ARSI-treated mCRPC patients for unbiased discovery of biomarkers and development of machine learning-based prediction models. Tumor mutational burden (q < 0.001), structural variants (q < 0.05), tandem duplications (q < 0.05) and deletions (q < 0.05) are enriched in poor responders, coupled with distinct transcriptomic expression profiles. Validating various classification models predicting treatment duration with ARSI on our internal and external mCRPC cohort reveals two best-performing models, based on the combination of prior treatment information with either the four combined enriched genomic markers or with overall transcriptomic profiles. In conclusion, predictive models combining genomic, transcriptomic, and clinical data can predict response to ARSI in mCRPC patients and, with additional optimization and prospective validation, could improve treatment guidance.
Collapse
Affiliation(s)
- Anouk C de Jong
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Alexandra Danyi
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Job van Riet
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Martin Sjöström
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Felix Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Jeroen de Ridder
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
30
|
Nauman MC, Won JH, Petiwala SM, Vemu B, Lee H, Sverdlov M, Johnson JJ. α-Mangostin Promotes In Vitro and In Vivo Degradation of Androgen Receptor and AR-V7 Splice Variant in Prostate Cancer Cells. Cancers (Basel) 2023; 15:cancers15072118. [PMID: 37046780 PMCID: PMC10093438 DOI: 10.3390/cancers15072118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A major limitation of current prostate cancer pharmacotherapy approaches is the inability of these compounds to target androgen receptor variants or mutants that develop during prostate cancer progression. The demand for novel therapeutics to prevent, slow, and treat prostate cancer is significant because FDA approved anti-androgens are associated with adverse events and can eventually drive drug-resistant prostate cancer. This study evaluated α-mangostin for its novel ability to degrade the androgen receptor and androgen receptor variants. α-Mangostin is one of more than 70 isoprenylated xanthones isolated from Garcinia mangostana that we have been evaluating for their anticancer potential. Prostate cancer cells treated with α-mangostin exhibited decreased levels of wild-type and mutated androgen receptors. Immunoblot, immunoprecipitation, and transfection experiments demonstrated that the androgen receptor was ubiquitinated and subsequently degraded via the proteasome, which we hypothesize occurs with the assistance of BiP, an ER chaperone protein that we have shown to associate with the androgen receptor. We also evaluated α-mangostin for its antitumor activity and promotion of androgen receptor degradation in vivo. In summary, our study demonstrates that androgen receptor degradation occurs through the novel activation of BiP and suggests a new therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Mirielle C. Nauman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jong Hoon Won
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sakina M. Petiwala
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bhaskar Vemu
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria Sverdlov
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeremy J. Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023; 15:1579. [PMID: 36900369 PMCID: PMC10000663 DOI: 10.3390/cancers15051579] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
32
|
Zhao S, Liao J, Zhang S, Shen M, Li X, Zhou L. The positive relationship between androgen receptor splice variant-7 expression and the risk of castration-resistant prostate cancer: A cumulative analysis. Front Oncol 2023; 13:1053111. [PMID: 36865799 PMCID: PMC9972874 DOI: 10.3389/fonc.2023.1053111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Background At present, androgen deprivation therapy (ADT) is still the standard regimen for patients with metastatic and locally advanced prostate cancer (PCa). The level of androgen receptor splice variant-7 (AR-V7) in men with castration-resistant prostate cancer (CRPC) has been reported to be elevated compared with that in patients diagnosed with hormone-sensitive prostate cancer (HSPC). Aim Herein, we performed a systematic review and cumulative analysis to evaluate whether the expression of AR-V7 was significantly higher in patients with CRPC than in HSPC patients. Methods The commonly used databases were searched to identify the potential studies reporting the level of AR-V7 in CRPC and HSPC patients. The association between CRPC and the positive expression of AR-V7 was pooled by using the relative risk (RR) with the corresponding 95% confidence intervals (CIs) under a random-effects model. For detecting the potential bias and the heterogeneity of the included studies, sensitivity analysis and subgroup analysis were performed. Publication bias was assessed Egger's and Begg's tests. This study was registered on PROSPERO (ID: CRD42022297014). Results This cumulative analysis included 672 participants from seven clinical trials. The study group contained 354 CRPC patients, while the other group contained 318 HSPC patients. Pooled results from the seven eligible studies showed that the expression of positive AR-V7 was significantly higher in men with CRPC compared to those with HSPC (RR = 7.55, 95% CI: 4.61-12.35, p < 0.001). In the sensitivity analysis, the combined RRs did not change substantially, ranging from 6.85 (95% CI: 4.16-11.27, p < 0.001) to 9.84 (95% CI: 5.13-18.87, p < 0.001). In the subgroup analysis, a stronger association was detected in RNA in situ hybridization (RISH) measurement in American patients, and those studies were published before 2011 (all p < 0.001). There was no significant publication bias identified in our study. Conclusion Evidence from the seven eligible studies demonstrated that patients with CRPC had a significantly elevated positive expression of AR-V7. More investigations are still warranted to clarify the association between CRPC and AR-V7 testing. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022297014.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Libo Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Libo Zhou,
| |
Collapse
|
33
|
Ji Y, Zhang R, Han X, Zhou J. Targeting the N-terminal domain of the androgen receptor: The effective approach in therapy of CRPC. Eur J Med Chem 2023; 247:115077. [PMID: 36587421 DOI: 10.1016/j.ejmech.2022.115077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The androgen receptor (AR) is dominant in prostate cancer (PCa) pathology. Current therapeutic agents for advanced PCa include androgen synthesis inhibitors and AR antagonists that bind to the hormone binding pocket (HBP) at the ligand binding domain (LBD). However, AR amplification, AR splice variants (AR-Vs) expression, and intra-tumoral de novo synthesis of androgens result in the reactivation of AR signalling. The AR N-terminal domain (NTD) plays an essential role in AR transcriptional activity. The AR inhibitor targeting NTD could potentially block the activation of both full-length AR and AR-Vs, thus overcoming major resistance mechanisms to current treatments. This review discusses the progress of research in various NTD inhibitors and provides new insight into the development of AR-NTD inhibitors.
Collapse
Affiliation(s)
- Yang Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Xiaoli Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
34
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
35
|
Ha S, Luo G, Xiang H. A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. J Med Chem 2022; 65:16128-16154. [PMID: 36459083 DOI: 10.1021/acs.jmedchem.2c01487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PC), the second most prevalent malignancy in men worldwide, has been proven to depend on the aberrant activation of androgen receptor (AR) signaling. Long-term androgen deprivation for the treatment of PC inevitably leads to castration-resistant prostate cancer (CRPC) in which AR remains a crucial oncogenic driver. Thus, there is an urgent need to develop new strategies to address this unmet medical need. Targeting AR for degradation has recently been in a vigorous development stage, and accumulating clinical studies have highlighted the benefits of AR degraders in CRPC patients. Herein, we provide a comprehensive summary of small-molecule AR degraders with diverse mechanisms of action including proteolysis-targeting chimeras (PROTACs), selective AR degraders (SARDs), hydrophobic tags (HyT), and other AR degraders with distinct mechanisms. Accordingly, their structure-activity relationships, biomedical applications, and therapeutic values are also dissected to provide insights into the future development of promising AR degradation-based therapeutics for CRPC.
Collapse
Affiliation(s)
- Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
36
|
Abramenkovs A, Hariri M, Spiegelberg D, Nilsson S, Stenerlöw B. Ra-223 induces clustered DNA damage and inhibits cell survival in several prostate cancer cell lines. Transl Oncol 2022; 26:101543. [PMID: 36126563 PMCID: PMC9489499 DOI: 10.1016/j.tranon.2022.101543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 10/24/2022] Open
Abstract
The bone-seeking radiopharmaceutical Xofigo (Radium-223 dichloride) has demonstrated both extended survival and palliative effects in treatment of bone metastases in prostate cancer. The alpha-particle emitter Ra-223, targets regions undergoing active bone remodeling and strongly binds to bone hydroxyapatite (HAp). However, the toxicity mechanism and properties of Ra-223 binding to hydroxyapatite are not fully understood. By exposing 2D and 3D (spheroid) prostate cancer cell models to free and HAp-bound Ra-223 we here studied cell toxicity, apoptosis and formation and repair of DNA double-strand breaks (DSBs). The rapid binding with a high affinity of Ra-223 to bone-like HAp structures was evident (KD= 19.2 × 10-18 M) and almost no dissociation was detected within 24 h. Importantly, there was no significant uptake of Ra-223 in cells. The Ra-223 alpha-particle decay produced track-like distributions of the DNA damage response proteins 53BP1 and ɣH2AX induced high amounts of clustered DSBs in prostate cancer cells and activated DSB repair through non-homologous end-joining (NHEJ). Ra-223 inhibited growth of prostate cancer cells, independent of cell type, and induced high levels of apoptosis. In summary, we suggest the high cell killing efficacy of the Ra-223 was attributed to the clustered DNA damaged sites induced by α-particles.
Collapse
Affiliation(s)
- Andris Abramenkovs
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden
| | - Mehran Hariri
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden.
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sten Nilsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75185, Sweden.
| |
Collapse
|
37
|
Chen X, Shao Y, Wei W, Zhu S, Li Y, Chen Y, Li H, Tian H, Sun G, Niu Y, Shang Z. Androgen deprivation restores ARHGEF2 to promote neuroendocrine differentiation of prostate cancer. Cell Death Dis 2022; 13:927. [PMID: 36335093 PMCID: PMC9637107 DOI: 10.1038/s41419-022-05366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
Androgen receptor (AR) plays an important role in the progression of prostate cancer and has been targeted by castration or AR-antagonists. The emergence of castration-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) is inevitable. However, it is not entirely clear how ADT fails or how it causes resistance. Through analysis of RNA-seq data, we nominate ARHGEF2 as a pivotal androgen-repressed gene. We show that ARHGEF2 is directly suppressed by androgen/AR. AR occupies the enhancer and communicates with the promoter region of ARHGEF2. Functionally, ARHGEF2 is important for the growth, lethal phenotype, and survival of CRPC cells and tumor xenografts. Correspondingly, AR inhibition or AR antagonist treatment can restore ARHGEF2 expression, thereby allowing prostate cancer cells to induce treatment resistance and tolerance. Overall, our findings provide an explanation for the contradictory clinical results that ADT resistance may be caused by the up-regulation of ARHGEF2 and provide a novel target.
Collapse
Affiliation(s)
- Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yi Shao
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Wanqing Wei
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
- Department of Pediatric Surgery, Huai'an Maternal and Children Health Hospital, Huai'an, China
| | - Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yang Li
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yutong Chen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Hanling Li
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Hao Tian
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Guijiang Sun
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
38
|
Kotamarti S, Armstrong AJ, Polascik TJ, Moul JW. Molecular Mechanisms of Castrate-Resistant Prostate Cancer. Urol Clin North Am 2022; 49:615-626. [DOI: 10.1016/j.ucl.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Derderian S, Vesval Q, Wissing MD, Hamel L, Côté N, Vanhuyse M, Ferrario C, Bladou F, Aprikian A, Chevalier S. Liquid biopsy-based targeted gene screening highlights tumor cell subtypes in patients with advanced prostate cancer. Clin Transl Sci 2022; 15:2597-2612. [PMID: 36172886 PMCID: PMC9652435 DOI: 10.1111/cts.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Prostate cancer (PCa) clinical heterogeneity underscores tumor heterogeneity, which may be best defined by cell subtypes. To test if cell subtypes contributing to progression can be assessed noninvasively, we investigated whether 14 genes representing luminal, neuroendocrine, and stem cells are detectable in whole blood RNA of patients with advanced PCa. For each gene, reverse transcription quantitative polymerase chain reaction assays were first validated using RNA from PCa cell lines, and their traceability in blood was assessed in cell spiking experiments. These were next tested in blood RNA of 40 advanced PCa cases and 40 healthy controls. Expression in controls, which was low or negative, was used to define stringent thresholds for gene overexpression in patients to account for normal variation in white blood cells. Thirty-five of 40 patients overexpressed at least one gene. Patients with more genes overexpressed had a higher risk of death (hazard ratio 1.42, range 1.12-1.77). Progression on androgen receptor inhibitors was associated with overexpression of stem (odds ratio [OR] 7.74, range 1.68-35.61) and neuroendocrine (OR 13.10, range 1.24-142.34) genes, while luminal genes were associated with taxanes (OR 2.7, range 1.07-6.82). Analyses in PCa transcriptomic datasets revealed that this gene panel was most prominent in metastases of advanced disease, with diversity among patients. Collectively, these findings support the contribution of the prostate cell subtypes to disease progression. Cell-subtype specific genes are traceable in blood RNA of patients with advanced PCa and are associated with clinically relevant end points. This opens the door to minimally invasive liquid biopsies for better management of this deadly disease.
Collapse
Affiliation(s)
- Seta Derderian
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada
| | - Quentin Vesval
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of UrologyCentre Hospitalier Régional et Universitaire (CHRU) de RennesRennesFrance
| | - Michel D. Wissing
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Lucie Hamel
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada
| | - Nathalie Côté
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada
| | - Marie Vanhuyse
- Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Cristiano Ferrario
- Department of OncologyJewish General Hospital (JGH) and McGill UniversityMontrealCanada
| | - Franck Bladou
- Department of UrologyCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Armen Aprikian
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Simone Chevalier
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada,Department of MedicineMcGill UniversityMontrealCanada
| |
Collapse
|
40
|
A Novel Biguanide Derivative, IM176, Induces Prostate Cancer Cell Death via AMPK-mTOR Pathway and Androgen Receptor Signalling Pathway. Prostate Int 2022. [DOI: 10.1016/j.prnil.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Ashizawa T, Nagata M, Nakamura S, Hirano H, Nagaya N, Lu Y, Horie S. Efficacy of cabazitaxel and androgen splicing variant-7 status in circulating tumor cells in Asian patients with metastatic castration-resistant prostate cancer. Sci Rep 2022; 12:18016. [PMID: 36289357 PMCID: PMC9606294 DOI: 10.1038/s41598-022-22854-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Androgen receptor splice variant-7 (AR-V7) expression in circulating tumor cells (CTCs) in metastatic castration-resistant prostate cancer (mCRPC) is associated with abiraterone and enzalutamide resistance. We determine whether cabazitaxel (CBZ) is equally effective in AR-V7-positive and -negative CRPC and whether AR-V7-positive patients retain CBZ sensitivity. This is the first prospective, open-label, Asian validation study of CBZ in Japanese patients with mCRPC after docetaxel (n = 48; four CBZ cycles; 2017-2020, Juntendo University Hospitals). Primary endpoint was prostate-specific antigen response rate (PSA-RR); secondary endpoints included overall survival (OS), bone scan index (BSI) PSA-RR (≥ 50% decline from baseline) for CTC-/ARV7-, CTC+ /ARV7-, and CTC +/ARV7+ groups. PSA-RR ≥ - 30% was 38% (18/48) and ≥ - 50% was 26% (12/48). BSI-change rate ≥ - 30% was 19% (9/41) and ≥ - 50% was 17% (8/41). Median OS was 13.7(12.2-18.9) months. PSA decline in early CBZ treatment associated with OS (p = 0.00173). BSI decline associated with OS (p = 0.0194). PSA-RR(≥ 50%) was 43%(6/14) in CTC-/ARV7-, 19%(5/26) in CTC+ ARV7-, and 12%(1/8) in CTC+/ARV7+ ( p > 0.05). AR-V7 in CTCs at baseline not associated with OS. AR-V7 was not associated with CBZ resistance in CTCs. Reductions in BSI and PSA in early stages of CBZ treatment may predict OS.
Collapse
Affiliation(s)
- Takeshi Ashizawa
- grid.258269.20000 0004 1762 2738Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431 Japan
| | - Masayoshi Nagata
- grid.258269.20000 0004 1762 2738Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431 Japan
| | - So Nakamura
- grid.258269.20000 0004 1762 2738Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431 Japan
| | - Hisashi Hirano
- grid.258269.20000 0004 1762 2738Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431 Japan
| | - Naoya Nagaya
- grid.258269.20000 0004 1762 2738Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431 Japan
| | - Yan Lu
- grid.258269.20000 0004 1762 2738Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431 Japan
| | - Shigeo Horie
- grid.258269.20000 0004 1762 2738Department of Urology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 1138431 Japan ,grid.258269.20000 0004 1762 2738Department of Advanced Informatics of Genetic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Pak S, Suh J, Park SY, Kim Y, Cho YM, Ahn H. Glucocorticoid receptor and androgen receptor-targeting therapy in patients with castration-resistant prostate cancer. Front Oncol 2022; 12:972572. [PMID: 36212458 PMCID: PMC9541428 DOI: 10.3389/fonc.2022.972572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The glucocorticoid receptor (GR) promotes resistance to androgen receptor (AR)-targeting therapies in castration-resistant prostate cancer (CRPC) by bypassing AR blockade. However, the clinical relevance of evaluating GR expression in patients with CRPC has not been determined. The present study investigated the association of relative GR expression in CRPC tissue samples with treatment response to AR-targeting therapy. Methods Levels of GR, AR-FL, and AR-V7 mRNAs were measured in prostate cancer tissue from prospectively enrolled CRPC patients who were starting treatment. Patients were divided into groups with high and low AR-V7/AR-FL ratios and with high and low GR/AR-FL ratios. The primary endpoint was prostate-specific antigen (PSA) response rate to treatment. Results Evaluation of 38 patients treated with AR-targeting therapies showed that the PSA response rate was significantly higher in patients with low than high AR-V7/AR-FL ratios (77.8% vs. 25.0%, p=0.003) and in patients with low than high GR/AR-FL ratios (81.3% vs. 27.3%, p=0.003). Patients with low GR/AR-FL ratios had higher rates of PSA progression-free survival (46.0% vs. 22.4%, p=0.006), radiologic progression-free survival (28.9% vs. 10.0%, p=0.02), and overall survival (75.2% vs. 48.0%, p=0.037) than patients with high GR/AR-FL ratios. The association of GR/AR-FL ratio with PSA response to AR-targeting therapy remained significant in multivariable models. Evaluation of the 14 patients who received taxane chemotherapy showed that PSA response rates did not differ significantly in those with low and high AR-V7/AR-FL and GR/AR-FL ratios, although no definitive conclusions can be drawn due to the small number of patients. Conclusion Relative GR expression is associated with sensitivity to AR-targeting therapy and survival in patients with CRPC. Large-scale prospective validation and liquid biopsy-based studies are warranted.
Collapse
Affiliation(s)
- Sahyun Pak
- Department of Urology, Hallym University College of Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Jungyo Suh
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, South Korea
| | - Yunlim Kim
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Yong Mee Cho
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Hanjong Ahn
- Department of Urology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
43
|
Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol 2022; 15:131. [PMID: 36096847 PMCID: PMC9465933 DOI: 10.1186/s13045-022-01351-y] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Liquid biopsies are increasingly used for cancer molecular profiling that enables a precision oncology approach. Circulating extracellular nucleic acids (cell-free DNA; cfDNA), circulating tumor DNA (ctDNA), and circulating tumor cells (CTCs) can be isolated from the blood and other body fluids. This review will focus on current technologies and clinical applications for liquid biopsies. ctDNA/cfDNA has been isolated and analyzed using many techniques, e.g., droplet digital polymerase chain reaction, beads, emulsion, amplification, and magnetics (BEAMing), tagged-amplicon deep sequencing (TAm-Seq), cancer personalized profiling by deep sequencing (CAPP-Seq), whole genome bisulfite sequencing (WGBS-Seq), whole exome sequencing (WES), and whole genome sequencing (WGS). CTCs have been isolated using biomarker-based cell capture, and positive or negative enrichment based on biophysical and other properties. ctDNA/cfDNA and CTCs are being exploited in a variety of clinical applications: differentiating unique immune checkpoint blockade response patterns using serial samples; predicting immune checkpoint blockade response based on baseline liquid biopsy characteristics; predicting response and resistance to targeted therapy and chemotherapy as well as immunotherapy, including CAR-T cells, based on serial sampling; assessing shed DNA from multiple metastatic sites; assessing potentially actionable alterations; analyzing prognosis and tumor burden, including after surgery; interrogating difficult-to biopsy tumors; and detecting cancer at early stages. The latter can be limited by the small amounts of tumor-derived components shed into the circulation; furthermore, cfDNA assessment in all cancers can be confounded by clonal hematopoeisis of indeterminate potential, especially in the elderly. CTCs can be technically more difficult to isolate that cfDNA, but permit functional assays, as well as evaluation of CTC-derived DNA, RNA and proteins, including single-cell analysis. Blood biopsies are less invasive than tissue biopsies and hence amenable to serial collection, which can provide critical molecular information in real time. In conclusion, liquid biopsy is a powerful tool, and remarkable advances in this technology have impacted multiple aspects of precision oncology, from early diagnosis to management of refractory metastatic disease. Future research may focus on fluids beyond blood, such as ascites, effusions, urine, and cerebrospinal fluid, as well as methylation patterns and elements such as exosomes.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California San Diego, La Jolla, 1200 Garden View Road, Encinitas, CA, 92024, USA.
| | - Shumei Kato
- Division of Hematology-Oncology, University of California San Diego, La Jolla, 1200 Garden View Road, Encinitas, CA, 92024, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.,WIN Consortium, Paris, France
| |
Collapse
|
44
|
Zavridou M, Smilkou S, Tserpeli V, Sfika A, Bournakis E, Strati A, Lianidou E. Development and Analytical Validation of a 6-Plex Reverse Transcription Droplet Digital PCR Assay for the Absolute Quantification of Prostate Cancer Biomarkers in Circulating Tumor Cells of Patients with Metastatic Castration-Resistant Prostate Cancer. Clin Chem 2022; 68:1323-1335. [PMID: 36093578 DOI: 10.1093/clinchem/hvac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Gene expression in circulating tumor cells (CTCs) can be used as a predictive liquid biopsy test in metastatic castration-resistant prostate cancer (mCRPC). We developed a novel 6-plex reverse transcription droplet digital PCR (RT-ddPCR) assay for the absolute quantification of 4 prostate cancer biomarkers, a reference gene, and a synthetic DNA external control (DNA-EC) in CTCs isolated from mCRPC patients. METHODS A novel 6-plex RT-ddPCR assay was developed for the simultaneous absolute quantification of AR-FL, AR-V7, PSA, and PSMA, HPRT (used as a reference gene), and a synthetic DNA-EC that was included for quality control. The assay was optimized and analytically validated using DNA synthetic standards for each transcript as positive controls. Epithelial cellular adhesion molecule (EpCAM)-positive CTC fractions isolated from 90 mCRPC patients and 11 healthy male donors were analyzed, and results were directly compared with reverse transcription quantitative PCR (RT-qPCR) for all markers in all samples. RESULTS Linear dynamic range, limit of detection, limit of quantification, intra- and interassay precision, and analytical specificity were determined for each marker. Application of the assay in EpCAM-positive CTC showed positivity for AR-FL (71/90; 78.9%), AR-V7 (28/90; 31.1%), PSA (41/90; 45.6%), PSMA (38/90; 42.2%), and HPRT (90/90; 100%); DNA-EC concentration was constant across all samples. Direct comparison with RT-qPCR for the same markers in the same samples revealed RT-ddPCR to have superior diagnostic sensitivity. CONCLUSIONS Our 6-plex RT-ddPCR assay was highly sensitive, specific, and reproducible, and enabled simultaneous and absolute quantification of 5 gene transcripts in minute amounts of CTC-derived cDNA. Application of this assay in clinical samples gave diagnostic sensitivity and specificity comparable to, or better than, RT-qPCR.
Collapse
Affiliation(s)
- Martha Zavridou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Smilkou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Victoria Tserpeli
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggeliki Sfika
- Oncology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Bournakis
- Oncology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
45
|
Jang A, Rauterkus GP, Vaishampayan UN, Barata PC. Overcoming Obstacles in Liquid Biopsy Developments for Prostate Cancer. Onco Targets Ther 2022; 15:897-912. [PMID: 36051571 PMCID: PMC9427206 DOI: 10.2147/ott.s285758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is one of the most common malignancies in men. Over time, it can metastasize and become lethal once it exhausts hormonal therapies and transitions into castration-resistant prostate cancer (CRPC). Several therapies have been recently approved for advanced prostate cancer, but identifying biomarkers for current treatments and searching for more effective treatments are urgently needed. Liquid biopsy is a powerful tool for isolating genetic material, proteins, and whole tumor cells from the blood. In recent decades, this technology has rapidly advanced, allowing for better insights into the pathogenesis and treatment response in different stages of prostate cancer. In this review, we summarize important clinical studies involving liquid biopsies in prostate cancer with a focus on advanced disease, notably regarding circulating tumor DNA, circulating tumor cells, and exosomes. We highlight the progress and the challenges that still exist for these technologies. Finally, we discuss promising avenues that will further expand the importance of liquid biopsy in the care for prostate cancer patients.
Collapse
Affiliation(s)
- Albert Jang
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Pedro C Barata
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Cancer Center, New Orleans, LA, USA.,Department of Medicine, Case Comprehensive Cancer Center, Seidman Cancer Center, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
46
|
Schmidt KT, Karzai F, Bilusic M, Cordes LM, Chau CH, Peer CJ, Wroblewski S, Huitema ADR, Schellens JHM, Gulley JL, Dahut WL, Figg WD, Madan RA. A Single-arm Phase II Study Combining NLG207, a Nanoparticle Camptothecin, with Enzalutamide in Advanced Metastatic Castration-resistant Prostate Cancer Post-Enzalutamide. Oncologist 2022; 27:718-e694. [PMID: 35640474 PMCID: PMC9438911 DOI: 10.1093/oncolo/oyac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Despite the clinical efficacy of enzalutamide monotherapy in patients with advanced prostate cancer, therapeutic resistance and disease progression are inevitable. We proposed a study to evaluate NLG207, a nanoparticle-drug conjugate (NDC) of the potent topoisomerase I inhibitor camptothecin, in combination with enzalutamide, in patients with metastatic castration-resistant prostate cancer (mCRPC) following progression on enzalutamide. METHODS This was a single-arm, optimal two-stage, phase II study to evaluate the efficacy of NLG207 in combination with enzalutamide in patients with mCRPC who received prior enzalutamide. A lead-in dose escalation evaluated the recommended phase 2 dose of NLG207 in combination with enzalutamide. Patients received NLG207 via IV infusion every 2 weeks and enzalutamide 160 mg orally once daily. RESULTS Between March 2019 and June 2021, four patients were accrued to the lead-in dose escalation. Two of the four patients were evaluable and both experienced DLTs at the NLG207 12 mg/m2 dose level; one DLT was related to a dose delay for noninfective cystitis and myelosuppression, the other a grade 3 noninfective cystitis. Further evaluation of NLG207 in combination with enzalutamide was halted and the study was ultimately terminated. PSA declines from baseline were observed in two patients. CONCLUSION NLG207 12 mg/m2 in combination with enzalutamide was not well tolerated in patients with mCRPC following several lines of the standard of care therapy. CLINICALTRIALS.GOV IDENTIFIER NCT03531827.
Collapse
Affiliation(s)
- Keith T Schmidt
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan Wroblewski
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alwin D R Huitema
- Department Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan H M Schellens
- Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William L Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Corresponding author: William D. Figg, 9000 Rockville Pike, Building 10/Room 5A03, Bethesda, MD 20892, USA. Tel: +1 240 760 6179;
| | | |
Collapse
|
47
|
Carles J, Alonso-Gordoa T, Mellado B, Méndez-Vidal MJ, Vázquez S, González-Del-Alba A, Piulats JM, Borrega P, Gallardo E, Morales-Barrera R, Paredes P, Reig O, Garcías de España C, Collado R, Bonfill T, Suárez C, Sampayo-Cordero M, Malfettone A, Garde J. Radium-223 for patients with metastatic castration-resistant prostate cancer with asymptomatic bone metastases progressing on first-line abiraterone acetate or enzalutamide: A single-arm phase II trial. Eur J Cancer 2022; 173:317-326. [PMID: 35981452 DOI: 10.1016/j.ejca.2022.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The paper aims to evaluate the efficacy and safety of 223Ra in patients who progressed after first-line androgen deprivation therapy. PATIENTS AND METHODS EXCAAPE (NCT03002220) was a multicentre, single-arm, open-label, non-controlled phase IIa trial in 52 patients with metastatic castration-resistant prostate cancer and asymptomatic bone metastases who have progressed on abiraterone acetate or enzalutamide, up to six doses of 223Ra (55 kBq/kg of body weight per month). The primary end-point was radiographic progression-free survival (rPFS). Secondary end-points included rPFS based on androgen receptor splice variant 7 (AR-V7) expression in circulating tumour cells (CTCs), overall survival, and safety. RESULTS Median rPFS was 5.5 months (95% CI 5.3-5.5). Median rPFS of patients with AR-V7(-) CTCs was longer than that of patients with AR-V7(+) CTCs (5.5 versus 2.2 months, respectively; P = 0.056). Median overall survival was 14.8 months (95% CI 11.2-not reached) and was significantly greater for AR-V7(-) patients than for AR-V7(+) patients (14.8 months versus 3.5 months, respectively; P < 0.01). 223Ra was well tolerated; anaemia and thrombocytopenia were the most common grade 3/4 adverse events (5.8% and 11.5%, respectively). CONCLUSIONS 223Ra seems to be a reasonable treatment for patients with metastatic castration-resistant prostate cancer and asymptomatic bone metastases progressing on novel hormonal therapy and had an acceptable safety profile.
Collapse
Affiliation(s)
- Joan Carles
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Universitat Autónoma de Barcelona, Barcelona, Spain.
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Begoña Mellado
- Medical Oncology Department, Hospital Clínic Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María J Méndez-Vidal
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Reina Sofía University Hospital (HURS), Córdoba, Spain
| | | | | | | | | | - Enrique Gallardo
- Parc Taulí University Hospital, Parc Taulí Institute of Research and Innovation I3PT, Barcelona, Spain
| | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Pilar Paredes
- Medical Oncology Department, Hospital Clínic Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Oscar Reig
- Medical Oncology Department, Hospital Clínic Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | - Cristina Suárez
- Universitat Autónoma de Barcelona, Barcelona, Spain; Parc Taulí University Hospital, Parc Taulí Institute of Research and Innovation I3PT, Barcelona, Spain
| | | | | | - Javier Garde
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
| |
Collapse
|
48
|
Marchioni M, Marandino L, Amparore D, Berardinelli F, Matteo F, Campi R, Schips L, Mascitti M. Factors influencing survival in metastatic castration resistant prostate cancer therapy. Expert Rev Anticancer Ther 2022; 22:1061-1079. [PMID: 35982645 DOI: 10.1080/14737140.2022.2114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The number of patients with metastatic castration resistant prostate cancer (mCRPC) is expecting to increase due to the long-life expectancy of those with advanced disease who are also more commonly diagnosed today because of stage migration. Several compounds are available for treating these patients. AREAS COVERED We reviewed currently available treatments for mCRPC, their mechanism of action and resistance and we explored possible predictors of treatment success useful to predict survival in mCRPC patients. EXPERT OPINION A combination of molecular, clinical, pathological, and imaging features is necessary to correctly estimate patients' risk of death. The combination of these biomarkers may allow clinicians to tailor treatments based on cancer history and patients' features. The search of predictive biomarkers remains an unmet medical need for most patients with mCRPC.
Collapse
Affiliation(s)
- Michele Marchioni
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Laura Marandino
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Amparore
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Francesco Berardinelli
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Ferro Matteo
- Division of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Riccardo Campi
- Unit of Urological Robotic Surgery and Renal Transplantation, University of Florence, Careggi Hospital, Florence, Italy
| | - Luigi Schips
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Marco Mascitti
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| |
Collapse
|
49
|
Kimura N, Takayama KI, Yamada Y, Kume H, Fujimura T, Inoue S. Ribonuclease H2 Subunit A Preserves Genomic Integrity and Promotes Prostate Cancer Progression. CANCER RESEARCH COMMUNICATIONS 2022; 2:870-883. [PMID: 36923313 PMCID: PMC10010380 DOI: 10.1158/2767-9764.crc-22-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Homeostasis of genomic integrity should be regulated to promote proliferation and inhibit DNA damage-induced cell death in cancer. Ribonuclease H2 (RNase H2) maintains genome stability by controlling DNA:RNA hybrid and R-loop levels. Here, we identified that RNase H2 subunit A (RNASEH2A), a component of RNase H2, is highly expressed in castration-resistant prostate cancer (CRPC) tissues compared with localized prostate cancer. Interestingly, we showed that RNASEH2A suppressed R-loop levels to prevent cell apoptosis induced by DNA damage in prostate cancer cells. Both in vivo and in vitro studies revealed that RNASEH2A promotes cell growth and migration via the negative regulation of p53 and positive regulation of AR and AR-V7. Mechanistically, epigenetic regulation followed by R-loop accumulation in these promoters was observed for these gene regulations. Importantly, IHC analysis demonstrated that R-loop formation increased in CRPC tissues and correlated with RNASEH2A expression levels. Notably, two small molecules targeting RNase H2 activity were found to suppress CRPC tumor growth with no significant toxic effects. Collectively, we propose that RNASEH2A overexpression is a hallmark of prostate cancer progression by maintaining genomic stability to prevent R-loop-mediated apoptosis induction. Targeting RNase H2 activity could be a potential strategy for treating CRPC tumors. Significance RNASEH2A was demonstrated to be highly upregulated in aggressive prostate cancer to degrade R-loop accumulation and preserve genomic stability for tumor growth, suggesting that RNase H2 activity could be a promising therapeutic target.
Collapse
Affiliation(s)
- Naoki Kimura
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yuta Yamada
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
50
|
Mizuno K, Beltran H. Future directions for precision oncology in prostate cancer. Prostate 2022; 82 Suppl 1:S86-S96. [PMID: 35657153 PMCID: PMC9942493 DOI: 10.1002/pros.24354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Clinical genomic testing is becoming routine in prostate cancer, as biomarker-driven therapies such as poly-ADP ribose polymerase (PARP) inhibitors and anti-PD1 immunotherapy are now approved for select men with castration-resistant prostate cancer harboring alterations in DNA repair genes. Challenges for precision medicine in prostate cancer include an overall low prevalence of actionable genomic alterations and a still limited understanding of the impact of tumor heterogeneity and co-occurring alterations on treatment response and outcomes across diverse patient populations. Expanded tissue-based technologies such as whole-genome sequencing, transcriptome analysis, epigenetic analysis, and single-cell RNA sequencing have not yet entered the clinical realm and could potentially improve upon our understanding of how molecular features of tumors, intratumoral heterogeneity, and the tumor microenvironment impact therapy response and resistance. Blood-based technologies including cell-free DNA, circulating tumor cells (CTCs), and extracellular vesicles (EVs) are less invasive molecular profiling resources that could also help capture intraindividual tumor heterogeneity and track dynamic changes that occur in the context of specific therapies. Furthermore, molecular imaging is an important biomarker tool within the framework of prostate cancer precision medicine with a capability to detect heterogeneity across metastases and potential therapeutic targets less invasively. Here, we review recent technological advances that may help promote the future implementation and value of precision oncology testing for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Kei Mizuno
- Department of Medical Oncology, Dana Farber Cancer Institute
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute
| |
Collapse
|