1
|
Stapleton JT. Human Pegivirus Type 1: A Common Human Virus That Is Beneficial in Immune-Mediated Disease? Front Immunol 2022; 13:887760. [PMID: 35707535 PMCID: PMC9190258 DOI: 10.3389/fimmu.2022.887760] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
Two groups identified a novel human flavivirus in the mid-1990s. One group named the virus hepatitis G virus (HGV) and the other named it GB Virus type C (GBV-C). Sequence analyses found these two isolates to be the same virus, and subsequent studies found that the virus does not cause hepatitis despite sharing genome organization with hepatitis C virus. Although HGV/GBV-C infection is common and may cause persistent infection in humans, the virus does not appear to directly cause any other known disease state. Thus, the virus was renamed “human pegivirus 1” (HPgV-1) for “persistent G” virus. HPgV-1 is found primarily in lymphocytes and not hepatocytes, and several studies found HPgV-1 infection associated with prolonged survival in people living with HIV. Co-infection of human lymphocytes with HPgV-1 and HIV inhibits HIV replication. Although three viral proteins directly inhibit HIV replication in vitro, the major effects of HPgV-1 leading to reduced HIV-related mortality appear to result from a global reduction in immune activation. HPgV-1 specifically interferes with T cell receptor signaling (TCR) by reducing proximal activation of the lymphocyte specific Src kinase LCK. Although TCR signaling is reduced, T cell activation is not abolished and with sufficient stimulus, T cell functions are enabled. Consequently, HPgV-1 is not associated with immune suppression. The HPgV-1 immunomodulatory effects are associated with beneficial outcomes in other diseases including Ebola virus infection and possibly graft-versus-host-disease following stem cell transplantation. Better understanding of HPgV-1 immune escape and mechanisms of inflammation may identify novel therapies for immune-based diseases.
Collapse
Affiliation(s)
- Jack T. Stapleton
- Medicine Service, Iowa City Veterans Administration Healthcare, Iowa City, IA, United States
- Departments of Internal Medicine, Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Jack T. Stapleton,
| |
Collapse
|
2
|
Yu Y, Wan Z, Wang JH, Yang X, Zhang C. Review of human pegivirus: Prevalence, transmission, pathogenesis, and clinical implication. Virulence 2022; 13:324-341. [PMID: 35132924 PMCID: PMC8837232 DOI: 10.1080/21505594.2022.2029328] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pegivirus (HPgV-1), previously known as GB virus C (GBV-C) or hepatitis G virus (HGV), is a single-stranded positive RNA virus belonging to the genus Pegivirus of the Flaviviridae family. It is transmitted by percutaneous injuries (PIs), contaminated blood and/or blood products, sexual contact, and vertical mother-to-child transmission. It is widely prevalent in general population, especially in high-risk groups. HPgV-1 viremia is typically cleared within the first 1–2 years of infection in most healthy individuals, but may persist for longer periods of time in immunocompromised individuals and/or those co-infected by other viruses. A large body of evidences indicate that HPgV-1 persistent infection has a beneficial clinical effect on many infectious diseases, such as acquired immunodeficiency syndrome (AIDS) and hepatitis C. The beneficial effects seem to be related to a significant reduction of immune activation, and/or the inhabitation of co-infected viruses (e.g. HIV-1). HPgV-1 has a broad cellular tropism for lymphoid and myeloid cells, and preferentially replicates in bone marrow and spleen without cytopathic effect, implying a therapeutic potential. The paper aims to summarize the natural history, prevalence and distribution characteristics, and pathogenesis of HPgV-1, and discuss its association with other human viral diseases, and potential use in therapy as a biovaccine or viral vector.
Collapse
Affiliation(s)
- Yaqi Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xianguang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Shaker EK, Al-Jebouri MM, Al-Mayah QS, Al-Matubsi HY. Phylogenetic analysis of human pegivirus from anti-hepatitis C virus IgG- positive patients. INFECTION GENETICS AND EVOLUTION 2021; 96:105099. [PMID: 34601095 DOI: 10.1016/j.meegid.2021.105099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Human pegivirus type 1 (HPgV-1) is a non-pathogenic RNA virus in the Flaviviridae family that usually occurs as a co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), though some evidence suggests it may play a role in certain cancers. The present study aimed to determine the prevalence of HPgV-1 infection in Iraqi anti-HCV IgG-positive patients, the risk factors associated with this infection, and the genotype of local isolates of this virus. A total of 88 anti-HCV IgG-positive patients participated in this cross-sectional study. Viral RAN was extracted from whole blood samples, and cDNA was produced using reverse transcriptase-polymerase chain reaction (RT-PCR). Two pairs of primers were used in nested PCR to amplify the virus genome's 5'-untranslated region (5'UTR). For direct sequencing, fourteen PCR products from the second round of PCR were chosen at random. A homology search was performed using the basic local alignment search tool (BLAST) program to identify the resultant sequencing. The phylogenetic tree of the local isolates and 31 reference isolates was constructed using MEGA X software to estimate the virus's genetic diversity and relatedness. Out of 88 patients included in this study, 27(30.68%) of patients were found to be positive for HPgV-1 RNA. The nucleotide homology between the 14 local isolates and the reference isolates. was found to be 87-97%. Phylogenetic analysis results in a tree with four main parts, which are distributed as follows: 10 local isolates are genotype 2; 2 are genotype 1; 1 is genotype 5, and 1 is genotype 6. We conclude that when compared to other countries, the infection rate of Iraqi anti-HCV IgG-positive patients with HPgV-1 is relatively high (30.68%). The most common HPgV-1 genotype in Iraq is genotype 2.
Collapse
Affiliation(s)
- Ekremah K Shaker
- Medical Laboratory Technique, Al-Rasheed University College, Iraq
| | | | - Qasim S Al-Mayah
- Medical Research Unit, College of Medicine, Al-Nahrain University, Iraq
| | - Hisham Y Al-Matubsi
- Department of Pharmacology and Medical Sciences, University of Petra, Amman, Jordan.
| |
Collapse
|
4
|
Heffron AS, Lauck M, Somsen ED, Townsend EC, Bailey AL, Sosa M, Eickhoff J, Capuano III S, Newman CM, Kuhn JH, Mejia A, Simmons HA, O’Connor DH. Discovery of a Novel Simian Pegivirus in Common Marmosets ( Callithrix jacchus) with Lymphocytic Enterocolitis. Microorganisms 2020; 8:microorganisms8101509. [PMID: 33007921 PMCID: PMC7599636 DOI: 10.3390/microorganisms8101509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased enterocolitis-positive marmosets for viruses. In five out of eight common marmosets with lymphocytic enterocolitis, we discovered a novel pegivirus not present in ten matched, clinically normal controls. The novel virus, which we named Southwest bike trail virus (SOBV), is most closely related (68% nucleotide identity) to a strain of simian pegivirus A isolated from a three-striped night monkey (Aotus trivirgatus). We screened 146 living WNPRC common marmosets for SOBV, finding an overall prevalence of 34% (50/146). Over four years, 85 of these 146 animals died or were euthanized. Histological examination revealed 27 SOBV-positive marmosets from this cohort had lymphocytic enterocolitis, compared to 42 SOBV-negative marmosets, indicating no association between SOBV and disease in this cohort (p = 0.0798). We also detected SOBV in two of 33 (6%) clinically normal marmosets screened during transfer from the New England Primate Research Center, suggesting SOBV could be exerting confounding influences on comparisons of common marmoset studies from multiple colonies.
Collapse
Affiliation(s)
- Anna S. Heffron
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Elizabeth D. Somsen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Elizabeth C. Townsend
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Adam L. Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Megan Sosa
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Jens Eickhoff
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Saverio Capuano III
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA;
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
- Correspondence: ; Tel.: +1-608-890-0845
| |
Collapse
|
5
|
Porter AF, Pettersson JHO, Chang WS, Harvey E, Rose K, Shi M, Eden JS, Buchmann J, Moritz C, Holmes EC. Novel hepaci- and pegi-like viruses in native Australian wildlife and non-human primates. Virus Evol 2020; 6:veaa064. [PMID: 33240526 PMCID: PMC7673076 DOI: 10.1093/ve/veaa064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Flaviviridae family of positive-sense RNA viruses contains important pathogens of humans and other animals, including Zika virus, dengue virus, and hepatitis C virus. The Flaviviridae are currently divided into four genera-Hepacivirus, Pegivirus, Pestivirus, and Flavivirus-each with a diverse host range. Members of the genus Hepacivirus are associated with an array of animal species, including humans, non-human primates, other mammalian species, as well as birds and fish, while the closely related pegiviruses have been identified in a variety of mammalian taxa, also including humans. Using a combination of total RNA and whole-genome sequencing we identified four novel hepaci-like viruses and one novel variant of a known hepacivirus in five species of Australian wildlife. The hosts infected comprised native Australian marsupials and birds, as well as a native gecko (Gehyra lauta). From these data we identified a distinct marsupial clade of hepaci-like viruses that also included an engorged Ixodes holocyclus tick collected while feeding on Australian long-nosed bandicoots (Perameles nasuta). Distinct lineages of hepaci-like viruses associated with geckos and birds were also identified. By mining the SRA database we similarly identified three new hepaci-like viruses from avian and primate hosts, as well as two novel pegi-like viruses associated with primates. The phylogenetic history of the hepaci- and pegi-like viruses as a whole, combined with co-phylogenetic analysis, provided support for virus-host co-divergence over the course of vertebrate evolution, although with frequent cross-species virus transmission. Overall, our work highlights the diversity of the Hepacivirus and Pegivirus genera as well as the uncertain phylogenetic distinction between.
Collapse
Affiliation(s)
- Ashleigh F Porter
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - John H-O Pettersson
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Wei-Shan Chang
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Erin Harvey
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman 2088, Australia
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - John-Sebastian Eden
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Jan Buchmann
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Craig Moritz
- Research School of Biology, Centre for Biodiversity Analysis, Australian National University, Acton, ACT, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
6
|
Soliman HK, Abouelhoda M, El Rouby MN, Ahmed OS, Esmat G, Hassan ZK, Hafez MM, Mehaney DA, Selvaraju M, Darwish RK, Osman YA, Zekri ARN. Whole-genome sequencing of human Pegivirus variant from an Egyptian patient co-infected with hepatitis C virus: a case report. Virol J 2019; 16:132. [PMID: 31711510 PMCID: PMC6849219 DOI: 10.1186/s12985-019-1242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Human pegivirus (HPgV) is structurally similar to hepatitis C virus (HCV) and was discovered 20 years ago. Its distribution, natural history and exact rule of this viral group in human hosts remain unclear. Our aim was to determine, by deep next-generation sequencing (NGS), the entire genome sequence of HPgV that was discovered in an Egyptian patient while analyzing HCV sequence from the same patient. We also inspected whether the co-infection of HCV and HPgV will affect the patient response to HCV viral treatment. To the best of our knowledge, this is the first report for a newly isolated HPgV in an Egyptian patient who is co-infected with HCV. Case presentation The deep Next Generation Sequencing (NGS) technique was used to detect HCV sequence in hepatitis C patient’s plasma. The results revealed the presence of HPgV with HCV. This co-infection was confirmed using conventional PCR of the HPgV 5′ untranslated region. The patient was then subjected to direct-acting-antiviral treatment (DAA). At the end of the treatment, the patient showed a good response to the HCV treatment (i.e., no HCV-RNA was detected in the plasma), while the HPgV-RNA was still detected. Sequence alignment and phylogenetic analyses demonstrated that the detected HPgV was a novel isolate and was not previously published. Conclusion We report a new variant of HPgV in a patient suffering from hepatitis C viral infection.
Collapse
Affiliation(s)
- Hany K Soliman
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Mohamed Abouelhoda
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Cairo, 12613, Egypt
| | - Mahmoud N El Rouby
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ola S Ahmed
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - G Esmat
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Zeinab K Hassan
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Mohammed M Hafez
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Dina Ahmed Mehaney
- Clinical and chemical pathology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | | | - Rania Kamal Darwish
- Clinical and chemical pathology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Yehia A Osman
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 33516, Egypt
| | - Abdel-Rahman N Zekri
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
7
|
Smith DB, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff AS, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J Gen Virol 2016; 97:2894-2907. [PMID: 27692039 PMCID: PMC5770844 DOI: 10.1099/jgv.0.000612] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proposals are described for the assignment of recently reported viruses, infecting rodents, bats and other mammalian species, to new species within the Hepacivirus and Pegivirus genera (family Flaviviridae). Assignments into 14 Hepacivirus species (Hepacivirus A–N) and 11 Pegivirus species (Pegivirus A–K) are based on phylogenetic relationships and sequence distances between conserved regions extracted from complete coding sequences for members of each proposed taxon. We propose that the species Hepatitis C virus is renamed Hepacivirus C in order to acknowledge its unique historical position and so as to minimize confusion. Despite the newly documented genetic diversity of hepaciviruses and pegiviruses, members of these genera remain phylogenetically distinct, and differ in hepatotropism and the possession of a basic core protein; pegiviruses in general lack these features. However, other characteristics that were originally used to support their division into separate genera are no longer definitive; there is overlap between the two genera in the type of internal ribosomal entry site and the presence of miR-122 sites in the 5′ UTR, the predicted number of N-linked glycosylation sites in the envelope E1 and E2 proteins, the presence of poly U tracts in the 3′ UTR and the propensity of viruses to establish a persistent infection. While all classified hepaciviruses and pegiviruses have mammalian hosts, the recent description of a hepaci-/pegi-like virus from a shark and the likely existence of further homologues in other non-mammalian species indicate that further species or genera remain to be defined in the future.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ernest A Gould
- EHESP French School of Public Health, French Institute of Research for Development (IRD), Aix Marseille Université, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Monath
- Hookipa Biotech AG, Vienna, Austria.,PaxVax Inc., Menlo Park and Redwood City, CA, USA
| | - A Scott Muerhoff
- Abbott Diagnostics Research and Development, Abbott Park, IL, USA
| | - Alexander Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jack T Stapleton
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
A systematic approach to novel virus discovery in emerging infectious disease outbreaks. J Mol Diagn 2015; 17:230-41. [PMID: 25746799 PMCID: PMC7106266 DOI: 10.1016/j.jmoldx.2014.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/03/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022] Open
Abstract
The discovery of novel viruses is of great importance to human health-both in the setting of emerging infectious disease outbreaks and in disease syndromes of unknown etiology. Despite the recent proliferation of many efficient virus discovery methods, careful selection of a combination of methods is important to demonstrate a novel virus, its clinical associations, and its relevance in a timely manner. The identification of a patient or an outbreak with distinctive clinical features and negative routine microbiological workup is often the starting point for virus hunting. This review appraises the roles of culture, electron microscopy, and nucleic acid detection-based methods in optimizing virus discovery. Cell culture is generally slow but may yield viable virus. Although the choice of cell line often involves trial and error, it may be guided by the clinical syndrome. Electron microscopy is insensitive but fast, and may provide morphological clues to choice of cell line or consensus primers for nucleic acid detection. Consensus primer PCR can be used to detect viruses that are closely related to known virus families. Random primer amplification and high-throughput sequencing can catch any virus genome but cannot yield an infectious virion for testing Koch postulates. A systematic approach that incorporates carefully chosen combinations of virus detection techniques is required for successful virus discovery.
Collapse
|
9
|
Sibley SD, Lauck M, Bailey AL, Hyeroba D, Tumukunde A, Weny G, Chapman CA, O’Connor DH, Goldberg TL, Friedrich TC. Discovery and characterization of distinct simian pegiviruses in three wild African Old World monkey species. PLoS One 2014; 9:e98569. [PMID: 24918769 PMCID: PMC4053331 DOI: 10.1371/journal.pone.0098569] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/05/2014] [Indexed: 01/08/2023] Open
Abstract
Within the Flaviviridae, the recently designated genus Pegivirus has expanded greatly due to new discoveries in bats, horses, and rodents. Here we report the discovery and characterization of three simian pegiviruses (SPgV) that resemble human pegivirus (HPgV) and infect red colobus monkeys (Procolobus tephrosceles), red-tailed guenons (Cercopithecus ascanius) and an olive baboon (Papio anubis). We have designated these viruses SPgVkrc, SPgVkrtg and SPgVkbab, reflecting their host species' common names, which include reference to their location of origin in Kibale National Park, Uganda. SPgVkrc and SPgVkrtg were detected in 47% (28/60) of red colobus and 42% (5/12) red-tailed guenons, respectively, while SPgVkbab infection was observed in 1 of 23 olive baboons tested. Infections were not associated with any apparent disease, despite the generally high viral loads observed for each variant. These viruses were monophyletic and equally divergent from HPgV and pegiviruses previously identified in chimpanzees (SPgVcpz). Overall, the high degree of conservation of genetic features among the novel SPgVs, HPgV and SPgVcpz suggests conservation of function among these closely related viruses. Our study describes the first primate pegiviruses detected in Old World monkeys, expanding the known genetic diversity and host range of pegiviruses and providing insight into the natural history of this genus.
Collapse
Affiliation(s)
- Samuel D. Sibley
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adam L. Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | | | | - Colin A. Chapman
- Makerere University, Kampala, Uganda
- Department of Anthropology and McGill School of Environment, Montreal, Quebec, Canada
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Makerere University, Kampala, Uganda
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Lyons S, Kapoor A, Schneider BS, Wolfe ND, Culshaw G, Corcoran B, Durham AE, Burden F, McGorum BC, Simmonds P. Viraemic frequencies and seroprevalence of non-primate hepacivirus and equine pegiviruses in horses and other mammalian species. J Gen Virol 2014; 95:1701-1711. [PMID: 24814924 DOI: 10.1099/vir.0.065094-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Non-primate hepacivirus (NPHV), equine pegivirus (EPgV) and Theiler's disease associated virus (TDAV) are newly discovered members of two genera in the Flaviviridae family, Hepacivirus and Pegivirus respectively, that include human hepatitis C virus (HCV) and human pegivirus (HPgV). To investigate their epidemiology, persistence and clinical features of infection, large cohorts of horses and other mammalian species were screened for NPHV, EPgV and TDAV viraemia and for past exposure through serological assays for NPHV and EPgV-specific antibodies. NPHV antibodies were detected in 43% of 328 horses screened for antibodies to NS3 and core antibodies, of which three were viraemic by PCR. All five horses that were stablemates of a viraemic horse were seropositive, as was a dog on the same farm. With this single exception, all other species were negative for NPHV antibodies and viraemia: donkeys (n=100), dogs (n=112), cats (n=131), non-human primates (n=164) and humans (n=362). EPgV antibodies to NS3 were detected in 66.5% of horses, including 10 of the 12 horses that had EPgV viraemia. All donkey samples were negative for EPgV antibody and RNA. All horse and donkey samples were negative for TDAV RNA. By comparing viraemia frequencies in horses with and without liver disease, no evidence was obtained that supported an association between active NPHV and EPgV infections with hepatopathy. The study demonstrates that NPHV and EPgV infections are widespread and enzootic in the study horse population and confirms that NPHV and potentially EPgV have higher frequencies of viral clearance than HCV and HPgV infections in humans.
Collapse
Affiliation(s)
- Sinéad Lyons
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Amit Kapoor
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | | | - Nathan D Wolfe
- Metabiota, 1 Sutter Street, Suite 600, San Francisco, CA 94104, USA
| | - Geoff Culshaw
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Brendan Corcoran
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Andy E Durham
- Liphook Equine Hospital, Forest Mere, Liphook, Hampshire, UK
| | | | - Bruce C McGorum
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
11
|
Gagnieur L, Cheval J, Gratigny M, Hébert C, Muth E, Dumarest M, Eloit M. Unbiased analysis by high throughput sequencing of the viral diversity in fetal bovine serum and trypsin used in cell culture. Biologicals 2014; 42:145-52. [PMID: 24661556 DOI: 10.1016/j.biologicals.2014.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022] Open
Abstract
Fetal bovine serum (FBS) and trypsin are reagents used in cell culture and have been the source of viral contamination of pharmaceutical products. We performed high throughput sequencing (HTS) of two pools of commercial batches of FBS and three commercial batches of trypsin. Taxonomies were assigned by comparing sequences of contigs and singletons to the entire NCBI nucleic acid and protein databases. The same major viral species were evidenced between batches of a given reagent but the proportion of viral reads among total reads varied markedly between samples (from 0.002% to 22.7%). In FBS, the sequences found were mainly from bovine viral diarrhea virus (BVDV) 1 to 3 and bovine parvovirus 3 (BPV3). The BVDV sequences derived from FBS showed only minor discrepancies with primers generally used for the screening of BVDV. Viral sequences in trypsin were mainly from porcine circovirus type 2. Other known viral sequences at lower read counts and potential new viral species (bovine parvovirus and bovine pegivirus) were evidenced. The load of some known and new viruses detected by HTS could be quantified by qPCR. Results of HTS provide a framework for evaluating the pertinence of control measures including the design of PCRs, bioassays and inactivation procedures.
Collapse
Affiliation(s)
- Léa Gagnieur
- Institut Pasteur, Laboratory of Pathogen Discovery, Department of Virology, 28 rue du Docteur Roux, F-75724 Paris, France
| | - Justine Cheval
- PathoQuest, Bâtiment François Jacob, 25 rue du Dr Roux, 75015 Paris, France
| | - Marlène Gratigny
- PathoQuest, Bâtiment François Jacob, 25 rue du Dr Roux, 75015 Paris, France
| | - Charles Hébert
- PathoQuest, Bâtiment François Jacob, 25 rue du Dr Roux, 75015 Paris, France
| | - Erika Muth
- PathoQuest, Bâtiment François Jacob, 25 rue du Dr Roux, 75015 Paris, France
| | - Marine Dumarest
- Institut Pasteur, Laboratory of Pathogen Discovery, Department of Virology, 28 rue du Docteur Roux, F-75724 Paris, France
| | - Marc Eloit
- Institut Pasteur, Laboratory of Pathogen Discovery, Department of Virology, 28 rue du Docteur Roux, F-75724 Paris, France; PathoQuest, Bâtiment François Jacob, 25 rue du Dr Roux, 75015 Paris, France; Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virologie ENVA, INRA, ANSES, 7 avenue Général de Gaulle, F-94704 Maisons Alfort, France.
| |
Collapse
|
12
|
Ghai RR, Sibley SD, Lauck M, Dinis JM, Bailey AL, Chapman CA, Omeja P, Friedrich TC, O'Connor DH, Goldberg TL. Deep sequencing identifies two genotypes and high viral genetic diversity of human pegivirus (GB virus C) in rural Ugandan patients. J Gen Virol 2013; 94:2670-2678. [PMID: 24077364 DOI: 10.1099/vir.0.055509-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human pegivirus (HPgV), formerly 'GB virus C' or 'hepatitis G virus', is a member of the genus Flavivirus (Flaviviridae) that has garnered significant attention due to its inhibition of HIV, including slowing disease progression and prolonging survival in HIV-infected patients. Currently, there are six proposed HPgV genotypes that have roughly distinct geographical distributions. Genotypes 2 and 3 are the most comprehensively characterized, whereas those genotypes occurring on the African continent, where HPgV prevalence is highest, are less well studied. Using deep sequencing methods, we identified complete coding HPgV sequences in four of 28 patients (14.3%) in rural Uganda, east Africa. One of these sequences corresponds to genotype 1 and is the first complete genome of this genotype from east Africa. The remaining three sequences correspond to genotype 5, a genotype that was previously considered exclusively South African. All four positive samples were collected within a geographical area of less than 25 km(2), showing that multiple HPgV genotypes co-circulate in this area. Analysis of intra-host viral genetic diversity revealed that total single-nucleotide polymorphism frequency was approximately tenfold lower in HPgV than in hepatitis C virus. Finally, one patient was co-infected with HPgV and HIV, which, in combination with the high prevalence of HIV, suggests that this region would be a useful locale to study the interactions and co-evolution of these viruses.
Collapse
Affiliation(s)
- Ria R Ghai
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Samuel D Sibley
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jorge M Dinis
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam L Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin A Chapman
- Department of Anthropology and McGill School of Environment, Montreal, QC, Canada, and Wildlife Conservation Society, NY, USA
| | - Patrick Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, Madison, WI, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O'Connor
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony L Goldberg
- Wisconsin National Primate Research Center, Madison, WI, USA
- Makerere University Biological Field Station, Fort Portal, Uganda
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Abstract
The origin of hepatitis C virus (HCV) can be conceptualised at several levels. Firstly, origins might refer to its dramatic spread throughout the Western world and developing countries throughout the twentieth century. As a blood-borne virus, this epidemic was fuelled by new parenteral transmission routes associated with medical treatments, immunisation, blood transfusion and more recently injecting drug use. At another level, however, origins might refer to the immediate sources of HCV associated with its pandemic spread, now identified as areas in Central and West sub-Saharan Africa and South and South East Asia where genetically diverse variants of HCV appear to have circulated for hundreds of years. Going back a final step to the actual source of HCV infection in these endemic areas, non-human primates have been long suspected as harbouring viruses related to HCV with potential cross-species transmission of variants corresponding to the 7 main genotypes into humans. Although there is tempting analogy between this and the clearly zoonotic origin of HIV-1 from chimpanzees in Central Africa, no published evidence to date has been obtained for infection of HCV-like viruses in either apes or Old World monkey species. Indeed, a radical re-think of both the host range and host-specificity of hepaciviruses is now required following the very recent findings of a non-primate hepacivirus (NPHV) in horses and potentially in dogs. Further research on a much wider range of mammals is needed to better understand the true genetic diversity of HCV-like viruses and their host ranges in the search for the ultimate origin of HCV in humans.
Collapse
|
14
|
Torimiro JN, Mao Q, Wolfe ND, Tamoufe U, Weil A, Ngole EM, Burke DS, Ray SC, Netski D. Molecular epidemiology of GB type C virus among individuals exposed to hepatitis C virus in Cameroon. MICROBIOLOGY RESEARCH 2013; 4:1-4. [PMID: 34178297 PMCID: PMC8232374 DOI: 10.4081/mr.2013.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
GB Virus Type C (GBV-C), a blood-borne flavivirus currently infects about one sixth of the world's population. Its transmission has been reported through parenteral, sexual and vertical routes. Unusually for RNA viruses, it exhibits a high degree of conservation of the polyprotein sequence. The geographical distribution of GBV-C suggests an African origin and a long-term co-evolution in the human population but without any known pathogenicity. The aim of this study was to describe the different sub-types of this virus in Southern Cameroon. We studied the genetic epidemiology of GBV-C among rural populations where many HIV-1 and HCV genotypes have been identified. Plasma samples of 345 subjects with evidence of HCV exposure were tested for GBV-C infection. To detect GBV-C RNA, reverse transcription followed by a nested PCR of 5'UTR were performed. Direct sequencing and phylogenetic studies using PHYLIP, PAUP* and SimPlot were carried out. In total, 31 GBV-C RNA-positive samples were detected giving a prevalence of 9.0% among HCV-exposed individuals. Phylogenetic analysis of the 5'UTR showed two distinct clusters: Genotype 1 and Genotype 2. Twenty-eight isolates (8.0%) clustered with Genotype 1 and 3 (1.0%) with Genotype 2. More than one genotype of GBV-C is prevalent in Cameroon of which GBV-C Genotype 1 is more common, confirming reports in the literature. Studying the near full-length genome sequences of GBV-C isolates from primates in this region may provide clues of viral recombination, evolution and origin.
Collapse
Affiliation(s)
- Judith N Torimiro
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Cameroon.,Chantal Biya International Reference Centre (CIRCB), Yaounde, Cameroon
| | - Qing Mao
- Johns Hopkins School of Medicine, Baltimore, USA
| | | | | | - Ana Weil
- Army Health Research Centre (CREMER),Yaounde, Cameroon
| | | | | | - Stuart C Ray
- Johns Hopkins School of Medicine, Baltimore, USA
| | - Dale Netski
- Johns Hopkins School of Medicine, Baltimore, USA
| |
Collapse
|
15
|
McLinden JH, Stapleton JT, Klinzman D, Murthy KK, Chang Q, Kaufman TM, Bhattarai N, Xiang J. Chimpanzee GB virus C and GB virus A E2 envelope glycoproteins contain a peptide motif that inhibits human immunodeficiency virus type 1 replication in human CD4⁺ T-cells. J Gen Virol 2013; 94:774-782. [PMID: 23288422 DOI: 10.1099/vir.0.047126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
GB virus type C (GBV-C) is a lymphotropic virus that can cause persistent infection in humans. GBV-C is not associated with any disease, but is associated with reduced mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Related viruses have been isolated from chimpanzees (GBV-Ccpz) and from New World primates (GB virus type A, GBV-A). These viruses are also capable of establishing persistent infection. We determined the nucleotide sequence encoding the envelope glycoprotein (E2) of two GBV-Ccpz isolates obtained from the sera of captive chimpanzees. The deduced GBV-Ccpz E2 protein differed from human GBV-C by 31 % at the amino acid level. Similar to human GBV-C E2, expression of GBV-Ccpz E2 in a tet-off human CD4(+) Jurkat T-cell line significantly inhibited the replication of diverse HIV-1 isolates. This anti-HIV-replication effect of GBV-Ccpz E2 protein was reversed by maintaining cells in doxycycline to reduce E2 expression. Previously, we found a 17 aa region within human GBV-C E2 that was sufficient to inhibit HIV-1. Although GBV-Ccpz E2 differed by 3 aa differences in this region, the chimpanzee GBV-C 17mer E2 peptide inhibited HIV-1 replication. Similarly, the GBV-A peptide that aligns with this GBV-C E2 region inhibited HIV-1 replication despite sharing only 5 aa with the human GBV-C E2 sequence. Thus, despite amino acid differences, the peptide region on both the GBV-Ccpz and the GBV-A E2 protein inhibit HIV-1 replication similar to human GBV-C. Consequently, GBV-Ccpz or GBV-A infection of non-human primates may provide an animal model to study GB virus-HIV interactions.
Collapse
Affiliation(s)
- James H McLinden
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Jack T Stapleton
- Interdisciplinary Program on Molecular and Cellular Biology, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA.,Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Donna Klinzman
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Krishna K Murthy
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Qing Chang
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Thomas M Kaufman
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Nirjal Bhattarai
- Interdisciplinary Program on Molecular and Cellular Biology, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA.,Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| | - Jinhua Xiang
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and the University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Patel MR, Loo YM, Horner SM, Gale M, Malik HS. Convergent evolution of escape from hepaciviral antagonism in primates. PLoS Biol 2012; 10:e1001282. [PMID: 22427742 PMCID: PMC3302847 DOI: 10.1371/journal.pbio.1001282] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/30/2012] [Indexed: 12/30/2022] Open
Abstract
Escape from antagonism by hepatitis C and related viruses has repeatedly evolved in antiviral factor MAVS via convergent evolution, revealing an ancient history of previous viral encounters in primates. The ability to mount an interferon response on sensing viral infection is a critical component of mammalian innate immunity. Several viruses directly antagonize viral sensing pathways to block activation of the host immune response. Here, we show that recurrent viral antagonism has shaped the evolution of the host protein MAVS—a crucial component of the viral-sensing pathway in primates. From sequencing and phylogenetic analyses of MAVS from 21 simian primates, we found that MAVS has evolved under strong positive selection. We focused on how this positive selection has shaped MAVS' susceptibility to Hepatitis C virus (HCV). We functionally tested MAVS proteins from diverse primate species for their ability to resist antagonism by HCV, which uses its protease NS3/4A to cleave human MAVS. We found that MAVS from multiple primates are resistant to inhibition by the HCV protease. This resistance maps to single changes within the protease cleavage site in MAVS, which protect MAVS from getting cleaved by the HCV protease. Remarkably, most of these changes have been independently acquired at a single residue 506 that evolved under positive selection. We show that “escape” mutations lower affinity of the NS3 protease for MAVS and allow it to better restrict HCV replication. We further show that NS3 proteases from all other primate hepaciviruses, including the highly divergent GBV-A and GBV-C viruses, are functionally similar to HCV. We conclude that convergent evolution at residue 506 in multiple primates has resulted in escape from antagonism by hepaciviruses. Our study provides a model whereby insights into the ancient history of viral infections in primates can be gained using extant host and virus genes. Our analyses also provide a means by which primates might clear infections by extant hepaciviruses like HCV. Hepatitis C virus (HCV) causes chronic liver disease and is estimated to infect 170 million people worldwide. HCV is able to establish a persistent infection in part by inhibiting the innate immune response. It does so by using its protease, NS3, to cleave the host's antiviral factor MAVS, which normally activates the interferon response. Using an assay that measures MAVS activity, we found that multiple primate species contain a version of MAVS that is resistant to HCV antagonism. Surprisingly, most of these primates have independently converged on changes in the same amino acid residue of MAVS to escape cleavage by the HCV protease. We found that the HCV protease has lower binding affinity for these resistant MAVS variants, which consequently are more effective at restricting HCV infection. Using a combination of phylogenetic and functional analyses of proteases from other HCV-related viruses, we infer that ancestral primates were likely exposed to and adapted to HCV-like viruses. One consequence of this adaptation is that changes that have given rise to extant MAVS variants may now provide protection from modern-day viruses.
Collapse
Affiliation(s)
- Maulik R. Patel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Yueh-Ming Loo
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stacy M. Horner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
17
|
Stapleton JT, Smith DB, Simmonds P. Evidence against GB virus C infection in dromedary camels. Vet Microbiol 2012; 154:403-6. [PMID: 21757300 PMCID: PMC3210887 DOI: 10.1016/j.vetmic.2011.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/21/2011] [Indexed: 11/16/2022]
Abstract
A recent publication described finding GB virus C (GBV-C) RNA in 4 of 22 dromedary camel sera, and sequence analysis found that these viruses were phylogenetically clustered within human GBV-C isolates. Since all other GB viruses to date form monophyletic groups according to their host species, the close relationship between the sequences generated from camel sera and human GBV-C isolates seemed implausible, leading us to conduct an independent analysis of the sequences. Our investigation found three lines of evidence arguing against GBV-C infection in dromedary camels. First, strong evidence of artifactual sequence generation was identified for some of the sequences. Secondly, the sequence diversity within individual camel sera was 10-152-fold greater than that described for GBV-C within a human host. Finally, GBV-C sequences generated from each camel shared near complete identity with human isolates previously described by the same laboratory. Taken together, these data strongly suggest laboratory contamination. We suggest that additional validation experiments are needed before it is possible to conclude that camels are permissive for GBV-C infection.
Collapse
Affiliation(s)
- Jack T Stapleton
- Department of Internal Medicine, Veterans Administration Medical Center and University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
18
|
|
19
|
Odeh RA. RETRACTED: Detection and genotyping of GB virus-C in dromedary camels in the United Arab Emirates. Vet Microbiol 2011; 147:226-30. [DOI: 10.1016/j.vetmic.2010.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 06/25/2010] [Indexed: 02/07/2023]
|
20
|
Stapleton JT, Foung S, Muerhoff AS, Bukh J, Simmonds P. The GB viruses: a review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus within the family Flaviviridae. J Gen Virol 2010; 92:233-46. [PMID: 21084497 PMCID: PMC3081076 DOI: 10.1099/vir.0.027490-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In 1967, it was reported that experimental inoculation of serum from a surgeon (G.B.) with acute hepatitis into tamarins resulted in hepatitis. In 1995, two new members of the family Flaviviridae, named GBV-A and GBV-B, were identified in tamarins that developed hepatitis following inoculation with the 11th GB passage. Neither virus infects humans, and a number of GBV-A variants were identified in wild New World monkeys that were captured. Subsequently, a related human virus was identified [named GBV-C or hepatitis G virus (HGV)], and recently a more distantly related virus (named GBV-D) was discovered in bats. Only GBV-B, a second species within the genus Hepacivirus (type species hepatitis C virus), has been shown to cause hepatitis; it causes acute hepatitis in experimentally infected tamarins. The other GB viruses have however not been assigned to a genus within the family Flaviviridae. Based on phylogenetic relationships, genome organization and pathogenic features of the GB viruses, we propose to classify GBV-A-like viruses, GBV-C and GBV-D as members of a fourth genus in the family Flaviviridae, named Pegivirus (pe, persistent; g, GB or G). We also propose renaming 'GB' viruses within the tentative genus Pegivirus to reflect their host origin.
Collapse
Affiliation(s)
- Jack T Stapleton
- Department of Internal Medicine, Veterans Administration Medical Center and the University of Iowa, Iowa City, IA, USA.
| | | | | | | | | |
Collapse
|
21
|
Sharp PM, Hahn BH. The evolution of HIV-1 and the origin of AIDS. Philos Trans R Soc Lond B Biol Sci 2010; 365:2487-94. [PMID: 20643738 DOI: 10.1098/rstb.2010.0031] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major cause of acquired immune deficiency syndrome (AIDS) is human immunodeficiency virus type 1 (HIV-1). We have been using evolutionary comparisons to trace (i) the origin(s) of HIV-1 and (ii) the origin(s) of AIDS. The closest relatives of HIV-1 are simian immunodeficiency viruses (SIVs) infecting wild-living chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) in west central Africa. Phylogenetic analyses have revealed the origins of HIV-1: chimpanzees were the original hosts of this clade of viruses; four lineages of HIV-1 have arisen by independent cross-species transmissions to humans and one or two of those transmissions may have been via gorillas. However, SIVs are primarily monkey viruses: more than 40 species of African monkeys are infected with their own, species-specific, SIV and in at least some host species, the infection seems non-pathogenic. Chimpanzees acquired from monkeys two distinct forms of SIVs that recombined to produce a virus with a unique genome structure. We have found that SIV infection causes CD4(+) T-cell depletion and increases mortality in wild chimpanzees, and so the origin of AIDS is more ancient than the origin of HIV-1. Tracing the genetic changes that occurred as monkey viruses adapted to infect first chimpanzees and then humans may provide insights into the causes of the pathogenicity of these viruses.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
22
|
Mohr EL, Murthy KK, McLinden JH, Xiang J, Stapleton JT. The natural history of non-human GB virus C in captive chimpanzees. J Gen Virol 2010; 92:91-100. [PMID: 20861317 PMCID: PMC3052534 DOI: 10.1099/vir.0.026088-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GB virus C (GBV-C) is a common, non-pathogenic human virus that infects lymphocytes. Persistent GBV-C infection of humans with coexistent human immunodeficiency virus (HIV) infection is associated with prolonged survival, and GBV-C replication inhibits HIV replication in vitro. A GBV-C virus variant was identified in chimpanzees in 1998 and was named GBV-Ctrog or GBV-Ccpz. The prevalence and natural history of GBV-C in chimpanzees remains uncharacterized. We examined the sera from 235 captive chimpanzees for the presence of GBV-C viraemia, viral persistence and clearance, E2 antibody kinetics and RNA sequence diversity. Sequences from six isolates shared more sequence identity with GBV-Ccpz than with human GBV-C. The prevalence of GBV-Ccpz viraemia and E2 antibody in chimpanzees (2.5 and 11 %, respectively) was similar to human GBV-C prevalence in healthy human blood donors (1.8 and 9 %, respectively). Persistent GBV-Ccpz infection occurred in two of the six viraemic animals and was documented for 19 years in one animal. Host subspecies troglodyte GBV-C isolates and published verus GBV-C isolates shared a high degree of sequence identity, suggesting that GBV-C in chimpanzees should be identified with a chimpanzee designation (GBV-Ccpz). The prevalence and natural history of chimpanzee GBV-C variant (GBV-Ccpz) appears to be similar to human GBV-C infection. The chimpanzee could serve as an animal model to study HIV–GBV-C co-infection.
Collapse
Affiliation(s)
- Emma L Mohr
- Department of Internal Medicine, Division of Infectious Diseases, Iowa City Veterans Affairs Medical Center and The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
23
|
Bailey C, Mansfield K. Emerging and reemerging infectious diseases of nonhuman primates in the laboratory setting. Vet Pathol 2010; 47:462-81. [PMID: 20472806 DOI: 10.1177/0300985810363719] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite numerous advances in the diagnosis and control of infectious diseases of nonhuman primates in the laboratory setting, a number of infectious agents continue to plague colonies. Some, such as measles virus and Mycobacterium tuberculosis, cause sporadic outbreaks despite well-established biosecurity protocols, whereas others, such as retroperitoneal fibromatosis-associated herpesvirus, have only recently been discovered, often as a result of immunosuppressive experimental manipulation. Owing to the unique social housing requirements of nonhuman primates, importation of foreign-bred animals, and lack of antemortem diagnostic assays for many new diseases, elimination of these agents is often difficult or impractical. Recognition of these diseases is therefore essential because of their confounding effects on experimental data, impact on colony health, and potential for zoonotic transmission. This review summarizes the relevant pathology and pathogenesis of emerging and reemerging infectious diseases of laboratory nonhuman primates.
Collapse
Affiliation(s)
- C Bailey
- New England Primate Research Center, Harvard Medical School, Southborough Campus, One Pine Hill Drive, Southborough, MA 01772, USA
| | | |
Collapse
|
24
|
Epstein JH, Quan PL, Briese T, Street C, Jabado O, Conlan S, Ali Khan S, Verdugo D, Hossain MJ, Hutchison SK, Egholm M, Luby SP, Daszak P, Lipkin WI. Identification of GBV-D, a novel GB-like flavivirus from old world frugivorous bats (Pteropus giganteus) in Bangladesh. PLoS Pathog 2010; 6:e1000972. [PMID: 20617167 PMCID: PMC2895649 DOI: 10.1371/journal.ppat.1000972] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/27/2010] [Indexed: 11/19/2022] Open
Abstract
Bats are reservoirs for a wide range of zoonotic agents including lyssa-, henipah-, SARS-like corona-, Marburg-, Ebola-, and astroviruses. In an effort to survey for the presence of other infectious agents, known and unknown, we screened sera from 16 Pteropus giganteus bats from Faridpur, Bangladesh, using high-throughput pyrosequencing. Sequence analyses indicated the presence of a previously undescribed virus that has approximately 50% identity at the amino acid level to GB virus A and C (GBV-A and -C). Viral nucleic acid was present in 5 of 98 sera (5%) from a single colony of free-ranging bats. Infection was not associated with evidence of hepatitis or hepatic dysfunction. Phylogenetic analysis indicates that this first GBV-like flavivirus reported in bats constitutes a distinct species within the Flaviviridae family and is ancestral to the GBV-A and -C virus clades.
Collapse
Affiliation(s)
- Jonathan H. Epstein
- Conservation Medicine Program, Wildlife Trust, New York, New York, United States of America
| | - Phenix-Lan Quan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Craig Street
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Omar Jabado
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Sean Conlan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Shahneaz Ali Khan
- Conservation Medicine Program, Wildlife Trust, New York, New York, United States of America
- Chittagong Veterinary & Animal Sciences University, Chittagong, Bangladesh
| | - Dawn Verdugo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - M. Jahangir Hossain
- Programme on Infectious Disease and Vaccine Sciences, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | | | - Michael Egholm
- 454 Life Sciences, Branford, Connecticut, United States of America
| | - Stephen P. Luby
- Programme on Infectious Disease and Vaccine Sciences, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Peter Daszak
- Conservation Medicine Program, Wildlife Trust, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
25
|
Whiley DM, Sloots TP. Molecular Amplification Methods in Diagnostic Virology. INFECTIOUS DISEASE AND THERAPY 2010. [DOI: 10.3109/9781420084962.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Abstract
GB virus C/hepatitis G virus (GBV-C/HGV) is the most closely related human virus to hepatitis C virus (HCV). GBV-C is lymphotropic and not associated with any known disease, although it is associated with improved survival in HIV-infected individuals. In peripheral blood mononuclear cells, GBV-C induces the release of soluble ligands for HIV entry receptors (RANTES, MIP-1a, MIP-1b and SDF-1), suggesting that GBV-C may interact with lymphocytes to induce a chemokine and/or cytokine milieu that is inhibitory to HIV infection. Expression of GBV-C envelope glycoprotein E2 in CD4+ T cells or addition of recombinant E2 to CD4 cells recapitulates the HIV inhibition seen with GBV-C infection. Like HCV E2, GBV-C E2 is predicted to be post-translationally processed in the endoplasmic reticulum and is involved with cell binding. The C-termini of GBV-C E1 and E2 proteins contain predicted transmembrane domains sharing features with HCV TM domains. To date, cellular receptor(s) for GBV-C E2 have not been identified. GBV-C E2-mediated HIV inhibition is dose-dependent and HIV replication is blocked at the binding and/or entry step. In addition, a putative GBV-C E2 fusion peptide interferes with HIV gp41 peptide oligomerization required for HIV-1 fusion, further suggesting that GBV-C E2 may inhibit HIV entry. Additional work is needed to identify the GBV-C E2 cellular receptor, characterize GBV-C E2 domains responsible for HIV inhibition, and to examine GBV-C E2-mediated fusion in the context of the entire envelope protein or viral-particles. Understanding the mechanisms of action may identify novel approaches to HIV therapy.
Collapse
Affiliation(s)
- Emma L. Mohr
- Department of Internal Medicine and the Interdisciplinary Program on Molecular and Cellular Biology, The University of Iowa
| | - Jack T. Stapleton
- Department of Internal Medicine and the Interdisciplinary Program on Molecular and Cellular Biology, The University of Iowa,The Iowa City VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
27
|
Abstract
Representational difference analysis (RDA) couples subtractive hybridization to PCR-mediated kinetic enrichment for the detection of differences between two complex genomes. In this unit, protocols start with the restriction digestion of two comparison DNA samples. Specific linkers are ligated to fragments from each pool and amplicons are generated by PCR. Linkers are removed from both samples and a new linker is added only to size-selected tester amplicons. These tester amplicons are mixed with a large excess of driver amplicons lacking linkers. Hybridization results in three species of dsDNA fragments: (1) both strands derived from driver DNA (lacking linkers on either strand), (2) hybrids with one strand from driver (no linker) and one from tester (with linker), and (3) both strands from tester DNA (linkers on both strands). Excess driver removes DNA fragments common to both samples, and only the DNA fragments unique to the tester are amplified with linker-specific primers. Representational difference analysis (RDA) couples subtractive hybridization to PCR-mediated kinetic enrichment for the detect Representational difference analysis (RDA) couples subtractive hybridization to PCR-mediated kinetic enrichment for the detect.
Collapse
Affiliation(s)
- Yuan Chang
- Hillman Cancer Center University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Bayesian coalescent analysis reveals a high rate of molecular evolution in GB virus C. J Mol Evol 2008; 66:292-7. [PMID: 18320258 DOI: 10.1007/s00239-008-9087-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/24/2008] [Accepted: 02/08/2008] [Indexed: 12/22/2022]
Abstract
GB virus C/hepatitis G (GBV-C) is an RNA virus of the family Flaviviridae. Despite replicating with an RNA-dependent RNA polymerase, some previous estimates of rates of evolutionary change in GBV-C suggest that it fixes mutations at the anomalously low rate of approximately 10(-7) nucleotide substitution per site, per year. However, these estimates were largely based on the assumption that GBV-C and its close relative GBV-A (New World monkey GB viruses) codiverged with their primate hosts over millions of years. Herein, we estimated the substitution rate of GBV-C using the largest set of dated GBV-C isolates compiled to date and a Bayesian coalescent approach that utilizes the year of sampling and so is independent of the assumption of codivergence. This revealed a rate of evolutionary change approximately four orders of magnitude higher than that estimated previously, in the range of 10(-2) to 10(-3) sub/site/year, and hence in line with those previously determined for RNA viruses in general and the Flaviviridae in particular. In addition, we tested the assumption of host-virus codivergence in GBV-A by performing a reconciliation analysis of host and virus phylogenies. Strikingly, we found no statistical evidence for host-virus codivergence in GBV-A, indicating that substitution rates in the GB viruses should not be estimated from host divergence times.
Collapse
|
29
|
Rudolf VHW, Antonovics J. Disease transmission by cannibalism: rare event or common occurrence? Proc Biol Sci 2007; 274:1205-10. [PMID: 17327205 PMCID: PMC2189571 DOI: 10.1098/rspb.2006.0449] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cannibalism has been documented as a possible disease transmission route in several species, including humans. However, the dynamics resulting from this type of disease transmission are not well understood. Using a theoretical model, we explore how cannibalism (i.e. killing and consumption of dead conspecifics) and intraspecific necrophagy (i.e. consumption of dead conspecifics) affect host-pathogen dynamics. We show that group cannibalism, i.e. shared consumption of victims, is a necessary condition for disease spread by cannibalism in the absence of alternative transmission modes. Thus, endemic diseases transmitted predominantly by cannibalism are likely to be rare, except in social organisms that share conspecific prey. These results are consistent with a review of the literature showing that diseases transmitted by cannibalism are infrequent in animals, even though both cannibalism and trophic transmission are very common.
Collapse
Affiliation(s)
- Volker H W Rudolf
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
30
|
Ganova-Raeva L, Zhang X, Cao F, Fields H, Khudyakov Y. Primer Extension Enrichment Reaction (PEER): a new subtraction method for identification of genetic differences between biological specimens. Nucleic Acids Res 2006; 34:e76. [PMID: 16790564 PMCID: PMC1484250 DOI: 10.1093/nar/gkl391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/20/2006] [Accepted: 05/08/2006] [Indexed: 11/14/2022] Open
Abstract
We developed a conceptually new subtraction strategy for the detection and isolation of target DNA and/or RNA from complex nucleic acid mixtures, called Primer Extension Enrichment Reaction (PEER). PEER uses adapters and class IIS restriction enzymes to generate tagged oligonucleotides from dsDNA fragments derived from specimens containing an unknown target ('tester'). Subtraction is achieved by selectively disabling these oligonucleotides by extension reaction using ddNTPs and a double stranded DNA template generated from a pool of normal specimens ('driver'). Primers that do not acquire ddNTP are used to capture and amplify the unique target DNA from the original tester dsDNA. We successfully applied PEER to specimens containing known infectious agents (Hepatitis B Virus and Walrus Calicivirus) and demonstrated that it has higher efficiency than the best comparable technique. The strategy used for PEER is versatile and can be adapted for the identification of known and unknown pathogens and mutations, differential expression studies and other applications that allow the use of subtractive strategies.
Collapse
Affiliation(s)
- Lilia Ganova-Raeva
- Centers for Disease Control and Prevention, National Center for Infectious Diseases, Division of Viral Hepatitis/Laboratory Branch, Atlanta, GA 30329, USA.
| | | | | | | | | |
Collapse
|
31
|
Muerhoff AS, Dawson GJ, Desai SM. A previously unrecognized sixth genotype of GB virus C revealed by analysis of 5'-untranslated region sequences. J Med Virol 2006; 78:105-11. [PMID: 16299729 DOI: 10.1002/jmv.20510] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GB virus C (GBV-C) is a positive-strand RNA virus that infects a large proportion of the world's human population. It has been classified tentatively as a member of the Flaviviridae family and has been shown to exist as a group of five closely related genotypes. Recently, we reported the first full-length genome sequence of a genotype 5 isolate from South Africa. As part of the analysis of that sequence, a phylogenetic tree was elucidated from the 5'-untranslated region (UTR) that showed excellent congruence to the tree produced by analysis of complete open reading frame sequences. When 5'-UTR analysis was broadened subsequently to include additional isolates from around the globe, a heretofore unrecognized GBV-C genotype was discovered in Indonesia. When first reported in 2000, these isolates were described as constituting a novel fifth genotype. However, comparison to isolates from the then-known fourth and fifth genotypes (from Myanmar/Vietnam and South Africa, respectively) was not performed. A dataset of 121 GBV-C 5'-UTR sequences was complied and included representatives of the fourth and fifth genotypes as well as the "novel" Indonesian sequences and demonstrated, with strong support via bootstrap analysis, the existence of a sixth GBV-C genotype among infected individuals in Indonesia. The discovery of this sixth genotype emphasizes the diverse nature of GBV-C isolates and may have important implications for the interpretation of studies involving GBV-C/HIV co-infected individuals.
Collapse
Affiliation(s)
- A Scott Muerhoff
- Infectious Diseases Research and Development, Abbott Diagnostics, Abbott Laboratories, Abbott Park, Illinois 60064-6015, USA.
| | | | | |
Collapse
|
32
|
Muerhoff AS, Leary TP, Sathar MA, Dawson GJ, Desai SM. African origin of GB virus C determined by phylogenetic analysis of a complete genotype 5 genome from South Africa. J Gen Virol 2005; 86:1729-1735. [PMID: 15914851 DOI: 10.1099/vir.0.80854-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GB virus C (GBV-C), a positive-strand RNA virus, currently infects approximately one-sixth of the world's population. This virus exists as a collection of genotypes whose global distribution correlates with geographical origin. Genotyping of GBV-C isolates by phylogenetic analysis has relied upon the use of 5'-untranslated region (5'-UTR) sequences, however, complete genome sequences are used to demonstrate definitively their existence and geographical correlation. Initial identification of the fifth genotype from South Africa was based upon phylogenetic analysis of the 5'-UTR. It was sought to confirm this classification by analysis of full-length E2 genes from South African isolates and by analysis of a complete genotype 5 genome. Analysis of full-length E2 genes from 28 GBV-C-infected South African individuals revealed the existence of a unique group of 18 isolates, distinct from the other four genotypes. Bootstrap analysis provided strong support (95 %) for this fifth group. The remaining isolates were either genotype 1 (n=8) or 2 (n=2). Analysis of human E2 gene sequences, with the E2 gene from the chimpanzee variant GBV-Ctro included as the outgroup, produced a tree rooted on the genotype 1 branch. The complete genome nucleotide sequence of South African genotype 5 isolate D50 was determined. Phylogenetic analysis of the 5'-UTR and open reading frame produced congruent trees that grouped the sequences into five major genotypes. Inclusion of the corresponding region of the chimpanzee isolate GBV-Ctro in the analysis produced trees rooted on the branch leading to the genotype 5 isolate D50, suggesting an ancient African origin of GBV-C.
Collapse
Affiliation(s)
- A Scott Muerhoff
- Infectious Diseases Research and Development, Abbott Diagnostics Division, Abbott Laboratories, Dept 9NB, Bldg AP20-4, 100 Abbott Park Road, Abbott Park, IL 60064-6015, USA
| | - Thomas P Leary
- Infectious Diseases Research and Development, Abbott Diagnostics Division, Abbott Laboratories, Dept 9NB, Bldg AP20-4, 100 Abbott Park Road, Abbott Park, IL 60064-6015, USA
| | - Mahomed A Sathar
- Infectious Disease Unit, Nelson R. Mandela School of Medicine, Doris Duke Research Institute, University of KwaZulu-Natal, South Africa
| | - George J Dawson
- Infectious Diseases Research and Development, Abbott Diagnostics Division, Abbott Laboratories, Dept 9NB, Bldg AP20-4, 100 Abbott Park Road, Abbott Park, IL 60064-6015, USA
| | - Suresh M Desai
- Infectious Diseases Research and Development, Abbott Diagnostics Division, Abbott Laboratories, Dept 9NB, Bldg AP20-4, 100 Abbott Park Road, Abbott Park, IL 60064-6015, USA
| |
Collapse
|
33
|
Birkenmeyer LG, Leary TP, Muerhoff AS, Dawson GJ, Mushahwar IK, Desai SM. Selectively primed adaptive driver RDA (SPAD-RDA): an improved method for subtractive hybridization. J Med Virol 2003; 71:150-9. [PMID: 12858421 DOI: 10.1002/jmv.10460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A modification of the Representational Difference Analysis (RDA) method for subtractive hybridization, termed Selectively Primed Adaptive Driver (SPAD) RDA, is described. It differs from conventional RDA primarily in the manner by which initial driver (D) and tester (T) amplicon complexities are determined, and by optimizing the composition of D with respect to T for each round of subtraction. Total nucleic acid is extracted from serum or plasma and converted to double-stranded DNA/cDNA. A polymerase chain reaction (PCR) primer containing a selective nucleotide(s) at its 3'-end is used to generate amplicons of reduced complexity. Parallel subtractions are carried out, D vs. T (DT) for enrichment of tester-unique sequences and D vs. D (Driver Control or DC) to generate an optimized driver for use in the subsequent round. Following each round, agarose gel electrophoresis is used to visually identify any DT-unique bands through a side-by-side comparison of DT and DC subtraction products. In comparison to conventional RDA, SPAD-RDA achieved greater enrichment of viral sequences from an HCV infected chimpanzee, resulting in isolation of 13.7% of the viral genome, and an overall enrichment for HCV sequences of 239-fold. Virus fragments were also obtained from an HCV-infected human sample subtracted against non-paired human driver sequences. J. Med. Virol. 71:150-159, 2003.
Collapse
Affiliation(s)
- Larry G Birkenmeyer
- Core Research and Development, Infectious Disease Group, Abbott Laboratories, Abbott Park, Illinois 60064-6015, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Lanford RE, Chavez D, Notvall L, Brasky KM. Comparison of tamarins and marmosets as hosts for GBV-B infections and the effect of immunosuppression on duration of viremia. Virology 2003; 311:72-80. [PMID: 12832204 DOI: 10.1016/s0042-6822(03)00193-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
GBV-B virus is a close relative to hepatitis C virus (HCV) that causes hepatitis in tamarins, and thus, is an attractive surrogate model for HCV. In this study, we demonstrate that the host range of GBV-B extends to the common marmoset with an infection profile similar to that observed for tamarins. Marmoset hepatocytes were susceptible to in vitro infection with GBV-B. Virus was efficiently secreted into the medium, and approximately 25% of hepatocytes were positive for NS3 staining. In an attempt to induce persistent infections, tamarins were immunosuppressed with FK506 and inoculated with GBV-B. Although no chronic infections were induced, the duration of viremia was increased in most animals. In one animal, the duration of viremia was extended to 46 weeks, but viral clearance occurred 18 weeks after stopping FK506 therapy. The greater availability of marmosets in comparison to tamarins will greatly facilitate future research efforts with this model.
Collapse
Affiliation(s)
- Robert E Lanford
- Department of Virology and Immunology, Southwest National Primate Research Center, and Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA.
| | | | | | | |
Collapse
|
35
|
Halasz R, Weiland O, Sällberg M. GB virus C/hepatitis G virus. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2002; 33:572-80. [PMID: 11525349 DOI: 10.1080/00365540110027123] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GB virus C (GBV-C), or hepatitis G virus (HGV), is a recently discovered enveloped RNA virus belonging to the Flaviviridae family. GBV-C/HGV is transmitted by contaminated blood and/or blood products, intravenous drug use, from mother to child, sexually, and possibly through close social contacts. Several reports indicate a high prevalence of GBV-C/HGV viremia (1-4%) within healthy populations in Europe and North America, and an even higher prevalence (10-33%) among residents in South America and Africa. GBV-C/HGV has been suggested to be a causative agent for non-A-non-E hepatitis. However, several contradictory observations suggest that its ability to cause hepatitis is questionable. Taken together most data suggest that GBV-C/HGV is not a major cause of liver disease despite recent data indicating that it may infect and replicate in hepatocytes.
Collapse
Affiliation(s)
- R Halasz
- Division of Clinical Virology, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
36
|
Abstract
Infections with hepatitis B and C viruses (HBV, HCV) are widespread in human populations throughout the world, and are major causes of chronic liver disease and liver cancer. HBV, HCV and the related hepatitis G virus or GB virus C (referred to here as HGV/GBV-C) are capable of establishing persistent, frequently lifelong infections characterized by high levels of continuous replication. All three viruses show substantial genetic heterogeneity, which has allowed each to be classified into a number of distinct genotypes that have different geographical distributions and associations with different risk groups for infection. Information on their past transmission and epidemiology might be obtained by estimation of the time of divergence of the different genotypes of HCV, HBV and HGV/GBV-C using knowledge of their rates of sequence change. While information on the latter is limited to short observation periods and is therefore subject to considerable error and uncertainty, the relatively recent times of origin for genotype of each virus predicted by this method (HCV, 500-2000 years; HBV, 3000 years; HGV/GBV-C, 200 years) are quite incompatible with their epidemiological distributions in human populations. They also cannot easily be reconciled with the recent evidence for species-associated variants of HBV and HGV/GBV-C in a range of non-human primates. The apparent conservatism of viruses over long periods implied by their epidemiological distributions instead suggests that nucleotide sequence change may be subject to constraints peculiar to viruses with single-stranded genomes, or with overlapping reading frames that defy attempts to reconstruct evolution according to the principles of the 'molecular clock'. Large population sizes and intense selection pressures that optimize fitness may be additional factors that set virus evolution apart from that of their hosts.
Collapse
Affiliation(s)
- P Simmonds
- Laboratory for Clinical and Molecular Virology, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK.
| |
Collapse
|
37
|
Abstract
GB viruses A and B (GBV-A and GBV-B) are members of the Flaviviridae family and are isolated from tamarins injected with serum from a human hepatitis patient. Along with a related human virus, GB virus C, or alternatively, hepatitis G virus (GBV-C/HGV), the three viruses represent the GB agents. Of the three viruses, GBV-B has been proposed as a potential surrogate model for the study of hepatitis C virus (HCV) infections of humans. GBV-B is phylogenetically most closely related to HCV and causes an acute, self-resolving hepatitis in tamarins as indicated by an increase in alanine aminotransferase and changes in liver histology. Similarities between GBV-B and HCV are found at the nucleotide sequence level with the two viruses sharing 28% amino acid homology over the lengths of their open reading frames. Short regions have even higher levels of homology that are functionally significant as shown by the ability of the GBV-B NS3 protease to cleave recombinant HCV polyprotein substrates. The shared protease substrate specificities suggest that GBV-B may be useful in testing antiviral compounds for activity against HCV. Although there are numerous similarities between GBV-B and HCV, there are important differences in that HCV frequently causes chronic infections in people, whereas GBV-B appears to cause only acute infections. The acute versus chronic course of infection may point to important differences between the two viruses that, along with the numerous similarities, will make GBV-B in tamarins a good surrogate model for HCV.
Collapse
Affiliation(s)
- B Beames
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research and Southwest Regional Primate Research Center, San Antonio, Texas, USA
| | | | | |
Collapse
|
38
|
Robertson BH. Viral hepatitis and primates: historical and molecular analysis of human and nonhuman primate hepatitis A, B, and the GB-related viruses. J Viral Hepat 2001; 8:233-42. [PMID: 11454173 DOI: 10.1046/j.1365-2893.2001.00295.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hepatitis viruses have long been assumed to be highly host-specific, with infection of other nonhuman primates occurring due to inoculation with, or exposure to, human viruses. This paradigm has slowly changed over the last 10 years, as mounting data has revealed nonhuman primate equivalents of hepatitis A virus, hepatitis B virus, and the hepatitis C-related viruses GBV-C and GBV-A. This review summarizes the historical and molecular information for each of these groups and highlights the impact of these nonhuman primate hepatitis viruses on our understanding of the evolution of each of these viruses.
Collapse
Affiliation(s)
- B H Robertson
- Hepatitis Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta 30333, USA.
| |
Collapse
|
39
|
Abstract
The spread and origins of hepatitis C virus (HCV) in human populations have been the subject of extensive investigations, not least because of the importance this information would provide in predicting clinical outcomes and controlling spread of HCV in the future. However, in the absence of historical and archaeological records of infection, the evolution of HCV and other human hepatitis viruses can only be inferred indirectly from their epidemiology and by genetic analysis of contemporary virus populations. Some information on the history of the latter may be obtained by dating the time of divergence of various genotypes of HCV, hepatitis B virus (HBV) and the non-pathogenic hepatitis G virus (HGV)/GB virus-C (GBV-C). However, the relatively recent times predicted for the origin of these viruses fit poorly with their epidemiological distributions and the recent evidence for species-associated variants of HBV and HGV/GBV-C in a wide range of non-human primates. The apparent conservatism of viruses over long periods implied by these latter observations may be the result of constraints on sequence change peculiar to viruses with single-stranded genomes, or with overlapping reading frames. Large population sizes and intense selection pressures that optimize fitness may be the factors that set virus evolution apart from that of their hosts.
Collapse
Affiliation(s)
- Peter Simmonds
- Laboratory for Clinical and Molecular Virology, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK1
| |
Collapse
|
40
|
Cuceanu NM, Tuplin A, Simmonds P. Evolutionarily conserved RNA secondary structures in coding and non-coding sequences at the 3' end of the hepatitis G virus/GB-virus C genome. J Gen Virol 2001; 82:713-722. [PMID: 11257175 DOI: 10.1099/0022-1317-82-4-713] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis G virus (HGV)/GB virus C (GBV-C) causes persistent, non-pathogenic infection in a large proportion of the human population. Epidemiological and genetic evidence indicates a long-term association between HGV/GBV-C and related viruses and a range of primate species, and the co-speciation of these viruses with their hosts during primate evolution. Using a combination of covariance scanning and analysis of variability at synonymous sites, we previously demonstrated that the coding regions of HGV/GBV-C may contain extensive secondary structure of undefined function (Simmonds & Smith, Journal of Virology 73, 5787-5794, 1999 ). In this study we have carried out a detailed comparison of the structure of the 3'untranslated region (3'UTR) of HGV/GBV-C with that of the upstream NS5B coding sequence. By investigation of free energies on folding, secondary structure predictive algorithms and analysis of covariance between HGV/GBV-C genotypes 1-4 and the more distantly related HGV/GBV-C chimpanzee variant, we obtained evidence for extensive RNA secondary structure formation in both regions. In particular, the NS5B region contained long stem-loop structures of up to 38 internally paired nucleotides which were evolutionarily conserved between human and chimpanzee HGV/GBV-C variants. The prediction of similar structures in the same region of hepatitis C virus may allow the functions of these structures to be determined with a more tractable experimental model.
Collapse
Affiliation(s)
- N M Cuceanu
- Laboratory for Clinical and Molecular Virology, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK1
| | - A Tuplin
- Laboratory for Clinical and Molecular Virology, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK1
| | - P Simmonds
- Laboratory for Clinical and Molecular Virology, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK1
| |
Collapse
|
41
|
Sathar M, Soni P, York D. GB virus C/hepatitis G virus (GBV-C/HGV): still looking for a disease. Int J Exp Pathol 2001. [PMID: 11168678 DOI: 10.1046/j.1365-2613.2000.00166.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GB Virus C and Hepatitis G Virus (GBV-C/HGV) are positive, single-stranded flaviviruses. GBV-C and HGV are independent isolates of the same virus. Transmission via the blood-borne route is the commonest mode, although vertical and sexual transmission is well documented. GBV-C/HGV is distributed globally; its prevalence in the general population is 10 fold higher in African countries than in non-African countries. High prevalences of GBV-C/HGV have been found in subjects with frequent parenteral exposure and in groups at high risk of exposure to blood and blood products. The clinical significance of human infection with GBV-C/HGV is currently unclear. The virus can establish both acute and chronic infection and appears to be sensitive to interferon. Only some 12-15% of chronic Non-A, B, C hepatitis cases are infected with GBV-C/HGV. A direct association with liver pathology is still lacking and it is not yet clear as to whether GBV-C/HGV is indeed a hepatotropic virus. Current evidence suggests that the spectrum of association of GBV-C/HGV infection with extrahepatic diseases ranges from haematalogical diseases, aplastic anaemia, human immunodeficiency virus (HIV)-positive idiopathic thrombocytopenia and thalassemia, through to common variable immune deficiency and cryoglobunemia.
Collapse
Affiliation(s)
- M Sathar
- Department of Medicine, Nelson R Mandela School of Medicine, University of Natal/King Edward VIII Hospital, Durban, South Africa
| | | | | |
Collapse
|
42
|
|
43
|
Abstract
GB Virus C and Hepatitis G Virus (GBV-C/HGV) are positive, single-stranded flaviviruses. GBV-C and HGV are independent isolates of the same virus. Transmission via the blood-borne route is the commonest mode, although vertical and sexual transmission is well documented. GBV-C/HGV is distributed globally; its prevalence in the general population is 10 fold higher in African countries than in non-African countries. High prevalences of GBV-C/HGV have been found in subjects with frequent parenteral exposure and in groups at high risk of exposure to blood and blood products. The clinical significance of human infection with GBV-C/HGV is currently unclear. The virus can establish both acute and chronic infection and appears to be sensitive to interferon. Only some 12-15% of chronic Non-A, B, C hepatitis cases are infected with GBV-C/HGV. A direct association with liver pathology is still lacking and it is not yet clear as to whether GBV-C/HGV is indeed a hepatotropic virus. Current evidence suggests that the spectrum of association of GBV-C/HGV infection with extrahepatic diseases ranges from haematalogical diseases, aplastic anaemia, human immunodeficiency virus (HIV)-positive idiopathic thrombocytopenia and thalassemia, through to common variable immune deficiency and cryoglobunemia.
Collapse
Affiliation(s)
- M Sathar
- Department of Medicine, Nelson R Mandela School of Medicine, University of Natal/King Edward VIII Hospital, Durban, South Africa
| | | | | |
Collapse
|
44
|
Bratanich AC, Ellis JA, Blanchetot A. Representational differential analysis detects amplification of satellite sequences in postweaning multisystemic wasting syndrome of pigs. J Vet Diagn Invest 2000; 12:328-31. [PMID: 10907861 DOI: 10.1177/104063870001200405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Representational difference analysis (RDA) was used as a molecular approach to identify unique sequences associated with postweaning multisystemic wasting syndrome (PMWS) in pigs. Three rounds of subtractive hybridization and amplification between driver DNA extracted from normal pigs and tester DNA from PMWS-affected animals were performed. The final product corresponding to sequences associated with PMWS in pigs was analyzed using agarose gel electrophoresis, and 9 fragments were visualized after staining with ethidium bromide. Eight recombinants were successively cloned and sequenced, and the results were then compared with existing databases. Most of the PMWS clones isolated were satellite sequences from pig centrometric regions and 1 was a microsatellite sequence. One clone represented a microsatellite sequence, and 2 clones showed no homology with any gene found in the databases. The sequence comparison data did not reveal any homology with an infectious agent such as a virus or a bacterium. In the present experimental setting, it was concluded that PMWS in pigs triggers molecular changes such as an amplification of genomic regions containing repeated sequences.
Collapse
Affiliation(s)
- A C Bratanich
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo 58105, USA
| | | | | |
Collapse
|
45
|
Smith DB, Basaras M, Frost S, Haydon D, Cuceanu N, Prescott L, Kamenka C, Millband D, Sathar MA, Simmonds P. Phylogenetic analysis of GBV-C/hepatitis G virus. J Gen Virol 2000; 81:769-80. [PMID: 10675415 DOI: 10.1099/0022-1317-81-3-769] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Comparison of 33 epidemiologically distinct GBV-C/hepatitis G virus complete genome sequences suggests the existence of four major phylogenetic groupings that are equally divergent from the chimpanzee isolate GBV-C(tro) and have distinct geographical distributions. These four groupings are not consistently reproduced by analysis of the virus 5'-noncoding region (5'-NCR), or of individual genes or subgenomic fragments with the exception of the E2 gene as a whole or of 200-600 nucleotide fragments from its 3' half. This region is upstream of a proposed anti-sense reading frame and contains conserved potential RNA secondary structures that may be capable of directing the internal initiation of translation. Phylogenetic analysis of this region from certain South African isolates is consistent with previous analysis of the 5'-NCR suggesting that these belong to a fifth group. The geographical distribution of virus variants is consistent with a long evolutionary history that may parallel that of pre-historic human migrations, implying that the long-term evolution of this RNA virus is extremely slow.
Collapse
Affiliation(s)
- D B Smith
- Department of Medical Microbiology, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sathar MA, Soni PN, Pegoraro R, Simmonds P, Smith DB, Dhillon AP, Dusheiko GM. A new variant of GB virus C/hepatitis G virus (GBV-C/HGV) from South Africa. Virus Res 1999; 64:151-60. [PMID: 10518711 DOI: 10.1016/s0168-1702(99)00090-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Phylogenetic analysis of the 5' non-coding region (5'NCR) sequences has demonstrated that GB virus C/hepatitis G virus (GBV-C/HGV) can be separated into three major groups that correlate with the geographic origin of the isolate. Sequence analysis of the 5'NCR of 54 GBV-C/HGV isolates from 31 blood donors, 11 haemodialysis patients and 12 patients with chronic liver disease suggests the presence of a new variant of GBV-C/HGV in the province of KwaZulu Natal, South Africa. Eleven isolates grouped as group 1 variants (bootstrap support, 90%) found predominantly in West and Central Africa, a further six isolates grouped as group 2 variants (bootstrap support, 58%) found in Europe and North America; five of which grouped as 2a (bootstrap support, 91%) and one as 2b (bootstrap support, 87%), the latter also includes isolates from Japan, East Africa and Pakistan. Although the remaining 37 GBV-C/HGV isolates were more closely related to group 1 variants (bootstrap support, 90%), they formed a cluster, which was distinct from all other known GBV-C/HGV sequences. None of the South African isolates grouped with group 3 variants described from Southeast Asia. Three variants of GBV-C/HGV exist in KwaZulu Natal: groups 1, 2 and a new variant, which is distinct from other African isolates.
Collapse
Affiliation(s)
- M A Sathar
- Department of Medicine, University of Natal/King Edward VIII Hospital, South Africa.
| | | | | | | | | | | | | |
Collapse
|
47
|
Charrel RN, De Micco P, de Lamballerie X. Phylogenetic analysis of GB viruses A and C: evidence for cospeciation between virus isolates and their primate hosts. J Gen Virol 1999; 80 ( Pt 9):2329-2335. [PMID: 10501484 DOI: 10.1099/0022-1317-80-9-2329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GB viruses A and C (GBV-A and GBV-C) have been isolated from humans and non-human primates. Phylogenetic analysis based on full-length polyproteins suggests that these two viruses have a common ancestor. It has now been determined that analysis of subgenomic amino acid sequences in the E2 and NS5 regions of GBV-A and a 345 nucleotide segment in the 5' non-coding (5'NC) region was able to reproduce the phylogenetic relationships obtained by complete polyprotein sequences analysis. Using 5'NC sequences from databases, GBV-A isolates were discriminated into eight genetic groups, each one closely associated with specific primate hosts. Phylogenetic analyses performed on sequences from the epsilon-globin genes of primate hosts on one hand and complete polyprotein sequences from GBV-A and GBV-C isolates on the other suggest that a mechanism of cospeciation could be involved in virus evolution over a period of 35 million years.
Collapse
Affiliation(s)
- Rémi N Charrel
- Dept of Pathology, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA2
- Laboratoire de Virologie moléculaire, transfusionnelle et tropicale, Faculté de Médecine, 13385 Marseille, France1
| | - Philippe De Micco
- Laboratoire de Virologie moléculaire, transfusionnelle et tropicale, Faculté de Médecine, 13385 Marseille, France1
| | - Xavier de Lamballerie
- Laboratoire de Virologie moléculaire, transfusionnelle et tropicale, Faculté de Médecine, 13385 Marseille, France1
| |
Collapse
|
48
|
Abstract
The recently discovered hepatitis G virus (HGV) or GB virus C (GBV-C) is widely distributed in human populations, and homologues such as HGV/GBV-CCPZ and GBV-A are found in a variety of different primate species. Both epidemiological and phylogenetic analyses support the hypothesis that GB viruses coevolved with their primate hosts, although their degree of sequence similarity appears incompatible with the high rate of sequence change of HGV/GBV-C over short observation periods. Comparison of complete coding sequences (8,500 bases) of different genotypes of HGV/GBV-C showed an excess of invariant synonymous sites (at 23% of all codons) compared with the frequency expected by chance (10%). To investigate the hypothesis that RNA secondary-structure formation through internal base pairing limited sequence variability at these sites, an algorithm was developed to detect covariant sites among HGV/GBV-C sequences of different genotypes. At least 35 covariant sites that were spatially associated with potential stem-loop structures were detected, whose positions correlated with positions in the genome that showed reductions in synonymous variability. Although the functional roles of the predicted secondary structures remain unclear, the restriction of sequence change imposed by secondary-structure formation provides a mechanism for differences in net rate of accumulation of nucleotide substitutions at different sites. However, the resulting disparity between short- and long-term rates of sequence change of HGV/GBV-C violates the assumptions of the "molecular clock." This places a major restriction on the use of nucleotide or amino acid sequence comparisons to calculate times of divergence of other viruses evolving under the same structural constraints as GB viruses.
Collapse
Affiliation(s)
- P Simmonds
- Department of Medical Microbiology, University of Edinburgh, Edinburgh EH8 9AG, United Kingdom.
| | | |
Collapse
|