1
|
Wang Y, Ruan Y, Wan X, Wang H, Guo J, Wei J, Ma S, He Y, Zou Z, Li J. Maternal exposure to ambient ozone and fetal congenital heart defects: a national multicenter study in China. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00716-4. [PMID: 39217202 DOI: 10.1038/s41370-024-00716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ambient O3 has demonstrated an aggravated increasing trend in the context of global warming. The available evidence of maternal exposure to ambient O3 on fetal congenital heart defects (CHD) is still limited, especially in high polluted areas. OBJECTIVE To examine associations of maternal exposure to ambient O3 during early pregnancy with fetal CHDs. METHODS We conducted a national multicenter study in 1313 hospitals from 26 provinces in China and collected a total of 27,817 participants at high risk of CHD from 2013 to 2021. Exposure to ambient O3 during the embryonic period, preconception, the first trimester and periconception was assessed by extracting daily concentrations from a validated grid dataset at each subject's residential district. CHDs were diagnosed based on fetal echocardiography. RESULTS Each 10 µg/m3 increase of exposure to ambient O3 during the embryonic period was approximately linearly associated with a 12.7% (odds ratio [OR]: 1.127, 95% confidence interval [CI]: 1.098, 1.155) increase in odds of pooled CHD (p < 0.001). The associations remain robust after adjusting for ambient PM2.5 and NO2 exposure. The odds of different types of CHD in association with ambient O3 exposure varied greatly. We observed significant association of ambient O3 exposure with ventricular septal defect (VSD), tetralogy of Fallot (TOF); pulmonary stenosis (PS), pulmonary atresia (PA), transposition of great arteries (TGA) and persistent left superior vena cava (PLSVC), with TOF demonstrating the strongest estimates (OR: 1.194, 95% CI:1.107, 1.288). The estimates for preconception, the first trimester and periconception demonstrate consistent findings with the main analyses, indicating stronger associations of ambient O3 exposure during the periconception period. IMPACT Our study provides evidence that higher ambient O3 during early pregnancy was significantly associated with increased odds of fetal CHD. Our findings suggest that pregnant women, clinical practitioners, and policy makers need to pay more attention to the exposure to higher ambient O3 during early pregnancy to reduce the risk of developing CHD and to improve outcomes across the life span.
Collapse
Affiliation(s)
- Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Yanping Ruan
- Department of Echocardiography, Maternal-Fetal Medicine Research Consultation Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xiaoyu Wan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Huan Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Jianhui Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Sheng Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Yihua He
- Department of Echocardiography, Maternal-Fetal Medicine Research Consultation Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China.
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China.
| |
Collapse
|
2
|
Ali N, Donofrio MT. Delivery room and early postnatal management of neonates with congenital heart disease. Prenat Diagn 2024; 44:915-924. [PMID: 38858803 DOI: 10.1002/pd.6617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Advancements in prenatal detection have improved postnatal outcomes for patients with congenital heart disease (CHD). Detailed diagnosis during pregnancy allows for preparation for the delivery and immediate postnatal care for the newborns with CHD. Most CHDs do not result in hemodynamic instability at the time of birth and can be stabilized following the guidelines of the neonatal resuscitation program (NRP). Critical CHD that requires intervention immediately after birth is recommended to be delivered in facilities where immediate neonatal and cardiology care can be provided. Postnatal stabilization and resuscitation for these defects warrant deviation from the standardized NRP. For neonatal providers, knowing the diagnosis of fetal CHD allows for preparation for the anticipated instability in the delivery room. Prenatal detection fosters collaboration between fetal cardiology, cardiology specialists, obstetrics, and neonatology, improving outcomes for neonates with critical CHD.
Collapse
Affiliation(s)
- Noorjahan Ali
- Division of Neonatal-Perinatal Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Mary T Donofrio
- The George Washington University Division of Cardiology, Washington, Washington, USA
| |
Collapse
|
3
|
Selvanathan T, Mabbott C, Au-Young SH, Seed M, Miller SP, Chau V. Antenatal diagnosis, neonatal brain volumes, and neurodevelopment in transposition of the great arteries. Dev Med Child Neurol 2024; 66:882-891. [PMID: 38204357 DOI: 10.1111/dmcn.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
AIM To examine whether antenatal diagnosis modifies relationships between neonatal brain volumes and 18-month neurodevelopmental outcomes in children with transposition of the great arteries (TGA). METHOD In a retrospective cohort of 139 children with TGA (77 antenatally diagnosed), we obtained total brain volumes (TBVs) on pre- (n = 102) and postoperative (n = 112) magnetic resonance imaging. Eighteen-month neurodevelopmental outcomes were assessed using the Bayley Scales of Infant and Toddler Development, Third Edition. Generalized estimating equations with interaction terms were used to determine whether antenatal diagnosis modified associations between TBVs and neurodevelopmental outcomes accounting for postmenstrual age at scan, brain injury, and ventricular septal defect. RESULTS Infants with postnatal diagnosis had more preoperative hypotension (35% vs 14%, p = 0.004). The interactions between antenatal diagnosis and TBVs were significantly related to cognitive (p = 0.003) outcomes. Specifically, smaller TBVs were associated with lower cognitive scores in infants diagnosed postnatally; this association was attenuated in those diagnosed antenatally. INTERPRETATION Antenatal diagnosis modifies associations between neonatal brain volume and 18-month cognitive outcome in infants with TGA. These findings suggest that antenatal diagnosis may be neuroprotective, possibly through improved preoperative clinical status. These data highlight the need to improve antenatal diagnosis rates. WHAT THIS PAPER ADDS Antenatal diagnosis of transposition of the great arteries modified relationships between neonatal brain volume and neurodevelopment. Smaller brain volumes related to poorer cognitive scores with postnatal diagnosis only. There was more preoperative hypotension in the postnatal diagnosis group.
Collapse
Affiliation(s)
- Thiviya Selvanathan
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, BC, Canada
| | - Connor Mabbott
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Stephanie H Au-Young
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Mike Seed
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Steven P Miller
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, BC, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Vann Chau
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
4
|
McLean KC, Meyer MC, Peters SR, Wrenn LD, Yeager SB, Flyer JN. Obstetric imaging practice characteristics associated with prenatal detection of critical congenital heart disease in a rural US region over 20 years. Prenat Diagn 2024; 44:698-705. [PMID: 38459708 DOI: 10.1002/pd.6551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE To identify clinical practice characteristics associated with the frequency of prenatal critical congenital heart disease (CCHD) detection (i.e., the number of liveborn infants with postnatally confirmed CCHD identified on prenatal sonography) over 20 years in a rural setting comprised of 11 primarily low-volume obstetric hospitals and the single tertiary academic hospital to which they refer. METHODS This was a retrospective cohort study of all patients in the referral region with an initial prenatal and/or postnatal diagnosis of CCHD from 01/01/2002 to 12/31/2021. The frequency of prenatal CCHD detection at the time of an obstetric ultrasound was reported, as was the change in detection over time. Critical congenital heart disease detection was assessed as a function of cardiac lesion type, practice setting, and practice characteristics. RESULTS There were 271 cases with a confirmed postnatal CCHD diagnosis, of which 49% were identified prenatally. The majority of community practices each averaged <10 CCHD cases in total over the study period. Prenatal detection at the tertiary academic hospital's obstetric ultrasound unit was 64%, compared to 22% at the combined referring community practices (p < 0.001), though CCHD detection improved over time in both settings. Professional accreditation by the American Institute of Ultrasound in Medicine, image interpretation by radiology or Maternal Fetal Medicine, and use of video clips of ventricular outflow tracts were associated with improved prenatal CCHD detection. CONCLUSIONS Our data demonstrate the infrequency of CCHD cases at small-volume, rural hospitals and the substantial variation in prenatal CCHD detection across practice settings. Our methods allowed for the identification of practice characteristics associated with prenatal CCHD detection.
Collapse
Affiliation(s)
- Kelley C McLean
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Marjorie C Meyer
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sarah R Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Lia D Wrenn
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Scott B Yeager
- Department of Pediatrics, Division of Pediatric Cardiology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jonathan N Flyer
- Department of Pediatrics, Division of Pediatric Cardiology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
5
|
Vepa S, Alavi M, Wu W, Schmittdiel J, Herrinton LJ, Desai K. Prenatal detection rates for congenital heart disease using abnormal obstetrical screening ultrasound alone as indication for fetal echocardiography. Prenat Diagn 2024; 44:706-716. [PMID: 38489018 DOI: 10.1002/pd.6544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVE To determine the live born prenatal detection rate of significant congenital heart disease (CHD) in a large, integrated, multi-center community-based health system using a strategy of referral only of patients with significant cardiac abnormalities on obstetrical screening ultrasound for fetal echocardiography. Detection rates were assessed for screening in both radiology and maternal fetal medicine (MFM). The impact on fetal echocardiography utilization was also assessed. METHODS This was a retrospective cohort study using an electronic health record, outside claims databases and chart review to determine all live births between 2016 and 2020 with postnatally confirmed sCHD that were prenatally detectable and resulted in cardiac surgery, intervention, or death within 1 year. RESULTS There were 214,486 pregnancies resulting in live births. Prenatally detectable significant CHD was confirmed in 294 infants. Of those 183 were detected for an overall live-born detection rate of 62%. Detection rates in MFM were 75% and in radiology were 52%. The number of fetal echocardiograms needed to detect (NND) sCHD was 7. CONCLUSIONS A focus on quality and standardization of obstetrical screening ultrasound with referral to fetal echocardiography for cardiac abnormalities alone achieves benchmark targets for live-born detection of significant CHD requiring fewer fetal echocardiograms.
Collapse
Affiliation(s)
- Sanjay Vepa
- Department of Pediatric Cardiology, Kaiser Permanente, Oakland, California, USA
| | - Mubarika Alavi
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Weilu Wu
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Julie Schmittdiel
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Lisa J Herrinton
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Kavin Desai
- Department of Pediatric Cardiology, Kaiser Permanente, Oakland, California, USA
| |
Collapse
|
6
|
Heino A, Morris JK, Garne E, Baldacci S, Barisic I, Cavero-Carbonell C, García-Villodre L, Given J, Jordan S, Loane M, Lutke LR, Neville AJ, Santoro M, Scanlon I, Tan J, de Walle HEK, Kiuru-Kuhlefelt S, Gissler M. The Association of Prenatal Diagnoses with Mortality and Long-Term Morbidity in Children with Specific Isolated Congenital Anomalies: A European Register-Based Cohort Study. Matern Child Health J 2024; 28:1020-1030. [PMID: 38438690 PMCID: PMC11059158 DOI: 10.1007/s10995-024-03911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 03/06/2024]
Abstract
OBJECTIVES To compare 5-year survival rate and morbidity in children with spina bifida, transposition of great arteries (TGA), congenital diaphragmatic hernia (CDH) or gastroschisis diagnosed prenatally with those diagnosed postnatally. METHODS Population-based registers' data were linked to hospital and mortality databases. RESULTS Children whose anomaly was diagnosed prenatally (n = 1088) had a lower mean gestational age than those diagnosed postnatally (n = 1698) ranging from 8 days for CDH to 4 days for TGA. Children with CDH had the highest infant mortality rate with a significant difference (p < 0.001) between those prenatally (359/1,000 births) and postnatally (116/1,000) diagnosed. For all four anomalies, the median length of hospital stay was significantly greater in children with a prenatal diagnosis than those postnatally diagnosed. Children with prenatally diagnosed spina bifida (79% vs 60%; p = 0.002) were more likely to have surgery in the first week of life, with an indication that this also occurred in children with CDH (79% vs 69%; p = 0.06). CONCLUSIONS Our findings do not show improved outcomes for prenatally diagnosed infants. For conditions where prenatal diagnoses were associated with greater mortality and morbidity, the findings might be attributed to increased detection of more severe anomalies. The increased mortality and morbidity in those diagnosed prenatally may be related to the lower mean gestational age (GA) at birth, leading to insufficient surfactant for respiratory effort. This is especially important for these four groups of children as they have to undergo anaesthesia and surgery shortly after birth. Appropriate prenatal counselling about the time and mode of delivery is needed.
Collapse
Affiliation(s)
- Anna Heino
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00270, Helsinki, Finland.
| | - Joan K Morris
- Population Health Research Institute, St George's, University of London, London, UK
| | - Ester Garne
- Department of Pediatrics and Adolescent Medicine, Lillebaelt Hospital, University Hospital of Southern Denmark, Kolding, Denmark
| | - Silvia Baldacci
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Ingeborg Barisic
- Centre of Excellence for Reproductive and Regenerative Medicine, Children's Hospital Zagreb, Medical School University of Zagreb, Klaiceva 16, 10000, Zagreb, Croatia
| | - Clara Cavero-Carbonell
- Rare Diseases Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
| | - Laura García-Villodre
- Rare Diseases Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
| | - Joanne Given
- Institute of Nursing and Health Research, Ulster University, Coleraine, UK
| | - Sue Jordan
- Faculty Health and Life Sciences, Swansea, Wales
| | - Maria Loane
- Institute of Nursing and Health Research, Ulster University, Coleraine, UK
| | - L Renée Lutke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amanda J Neville
- IMER Registry (Emilia Romagna Registry of Birth Defects), Center for Clinical and Epidemiological Research, University of Ferrara, 44121, Ferrara, Italy
| | - Michele Santoro
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | | | - Joachim Tan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Hermien E K de Walle
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sonja Kiuru-Kuhlefelt
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00270, Helsinki, Finland
| | - Mika Gissler
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00270, Helsinki, Finland
| |
Collapse
|
7
|
Klein JH, Donofrio MT. Untangling the Complex Associations between Socioeconomic and Demographic Characteristics and Prenatal Detection and Outcomes in Congenital Heart Disease. J Cardiovasc Dev Dis 2024; 11:155. [PMID: 38786977 PMCID: PMC11122600 DOI: 10.3390/jcdd11050155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Recent literature has established a strong foundation examining the associations between socioeconomic/demographic characteristics and outcomes for congenital heart disease. These associations are found beginning in fetal life and influence rates of prenatal detection, access to timely and appropriate delivery room and neonatal interventions, and surgical and other early childhood outcomes. This review takes a broad look at the existing literature and identifies gaps in the current body of research, particularly as it pertains to disparities in the prenatal detection of congenital heart disease within the United States. It also proposes further research and interventions to address these health disparities.
Collapse
|
8
|
Lee VK, Ceschin R, Reynolds WT, Meyers B, Wallace J, Landsittel D, Joseph HM, Badaly D, Gaynor JW, Licht D, Greene NH, Brady KM, Hunter JV, Chu ZD, Wilde EA, Easley RB, Andropoulos D, Panigrahy A. Postnatal Brain Trajectories and Maternal Intelligence Predict Childhood Outcomes in Complex CHD. J Clin Med 2024; 13:2922. [PMID: 38792464 PMCID: PMC11121951 DOI: 10.3390/jcm13102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Objective: To determine whether early structural brain trajectories predict early childhood neurodevelopmental deficits in complex CHD patients and to assess relative cumulative risk profiles of clinical, genetic, and demographic risk factors across early development. Study Design: Term neonates with complex CHDs were recruited at Texas Children's Hospital from 2005-2011. Ninety-five participants underwent three structural MRI scans and three neurodevelopmental assessments. Brain region volumes and white matter tract fractional anisotropy and radial diffusivity were used to calculate trajectories: perioperative, postsurgical, and overall. Gross cognitive, language, and visuo-motor outcomes were assessed with the Bayley Scales of Infant and Toddler Development and with the Wechsler Preschool and Primary Scale of Intelligence and Beery-Buktenica Developmental Test of Visual-Motor Integration. Multi-variable models incorporated risk factors. Results: Reduced overall period volumetric trajectories predicted poor language outcomes: brainstem ((β, 95% CI) 0.0977, 0.0382-0.1571; p = 0.0022) and white matter (0.0023, 0.0001-0.0046; p = 0.0397) at 5 years; brainstem (0.0711, 0.0157-0.1265; p = 0.0134) and deep grey matter (0.0085, 0.0011-0.0160; p = 0.0258) at 3 years. Maternal IQ was the strongest contributor to language variance, increasing from 37% at 1 year, 62% at 3 years, and 81% at 5 years. Genetic abnormality's contribution to variance decreased from 41% at 1 year to 25% at 3 years and was insignificant at 5 years. Conclusion: Reduced postnatal subcortical-cerebral white matter trajectories predicted poor early childhood neurodevelopmental outcomes, despite high contribution of maternal IQ. Maternal IQ was cumulative over time, exceeding the influence of known cardiac and genetic factors in complex CHD, underscoring the importance of heritable and parent-based environmental factors.
Collapse
Affiliation(s)
- Vincent K. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; (R.C.); (W.T.R.); (B.M.); (J.W.)
| | - Rafael Ceschin
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; (R.C.); (W.T.R.); (B.M.); (J.W.)
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - William T. Reynolds
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; (R.C.); (W.T.R.); (B.M.); (J.W.)
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - Benjamin Meyers
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; (R.C.); (W.T.R.); (B.M.); (J.W.)
| | - Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; (R.C.); (W.T.R.); (B.M.); (J.W.)
| | - Douglas Landsittel
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Heather M. Joseph
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Daryaneh Badaly
- Learning and Development Center, Child Mind Institute, New York, NY 10022, USA;
| | - J. William Gaynor
- Division of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Daniel Licht
- Perinatal Pediatrics Institute, Children’s National Hospital, Washinton, DC 20010, USA;
| | - Nathaniel H. Greene
- Anesthesiology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Ken M. Brady
- Department of Pediatrics and Department of Anesthesiology, Lurie Children’s Hospital, Northwestern University, Chicago, IL 60611, USA;
| | - Jill V. Hunter
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.V.H.); (Z.D.C.); (E.A.W.)
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zili D. Chu
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.V.H.); (Z.D.C.); (E.A.W.)
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elisabeth A. Wilde
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.V.H.); (Z.D.C.); (E.A.W.)
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - R. Blaine Easley
- Department of Pediatric Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.B.E.); (D.A.)
| | - Dean Andropoulos
- Department of Pediatric Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.B.E.); (D.A.)
- Department of Anesthesiology, Perioperative and Pain Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Ashok Panigrahy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; (R.C.); (W.T.R.); (B.M.); (J.W.)
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| |
Collapse
|
9
|
Zhang J, Xiao S, Zhu Y, Zhang Z, Cao H, Xie M, Zhang L. Advances in the Application of Artificial Intelligence in Fetal Echocardiography. J Am Soc Echocardiogr 2024; 37:550-561. [PMID: 38199332 DOI: 10.1016/j.echo.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease is a severe health risk for newborns. Early detection of abnormalities in fetal cardiac structure and function during pregnancy can help patients seek timely diagnostic and therapeutic advice, and early intervention planning can significantly improve fetal survival rates. Echocardiography is one of the most accessible and widely used diagnostic tools in the diagnosis of fetal congenital heart disease. However, traditional fetal echocardiography has limitations due to fetal, maternal, and ultrasound equipment factors and is highly dependent on the skill level of the operator. Artificial intelligence (AI) technology, with its rapid development utilizing advanced computer algorithms, has great potential to empower sonographers in time-saving and accurate diagnosis and to bridge the skill gap in different regions. In recent years, AI-assisted fetal echocardiography has been successfully applied to a wide range of ultrasound diagnoses. This review systematically reviews the applications of AI in the field of fetal echocardiography over the years in terms of image processing, biometrics, and disease diagnosis and provides an outlook for future research.
Collapse
Affiliation(s)
- Junmin Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging, Hubei Province, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Sushan Xiao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging, Hubei Province, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ye Zhu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging, Hubei Province, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zisang Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging, Hubei Province, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Haiyan Cao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging, Hubei Province, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging, Hubei Province, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging, Hubei Province, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
10
|
Mercer-Rosa L, Favilla E. Neurodevelopment in patients with repaired tetralogy of Fallot. Front Pediatr 2024; 12:1137131. [PMID: 38737635 PMCID: PMC11082288 DOI: 10.3389/fped.2024.1137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2024] [Indexed: 05/14/2024] Open
Abstract
Neurodevelopmental sequelae are prevalent and debilitating for patients with congenital heart defects. Patients born with tetralogy of Fallot (TOF) are susceptible for abnormal neurodevelopment as they have several risk factors surrounding the perinatal and perioperative period. Some risk factors have been well described in other forms of congenital heart defects, including transposition of the great arteries and single ventricle heart disease, but they have been less studied in the growing population of survivors of TOF surgery, particularly in infancy and childhood. Adolescents with TOF, even without a genetic syndrome, exhibit neuro-cognitive deficits in executive function, visual-spatial skills, memory, attention, academic achievement, social cognition, and problem-solving, to mention a few. They also have greater prevalence of anxiety disorder, disruptive behavior and attention-deficit hyperactivity disorder. These deficits impact their academic performance, social adjustment, and quality of life, thus resulting in significant stress for patients and their families. Further, they can impact their social adjustment, employment and career development as an adult. Infants and younger children can also have significant deficits in gross and fine motor skills, cognitive deficits and abnormal receptive language. Many of the risk factors associated with abnormal neurodevelopment in these patients are not readily modifiable. Therefore, patients should be referred for evaluation and early intervention to help maximize their neurodevelopment and improve overall outcomes. More study is needed to identify potentially modifiable risk factors and/or mediators of neurodevelopment, such as environmental and socio-economic factors.
Collapse
Affiliation(s)
- Laura Mercer-Rosa
- Division of Cardiology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | |
Collapse
|
11
|
Sood E, Newburger JW, Anixt JS, Cassidy AR, Jackson JL, Jonas RA, Lisanti AJ, Lopez KN, Peyvandi S, Marino BS. Neurodevelopmental Outcomes for Individuals With Congenital Heart Disease: Updates in Neuroprotection, Risk-Stratification, Evaluation, and Management: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e997-e1022. [PMID: 38385268 DOI: 10.1161/cir.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Over the past decade, new research has advanced scientific knowledge of neurodevelopmental trajectories, factors that increase neurodevelopmental risk, and neuroprotective strategies for individuals with congenital heart disease. In addition, best practices for evaluation and management of developmental delays and disorders in this high-risk patient population have been formulated based on literature review and expert consensus. This American Heart Association scientific statement serves as an update to the 2012 statement on the evaluation and management of neurodevelopmental outcomes in children with congenital heart disease. It includes revised risk categories for developmental delay or disorder and an updated list of factors that increase neurodevelopmental risk in individuals with congenital heart disease according to current evidence, including genetic predisposition, fetal and perinatal factors, surgical and perioperative factors, socioeconomic disadvantage, and parental psychological distress. It also includes an updated algorithm for referral, evaluation, and management of individuals at high risk. Risk stratification of individuals with congenital heart disease with the updated categories and risk factors will identify a large and growing population of survivors at high risk for developmental delay or disorder and associated impacts across the life span. Critical next steps must include efforts to prevent and mitigate developmental delays and disorders. The goal of this scientific statement is to inform health care professionals caring for patients with congenital heart disease and other key stakeholders about the current state of knowledge of neurodevelopmental outcomes for individuals with congenital heart disease and best practices for neuroprotection, risk stratification, evaluation, and management.
Collapse
|
12
|
Neukomm A, Claessens NHP, Bonthrone AF, Stegeman R, Feldmann M, Nijman M, Jansen NJG, Nijman J, Groenendaal F, de Vries LS, Benders MJNL, Breur JMPJ, Haas F, Bekker MN, Logeswaran T, Reich B, Kottke R, Dave H, Simpson J, Pushparajah K, Kelly CJ, Arulkumaran S, Rutherford MA, Counsell SJ, Chew A, Knirsch W, Sprong MCA, van Schooneveld MM, Hagmann C, Latal B. Perioperative Brain Injury in Relation to Early Neurodevelopment Among Children with Severe Congenital Heart Disease: Results from a European Collaboration. J Pediatr 2024; 266:113838. [PMID: 37995930 DOI: 10.1016/j.jpeds.2023.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). STUDY DESIGN One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. RESULTS Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, β = -0.50). SES was independently associated with cognitive outcome (P < .001, β = 0.26), and LOS with motor outcome (P < .001, β = -0.35). CONCLUSION Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.
Collapse
Affiliation(s)
- Astrid Neukomm
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nathalie H P Claessens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Raymond Stegeman
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Feldmann
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maaike Nijman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Joppe Nijman
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Felix Haas
- Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Mireille N Bekker
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thushiha Logeswaran
- Pediatric Heart Center, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bettina Reich
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Hitendu Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - John Simpson
- Pediatric Cardiology Department, Evelina Children's Hospital London, London, United Kingdom
| | - Kuberan Pushparajah
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Pediatric Cardiology Department, Evelina Children's Hospital London, London, United Kingdom
| | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Maaike C A Sprong
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique M van Schooneveld
- Department of Pediatric Psychology, Neuropsychology Section, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Freud LR, Galloway S, Crowley TB, Moldenhauer J, Swillen A, Breckpot J, Borrell A, Vora NL, Cuneo B, Hoffman H, Gilbert L, Nowakowska B, Geremek M, Kutkowska-Kaźmierczak A, Vermeesch JR, Devriendt K, Busa T, Sigaudy S, Vigneswaran T, Simpson JM, Dungan J, Gotteiner N, Gloning KP, Digilio MC, Unolt M, Putotto C, Marino B, Repetto G, Fadic M, Garcia-Minaur S, Achón Buil A, Thomas MA, Fruitman D, Beecroft T, Hui PW, Oskarsdottir S, Bradshaw R, Criebaum A, Norton ME, Lee T, Geiger M, Dunnington L, Isaac J, Wilkins-Haug L, Hunter L, Izzi C, Toscano M, Ghi T, McGlynn J, Romana Grati F, Emanuel BS, Gaiser K, Gaynor JW, Goldmuntz E, McGinn DE, Schindewolf E, Tran O, Zackai EH, Yan Q, Bassett AS, Wapner R, McDonald-McGinn DM. Prenatal vs postnatal diagnosis of 22q11.2 deletion syndrome: cardiac and noncardiac outcomes through 1 year of age. Am J Obstet Gynecol 2024; 230:368.e1-368.e12. [PMID: 37717890 DOI: 10.1016/j.ajog.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The 22q11.2 deletion syndrome is the most common microdeletion syndrome and is frequently associated with congenital heart disease. Prenatal diagnosis of 22q11.2 deletion syndrome is increasingly offered. It is unknown whether there is a clinical benefit to prenatal detection as compared with postnatal diagnosis. OBJECTIVE This study aimed to determine differences in perinatal and infant outcomes between patients with prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. STUDY DESIGN This was a retrospective cohort study across multiple international centers (30 sites, 4 continents) from 2006 to 2019. Participants were fetuses, neonates, or infants with a genetic diagnosis of 22q11.2 deletion syndrome by 1 year of age with or without congenital heart disease; those with prenatal diagnosis or suspicion (suggestive ultrasound findings and/or high-risk cell-free fetal DNA screen for 22q11.2 deletion syndrome with postnatal confirmation) were compared with those with postnatal diagnosis. Perinatal management, cardiac and noncardiac morbidity, and mortality by 1 year were assessed. Outcomes were adjusted for presence of critical congenital heart disease, gestational age at birth, and site. RESULTS A total of 625 fetuses, neonates, or infants with 22q11.2 deletion syndrome (53.4% male) were included: 259 fetuses were prenatally diagnosed (156 [60.2%] were live-born) and 122 neonates were prenatally suspected with postnatal confirmation, whereas 244 infants were postnatally diagnosed. In the live-born cohort (n=522), 1-year mortality was 5.9%, which did not differ between groups but differed by the presence of critical congenital heart disease (hazard ratio, 4.18; 95% confidence interval, 1.56-11.18; P<.001) and gestational age at birth (hazard ratio, 0.78 per week; 95% confidence interval, 0.69-0.89; P<.001). Adjusting for critical congenital heart disease and gestational age at birth, the prenatal cohort was less likely to deliver at a local community hospital (5.1% vs 38.2%; odds ratio, 0.11; 95% confidence interval, 0.06-0.23; P<.001), experience neonatal cardiac decompensation (1.3% vs 5.0%; odds ratio, 0.11; 95% confidence interval, 0.03-0.49; P=.004), or have failure to thrive by 1 year (43.4% vs 50.3%; odds ratio, 0.58; 95% confidence interval, 0.36-0.91; P=.019). CONCLUSION Prenatal detection of 22q11.2 deletion syndrome was associated with improved delivery management and less cardiac and noncardiac morbidity, but not mortality, compared with postnatal detection.
Collapse
Affiliation(s)
- Lindsay R Freud
- Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Stephanie Galloway
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY
| | | | - Julie Moldenhauer
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ann Swillen
- University Hospitals Leuven, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- University Hospitals Leuven, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Antoni Borrell
- Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Neeta L Vora
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bettina Cuneo
- Children's Hospital Colorado, University of Colorado, Denver, CO
| | - Hilary Hoffman
- Children's Hospital Colorado, University of Colorado, Denver, CO
| | - Lisa Gilbert
- Children's Hospital Colorado, University of Colorado, Denver, CO
| | | | | | | | - Joris R Vermeesch
- University Hospitals Leuven, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Koen Devriendt
- University Hospitals Leuven, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Tiffany Busa
- Hôpital de la Timone, Marseille University, Marseille, France
| | - Sabine Sigaudy
- Hôpital de la Timone, Marseille University, Marseille, France
| | - Trisha Vigneswaran
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust and Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - John M Simpson
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust and Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Jeffrey Dungan
- Prentice Women's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nina Gotteiner
- Prentice Women's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | - Marta Unolt
- Children's Hospital of Philadelphia, Philadelphia, PA; Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | | - Gabriela Repetto
- Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Magdalena Fadic
- Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | | | - Mary Ann Thomas
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Deborah Fruitman
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Taylor Beecroft
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Pui Wah Hui
- Queen Mary Hospital, Tsan Yuk Hospital, University of Hong Kong, Hong Kong, China
| | | | - Rachael Bradshaw
- SSM Health Cardinal Glennon St. Louis Fetal Care Institute, Saint Louis University, St. Louis, MO
| | - Amanda Criebaum
- SSM Health Cardinal Glennon St. Louis Fetal Care Institute, Saint Louis University, St. Louis, MO
| | - Mary E Norton
- University of California, San Francisco, San Francisco, CA
| | - Tiffany Lee
- University of California, San Francisco, San Francisco, CA
| | - Miwa Geiger
- Kravis Children's Hospital, Mount Sinai Medical Center, New York City, NY
| | - Leslie Dunnington
- Memorial Hermann-Texas Medical Center, University of Texas Health Science Center at Houston, Houston, TX
| | | | | | - Lindsey Hunter
- Royal Hospital for Children, University of Glasgow, Glasgow, United Kingdom
| | - Claudia Izzi
- Children's Hospital of Philadelphia, Philadelphia, PA; Azienda Socio Sanitaria Territoriale (ASST) degli Spedali Civili di Brescia, Brescia, Italy
| | | | - Tullio Ghi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Beverly S Emanuel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kimberly Gaiser
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - J William Gaynor
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Goldmuntz
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel E McGinn
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica Schindewolf
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Oanh Tran
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elaine H Zackai
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Qi Yan
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY
| | - Anne S Bassett
- Centre for Addiction and Mental Health and Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Ronald Wapner
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY
| | - Donna M McDonald-McGinn
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Mackie AS, Bravo-Jaimes K, Keir M, Sillman C, Kovacs AH. Access to Specialized Care Across the Lifespan in Tetralogy of Fallot. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:267-282. [PMID: 38161668 PMCID: PMC10755796 DOI: 10.1016/j.cjcpc.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/05/2023] [Indexed: 01/03/2024]
Abstract
Individuals living with tetralogy of Fallot require lifelong specialized congenital heart disease care to monitor for and manage potential late complications. However, access to cardiology care remains a challenge for many patients, as does access to mental health services, dental care, obstetrical care, and other specialties required by this population. Inequities in health care access were highlighted by the COVID-19 pandemic and continue to exist. Paradoxically, many social factors influence an individual's need for care, yet inadvertently restrict access to it. These include sex and gender, being a member of a racial or ethnic historically excluded group, lower educational attainment, lower socioeconomic status, living remotely from tertiary care centres, transportation difficulties, inadequate health insurance, occupational instability, and prior experiences with discrimination in the health care setting. These factors may coexist and have compounding effects. In addition, many patients believe that they are cured and unaware of the need for specialized follow-up. For these reasons, lapses in care are common, particularly around the time of transfer from paediatric to adult care. The lack of trained health care professionals for adults with congenital heart disease presents an additional barrier, even in higher income countries. This review summarizes challenges regarding access to multiple domains of specialized care for individuals with tetralogy of Fallot, with a focus on the impact of social determinants of health. Specific recommendations to improve access to care within Canadian and American systems are offered.
Collapse
Affiliation(s)
- Andrew S. Mackie
- Division of Cardiology, Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Katia Bravo-Jaimes
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Michelle Keir
- Southern Alberta Adult Congenital Heart Clinic, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christina Sillman
- Adult Congenital Heart Disease Program, Sutter Heart and Vascular Institute, Sacramento, California, USA
| | | |
Collapse
|
15
|
Sanz JH, Cox S, Donofrio MT, Ishibashi N, McQuillen P, Peyvandi S, Schlatterer S. [Formula: see text] Trajectories of neurodevelopment and opportunities for intervention across the lifespan in congenital heart disease. Child Neuropsychol 2023; 29:1128-1154. [PMID: 36752083 PMCID: PMC10406974 DOI: 10.1080/09297049.2023.2173162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Children with congenital heart disease (CHD) are at increased risk for neurodevelopmental challenges across the lifespan. These are associated with neurological changes and potential acquired brain injury, which occur across a developmental trajectory and which are influenced by an array of medical, sociodemographic, environmental, and personal factors. These alterations to brain development lead to an array of adverse neurodevelopmental outcomes, which impact a characteristic set of skills over the course of development. The current paper reviews existing knowledge of aberrant brain development and brain injury alongside associated neurodevelopmental challenges across the lifespan. These provide a framework for discussion of emerging and potential interventions to improve neurodevelopmental outcomes at each developmental stage.
Collapse
Affiliation(s)
- Jacqueline H Sanz
- Division of Neuropsychology, Children's National Hospital, Washington, D.C
- Departments of Psychiatry and Behavioral Sciences & Pediatrics at The George Washington University School of Medicine
| | - Stephany Cox
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Mary T Donofrio
- Division of Cardiology, Children's National Health System, Washington, D.C
- Department of Pediatrics at The George Washington University School of Medicine
| | - Nobuyuki Ishibashi
- Department of Pediatrics at The George Washington University School of Medicine
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington D.C
| | - Patrick McQuillen
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Shabnam Peyvandi
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Sarah Schlatterer
- Department of Pediatrics at The George Washington University School of Medicine
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, D.C
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, D.C
| |
Collapse
|
16
|
Cassidy AR, Neumann AA. [Formula: see text] Optimizing neurodevelopmental outcomes following fetal diagnosis of congenital heart disease: a call for primary prevention neuropsychology. Child Neuropsychol 2023; 29:1155-1177. [PMID: 36942716 DOI: 10.1080/09297049.2023.2190966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Critical congenital heart disease (CHD) presents a lasting threat to quality of life through its adverse impact on neurodevelopmental and psychosocial outcomes. As recognition of this threat has increased, so too has an appreciation for the role of pediatric neuropsychologists in supporting families affected by CHD. But there is more to offer these families than traditional neuropsychological services, which tend to focus on secondary/tertiary forms of prevention. Now that many children with CHD are diagnosed prenatally, it may be possible to begin mitigating CHD-related risks and promoting positive outcomes earlier than ever before. Through primary prevention-oriented fetal neuropsychological consultation, as well as close collaboration with allied specialists, pediatric neuropsychology has an opportunity to re-envision its typical borders and more familiar practice models; to forge early and enduring partnerships with families; and to help promote the best possible neurodevelopmental trajectories, beginning before children are even born. In this conceptual review, we survey and integrate evidence from developmental science, developmental origins of health and disease, maternal-fetal medicine, and cardiac neurodevelopmental literatures, along with current practice norms, arriving ultimately at two central conclusions: 1) there is an important role to fill on multidisciplinary teams for the pediatric neuropsychologist in fetal cardiac care and 2) role expansion (e.g., through valuing broader-based training, flexing more generalist skills) can likely improve neuropsychological outcomes earlier than has been standard for pediatric neuropsychologists. Such a reimagining of our practice may be considered primary prevention neuropsychology. Implications for care in various settings and pragmatic barriers to implementation are discussed.
Collapse
Affiliation(s)
- Adam R Cassidy
- Departments of Psychiatry & Psychology and Pediatric & Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alyssa A Neumann
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Remmele J, Pringsheim M, Nagdyman N, Oberhoffer-Fritz R, Ewert P. Cognitive function in adults with Fontan palliation versus acyanotic CHD patients and association with health-related quality of life. Cardiol Young 2023; 33:1956-1961. [PMID: 36424718 DOI: 10.1017/s1047951122003390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Impairments and developmental delay are often reported in infants and young children with CHD. However, currently, there is no data regarding cognitive abilities assessed by standardised intelligence tests in adults with CHD. This study assesses the cognitive function in Fontan patients compared with acyanotic CHD patients whether restrictions in cognitive function are present in adulthood and its association with health-related quality of life. METHODS Forty-four adult CHD (female n = 21 (47.7%); mean age 34.7 ± 11.9 years), 22 with Fontan circulation and 22 with acyanotic CHD, underwent the Wechsler Intelligence Scale for adults as patients during routine follow-up in 2018. The Medical Outcomes Study Questionnaire Short-Form 36 Health Survey (SF-36) assessed health-related quality of life. RESULTS Fontan patients showed significantly better results in the FSIQ (p = 0.020) and perceptual reasoning (p = 0.017) in comparison with patients with acyanotic CHD. All adult CHD patients showed normal IQ in subscales and full-scale IQ (FSIQ). In health-related quality of life, no association with cognitive function was found and no significant difference between both CHD groups, but trends to reduced values in acyanotic adult CHD. CONCLUSIONS Interestingly, our study results in adult Fontan patients showed that it is possible to live an adult life with normal cognitive function and good health-related quality of life with a univentricular heart. Thus, this study could be a guidepost for more in-depth studies on cognitive function in Fontan survivors. In addition, the focus should be on health-related quality of life of adult CHD with simple CHD in particular, since a reduced health-related quality of life is not only medically based.
Collapse
Affiliation(s)
- Julia Remmele
- German Heart Center of Munich, Department of Congenital Heart Disease and Pediatric Cardiology, Munich, Germany
- Institute of Preventive Pediatrics Technical University Munich, Munich, Germany
| | - Milka Pringsheim
- German Heart Center of Munich, Department of Congenital Heart Disease and Pediatric Cardiology, Munich, Germany
| | - Nicole Nagdyman
- German Heart Center of Munich, Department of Congenital Heart Disease and Pediatric Cardiology, Munich, Germany
| | - Renate Oberhoffer-Fritz
- German Heart Center of Munich, Department of Congenital Heart Disease and Pediatric Cardiology, Munich, Germany
- Institute of Preventive Pediatrics Technical University Munich, Munich, Germany
| | - Peter Ewert
- German Heart Center of Munich, Department of Congenital Heart Disease and Pediatric Cardiology, Munich, Germany
| |
Collapse
|
18
|
Parekh S, Ochotny R, Lazow SP, Ben-Ishay O, Aribindi V, Pluchinotta FR, Tworetzky W, Buchmiller TL, Peyvandi S, Moon-Grady AJ. High prevalence of left superior vena cava and congenital heart disease in patients with pre- and postnatally diagnosed esophageal atresia/tracheoesophageal fistula. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:439-440. [PMID: 36929674 DOI: 10.1002/uog.26202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Affiliation(s)
- S Parekh
- Division of Pediatric Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - R Ochotny
- Department of Palliative Care, Akron Children's Hospital, Akron, OH, USA
| | - S P Lazow
- Department of Surgery, Boston Children Hospital/Harvard Medical School, Boston, MA, USA
| | - O Ben-Ishay
- Department of General Surgery, Ramban Healthcare Campus, Haifa, Israel
| | - V Aribindi
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - W Tworetzky
- Department of Surgery, Boston Children Hospital/Harvard Medical School, Boston, MA, USA
| | - T L Buchmiller
- Department of Surgery, Boston Children Hospital/Harvard Medical School, Boston, MA, USA
| | - S Peyvandi
- Division of Pediatric Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - A J Moon-Grady
- Division of Pediatric Cardiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Pliego-Rivero FB, Isaac-Olivé K, Otero GA. Brainstem auditory-evoked responses among children afflicted by severely hypoxic CHD. Cardiol Young 2023; 33:1569-1573. [PMID: 36062556 DOI: 10.1017/s1047951122002591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MAIN AIM To electrophysiologically determine the impact of moderate to severe chronic hypoxia (H) resulting from a wide array of CHD (HCHD) conditions on the integrity of brainstem function. MATERIALS AND METHODS Applying brainstem auditory-evoked response methodology, 30 chronically afflicted HCHD patients, who already had undergone heart surgery, were compared to 28 healthy control children (1-15 yo) matched by age, gender and socioeconomic condition. Blood oxygen saturation was clinically determined and again immediately before brainstem auditory-evoked response testing. RESULTS Among HCHD children, auditory wave latencies (I, III and V) were significantly longer (medians: I, 2.02 ms; III, 4.12 ms, and; V, 6.30 ms) compared to control (medians: I, 1.67ms; III, 3.72 ms, and; V, 5.65 ms), as well as interpeak intervals (HCHD medians: I-V, 4.25 ms, and; III-V, 2.25ms; control medians: I-V, 3.90 ms and, III-V, 1.80 ms) without significant differences in wave amplitudes between groups. A statistically significant and inverse correlation between average blood oxygen saturation of each group (control, 94%; HCHD, 78%) and their respective wave latencies and interpeak intervals was found. CONCLUSIONS As determined by brainstem auditory-evoked responses, young HCHD patients manifestly show severely altered neuronal conductivity in the auditory pathway strongly correlated with their hypoxic condition. These observations are strongly supported by different brainstem neurological and image studies showing that alterations, either in microstructure or function, result from the condition of chronic hypoxia in CHD. The non-altered wave amplitudes are indicative of relatively well-preserved neuronal relay nuclei.
Collapse
Affiliation(s)
| | - Keila Isaac-Olivé
- Laboratory of Theragnostics Research, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Gloria A Otero
- Laboratory of Neurophysiology, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| |
Collapse
|
20
|
Udine M, Donofrio MT. The Role of the Neonatologist in Fetuses Diagnosed with Congenital Heart Disease. Neoreviews 2023; 24:e553-e568. [PMID: 37653086 DOI: 10.1542/neo.24-9-e553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Prenatal diagnosis of congenital heart disease (CHD) can decrease preoperative morbidity and mortality. Delivery room planning can improve cardiac hemodynamics and time to critical catheter and surgical interventions. Care algorithms have defined lesion-specific level-of-care assignments and delivery room action plans that can facilitate team-based approaches to safe deliveries. Neonatologists play critical roles in the care of fetuses diagnosed with CHD, from the time of diagnosis through the postnatal intensive care unit (ICU) stays. Prenatally, neonatologists are members of the multidisciplinary counseling teams, with expertise to counsel expectant parents about what to expect during the ICU stay, which is especially valuable in CHD associated with extracardiac or genetic anomalies. Neonatologists' role in delivery planning includes identification of the optimal delivery location and allocation of appropriate personnel and resources. After delivery, postnatal care considerations include hemodynamic stability, optimization of end-organ function, genetics consultation, developmentally appropriate care practices to encourage caregiver bonding, and optimization of care to improve neurodevelopmental outcomes of neonates with CHD.
Collapse
Affiliation(s)
- Michelle Udine
- Division of Cardiology, Children's National Hospital, Washington, DC
| | - Mary T Donofrio
- Division of Cardiology, Children's National Hospital, Washington, DC
| |
Collapse
|
21
|
Vassar R, Peyvandi S, Gano D, Cox S, Zetino Y, Miller S, McQuillen P. Critical congenital heart disease beyond HLHS and TGA: neonatal brain injury and early neurodevelopment. Pediatr Res 2023; 94:691-698. [PMID: 36782067 PMCID: PMC10403377 DOI: 10.1038/s41390-023-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Characterization of brain injury and neurodevelopmental (ND) outcomes in critical congenital heart disease (cCHD) has primarily focused on hypoplastic left heart syndrome (HLHS) and transposition of the great arteries (TGA). This study reports brain injury and ND outcomes among patients with heterogeneous cCHD diagnoses beyond HLHS and TGA. METHODS This prospective cohort study included infants with HLHS, TGA, or heterogenous "Other cCHD" including left- or right-sided obstructive lesions, anomalous pulmonary venous return, and truncus arteriosus. Brain injury on perioperative brain MRI and ND outcomes on the Bayley-II at 30 months were compared. RESULTS A total of 218 participants were included (HLHS = 60; TGA = 118; "Other cCHD" = 40, including 8 with genetic syndromes). Pre-operative (n = 209) and post-operative (n = 189) MRI showed similarly high brain injury rates across groups, regardless of cardiopulmonary bypass exposure. At 30 months, participants with "Other cCHD" had lower cognitive scores (p = 0.035) compared to those with HLHS and TGA, though worse ND outcome in this group was driven by those with genetic disorders. CONCLUSIONS Frequency of brain injury and neurodevelopmental delay among patients with "Other cCHD" is similar to those with HLHS or TGA. Patients with all cCHD lesions are at risk for impaired outcomes; developmental and genetic screening is indicated. IMPACT This study adds to literature on risk of brain injury in patients with critical congenital heart disease (cCHD) diagnoses other than hypoplastic left heart syndrome (HLHS) and transposition of the great arteries (TGA), a heterogenous cohort of patients that has often been excluded from imaging studies. Children with cCHD beyond HLHS and TGA have similarly high rates of acquired brain injury. The high rate of neurodevelopmental impairment in this heterogenous group of cCHD diagnoses beyond HLHS and TGA is primarily driven by patients with comorbid genetic syndromes such as 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Rachel Vassar
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital, University of California, San Francisco, CA, USA.
| | - Shabnam Peyvandi
- Division of Pediatric Cardiology, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Dawn Gano
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Stephany Cox
- Division of Pediatric Cardiology, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
- Division of Developmental Medicine, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Yensy Zetino
- Division of Pediatric Cardiology, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Steven Miller
- Department of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Patrick McQuillen
- Division of Critical Care, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Chih WL, Tung YH, Lussier EC, Sung CY, Huang YL, Hung WL, Hsu KH, Chang CI, Chang TY, Chen MR. Associated factors with parental pregnancy decision-making and use of consultation after a prenatal congenital heart disease diagnosis. Pediatr Neonatol 2023; 64:371-380. [PMID: 36585272 DOI: 10.1016/j.pedneo.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prenatal diagnosis of congenital heart disease (CHD) often leads affected families to experience psychological stress. Pediatric cardiology consultation is important in providing parents with sufficient information and reducing their anxiety to make an informed pregnancy decision. Involving a fetal nurse coordinator may optimize fetal anomaly care. Our study aimed to identify factors associated with parental decision-making for choosing to use pediatric cardiology consultations and pregnancy termination. METHODS From September 2017 to December 2018, all fetal CHD cases diagnosed in the second trimester from a primary screening clinic in Taiwan were included (n = 145). Univariate and multivariate logistic regression were performed to analyze maternal, fetal, and medical factors for predictors of parental decisions for consultation use and pregnancy termination. RESULTS Acceptance for fetal nurse coordinator care and pediatric cardiology consultation were 84.8% (n = 123) and 83.4% (n = 121), respectively. Predictors for termination of pregnancy included the following: multiple anomalies (OR: 10.6; 95% CI: 3.6-35.7), chromosomal/genetic abnormalities (OR: 20.2; 95% CI: 3.1-395.8), severe CHDs (OR: 9.8; 95% CI: 4.3-23.4), CHDs that required surgery (OR: 32.4; 95% CI: 11.4-117.8), and physiological single-ventricle (OR: 47.3; 95% CI: 12.4-312.5). Parents who had pediatric cardiology counseling were less likely to terminate the pregnancy (OR: 0.1; 95% CI: 0.0-0.7). Parents with fetal diagnosis having multiple anomalies (OR: 0.2; 95% CI: 0.1-0.7) or chromosomal/genetic abnormalities (OR: 0.1; 95% CI: 0.03-0.9) were less likely to make use of cardiology consultation. Parents who accepted fetal nurse coordinator care were more likely to have pediatric cardiology consultation before pregnancy decision (OR: 149.5, 95% CI: 37.8-821.5). CONCLUSIONS Anomaly complexity appeared to be a strong predictor for termination of pregnancy beyond non-acceptability of prenatal cardiology consultation. Prenatal cardiology counseling may help support the parental decision to continue with the pregnancy. Incorporation of a fetal nurse coordinator care into the multidisciplinary fetal medicine team improved the acceptability of prenatal consultation.
Collapse
Affiliation(s)
- Wan-Ling Chih
- Taiji Clinic, Taipei, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | - Wei-Li Hung
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Kang-Hong Hsu
- Division of Cardiovascular Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-I Chang
- Division of Cardiovascular Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Ming-Ren Chen
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Carvalho JS, Axt-Fliedner R, Chaoui R, Copel JA, Cuneo BF, Goff D, Gordin Kopylov L, Hecher K, Lee W, Moon-Grady AJ, Mousa HA, Munoz H, Paladini D, Prefumo F, Quarello E, Rychik J, Tutschek B, Wiechec M, Yagel S. ISUOG Practice Guidelines (updated): fetal cardiac screening. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:788-803. [PMID: 37267096 DOI: 10.1002/uog.26224] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/04/2023]
Affiliation(s)
- J S Carvalho
- Royal Brompton Hospital, Guy's & St Thomas' NHS Foundation Trust; and Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust and Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - R Axt-Fliedner
- Division of Prenatal Medicine & Fetal Therapy, Department of Obstetrics & Gynecology, Justus-Liebig-University Giessen, University Hospital Giessen & Marburg, Giessen, Germany
| | - R Chaoui
- Center of Prenatal Diagnosis and Human Genetics, Berlin, Germany
| | - J A Copel
- Departments of Obstetrics, Gynecology & Reproductive Sciences, and Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - B F Cuneo
- Children's Hospital Colorado, The Heart Institute, Aurora, CO, USA
| | - D Goff
- Pediatrix Cardiology of Houston and Loma Linda University School of Medicine, Houston, TX, USA
| | - L Gordin Kopylov
- Obstetrical Unit, Shamir Medical Center (formerly Assaf Harofeh Medical Center), Zerifin, Israel; and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - K Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Lee
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - A J Moon-Grady
- Clinical Pediatrics, UC San Francisco, San Francisco, CA, USA
| | - H A Mousa
- Fetal Medicine Unit, University of Leicester, Leicester, UK
| | - H Munoz
- Obstetrics and Gynecology, Universidad de Chile and Clinica Las Condes, Santiago, Chile
| | - D Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - F Prefumo
- Obstetrics and Gynecology Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - E Quarello
- Image 2 Center, Obstetrics and Gynecologic Department, St Joseph Hospital, Marseille, France
| | - J Rychik
- Fetal Heart Program at Children's Hospital of Philadelphia, and Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - B Tutschek
- Pränatal Zürich, Zürich, Switzerland; and Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - M Wiechec
- Department of Gynecology and Obstetrics, Jagiellonian University in Krakow, Krakow, Poland
| | - S Yagel
- Department of Obstetrics and Gynecology, Hadassah Medical Center, Mt. Scopus and the Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Ronai C, Kim A, Dukhovny S, Fisher CR, Madriago E. Prenatal Congenital Heart Disease-It Takes a Multidisciplinary Village. Pediatr Cardiol 2023; 44:1050-1056. [PMID: 37186174 DOI: 10.1007/s00246-023-03161-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Prenatal diagnosis of congenital heart disease (CHD) allows for thoughtful multidisciplinary planning about location, timing, and need for medical interventions at birth. We sought to assess the accuracy of our prenatal cardiac diagnosis, and postnatal needs for patients with CHD utilizing a multidisciplinary approach. We performed a retrospective chart review of fetal CHD patients between 1/1/18 and 4/30/19. Maternal and infant charts were reviewed for delivery planning, subspecialty care needs, genetic evaluation, prenatal and postnatal cardiac diagnoses, need for prostaglandin (PGE) and neonatal cardiac intervention. 82 maternal-fetal dyads met inclusion criteria during the study period and delivered at a median of 38w2d gestation. 32 (39%) dyads had CHD and other anomalies or genetic abnormalities. All dyads met with a genetic counselor and neonatologist. 11 patients delivered at outside hospitals as planned (all with isolated CHD not requiring neonatal intervention), and 5 chose a palliative delivery. 30 patients were counseled to expect a neonatal cardiac intervention and 25 (83%) underwent an intervention within the expected time period. No neonates required an uncounseled cardiac intervention. 29 patients planned for PGE at birth and 31 received PGE. Of the 79 postnatal echocardiograms, 60 (76%) were entirely consistent with the fetal diagnosis. A multidisciplinary approach to the prenatal diagnosis of CHD in maternal-fetal dyads is optimal and utilizing this method we were able to accurately predict postnatal physiology and ensure that patients delivered in the correct location with an appropriate supportive structure in place.
Collapse
Affiliation(s)
- Christina Ronai
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA.
| | - Amanda Kim
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Stephanie Dukhovny
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA
| | - Christina R Fisher
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Erin Madriago
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
25
|
Moscatelli S, Leo I, Lisignoli V, Boyle S, Bucciarelli-Ducci C, Secinaro A, Montanaro C. Cardiovascular Magnetic Resonance from Fetal to Adult Life-Indications and Challenges: A State-of-the-Art Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050763. [PMID: 37238311 DOI: 10.3390/children10050763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging offers a comprehensive, non-invasive, and radiation-free imaging modality, which provides a highly accurate and reproducible assessment of cardiac morphology and functions across a wide spectrum of cardiac conditions spanning from fetal to adult life. It minimises risks to the patient, particularly the risks associated with exposure to ionising radiation and the risk of complications from more invasive haemodynamic assessments. CMR utilises high spatial resolution and provides a detailed assessment of intracardiac and extracardiac anatomy, ventricular and valvular function, and flow haemodynamic and tissue characterisation, which aid in the diagnosis, and, hence, with the management of patients with cardiac disease. This article aims to discuss the role of CMR and the indications for its use throughout the different stages of life, from fetal to adult life.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street, Children NHS Foundation Trust, London WC1N 3JH, UK
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Veronica Lisignoli
- Department of Cardiac Surgery, Cardiology, Heart and Lung Transplantation, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Siobhan Boyle
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Cardiology Department, Logan Hospital, Loganlea Rd, Meadowbrook, QLD 4131, Australia
| | - Chiara Bucciarelli-Ducci
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College University, London SW7 2BX, UK
| | - Aurelio Secinaro
- Radiology Department, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
| | - Claudia Montanaro
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- National Heart and Lung Institute, Imperial Collage London, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
26
|
Structural Racism, Social Determinants of Health, and Provider Bias: Impact on Brain Development in Critical Congenital Heart Disease. Can J Cardiol 2023; 39:133-143. [PMID: 36368561 DOI: 10.1016/j.cjca.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Critical congenital heart disease (cCHD) has neurodevelopmental sequelae that can carry into adulthood, which may be due to aberrant brain development or brain injury in the prenatal and perinatal/neonatal periods and beyond. Health disparities based on the intersection of sex, geography, race, and ethnicity have been identified for poorer pre- and postnatal outcomes in the general population, as well as those with cCHD. These disparities are likely driven by structural racism, disparities in social determinants of health, and provider bias, which further compound negative brain development outcomes. This review discusses how aberrant brain development in cCHD early in life is affected by reduced access to quality care (ie, prenatal care and testing, postnatal care) due to divestment in non-White neighbourhoods (eg, redlining) and food insecurity, differences in insurance status, location of residence, and perceived interpersonal racism and bias that disproportionately affects pregnant people of colour who have fewer economic resources. Suggestions are discussed for moving forward with implementing strategies in medical education, clinical care, research, and gaining insight into the communities served to combat disparities and bias while promoting cultural humility.
Collapse
|
27
|
Peyvandi S, Xu D, Barkovich AJ, Gano D, Chau V, Reddy VM, Selvanathan T, Guo T, Gaynor JW, Seed M, Miller SP, McQuillen P. Declining Incidence of Postoperative Neonatal Brain Injury in Congenital Heart Disease. J Am Coll Cardiol 2023; 81:253-266. [PMID: 36653093 PMCID: PMC10548869 DOI: 10.1016/j.jacc.2022.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Brain injury is common in neonates with complex neonatal congenital heart disease (CHD) and affects neurodevelopmental outcomes. OBJECTIVES Given advancements in perioperative care, we sought to determine if the rate of preoperative and postoperative brain injury detected by using brain magnetic resonance imaging (MRI) and associated clinical risk factors have changed over time in complex CHD. METHODS A total of 270 term newborns with complex CHD were prospectively enrolled for preoperative and postoperative brain MRIs between 2001 and 2021 with a total of 466 MRI scans. Brain injuries in the form of white matter injury (WMI) or focal stroke and clinical factors were compared across 4 epochs of 5-year intervals with logistic regression. RESULTS Rates of preoperative WMI and stroke did not change over time. After adjusting for timing of the postoperative MRI, site, and cardiac group, the odds of newly acquired postoperative WMI were significantly lower in Epoch 4 compared with Epoch 1 (OR: 0.29; 95% CI: 0.09-1.00; P = 0.05). The adjusted probability of postoperative WMI declined significantly by 18.7% from Epoch 1 (24%) to Epoch 4 (6%). Among clinical risk factors, lowest systolic, mean, and diastolic blood pressures in the first 24 hours after surgery were significantly higher in the most recent epoch. CONCLUSIONS The prevalence of postoperative WMI has declined, whereas preoperative WMI rates remain constant. More robust postoperative blood pressures may explain these findings by minimizing periods of ischemia and supporting cerebral perfusion. These results suggest potential modifiable clinical targets in the postoperative time period to minimize the burden of WMI.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Department of Pediatrics, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA.
| | - Duan Xu
- Department of Radiology, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - A James Barkovich
- Department of Radiology, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Dawn Gano
- Department of Neurology, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Vann Chau
- Department of Neurology, The University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - V Mohan Reddy
- Department of Surgery, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Thiviya Selvanathan
- Department of Neurology, The University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ting Guo
- Department of Neurology, The University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - J William Gaynor
- Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mike Seed
- Department of Pediatrics, The University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven P Miller
- Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Patrick McQuillen
- Department of Pediatrics, University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
| |
Collapse
|
28
|
Gianelle M, Turan S, Mech J, Chaves AH. The Impact of Neighborhood Socioeconomic Status, Race and Ethnicity, and Language on Prenatal Diagnosis of CHD. Pediatr Cardiol 2023; 44:1168-1175. [PMID: 36688983 DOI: 10.1007/s00246-023-03095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect. This study aimed to assess whether prenatal diagnosis (PD) of CHD and time of the diagnosis are associated with maternal race, ethnicity, neighborhood SES, and language. In this retrospective cohort study, we analyzed data on 163 patients who underwent surgical intervention for CHD within 30 days of birth between 2011 and 2020 at the University of Maryland Children's Hospital. A neighborhood SES score was calculated using the mother's address at time of discharge and 6 SES variables from the US Census block group data with a previously published method by Diez Roux et al. Neighborhood SES did not impact the likelihood of receiving a PD of CHD; however, patients of Latino ethnicity were 3.2 times and non-English-preferred language patients were 5.1 times more likely to not receive a PD. Patients whose preferred language was a non-English language received a prenatal diagnosis 5.3 weeks later, resulting in the PD being made in the third trimester rather than the second. Patients from the highest quartile SES received an earlier prenatal diagnosis, although this association was less significant when controlling for insurance type and preferred language. Significant disparities in PD of CHD were seen in patients of Latino ethnicity and patients who prefer non-English language. Better understanding of the root causes of these disparities will be important to guide interventions to reduce these disparities.
Collapse
Affiliation(s)
- Maria Gianelle
- University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Sifa Turan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jamie Mech
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland Medical Center, Baltimore, MD, USA
| | - Alicia H Chaves
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Muñoz H, Enríquez G, Ortega X, Pinto M, Hosiasson S, Germain A, Díaz C, Cortés F. Diagnóstico de cardiopatías congénitas: ecografía de cribado, ecocardiografía fetal y medicina de precisión. REVISTA MÉDICA CLÍNICA LAS CONDES 2023. [DOI: 10.1016/j.rmclc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
30
|
Lee FT, Sun L, Freud L, Seed M. A guide to prenatal counseling regarding neurodevelopment in congenital heart disease. Prenat Diagn 2022; 43:661-673. [PMID: 36575573 DOI: 10.1002/pd.6292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Advances in cardiac surgical techniques taking place over the past 50 years have resulted in the vast majority of children born with congenital cardiac malformations now surviving into adulthood. As the focus shifts from survival to the functional outcomes of our patients, it is increasingly being recognized that a significant proportion of patients undergoing infant cardiac repair experience adverse neurodevelopmental (ND) outcomes. The etiology of abnormal brain development in the setting of congenital heart disease is poorly understood, complex, and likely multifactorial. Furthermore, the efficacy of therapies available for the learning disabilities, attention deficit, and hyperactivity disorders and other ND deficits complicating congenital heart disease is currently uncertain. This situation presents a challenge for prenatal counseling as current antenatal testing does not usually provide prognostic information regarding the likely ND trajectories of individual patients. However, we believe it is important for parents to be informed about potential issues with child development when a new diagnosis of congenital heart disease is disclosed. Parents deserve a comprehensive and thoughtful approach to this subject, which conveys the uncertainties involved in predicting the severity of any developmental disorders encountered, while emphasizing the improvements in outcomes that have already been achieved in infants with congenital heart disease. A balanced approach to counseling should also discuss what local arrangements are in place for ND follow-up. This review presents an up-to-date overview of ND outcomes in patients with congenital heart disease, providing possible approaches to communicating this information to parents during prenatal counseling in a sensitive and accurate manner.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay Freud
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Thomas C, Yu S, Lowery R, Zampi JD. Timing of Balloon Atrial Septostomy in Patients with d-TGA and Association with Birth Location and Patient Outcomes. Pediatr Cardiol 2022:10.1007/s00246-022-03079-5. [PMID: 36565310 DOI: 10.1007/s00246-022-03079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Patients with d-looped transposition of the great arteries (d-TGA), especially those without an adequate atrial septal defect, can experience severe hypoxemia and hemodynamic compromise in the neonatal period. This can be mitigated by urgent balloon atrial septostomy (BAS). However, some patients with d-TGA are born at centers without this capability. The aim of this retrospective study of d-TGA patients who had urgent or emergent BAS at our institution between 2010 and 2021 was to evaluate time from birth to BAS for infants born at a tertiary care center as compared to those requiring transport from other institutions and to examine correlation between time to BAS and patient outcomes. Our primary outcome was time from birth to BAS. Secondary outcomes included hospital and ICU length of stay, mortality, and evidence of pulmonary or neurologic abnormalities including pulmonary hypertension, abnormal neuroimaging, or seizures. Of 96 patients, 67 (70%) were born at our institution. The median time to BAS was 4 h for patients born at our institution vs. 14.1 h for those born elsewhere (p < .0001). A longer time from birth to BAS was associated with longer ICU (r = 0.21, p = 0.046) and hospital length of stay (r = 0.24, p = 0.02) and increased likelihood of elevated right ventricular pressure on post-operative discharge echocardiogram (p = 0.01). There were no differences in mortality between the groups. Therefore, prenatal planning for patients with known d-TGA should include a delivery plan with access to urgent BAS.
Collapse
Affiliation(s)
- Courtney Thomas
- CS Mott Children's Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI, USA.
| | - Sunkyung Yu
- CS Mott Children's Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Ray Lowery
- CS Mott Children's Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Jeffrey D Zampi
- CS Mott Children's Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Ortinau CM, Smyser CD, Arthur L, Gordon EE, Heydarian HC, Wolovits J, Nedrelow J, Marino BS, Levy VY. Optimizing Neurodevelopmental Outcomes in Neonates With Congenital Heart Disease. Pediatrics 2022; 150:e2022056415L. [PMID: 36317967 PMCID: PMC10435013 DOI: 10.1542/peds.2022-056415l] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Neurodevelopmental impairment is a common and important long-term morbidity among infants with congenital heart disease (CHD). More than half of those with complex CHD will demonstrate some form of neurodevelopmental, neurocognitive, and/or psychosocial dysfunction requiring specialized care and impacting long-term quality of life. Preventing brain injury and treating long-term neurologic sequelae in this high-risk clinical population is imperative for improving neurodevelopmental and psychosocial outcomes. Thus, cardiac neurodevelopmental care is now at the forefront of clinical and research efforts. Initial research primarily focused on neurocritical care and operative strategies to mitigate brain injury. As the field has evolved, investigations have shifted to understanding the prenatal, genetic, and environmental contributions to impaired neurodevelopment. This article summarizes the recent literature detailing the brain abnormalities affecting neurodevelopment in children with CHD, the impact of genetics on neurodevelopmental outcomes, and the best practices for neonatal neurocritical care, focusing on developmental care and parental support as new areas of importance. A framework is also provided for the infrastructure and resources needed to support CHD families across the continuum of care settings.
Collapse
Affiliation(s)
- Cynthia M. Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Christopher D. Smyser
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Lindsay Arthur
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Erin E. Gordon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haleh C. Heydarian
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Cardiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Joshua Wolovits
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jonathan Nedrelow
- Department of Neonatology, Cook Children’s Medical Center, Fort Worth, Texas
| | - Bradley S. Marino
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Divisions of Cardiology and Critical Care Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Victor Y. Levy
- Department of Pediatrics, Stanford University School of Medicine, Lucile Packard Children’s Hospital, Palo Alto, California
| |
Collapse
|
33
|
Pittet MP, Marini D, Ly L, Au-Young SH, Chau V, Seed M, Miller SP, Hahn CD. Prevalence, Risk Factors, and Impact of Preoperative Seizures in Neonates With Congenital Heart Disease. J Clin Neurophysiol 2022; 39:616-624. [PMID: 33560701 DOI: 10.1097/wnp.0000000000000825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The purpose of this study was to assess the prevalence, risk factors, and impact of electrographic seizures in neonates with complex congenital heart disease before cardiac surgery. METHODS A cohort of 31 neonates with congenital heart disease monitored preoperatively with continuous video-EEG (cEEG) was first reviewed for electrographic seizure burden and EEG background abnormalities. Second, cEEG findings were correlated with brain MRI and 18-month outcomes. RESULTS Continuous video-EEG was recorded preoperatively for a median duration of 20.5 hours (range, 2.5-93.5 hours). The five neonates (16%; 95% confidence interval, 5.5% to 34%) with seizures detected on cEEG in the preoperative period had a diagnosis of transposition of the great arteries or similar physiology, detected in four of five postnatally. None of the 157 recorded electrographic seizures had a clinical correlate. The median time to first seizure was 65 minutes (range, 6-300 minutes) after cEEG hookup. The median maximum hourly seizure burden was 12.4 minutes (range, 7-23 minutes). Before the first electrographic seizure, a prolonged interburst interval (>10 seconds) was not associated with seizures (coefficient 1.2; 95% confidence interval, -1.1 to 3.6). MRI brain lesions were three times more common in neonates with seizures. Sharp wave transients on cEEG were associated with delayed opercular development. CONCLUSIONS In this cohort, preoperative electrographic seizures were common, were all subclinical, and were associated with MRI brain injury and postnatal diagnosis of transposition of the great arteries. The findings motivate further study of the mechanisms of preoperative brain injury, particularly among neonates with a postnatal diagnosis of transposition of the great arteries.
Collapse
Affiliation(s)
- Marie P Pittet
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Paediatric Neurology, Department of Paediatrics, Geneva University Hospital, Geneva, Switzerland
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; and
| | - Linh Ly
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stephanie H Au-Young
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; and
| | - Steven P Miller
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Cecil D Hahn
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Chen H, Yan Y, Li C, Zheng X, Wang G, Jin Z, Shi G, He X, Tong X, Chen H, Zhu Z. Inattention and hyperactivity in children and adolescents with repaired D-transposition of the great arteries: Prevalence, perioperative risk factors, and clinical outcomes. Front Cardiovasc Med 2022; 9:937311. [PMID: 36204574 PMCID: PMC9530033 DOI: 10.3389/fcvm.2022.937311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe present study objectives were to determine the prevalence of attention-deficit/hyperactivity disorder symptoms (ADHD-like symptoms) in children and adolescent with d-transposition of great artery (D-TGA) after arterial switch operation (ASO) and examine associated risk factors and adverse personal, family dysfunctions.MethodsThis cohort study included 103 patients with D-TGA who underwent ASO in early infancy at Shanghai Children’s Medical Center between 2011 and 2016 and then follow-up. Data analysis was conducted from September 2020 to April 2022. A standardized Swanson, Nolan, and Pelham IV (SNAP-IV) questionnaire is used to evaluate inattention and hyperactivity symptoms. Demographic, preoperative, intraoperative, and postoperative factor were collected. Univariate and multivariable regression analyses were performed with odds ratios (OR) and 95% confidence intervals (CIs).ResultsPrevalence of ADHD-like symptoms was 27.18% (28/103). Attention-deficit (18/28, 64.29%) symptom was the predominant subphenotype. After underwent TGA surgery, 39% of patients with ADHD-like symptoms receive remedial special academic services. There is none had repeated grade. Univariate analysis showed that, positive inotropic drug score (P = 0.03) and delayed sternal closure (P = 0.02) were risk factors of ADHD-like symptoms; increased preoperative oxygen saturation (SpO2) (P = 0.01) and surgical height (P = 0.01) and TGA subtype (VSD) (P = 0.02) were protective factor of ADHD-like symptoms. Multivariable analysis showed that delayed sternal closure (DSC) (OR, 1.50; 95% CI, 1.02–2.18) is a risk factor for the occurrence of ADHD-like symptom while increased preoperative oxygen saturation [odds ratio (OR), 0.95; 95% confidence interval (CI), 0.92–0.99] is a protective factor of ADHD-like symptom.ConclusionThe children and adolescents with D-TGA after ASO were at high risk of ADHD-like symptoms. Preoperative hypoxic status and postoperative DSC became predominant risk factors. Modification of the risk factors may be helpful to relieve ADHD-like symptoms for these patients.
Collapse
Affiliation(s)
- Hongtong Chen
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichen Yan
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Guanghai Wang
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijuan Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhongqun Zhu,
| |
Collapse
|
35
|
Meyers B, Lee VK, Dennis L, Wallace J, Schmithorst V, Votava-Smith JK, Rajagopalan V, Herrup E, Baust T, Tran NN, Hunter J, Licht DJ, Gaynor JW, Andropoulos DB, Panigrahy A, Ceschin R. Harmonization of Multi-Center Diffusion Tensor Tractography in Neonates with Congenital Heart Disease: Optimizing Post-Processing and Application of ComBat. NEUROIMAGE. REPORTS 2022; 2:100114. [PMID: 36258783 PMCID: PMC9575513 DOI: 10.1016/j.ynirp.2022.100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Advanced brain imaging of neonatal macrostructure and microstructure, which has prognosticating importance, is more frequently being incorporated into multi-center trials of neonatal neuroprotection. Multicenter neuroimaging studies, designed to overcome small sample sized clinical cohorts, are essential but lead to increased technical variability. Few harmonization techniques have been developed for neonatal brain microstructural (diffusion tensor) analysis. The work presented here aims to remedy two common problems that exist with the current state of the art approaches: 1) variance in scanner and protocol in data collection can limit the researcher's ability to harmonize data acquired under different conditions or using different clinical populations. 2) The general lack of objective guidelines for dealing with anatomically abnormal anatomy and pathology. Often, subjects are excluded due to subjective criteria, or due to pathology that could be informative to the final analysis, leading to the loss of reproducibility and statistical power. This proves to be a barrier in the analysis of large multi-center studies and is a particularly salient problem given the relative scarcity of neonatal imaging data. We provide an objective, data-driven, and semi-automated neonatal processing pipeline designed to harmonize compartmentalized variant data acquired under different parameters. This is done by first implementing a search space reduction step of extracting the along-tract diffusivity values along each tract of interest, rather than performing whole-brain harmonization. This is followed by a data-driven outlier detection step, with the purpose of removing unwanted noise and outliers from the final harmonization. We then use an empirical Bayes harmonization algorithm performed at the along-tract level, with the output being a lower dimensional space but still spatially informative. After applying our pipeline to this large multi-site dataset of neonates and infants with congenital heart disease (n= 398 subjects recruited across 4 centers, with a total of n=763 MRI pre-operative/post-operative time points), we show that infants with single ventricle cardiac physiology demonstrate greater white matter microstructural alterations compared to infants with bi-ventricular heart disease, supporting what has previously been shown in literature. Our method is an open-source pipeline for delineating white matter tracts in subject space but provides the necessary modular components for performing atlas space analysis. As such, we validate and introduce Diffusion Imaging of Neonates by Group Organization (DINGO), a high-level, semi-automated framework that can facilitate harmonization of subject-space tractography generated from diffusion tensor imaging acquired across varying scanners, institutions, and clinical populations. Datasets acquired using varying protocols or cohorts are compartmentalized into subsets, where a cohort-specific template is generated, allowing for the propagation of the tractography mask set with higher spatial specificity. Taken together, this pipeline can reduce multi-scanner technical variability which can confound important biological variability in relation to neonatal brain microstructure.
Collapse
Affiliation(s)
- Benjamin Meyers
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Vincent K. Lee
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lauren Dennis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Vanessa Schmithorst
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Los Angeles and Keck School of Medicine University of Southern California, Los Angeles, CA
| | - Vidya Rajagopalan
- Department of Radiology, Children’s Hospital of Los Angeles and Keck School of Medicine University of Southern California Los Angeles, CA
| | - Elizabeth Herrup
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tracy Baust
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Nhu N. Tran
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Los Angeles and Keck School of Medicine University of Southern California, Los Angeles, CA
| | - Jill Hunter
- Department of Radiology, Texas Children’s Hospital, Houston, TX
| | - Daniel J. Licht
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - J. William Gaynor
- Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rafael Ceschin
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
36
|
Ziegler A, Chung WK. Recent advances in understanding neuro. Curr Opin Genet Dev 2022; 75:101938. [DOI: 10.1016/j.gde.2022.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
|
37
|
Reduced Cerebellar Volume in Term Infants with Complex Congenital Heart Disease: Correlation with Postnatal Growth Measurements. Diagnostics (Basel) 2022; 12:diagnostics12071644. [PMID: 35885549 PMCID: PMC9321214 DOI: 10.3390/diagnostics12071644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrant cerebellar development and the associated neurocognitive deficits has been postulated in infants with congenital heart disease (CHD). Our objective is to investigate the effect of postnatal head and somatic growth on cerebellar development in neonates with CHD. We compared term-born neonates with a history of CHD with a cohort of preterm-born neonates, two cohorts at similar risk for neurodevelopment impairment, in order to determine if they are similarly affected in the early developmental period. Study Design: 51 preterms-born healthy neonates, 62 term-born CHD neonates, and 54 term-born healthy neonates underwent a brain MRI with volumetric imaging. Cerebellar volumes were extracted through an automated segmentation pipeline that was developed in-house. Volumes were correlated with clinical growth parameters at both the birth and time of MRI. Results: The CHD cohort showed significantly lower cerebellar volumes when compared with both the control (p < 0.015) and preterm (p < 0.004) groups. Change in weight from birth to time of MRI showed a moderately strong correlation with cerebellar volume at time of MRI (r = 0.437, p < 0.002) in the preterms, but not in the CHD neonates (r = 0.205, p < 0.116). Changes in birth length and head circumference showed no significant correlation with cerebellar volume at time of MRI in either cohort. Conclusions: Cerebellar development in premature-born infants is associated with change in birth weight in the early post-natal period. This association is not observed in term-born neonates with CHD, suggesting differential mechanisms of aberrant cerebellar development in these perinatal at-risk populations.
Collapse
|
38
|
Reddy CD, Van den Eynde J, Kutty S. Artificial intelligence in perinatal diagnosis and management of congenital heart disease. Semin Perinatol 2022; 46:151588. [PMID: 35396036 DOI: 10.1016/j.semperi.2022.151588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal diagnosis and management of congenital heart disease (CHD) has progressed substantially in the past few decades. Fetal echocardiography can accurately detect and diagnose approximately 85% of cardiac anomalies. The prenatal diagnosis of CHD results in improved care, with improved risk stratification, perioperative status and survival. However, there is much work to be done. A minority of CHD is actually identified prenatally. This seemingly incongruous gap is due, in part, to diminished recognition of an anomaly even when present in the images and the need for increased training to obtain specialized cardiac views. Artificial intelligence (AI) is a field within computer science that focuses on the development of algorithms that "learn, reason, and self-correct" in a human-like fashion. When applied to fetal echocardiography, AI has the potential to improve image acquisition, image optimization, automated measurements, identification of outliers, classification of diagnoses, and prediction of outcomes. Adoption of AI in the field has been thus far limited by a paucity of data, limited resources to implement new technologies, and legal and ethical concerns. Despite these barriers, recognition of the potential benefits will push us to a future in which AI will become a routine part of clinical practice.
Collapse
Affiliation(s)
- Charitha D Reddy
- Division of Pediatric Cardiology, Stanford University, Palo Alto, CA, USA.
| | - Jef Van den Eynde
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Wong J, Kohari K, Bahtiyar MO, Copel J. Impact of prenatally diagnosed congenital heart defects on outcomes and management. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:646-654. [PMID: 35543387 DOI: 10.1002/jcu.23219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Fetal echocardiogram aids in prenatal identification of neonates at high risk for congenital heart defects (CHD). Prenatal detection rates for CHD have increased with improved ultrasound technology, the use of the early fetal echocardiography, and standardization of the performance of the fetal echocardiogram. Accurate prenatal detection of CHD, particularly complex CHD, is an important contributor to improved survival rates for patients with CHD. Early detection allows for families to choose whether or not to continue with pregnancy, referral to pediatric cardiology specialists for patient education, and delivery planning. Better psychosocial supports are needed for families with CHD.
Collapse
Affiliation(s)
- Jennifer Wong
- Section of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Katherine Kohari
- Section of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mert Ozan Bahtiyar
- Section of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joshua Copel
- Section of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Sethi N, Carpenter JL, Donofrio MT. Impact of perinatal management on neurodevelopmental outcomes in congenital heart disease. Semin Perinatol 2022; 46:151582. [PMID: 35418321 DOI: 10.1016/j.semperi.2022.151582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With advancements in cardiopulmonary bypass technique and perioperative care, there has been a progressive decline in mortality associated with neonatal surgical correction of congenital heart disease (CHD). Thus, there is now increased focus on improving neurodevelopmental outcomes in CHD survivors. While the cause of these neurodevelopmental impairments is multifactorial, there is increasing evidence that structural and functional cerebral abnormalities are present before cardiac corrective repair. This suggests that in addition to patient specific risk factors, underlying cardiac physiology and clinical hemodynamics are critical to brain health and development. Prenatal diagnosis of CHD and subsequent optimization of perinatal care may therefore be important modifiable factors for long-term neurodevelopmental outcome. This article reviews the impact that prenatal diagnosis of CHD has on perinatal care and the preoperative clinical status of a neonate, as well as the potential influence this may have on lessening the degree of cerebral injury and long-term neurodevelopmental impairments.
Collapse
Affiliation(s)
- Neeta Sethi
- Duke Children's Pediatric and Congenital Heart Center, Duke University Medical Center, Durham, NC, USA
| | - Jessica L Carpenter
- Division of Pediatric Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Mary T Donofrio
- Division of Cardiology, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
41
|
Lopez KN, Baker-Smith C, Flores G, Gurvitz M, Karamlou T, Nunez Gallegos F, Pasquali S, Patel A, Peterson JK, Salemi JL, Yancy C, Peyvandi S. Addressing Social Determinants of Health and Mitigating Health Disparities Across the Lifespan in Congenital Heart Disease: A Scientific Statement From the American Heart Association. J Am Heart Assoc 2022; 11:e025358. [PMID: 35389228 PMCID: PMC9238447 DOI: 10.1161/jaha.122.025358] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the overall improvement in life expectancy of patients living with congenital heart disease (congenital HD), disparities in morbidity and mortality remain throughout the lifespan. Longstanding systemic inequities, disparities in the social determinants of health, and the inability to obtain quality lifelong care contribute to poorer outcomes. To work toward health equity in populations with congenital HD, we must recognize the existence and strategize the elimination of inequities in overall congenital HD morbidity and mortality, disparate health care access, and overall quality of health services in the context of varying social determinants of health, systemic inequities, and structural racism. This requires critically examining multilevel contributions that continue to facilitate health inequities in the natural history and consequences of congenital HD. In this scientific statement, we focus on population, systemic, institutional, and individual-level contributions to health inequities from prenatal to adult congenital HD care. We review opportunities and strategies for improvement in lifelong congenital HD care based on current public health and scientific evidence, surgical data, experiences from other patient populations, and recognition of implicit bias and microaggressions. Furthermore, we review directions and goals for both quantitative and qualitative research approaches to understanding and mitigating health inequities in congenital HD care. Finally, we assess ways to improve the diversity of the congenital HD workforce as well as ethical guidance on addressing social determinants of health in the context of clinical care and research.
Collapse
|
42
|
Braley K, Nguyen T, Douglas K, Dadlani G. A perinatal cardiology network review: The Nemours Children's health system approach in the state of Florida. PROGRESS IN PEDIATRIC CARDIOLOGY 2022. [DOI: 10.1016/j.ppedcard.2022.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Hermans T, Thewissen L, Gewillig M, Cools B, Jansen K, Pillay K, De Vos M, Van Huffel S, Naulaers G, Dereymaeker A. Functional brain maturation and sleep organisation in neonates with congenital heart disease. Eur J Paediatr Neurol 2022; 36:115-122. [PMID: 34954621 DOI: 10.1016/j.ejpn.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/23/2021] [Accepted: 12/11/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Neonates with Congenital Heart Disease (CHD) have structural delays in brain development. To evaluate whether functional brain maturation and sleep-wake physiology is also disturbed, the Functional Brain Age (FBA) and sleep organisation on EEG during the neonatal period is investigated. METHODS We compared 15 neonates with CHD who underwent multichannel EEG with healthy term newborns of the same postmenstrual age, including subgroup analysis for d-Transposition of the Great Arteries (d-TGA) (n = 8). To estimate FBA, a prediction tool using quantitative EEG features as input, was applied. Second, the EEG was automatically classified into the 4 neonatal sleep stages. Neonates with CHD underwent neurodevelopmental testing using the Bayley Scale of Infant Development-III at 24 months. RESULTS Preoperatively, the FBA was delayed in CHD infants and more so in d-TGA infants. The FBA was positively correlated with motor scores. Sleep organisation was significantly altered in neonates with CHD. The duration of the sleep cycle and the proportion of Active Sleep Stage 1 was decreased, again more marked in the d-TGA infants. Neonates with d-TGA spent less time in High Voltage Slow Wave Sleep and more in Tracé Alternant compared to healthy terms. Both FBA and sleep organisation normalised postoperatively. The duration of High Voltage Slow Wave Sleep remained positively correlated with motor scores in d-TGA infants. INTERPRETATION Altered early brain function and sleep is present in neonates with CHD. These results are intruiging, as inefficient neonatal sleep has been linked with adverse long-term outcome. Identifying how these rapid alterations in brain function are mitigated through improvements in cerebral oxygenation, surgery, drugs and nutrition may have relevance for clinical practice and outcome.
Collapse
Affiliation(s)
- Tim Hermans
- Division STADIUS, Department of Electrical Engineering (ESAT), KU Leuven (University of Leuven), Leuven, Belgium
| | - Liesbeth Thewissen
- Department of Development and Regeneration, Neonatal Intensive Care Unit, University Hospitals Leuven, KU Leuven (University of Leuven), Leuven, Belgium
| | - Marc Gewillig
- Department of Cardiovascular Science, Paediatric Cardiology, University Hospitals Leuven, KU Leuven (University of Leuven), Leuven, Belgium
| | - Bjorn Cools
- Department of Cardiovascular Science, Paediatric Cardiology, University Hospitals Leuven, KU Leuven (University of Leuven), Leuven, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, Child Neurology, University Hospitals Leuven, KU Leuven (University of Leuven), Leuven, Belgium
| | - Kirubin Pillay
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Maarten De Vos
- Division STADIUS, Department of Electrical Engineering (ESAT), KU Leuven (University of Leuven), Leuven, Belgium
| | - Sabine Van Huffel
- Division STADIUS, Department of Electrical Engineering (ESAT), KU Leuven (University of Leuven), Leuven, Belgium
| | - Gunnar Naulaers
- Department of Development and Regeneration, Neonatal Intensive Care Unit, University Hospitals Leuven, KU Leuven (University of Leuven), Leuven, Belgium
| | - Anneleen Dereymaeker
- Department of Development and Regeneration, Neonatal Intensive Care Unit, University Hospitals Leuven, KU Leuven (University of Leuven), Leuven, Belgium.
| |
Collapse
|
44
|
Sprong MCA, Broeders W, van der Net J, Breur JMPJ, de Vries LS, Slieker MG, van Brussel M. Motor Developmental Delay After Cardiac Surgery in Children With a Critical Congenital Heart Defect: A Systematic Literature Review and Meta-analysis. Pediatr Phys Ther 2021; 33:186-197. [PMID: 34618742 DOI: 10.1097/pep.0000000000000827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To systematically review evidence regarding the severity and prevalence of motor development in children with a critical congenital heart defect (CCHD) without underlying genetic anomalies. SUMMARY OF KEY POINTS Twelve percent of all included studies reported abnormal mean motor developmental scores, and 38% reported below average motor scores. Children with single-ventricle physiology, especially those with hypoplastic left heart syndrome, had the highest severity and prevalence of motor delay, particularly at 0 to 12 months. Most included studies did not differentiate between gross and fine motor development, yet gross motor development was more affected. RECOMMENDATIONS FOR CLINICAL PRACTICE We recommend clinicians differentiate between the type of heart defect, fine and gross motor development, and the presence of genetic anomalies. Furthermore, increased knowledge about severity and prevalence will enable clinicians to tailor their interventions to prevent motor development delays in CCHD.
Collapse
Affiliation(s)
- Maaike C A Sprong
- Center for Child Development, Exercise and Physical literacy (Mrs/Ms Sprong, Mr Broeders, Dr van Brussel, and Dr van der Net), Pediatric Cardiology (Dr Breur and Dr Slieker), and Department of Neonatology (Dr de Vries), Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Rajagopalan V, Deoni S, Panigrahy A, Thomason ME. Is fetal MRI ready for neuroimaging prime time? An examination of progress and remaining areas for development. Dev Cogn Neurosci 2021; 51:100999. [PMID: 34391003 PMCID: PMC8365463 DOI: 10.1016/j.dcn.2021.100999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
A major challenge in designing large-scale, multi-site studies is developing a core, scalable protocol that retains the innovation of scientific advances while also lending itself to the variability in experience and resources across sites. In the development of a common Healthy Brain and Child Development (HBCD) protocol, one of the chief questions is "is fetal MRI ready for prime-time?" While there is agreement about the value of prenatal data obtained non-invasively through MRI, questions about practicality abound. There has been rapid progress over the past years in fetal and placental MRI methodology but there is uncertainty about whether the gains afforded outweigh the challenges in supporting fetal MRI protocols at scale. Here, we will define challenges inherent in building a common protocol across sites with variable expertise and will propose a tentative framework for evaluation of design decisions. We will compare and contrast various design considerations for both normative and high-risk populations, in the setting of the post-COVID era. We will conclude with articulation of the benefits of overcoming these challenges and would lend to the primary questions articulated in the HBCD initiative.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Department of Radiology, Keck School of Medicine, University of Southern California and Childrens Hospital of Los Angeles, United States.
| | - Sean Deoni
- Department of Pediatrics, Memorial Hospital of Rhode Island, United States
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh Medical School and Children's Hospital of Pittsburgh, United States
| | - Moriah E Thomason
- Departments of Child and Adolescent Psychiatry and Population Health, Hassenfeld Children's Hospital at NYU Langone, United States
| |
Collapse
|
46
|
Peyvandi S, Lim JM, Marini D, Xu D, Reddy VM, Barkovich AJ, Miller S, McQuillen P, Seed M. Fetal brain growth and risk of postnatal white matter injury in critical congenital heart disease. J Thorac Cardiovasc Surg 2021; 162:1007-1014.e1. [PMID: 33185192 PMCID: PMC8012393 DOI: 10.1016/j.jtcvs.2020.09.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To test the hypothesis that delayed brain development in fetuses with d-transposition of the great arteries or hypoplastic left heart syndrome heightens their postnatal susceptibility to acquired white matter injury. METHODS This is a cohort study across 3 sites. Subjects underwent fetal (third trimester) and neonatal preoperative magnetic resonance imaging of the brain to measure total brain volume as a measure of brain maturity and the presence of acquired white matter injury after birth. White matter injury was categorized as no-mild or moderate-severe based on validated grading criteria. Comparisons were made between the injury groups. RESULTS A total of 63 subjects were enrolled (d-transposition of the great arteries: 37; hypoplastic left heart syndrome: 26). White matter injury was present in 32.4% (n = 12) of d-transposition of the great arteries and 34.6% (n = 8) of those with hypoplastic left heart syndrome. Overall total brain volume (taking into account fetal and neonatal scan) was significantly lower in those with postnatal moderate-severe white matter injury compared with no-mild white matter injury after adjusting for age at scan and site in d-transposition of the great arteries (coefficient: 14.8 mL, 95% confidence interval, -28.8 to -0.73, P = .04). The rate of change in total brain volume from fetal to postnatal life did not differ by injury group. In hypoplastic left heart syndrome, no association was noted between overall total brain volume and change in total brain volume with postnatal white matter injury. CONCLUSIONS Lower total brain volume beginning in late gestation is associated with increased risk of postnatal moderate-severe white matter injury in d-transposition of the great arteries but not hypoplastic left heart syndrome. Rate of brain growth was not a risk factor for white matter injury. The underlying fetal and perinatal physiology has different implications for postnatal risk of white matter injury.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Department of Pediatrics, University of California San Francisco, Benioff Children's Hospital, San Francisco, Calif.
| | - Jessie Mei Lim
- Department of Pediatrics, University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - Davide Marini
- Department of Pediatrics, University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - Duan Xu
- Department of Radiology, University of California San Francisco, Benioff Children's Hospital, San Francisco, Calif
| | - V Mohan Reddy
- Department of Surgery, University of California San Francisco, Benioff Children's Hospital, San Francisco, Calif
| | - A James Barkovich
- Department of Radiology, University of California San Francisco, Benioff Children's Hospital, San Francisco, Calif
| | - Steven Miller
- Department of Neurology, University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| | - Patrick McQuillen
- Department of Pediatrics, University of California San Francisco, Benioff Children's Hospital, San Francisco, Calif
| | - Mike Seed
- Department of Pediatrics, University of Toronto Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Lee FT, Marini D, Seed M, Sun L. Maternal hyperoxygenation in congenital heart disease. Transl Pediatr 2021; 10:2197-2209. [PMID: 34584891 PMCID: PMC8429855 DOI: 10.21037/tp-20-226] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 01/26/2023] Open
Abstract
The importance of prenatal diagnosis and fetal intervention has been increasing as a preventative strategy for improving the morbidity and mortality in congenital heart disease (CHD). The advancements in medical imaging technology have greatly enhanced our understanding of disease progression, assessment, and impact in those with CHD. In particular, there has been a growing focus on improving the morbidity and mortality of fetuses diagnosed with left-sided lesions. The disruption of fetal hemodynamics resulting from poor structural developmental of the left outflow tract during cardiogenesis is considered a major factor in the progressive lethal underdevelopment of the left ventricle (LV). This positive feedback cycle of inadequate flow and underdevelopment of the LV leads to a disrupted fetal circulation, which has been described to impact fetal brain growth where systemic outflow is poor and, in some cases, the fetal lungs in the setting of a restrictive interatrial communication. For the past decade, maternal hyperoxygenation (MH) has been investigated as a diagnostic tool to assess the pulmonary vasculature and a therapeutic agent to improve the development of the heart and brain in fetuses with CHD with a focus on left-sided cardiac defects. This review discusses the findings of these studies as well as the utility of acute and chronic administration of MH in CHD.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Morris SA, Lopez KN. Deep learning for detecting congenital heart disease in the fetus. Nat Med 2021; 27:764-765. [PMID: 33990805 DOI: 10.1038/s41591-021-01354-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shaine A Morris
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - Keila N Lopez
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
49
|
Krishnan A, Jacobs MB, Morris SA, Peyvandi S, Bhat AH, Chelliah A, Chiu JS, Cuneo BF, Freire G, Hornberger LK, Howley L, Husain N, Ikemba C, Kavanaugh-McHugh A, Kutty S, Lee C, Lopez KN, McBrien A, Michelfelder EC, Pinto NM, Schwartz R, Stern KWD, Taylor C, Thakur V, Tworetzky W, Wittlieb-Weber C, Woldu K, Donofrio MT. Impact of Socioeconomic Status, Race and Ethnicity, and Geography on Prenatal Detection of Hypoplastic Left Heart Syndrome and Transposition of the Great Arteries. Circulation 2021; 143:2049-2060. [PMID: 33993718 DOI: 10.1161/circulationaha.120.053062] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prenatal detection (PND) has benefits for infants with hypoplastic left heart syndrome (HLHS) and transposition of the great arteries (TGA), but associations between sociodemographic and geographic factors with PND have not been sufficiently explored. This study evaluated whether socioeconomic quartile (SEQ), public insurance, race and ethnicity, rural residence, and distance of residence (distance and driving time from a cardiac surgical center) are associated with the PND or timing of PND, with a secondary aim to analyze differences between the United States and Canada. METHODS In this retrospective cohort study, fetuses and infants <2 months of age with HLHS or TGA admitted between 2012 and 2016 to participating Fetal Heart Society Research Collaborative institutions in the United States and Canada were included. SEQ, rural residence, and distance of residence were derived using maternal census tract from the maternal address at first visit. Subjects were assigned a SEQ z score using the neighborhood summary score or Canadian Chan index and separated into quartiles. Insurance type and self-reported race and ethnicity were obtained from medical charts. We evaluated associations among SEQ, insurance type, race and ethnicity, rural residence, and distance of residence with PND of HLHS and TGA (aggregate and individually) using bivariate analysis with adjusted associations for confounding variables and cluster analysis for centers. RESULTS Data on 1862 subjects (HLHS: n=1171, 92% PND; TGA: n=691, 58% PND) were submitted by 21 centers (19 in the United States). In the United States, lower SEQ was associated with lower PND in HLHS and TGA, with the strongest association in the lower SEQ of pregnancies with fetal TGA (quartile 1, 0.78 [95% CI, 0.64-0.85], quartile 2, 0.77 [95% CI, 0.64-0.93], quartile 3, 0.83 [95% CI, 0.69-1.00], quartile 4, reference). Hispanic ethnicity (relative risk, 0.85 [95% CI, 0.72-0.99]) and rural residence (relative risk, 0.78 [95% CI, 0.64-0.95]) were also associated with lower PND in TGA. Lower SEQ was associated with later PND overall; in the United States, rural residence and public insurance were also associated with later PND. CONCLUSIONS We demonstrate that lower SEQ, Hispanic ethnicity, and rural residence are associated with decreased PND for TGA, with lower SEQ also being associated with decreased PND for HLHS. Future work to increase PND should be considered in these specific populations.
Collapse
Affiliation(s)
- Anita Krishnan
- Divisions of Cardiology (A.K., M.T.D.), Children's National Hospital, Washington, DC
| | - Marni B Jacobs
- Biostatistics (M.B.J.), Children's National Hospital, Washington, DC.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego (M.B.J.)
| | - Shaine A Morris
- Division of Pediatric Cardiology, Baylor College of Medicine, Houston, TX (S.A.M., K.N.L.)
| | - Shabnam Peyvandi
- Division of Cardiology, Department of Pediatrics, University of California, San Francisco (S.P.)
| | - Aarti H Bhat
- Division of Cardiology, Seattle Children's Hospital, University of Washington (A.H.B.)
| | - Anjali Chelliah
- Division of Pediatric Cardiology, Columbia University Irving Medical Center, New York (A.C.)
| | - Joanne S Chiu
- Division of Pediatric Cardiology, Johns Hopkins University, Baltimore, MD (J.S.C., S.K.).,Division of Cardiology, Department of Pediatrics, Massachusetts General Hospital, Boston (J.S.C.)
| | - Bettina F Cuneo
- Division of Cardiology, Children's Hospital of Colorado/University of Colorado, Aurora (B.F.C., L.H.)
| | - Grace Freire
- Division of Cardiology, Johns Hopkins University All Children's Hospital, St. Petersburg, FL (G.F.)
| | - Lisa K Hornberger
- Division of Pediatric Cardiology, University of Alberta, Edmonton, Canada (L.K.H., A.M.)
| | - Lisa Howley
- Division of Cardiology, Children's Hospital of Colorado/University of Colorado, Aurora (B.F.C., L.H.).,Division of Cardiology, The Children's Heart Clinic/Children's Minnesota, Minneapolis (L.H.)
| | - Nazia Husain
- Division of Cardiology, Ann and Robert H. Lurie Children's Hospital of Chicago, IL (N.H.)
| | - Catherine Ikemba
- Division of Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas (C.I., K.W.)
| | - Ann Kavanaugh-McHugh
- Division of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN (A.K.-M.)
| | - Shelby Kutty
- Division of Pediatric Cardiology, Johns Hopkins University, Baltimore, MD (J.S.C., S.K.).,University of Nebraska Medical Center, Omaha (S.K.)
| | - Caroline Lee
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.L.)
| | - Keila N Lopez
- Division of Pediatric Cardiology, Baylor College of Medicine, Houston, TX (S.A.M., K.N.L.)
| | - Angela McBrien
- Division of Pediatric Cardiology, University of Alberta, Edmonton, Canada (L.K.H., A.M.)
| | - Erik C Michelfelder
- Emory University School of Medicine, Children's Healthcare of Atlanta/Sibley Heart Center, GA (E.C.M.)
| | - Nelangi M Pinto
- Division of Pediatric Cardiology, University of Utah, Salt Lake City (N.M.P.)
| | - Rachel Schwartz
- Division of Cardiology, Boston Children's Hospital, MA (R.S., W.T.).,The George Washington School of Medicine, Washington, DC (R.S.)
| | - Kenan W D Stern
- Division of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York (K.W.D.S.)
| | - Carolyn Taylor
- Division of Pediatric Cardiology, Medical University of South Carolina, Charleston (C.T.)
| | - Varsha Thakur
- Division of Cardiology, University of Toronto, Ontario, Canada (V.T.)
| | - Wayne Tworetzky
- Division of Cardiology, Boston Children's Hospital, MA (R.S., W.T.)
| | - Carol Wittlieb-Weber
- Division of Pediatric Cardiology, University of Rochester, NY (C.W.-W.).,Division of Cardiology, Children's Hospital of Philadelphia, PA (C.W.-W.)
| | - Kris Woldu
- Division of Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas (C.I., K.W.).,Division of Cardiology, Cook Children's Heart Center, Ft. Worth, TX (K.W.)
| | - Mary T Donofrio
- Divisions of Cardiology (A.K., M.T.D.), Children's National Hospital, Washington, DC
| | | |
Collapse
|
50
|
Sun L, Lee FT, van Amerom JFP, Freud L, Jaeggi E, Macgowan CK, Seed M. Update on fetal cardiovascular magnetic resonance and utility in congenital heart disease. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital heart disease (CHD) is the most common birth defect, affecting approximately eight per thousand newborns. Between one and two neonates per thousand have congenital cardiac lesions that require immediate post-natal treatment to stabilize the circulation, and the management of these patients in particular has been greatly enhanced by prenatal detection. The antenatal diagnosis of CHD has been made possible through the development of fetal echocardiography, which provides excellent visualization of cardiac anatomy and physiology and is widely available. However, late gestational fetal echocardiographic imaging can be hampered by suboptimal sonographic windows, particularly in the setting of oligohydramnios or adverse maternal body habitus.
Main body
Recent advances in fetal cardiovascular magnetic resonance (CMR) technology now provide a feasible alternative that could be helpful when echocardiography is inconclusive or limited. Fetal CMR has also been used to study fetal circulatory physiology in human fetuses with CHD, providing new insights into how these common anatomical abnormalities impact the distribution of blood flow and oxygen across the fetal circulation. In combination with conventional fetal and neonatal magnetic resonance imaging (MRI) techniques, fetal CMR can be used to explore the relationship between abnormal cardiovascular physiology and fetal development. Similarly, fetal CMR has been successfully applied in large animal models of the human fetal circulation, aiding in the evaluation of experimental interventions aimed at improving in utero development. With the advent of accelerated image acquisition techniques, post-processing approaches to correcting motion artifacts and commercial MRI compatible cardiotocography units for acquiring gated fetal cardiac imaging, an increasing number of CMR methods including angiography, ventricular volumetry, and the quantification of vessel blood flow and oxygen content are now possible.
Conclusion
Fetal CMR has reached an exciting stage whereby it may now be used to enhance the assessment of cardiac morphology and fetal hemodynamics in the setting of prenatal CHD.
Collapse
|