1
|
Lebedeva L, Zhumabayeva B, Gebauer T, Kisselev I, Aitasheva Z. Zebrafish ( Danio rerio) as a Model for Understanding the Process of Caudal Fin Regeneration. Zebrafish 2020; 17:359-372. [PMID: 33259770 DOI: 10.1089/zeb.2020.1926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
After its introduction for scientific investigation in the 1950s, the cypriniform zebrafish, Danio rerio, has become a valuable model for the study of regenerative processes and mechanisms. Zebrafish exhibit epimorphic regeneration, in which a nondifferentiated cell mass formed after amputation is able to fully regenerate lost tissue such as limbs, heart muscle, brain, retina, and spinal cord. The process of limb regeneration in zebrafish comprises several stages characterized by the activation of specific signaling pathways and gene expression. We review current research on key factors in limb regeneration using zebrafish as a model.
Collapse
Affiliation(s)
- Lina Lebedeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Beibitgul Zhumabayeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Tatyana Gebauer
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Ilya Kisselev
- Institute of General Genetics and Cytology, Almaty, The Republic of Kazakhstan
| | - Zaure Aitasheva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| |
Collapse
|
2
|
Luís C, Rodrigues I, Guerreiro SG, Fernandes R, Soares R. Regeneration in the Podarcis bocagei model organism: a comprehensive immune-/histochemical analysis of the tail. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Williams DL. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function. Eye (Lond) 2016; 31:167-172. [PMID: 27834958 DOI: 10.1038/eye.2016.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022] Open
Abstract
Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.
Collapse
Affiliation(s)
- D L Williams
- Department of Veterinary Medicine, University of Cambridge, Queen's Veterinary School Hospital, Cambridge, UK
| |
Collapse
|
4
|
Abstract
Optic nerve regeneration is an important area of research. It can be used to treat patients suffering from optic neuropathy and provides insights into the treatment of numerous neurodegenerative diseases. There are many hurdles impeding optic regeneration in mammals. The mammalian central nervous system is non-permissive to regeneration and intrinsically lacks the capacity for axonal regrowth. Any axonal injury also triggers a vicious cycle of apoptosis. Understanding these hurdles provides us with a rough framework to appreciate the essential steps to bring about optic nerve regeneration: enhancing neuronal survival, axon regeneration, remyelination and establishing functional synapses to the original neuronal targets. In this review article, we will go through current potential treatments for optic nerve regeneration, which includes neurotrophic factor provision, inflammatory stimulation, growth inhibition suppression, intracellular signaling modification and modeling of bridging substrates.
Collapse
Affiliation(s)
- Jennifer Wei Huen Shum
- Department of Ophthalmology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Kwok-Fai So
- Department of Ophthalmology, The University of Hong Kong, Hong Kong Special Administrative Region, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Variable functional recovery and minor cell loss in the ganglion cell layer of the lizard Gallotia galloti after optic nerve axotomy. Exp Eye Res 2013; 118:89-99. [PMID: 24184031 DOI: 10.1016/j.exer.2013.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/12/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
Abstract
The lizard Gallotia galloti shows spontaneous and slow axon regrowth through a permissive glial scar after optic nerve axotomy. Although much of the expression pattern of glial, neuronal and extracellular matrix markers have been analyzed by our group, an estimation of the cell loss in the ganglion cell layer (GCL) and the degree of visual function recovery remained unresolved. Thus, we performed a series of tests indicative of effective visual function (pupillary light reflex, accommodation, visually elicited behavior) in 18 lizards at 3, 6, 9 and 12 months post-axotomy which were then processed for immunohistochemistry for the neuronal markers SMI-31 (neurofilaments), Tuj1 (beta-III tubulin) and SV2 (synaptic vesicles) at the last timepoint. Separately, cell loss in the GCL was estimated by comparative quantitation of DAPI(+) nuclei in control and 12 months experimental lizards. Additionally, 15 lizards were processed for electron microscopy to monitor relevant ultrastructural changes in the GCL, optic nerve and optic tract throughout regeneration. Hypertrophy of RGCs was persistent, morphology of the regenerated nerves varied from narrow to neuroma-like features and larger regenerated axons underwent remyelination by 9 months. The estimated cell loss in the GCL was 27% and two-third of the animals recovered the pupillary light reflex which involves the pretectum. Strikingly, visually elicited behavior involving the tectum was only restored in two specimens, presumably due to the higher complexity of this pathway. These preliminary results indicate that limited functional regeneration occurs spontaneously in the severely injured visual system of the lacertid G. galloti.
Collapse
|
6
|
Romero-Alemán MDM, Monzón-Mayor M, Santos E, Yanes CM. Regrowth of transected retinal ganglion cell axons despite persistent astrogliosis in the lizard (Gallotia galloti). J Anat 2013; 223:22-37. [PMID: 23656528 DOI: 10.1111/joa.12053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 12/14/2022] Open
Abstract
We analysed the astroglia response that is concurrent with spontaneous axonal regrowth after optic nerve (ON) transection in the lizard Gallotia galloti. At different post-lesional time points (0.5, 1, 3, 6, 9 and 12 months) we used conventional electron microscopy and specific markers for astrocytes [glial fibrillary acidic protein (GFAP), vimentin (Vim), sex-determining region Y-box-9 (Sox9), paired box-2 (Pax2)¸ cluster differentiation-44 (CD44)] and for proliferating cells (PCNA). The experimental retina showed a limited glial response since the increase of gliofilaments was not significant when compared with controls, and proliferating cells were undetectable. Conversely, PCNA(+) cells populated the regenerating ON, optic tract (OTr) and ventricular wall of both the hypothalamus and optic tectum (OT). Subpopulations of these PCNA(+) cells were identified as GFAP(+) and Vim(+) reactive astrocytes and radial glia. Reactive astrocytes up-regulated Vim at 1 month post-lesion, and both Vim and GFAP at 12 months post-lesion in the ON-OTr, indicating long-term astrogliosis. They also expressed Pax2, Sox9 and CD44 in the ON, and Sox9 in the OTr. Concomitantly, persistent tissue cavities and disorganised regrowing fibre bundles reaching the OT were observed. Our ultrastructural data confirm abundant gliofilaments in reactive astrocytes joined by desmosomes. Remarkably, they also accumulated myelin debris and lipid droplets until late stages, indicating their participation in myelin removal. These data suggest that persistent mammalian-like astrogliosis in the adult lizard ON contributes to a permissive structural scaffold for long-term axonal regeneration and provides a useful model to study the molecular mechanisms involved in these beneficial neuron-glia interactions.
Collapse
Affiliation(s)
- María del Mar Romero-Alemán
- Departamento de Morfología (Biología Celular), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | | | |
Collapse
|
7
|
Luo X, Salgueiro Y, Beckerman SR, Lemmon VP, Tsoulfas P, Park KK. Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Exp Neurol 2013; 247:653-62. [PMID: 23510761 DOI: 10.1016/j.expneurol.2013.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 11/24/2022]
Abstract
Injured retinal ganglion cell (RGC) axons do not regenerate spontaneously, causing loss of vision in glaucoma and after trauma. Recent studies have identified several strategies that induce long distance regeneration in the optic nerve. Thus, a pressing question now is whether regenerating RGC axons can find their appropriate targets. Traditional methods of assessing RGC axon regeneration use histological sectioning. However, tissue sections provide fragmentary information about axonal trajectory and termination. To unequivocally evaluate regenerating RGC axons, here we apply tissue clearance and light sheet fluorescence microscopy (LSFM) to image whole optic nerve and brain without physical sectioning. In mice with PTEN/SOCS3 deletion, a condition known to promote robust regeneration, axon growth followed tortuous paths through the optic nerve, with many axons reversing course and extending towards the eye. Such aberrant growth was prevalent in the proximal region of the optic nerve where strong astroglial activation is present. In the optic chiasms of PTEN/SOCS3 deletion mice and PTEN deletion/Zymosan/cAMP mice, many axons project to the opposite optic nerve or to the ipsilateral optic tract. Following bilateral optic nerve crush, similar divergent trajectory is seen at the optic chiasm compared to unilateral crush. Centrally, axonal projection is limited predominantly to the hypothalamus. Together, we demonstrate the applicability of LSFM for comprehensive assessment of optic nerve regeneration, providing in-depth analysis of the axonal trajectory and pathfinding. Our study indicates significant axon misguidance in the optic nerve and brain, and underscores the need for investigation of axon guidance mechanisms during optic nerve regeneration in adults.
Collapse
Affiliation(s)
- Xueting Luo
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Ferretti P. Is there a relationship between adult neurogenesis and neuron generation following injury across evolution? Eur J Neurosci 2011; 34:951-62. [DOI: 10.1111/j.1460-9568.2011.07833.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
New STD, Bull CM. Retinal ganglion cell topography and visual acuity of the sleepy lizard (Tiliqua rugosa). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:703-9. [DOI: 10.1007/s00359-011-0635-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/03/2011] [Accepted: 02/15/2011] [Indexed: 11/30/2022]
|
10
|
Szaro BG, Strong MJ. Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Regeneration in Reptiles and Its Position Among Vertebrates. MORPHOLOGICAL AND CELLULAR ASPECTS OF TAIL AND LIMB REGENERATION IN LIZARDS 2010. [DOI: 10.1007/978-3-642-03733-7_1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Lang DM, Monzon-Mayor M, del Mar Romero-Aleman M, Yanes C, Santos E, Pesheva P. Tenascin-R and axon growth-promoting molecules are up-regulated in the regenerating visual pathway of the lizard (Gallotia galloti). Dev Neurobiol 2008; 68:899-916. [DOI: 10.1002/dneu.20624] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Hidalgo-Sánchez M, Francisco-Morcillo J, Martín-Partido G. Changes in fiber arrangement in the retinofugal pathway of the turtle Mauremys leprosa: an evolutionarily conserved mechanism. Brain Res 2007; 1186:124-8. [PMID: 17996220 DOI: 10.1016/j.brainres.2007.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 10/03/2007] [Accepted: 10/08/2007] [Indexed: 11/15/2022]
Abstract
In spite of the numerous reports on the optic fiber distribution in the optic nerve and tract of vertebrates, there have been few studies of the visual pathway in reptiles. The arrangement of fibers in the optic nerve and tract of the turtle Mauremys leprosa was studied by placing a small granule of carbocyanine dye (DiI or DiA) in one of the four quadrants of the retina. The labeled fibers were traced through transverse sections of the retinofugal pathway with confocal microscopy. Retinal axons displayed a quadrant-specific order along the optic nerve. However, retinal ganglion cell axons were re-organized as they passed through the chiasmatic region of the optic pathway. In the optic tract, the nasal and temporal fibers remained intermingled, but there was segregation of dorsal from ventral fibers. This re-ordering is similar to that described in other vertebrates, suggesting the existence of an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz, Spain
| | | | | |
Collapse
|
14
|
Dunlop SA, Tee LBG, Goossens MAL, Stirling RV, Hool L, Rodger J, Beazley LD. Regenerating optic axons restore topography after incomplete optic nerve injury. J Comp Neurol 2007; 505:46-57. [PMID: 17729282 DOI: 10.1002/cne.21477] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following complete optic nerve injury in a lizard, Ctenophorus ornatus, retinal ganglion cell (RGC) axons regenerate but fail to restore retinotectal topography unless animals are trained on a visual task (Beazley et al. [ 1997] J Comp Neurol 370:105-120, [2003] J Neurotrauma 20:1263-1270). Here we show that incomplete injury, which leaves some RGC axons intact, restores normal topography. Strict RGC axon topography allowed us to preserve RGC axons on one side of the nerve (projecting to medial tectum) while lesioning those on the other side (projecting to lateral tectum). Topography and response properties for both RGC axon populations were assessed electrophysiologically. The majority of intact RGC axons retained appropriate topography in medial tectum and had normal, consistently brisk, reliable responses. Regenerate RGC axons fell into two classes: those that projected topographically to lateral tectum with responses that tended to habituate and those that lacked topography, responded weakly, and habituated rapidly. Axon tracing by localized retinal application of carbocyanine dyes supported the electrophysiological data. RGC soma counts were normal in both intact and axotomized RGC populations, contrasting with the 30% RGC loss after complete injury. Unlike incomplete optic nerve injury in mammals, where RGC axon regeneration fails and secondary cell death removes many intact RGC somata, lizards experience a "win-win" situation: intact RGC axons favorably influence the functional outcome for regenerating ones and RGCs do not succumb to either primary or secondary cell death.
Collapse
Affiliation(s)
- Sarah A Dunlop
- School of Animal Biology, University of Western Australia, Crawley, 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Santos E, Monzón-Mayor M, Romero-Alemán M, Yanes C. Distribution of neurotrophin-3 during the ontogeny and regeneration of the lizard (Gallotia galloti) visual system. Dev Neurobiol 2007; 68:31-44. [DOI: 10.1002/dneu.20566] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Rossi F, Gianola S, Corvetti L. Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 2006; 81:1-28. [PMID: 17234322 DOI: 10.1016/j.pneurobio.2006.12.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/04/2006] [Accepted: 12/05/2006] [Indexed: 01/29/2023]
Abstract
Regulation of neuritic growth is crucial for neural development, adaptation and repair. The intrinsic growth potential of nerve cells is determined by the activity of specific molecular sets, which sense environmental signals and sustain structural extension of neurites. The expression and function of these molecules are dynamically regulated by multiple mechanisms, which adjust the actual growth properties of each neuron population at different ontogenetic stages or in specific conditions. The neuronal potential for axon elongation and regeneration are restricted at the end of development by the concurrent action of several factors associated with the final maturation of neurons and of the surrounding tissue. In the adult, neuronal growth properties can be significantly modulated by injury, but they are also continuously tuned in everyday life to sustain physiological plasticity. Strict regulation of structural remodelling and neuritic elongation is thought to be required to maintain specific patterns of connectivity in the highly complex mammalian CNS. Accordingly, procedures that neutralize such mechanisms effectively boost axon growth in both intact and injured nervous system. Even in these conditions, however, aberrant connections are only formed in the presence of unusual external stimuli or experience. Therefore, growth regulatory mechanisms play an essentially permissive role by setting the responsiveness of neural circuits to environmental stimuli. The latter exert an instructive action and determine the actual shape of newly formed connections. In the light of this notion, efficient therapeutic interventions in the injured CNS should combine targeted manipulations of growth control mechanisms with task-specific training and rehabilitation paradigms.
Collapse
Affiliation(s)
- Ferdinando Rossi
- Rita Levi Montalcini Centre for Brain Repair, Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | | | | |
Collapse
|
17
|
Bennis M, Repérant J, Ward R, Rio JP, M'hamed SB, Jay B. The postnatal development of the optic nerve of a reptile (Vipera aspis): A quantitative ultrastructural study. ACTA ACUST UNITED AC 2006; 211:691-705. [PMID: 17136565 DOI: 10.1007/s00429-006-0135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
The number of axons in the optic nerve of the ovoviviparous reptile Vipera aspis was estimated from electron micrographs taken during the first 5 weeks of postnatal life. One to two days after birth, the optic nerve contains about 170,000 fibres, of which about 9% are myelinated. At the end of the fifth postnatal week, the number of optic fibres has fallen to about 100,000, of which about 42% are myelinated. This fibre loss continues after the fifth postnatal week, since in the adult viper the nerve contains about 60,000 fibres, of which 85% are myelinated; overall, about 65% of the optic nerve fibres present at birth disappear before the number of axons stabilises at the adult level. This study shows, for the first time, that the mode of development of the visual axons of reptiles is not that of anamniote vertebrates but similar to that of birds and mammals.
Collapse
Affiliation(s)
- M Bennis
- Equipe de Neurobiologie, Faculté des Sciences, Université Cadi Ayyad, Marrakech, Morocco
| | | | | | | | | | | |
Collapse
|
18
|
Rodger J, King CE, Lukehurst S, Chen PB, Dunlop SA, Beazley LD, Ziman MR. Changing Pax6 expression correlates with axon outgrowth and restoration of topography during optic nerve regeneration. Neuroscience 2006; 142:1043-54. [PMID: 16973301 DOI: 10.1016/j.neuroscience.2006.07.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/10/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Pax6, a member of the highly conserved developmental Pax gene family, plays a crucial role in early eye development and continues to be expressed in adult retinal ganglion cells (RGCs). Here we have used Western blots and immunohistochemistry to investigate the expression of Pax6 in the formation and refinement of topographic projections during optic nerve regeneration in zebrafish and lizard. In zebrafish with natural (12-h light/dark cycle) illumination, Pax6 expression in RGCs was decreased during axon outgrowth and increased during the restoration of the retinotectal map. Rearing fish in stroboscopic illumination to prevent retinotopic refinement resulted in a prolonged decrease in Pax6 levels; return to natural light conditions resulted in map refinement and restoration of normal Pax6 levels. In lizard, RGC axons spontaneously regenerate but remain in a persistent state of regrowth and do not restore topography; visual training during regeneration, however, allows a stabilization of connections and return of topography. Pax6 was persistently decreased in untrained animals but remained increased in trained ones. In both species, changes in expression were not due to cell division or cell death. The results suggest that decreased Pax6 expression is permissive for axon regeneration and extensive searching, while higher levels of Pax6 are associated with restoration of topography.
Collapse
Affiliation(s)
- J Rodger
- School of Animal Biology M092, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Santos E, Yanes CM, Monzón-Mayor M, del Mar Romero-Alemán M. Peculiar and typical oligodendrocytes are involved in an uneven myelination pattern during the ontogeny of the lizard visual pathway. ACTA ACUST UNITED AC 2006; 66:1115-24. [PMID: 16929522 DOI: 10.1002/neu.20256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the myelination of the visual pathway during the ontogeny of the lizard Gallotia galloti using immunohistochemical methods to stain the myelin basic protein (MBP) and proteolipid protein (PLP/DM20), and electron microscopy. The staining pattern for the PLP/DM20 and MBP overlapped during the lizard ontogeny and was first observed at E39 in cell bodies and fibers located in the temporal optic nerve, optic chiasm, middle optic tract, and in the stratum album centrale of the optic tectum (OT). The expression of these proteins extended to the nerve fiber layer (NFL) of the temporal retina and to the outer strata of the OT at E40. From hatching onwards, the labeling became stronger and extended to the entire visual pathway. Our ultrastructural data in postnatal and adult animals revealed the presence of both myelinated and unmyelinated retinal ganglion cell axons in all visual areas, with a tendency for the larger axons to show the thicker myelin sheaths. Moreover, two kinds of oligodendrocytes were described: peculiar oligodendrocytes displaying loose myelin sheaths were only observed in the NFL, whereas typical medium electron-dense oligodendrocytes displaying compact myelin sheaths were observed in the rest of the visual areas. The weakest expression of the PLP/DM20 in the NFL of the retina appears to be linked to the loose appearance of its myelin sheaths. We conclude that typical and peculiar oligodendrocytes are involved in an uneven myelination process, which follows a temporo-nasal and rostro-caudal gradient in the retina and ON, and a ventro-dorsal gradient in the OT.
Collapse
Affiliation(s)
- Elena Santos
- Department of Cellular Biology, Faculty of Biology, University of La Laguna, 38206 Tenerife, Canary Islands, Spain
| | | | | | | |
Collapse
|
20
|
Schweigreiter R, Roots BI, Bandtlow CE, Gould RM. Understanding Myelination Through Studying Its Evolution. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:219-73. [PMID: 16737906 DOI: 10.1016/s0074-7742(06)73007-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rüdiger Schweigreiter
- Medical University Innsbruck, Biocenter Innsbruck, Division of Neurobiochemistry, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
21
|
Taylor AL, Rodger J, Stirling RV, Beazley LD, Dunlop SA. The balance of NMDA- and AMPA/kainate receptor-mediated activity in normal adult goldfish and during optic nerve regeneration. Exp Neurol 2005; 195:391-9. [PMID: 16004985 DOI: 10.1016/j.expneurol.2005.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/26/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
Retinotectal topography is established during development and relies on the sequential recruitment of glutamate receptors within postsynaptic tectal cells. NMDA receptors underpin plastic changes at early stages when retinal ganglion cell (RGC) terminal arbors are widespread and topography is coarse; AMPA/kainate receptors mediate fast secure neurotransmission characteristic of mature circuits once topography is refined. Here, we have examined the relative contributions of these receptors to visually evoked activity in normal adult goldfish, in which retinotectal topography is constantly adjusted to compensate for the continual neurogenesis and the addition of new RGC arbors. Furthermore, we examined animals at two stages of optic nerve regeneration. In the first, RGC arbors are widespread and receptive fields large resulting in coarse topography; in the second, RGC arbors are pruned to reduce receptive fields leading to refined topography. Antagonists were applied to the tectum during multiunit recording of postsynaptic responses. Normal goldfish have low levels of NMDA receptor-mediated activity and high levels of AMPA/kainate. When coarse topography has been restored, NMDA receptor-mediated activity is increased and that of AMPA/kainate decreased. Once topography has been refined, the balance of NMDA and AMPA/kainate receptor-mediated activity returns to normal. The data suggest that glutamatergic neurotransmission in normal adult goldfish is dual with NMDA receptors fine-tuning topography and AMPA receptors allowing stable synaptic function. Furthermore, the normal operation of both receptors allows a response to injury in which the balance can be transiently reversed to restore topography and vision.
Collapse
Affiliation(s)
- Andrew L Taylor
- School of Animal Biology, The University of Western Australia, Crawley 6009, Australia
| | | | | | | | | |
Collapse
|
22
|
Romero-Alemán MM, Monzón-Mayor M, Yanes C, Lang D. Radial glial cells, proliferating periventricular cells, and microglia might contribute to successful structural repair in the cerebral cortex of the lizard Gallotia galloti. Exp Neurol 2004; 188:74-85. [PMID: 15191804 DOI: 10.1016/j.expneurol.2004.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/03/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Reptiles are the only amniotic vertebrates known to be capable of spontaneous regeneration of the central nervous system (CNS). In this study, we analyzed the reactive changes of glial cells in response to a unilateral physical lesion in the cerebral cortex of the lizard Gallotia galloti, at 1, 3, 15, 30, 120, and 240 days postlesion. The glial cell markers glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), S100 protein, and tomato lectin, as well as proliferating cell nuclear antigen (PCNA) were used to evaluate glial changes occurring because of cortical lesions. A transitory and unilateral upregulation of GFAP and GS in reactive radial glial cells were observed from 15 to 120 days postlesion. In addition, reactive lectin-positive macrophage/microglia were observed from 1 to 120 days postlesion, whereas the expression of S100 protein remained unchanged throughout the examined postlesion period. The matricial zones closest to the lesion site, the sulcus lateralis (SL) and the sulcus septomedialis (SSM), showed significantly increased numbers of dividing cells at 30 days postlesion. At 240 days postlesion, the staining pattern for PCNA, GFAP, GS, and tomato lectin in the lesion site became similar to that observed in unlesioned controls. In addition, ultrastructural data of the lesioned cortex at 240 days postlesion indicated a structural repair process. We conclude that restoration of the glial framework and generation of new neurons and glial cells in the ventricular wall play a key role in the successful structural repair of the cerebral cortex of the adult lizard.
Collapse
Affiliation(s)
- M M Romero-Alemán
- Departamento de Morfología (Biología Celular), Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, 35080 Las Palmas, Canary Islands, Spain
| | | | | | | |
Collapse
|
23
|
Beazley LD, Rodger J, Chen P, Tee LBG, Stirling RV, Taylor AL, Dunlop SA. Training on a visual task improves the outcome of optic nerve regeneration. J Neurotrauma 2004; 20:1263-70. [PMID: 14651812 DOI: 10.1089/089771503770802925] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Optic nerve regeneration in a lizard, Ctenophorus ornatus, is dysfunctional despite survival of most retinal ganglion cells and axon regeneration to the optic tectum. The regenerated retino-tectal projection at 6 months has crude topography but by 1 year is disordered; visually-elicited behavior is absent via the experimental eye. Here, we assess the influence of training on the outcome of optic nerve regeneration. Lizards were trained to catch prey presented within the monocular field of either eye. One optic nerve was then severed and visual stimulation resumed throughout regeneration. In the trained group, presentation was restricted to the eye undergoing optic nerve regeneration; for the untrained group, the unoperated eye was stimulated. Pupil responses returned in trained but not in untrained animals. At 1 year, trained animals oriented to and captured prey; untrained animals demonstrated minimal orienting and failed to capture prey. Regenerated retino-tectal projections were topographic in the trained but not in the untrained group as assessed by in vitro electrophysiological recording and by carbocyanine dye tracing. In vitro electrophysiological recording during application of neurotransmitter antagonists to the tectum revealed that the level of GABAergic inhibition was modest in trained animals but elevated in the untrained group; responses were mainly AMPA-mediated in both groups. We conclude that training improves the behavioral outcome of regeneration, presumably by stabilizing and refining the transient retino-tectal map and preventing a build-up of tectal inhibition. The results suggest that for successful central nerve regeneration to occur in mammals, it may be necessary to introduce training to complement procedures stimulating axon regeneration.
Collapse
Affiliation(s)
- L D Beazley
- School of Animal Biology and Western Australian Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Dunlop SA, Tee LBG, Stirling RV, Taylor AL, Runham PB, Barber AB, Kuchling G, Rodger J, Roberts JD, Harvey AR, Beazley LD. Failure to restore vision after optic nerve regeneration in reptiles: Interspecies variation in response to axotomy. J Comp Neurol 2004; 478:292-305. [PMID: 15368531 DOI: 10.1002/cne.20299] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optic nerve regeneration within the reptiles is variable. In a snake, Viper aspis, and the lizard Gallotia galloti, regeneration is slow, although some retinal ganglion cell (RGC) axons eventually reach the visual centers (Rio et al. [1989] Brain Res 479:151-156; Lang et al. [1998] Glia 23:61-74). By contrast, in a lizard, Ctenophorus ornatus, numerous RGC axons regenerate rapidly to the visual centers, but unless animals are stimulated visually, the regenerated projection lacks topography and animals remain blind via the experimental eye (Beazley et al. [2003] J. Neurotrauma 20:1263-1269). V. aspis, G. galloti, and C. ornatus belong respectively to the Serpentes, Lacertidae, and Agamidae within the Eureptilia, the major modern group of living reptiles comprising the Squamata (snakes, lizards, and geckos) and the Crocodyllia. Here we have extended the findings on Eureptilia to include two geckos (Gekkonidae), Cehyra variegata and Nephrurus stellatus. We also examined a turtle, Chelodina oblonga, the Testudines being the sole surviving representatives of the Parareptilia, the more ancient reptilian group. In all three species, visually elicited behavioral responses were absent throughout regeneration, a result supported electrophysiologically; axonal tracing revealed that only a small proportion of RGC axons crossed the lesion and none entered the contralateral optic tract. RGC axons failed to reach the chiasm in C. oblonga, and in G. variegata, and N. stellatus RGC axons entered the opposite optic nerve; a limited ipsilateral projection was seen in G. variegata. Our results support a heterogeneous response to axotomy within the reptiles, each of which is nevertheless dysfunctional.
Collapse
Affiliation(s)
- Sarah A Dunlop
- School of Animal Biology, The University of Western Australia, Crawley 6009, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dunlop SA, Stirling RV, Rodger J, Symonds ACE, Bancroft WJ, Tee LBG, Beazley LD. Failure to form a stable topographic map during optic nerve regeneration: abnormal activity-dependent mechanisms. Exp Neurol 2003; 184:805-15. [PMID: 14769373 DOI: 10.1016/j.expneurol.2003.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 05/30/2003] [Accepted: 08/06/2003] [Indexed: 10/26/2022]
Abstract
Visually evoked responses in the optic tectum are mediated by glutamate receptors. During development, there is a switch from N-methyl-d-aspartate (NMDA)- to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated activity as the retinotectal map refines and visual function ensues. A similar pattern is seen in goldfish as the map refines during optic nerve regeneration. Here we examined glutamate receptors during optic nerve regeneration in the lizard, Ctenophorus ornatus, in which an imprecise retinotopic map forms transiently but degrades, leaving animals blind via the experimental eye. Receptor function was examined using NMDA and AMPA/kainate antagonists during in vitro tectal recording of visually evoked post-synaptic extracellular responses. Expression of NR1 (NMDA) and GluR2 (AMPA) receptor subtypes was examined immunohistochemically. In unoperated control animals, responses were robust and AMPA/kainate receptor-mediated. When the imprecise map was present, responses were difficult to evoke and insecure; periods of spontaneous activity as well as inactivity were also noted. Although AMPA/kainate-mediated activity persisted and GluR2 immunoreactivity increased transiently, NMDA receptor-mediated activity was also consistently detected and NR1 expression increased. In the long term, when the map had degraded, responses were readily evoked and predominantly AMPA/kainate receptor-mediated although some NMDA-mediated activity and NR1 expression remained. We suggest that the asynchronous activity reaching the optic tectum results in an inability to recapitulate the appropriate functional sequences of expression of NMDA and AMPA/kainate receptors necessary to refine the retinotectal map.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Brain Mapping
- Electrophysiology
- Evoked Potentials, Visual/drug effects
- Evoked Potentials, Visual/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Immunohistochemistry
- Lizards
- Nerve Crush
- Nerve Regeneration/physiology
- Optic Nerve/physiology
- Optic Nerve Injuries/physiopathology
- Quinoxalines/pharmacology
- Receptors, AMPA/biosynthesis
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/metabolism
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Time Factors
- Valine/analogs & derivatives
- Valine/pharmacology
Collapse
Affiliation(s)
- Sarah A Dunlop
- School of Animal Biology, The University of Western Australia, Hackett Drive, Nedlands 6907, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Gervasi C, Thyagarajan A, Szaro BG. Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons. J Comp Neurol 2003; 461:262-75. [PMID: 12724842 DOI: 10.1002/cne.10695] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Characteristic changes in the expression of neuronal intermediate filaments (nIFs), an abundant cytoskeletal component of vertebrate axons, accompany successful axon regeneration. In mammalian regenerating PNS, expression of nIFs that are characteristic of mature neurons becomes suppressed throughout regeneration, whereas that of peripherin, which is abundant in developing axons, increases. Comparable changes are absent from mammalian injured CNS; but in goldfish and lamprey CNS, expression of several nIFs increases during axon regrowth. To obtain a broader view of the nIF response of successfully regenerating vertebrate CNS, in situ hybridization and video densitometry were used to track multiple nIF mRNAs during optic axon regeneration in Xenopus laevis. As in other successfully regenerating systems, peripherin expression increased rapidly after injury and expression of those nIFs characteristic of mature retinal ganglion cells decreased. Unlike the decrease in nIF mRNAs of regenerating PNS, that of Xenopus retinal ganglion cells was transient, with most nIF mRNAs increasing above normal during axon regrowth. At the peak of regeneration, increases in each nIF mRNA resulted in a doubling of the total amount of nIF mRNA, as well as a shift in the relative proportions contributed by each nIF. The relative proportions of peripherin and NF-M increased above normal, whereas proportions of xefiltin and NF-L decreased and that of XNIF remained the same. The increases in peripherin and NF-M mRNAs were accompanied by increases in protein. These results are consistent with the hypothesis that successful axon regeneration involves changes in nIF subunit composition conducive to growth and argue that a successful injury response differs between CNS and PNS.
Collapse
Affiliation(s)
- Christine Gervasi
- Department of Biological Sciences, State University of New York--University at Albany, Albany, New York 12222, USA
| | | | | |
Collapse
|
27
|
Lang DM, del Mar Romero-Aleman M, Arbelo-Galvan JF, Stuermer CAO, Monzon-Mayor M. Regeneration of retinal axons in the lizard Gallotia galloti is not linked to generation of new retinal ganglion cells. JOURNAL OF NEUROBIOLOGY 2002; 52:322-35. [PMID: 12210099 DOI: 10.1002/neu.10099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using anterograde tracing with HRP and antibodies (ABs) against neurofilaments, we show that regrowth of retinal ganglion cell (RGC) axons in the lizard Gallotia galloti commences only 2 months after optic nerve transection (ONS) and continues over at least 9 months. This is unusually long when compared to RGC axon regeneration in fish or amphibians. Following ONS, lizard RGCs up-regulate the immediate early gene C-JUN for 9 months or longer, indicating their reactive state. In keeping with the in vivo data, axon outgrowth from lizard retinal explants is increased above control levels from 6 weeks, reaches its maximum as late as 3 months, and remains elevated for at least 1 year after ONS. By means of BrdU incorporation assays and antiproliferating cell nuclear antigen immunohistochemistry, we show that the late axon outgrowth is not derived from new RGCs that might have arisen in reaction to ONS: no labeled cells were detected in lizard retinas at 0.5, 1, 1.5, 3, 6, and 12 months after ONS. Conversely, numbers of RGCs undergoing apoptosis were too low to be detectable in TUNEL assays at any time after ONS. These results demonstrate that retinal axon regeneration in G. galloti is due to axon regrowth from the resident population of RGCs, which remain in a reactive state over an extended time interval. Neurogenesis does not appear to be involved in RGC axon regrowth in G. galloti.
Collapse
Affiliation(s)
- Dirk M Lang
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| | | | | | | | | |
Collapse
|
28
|
Barbour HR, Archer MA, Hart NS, Thomas N, Dunlop SA, Beazley LD, Shand J. Retinal characteristics of the ornate dragon lizard, Ctenophorus ornatus. J Comp Neurol 2002; 450:334-44. [PMID: 12209847 DOI: 10.1002/cne.10308] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The retina of a diurnal insectivorous lizard, Ctenophorus ornatus (Agamidae) was investigated using microspectrophotometry and light and electron microscopy. A prominent broad yellow band was observed that extended across the mid-retina. The yellow coloration was found to originate from both oil droplets and diffuse pigmentation within cone inner segments. Microspectrophotometric analysis revealed yellow oil droplets with variable absorption of wavelengths below 520 nm and transparent oil droplets with no detectable absorptance between 350 and 750 nm. Cones with transparent oil droplets lacked the diffuse yellow pigmentation. The mean wavelengths of maximum absorbance of visual pigments in the isolated cone outer segments were at 440, 493, and 571 nm. The retina was found to possess a deep convexiclivate fovea located within the yellow band, slightly dorsotemporal of the retinal midpoint. The topography of the retinal ganglion cells revealed that the fovea was contained within an area centralis. Photoreceptors were either single (80%) or unequal double (20%) cones. Within the region of the fovea, the cones were approximately 20% the diameter of those in the peripheral retina. Colored oil droplets and yellow pigment may increase visual acuity by absorbing short wavelength light scattered either by the atmosphere or the optical structures of the eye. The presence of a fovea containing slender cone photoreceptors and three visual pigments suggests that the lizard has high acuity and the potential for color vision.
Collapse
Affiliation(s)
- Helen R Barbour
- Department of Zoology, University of Western Australia, Crawley WA 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Bennis M, El-Hassni M, Rio JP, Lecren D, Repérant J, Ward R. A quantitative ultrastructural study of the optic nerve of the chameleon. BRAIN, BEHAVIOR AND EVOLUTION 2002; 58:49-60. [PMID: 11799278 DOI: 10.1159/000047261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The optic nerve of adult chameleons was investigated with an electron microscope. The total number of retinal ganglion cell axons, the proportion of myelinated axons, the frequency distributions of myelinated and unmyelinated axon diameters were estimated, together with the volume occupied by glial processes. These were distinguished from unmyelinated axons using an antibody directed against glial fibrillary acidic protein, in a post-embedding procedure. The total number of fibers was estimated to be 405,235 +/- 60,000 axons. The proportion of myelinated fibers varied with position between the eyeball and the chiasma; being 22-27% close to the eyeball, rising to 42-47% halfway along the optic nerve and to 56-62% close to the chiasma. Myelinated and unmyelinated fiber diameter distributions were unimodal and positively skewed, with modes of 0.7 microm and 0.2 microm, respectively. There was a significant regional variation in the size of optic nerve axons. Large myelinated axons were observed in the dorsal and ventral periphery, whereas smaller myelinated fibers and a high proportion of unmyelinated fibers were found in the center of the nerve.
Collapse
Affiliation(s)
- M Bennis
- Unité Neurobiologie, Faculté des Sciences Semlalia, Marrakech, Maroc
| | | | | | | | | | | |
Collapse
|
30
|
Rossi F, Saggiorato C, Strata P. Target-specific innervation of embryonic cerebellar transplants by regenerating olivocerebellar axons in the adult rat. Exp Neurol 2002; 173:205-12. [PMID: 11822884 DOI: 10.1006/exnr.2001.7843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reestablishment of topographically organized connections is a necessary prerequisite to obtain a full anatomical repair following brain injury. One system where such an issue can be addressed is the olivocerebellar system, where, normally, clusters of inferior olive neurons project to neurochemically heterogeneous Purkinje cell compartments defined by the expression of cell-specific markers, such as zebrin II. To assess whether adult injured olivocerebellar axons that regenerate into cerebellar transplants are able to establish target-specific innervation of grafted Purkinje cells, we made surgical transections in the white matter of adult rat cerebella and placed solid grafts from the embryonic cerebellar anlage into the lesion site. The transplanted tissue developed highly organized minicerebella, in which Purkinje cells were distributed into distinct clusters of zebrin II-immunopositive or -immunonegative neurons, mimicking the cortical compartments present in the normal adult cerebellum. Olivocerebellar axons, labeled by biotinylated dextran amine tracing, regenerated into the transplants where they formed discrete patches made of several terminal arbors impinging upon Purkinje cell dendrites. Among 401 such climbing fiber patches, 96% exclusively innervated Purkinje cells of either phenotype and stopped at the border of the zebrin II(+/-) Purkinje cell clusters, whereas only 4% were extended across this boundary and innervated both zebrin II-positive and -negative Purkinje cells. The results obtained support the view that the embryonic cerebellar tissue provides target-specific information that can be decoded by ingrowing adult olivocerebellar axons in order to establish appropriate innervation patterns with zebrin II-positive or -negative Purkinje cell compartments.
Collapse
Affiliation(s)
- Ferdinando Rossi
- Rita Levi Montalcini Centre for Brain Repair, Department of Neuroscience, University of Turin, Turin, Italy
| | | | | |
Collapse
|
31
|
Abstract
Geckos comprise both nocturnal and diurnal genera, and between these categories there are several transitions. As their retinae have definitely to be classified as pure cone retinae, they provide an especially attractive model for comparison of organization and regional specializations adapted to very different photic environments. While the visual cells themselves show clear adaptations to nocturnal or diurnal lifestyles, the overall retinal organization is more related to that of diurnal vertebrates. Nocturnal geckos have lost any foveae of their diurnal ancestors, but they have retained a low convergence ratio and a high visual cell density. To enhance visual sensitivity, they exploit binocular - but not necessarily stereoscopic - vision. Diurnal species have retained binocular vision. Most diurnal species have developed new foveae, which are consequently located not in the central but in the temporal region of the retina.
Collapse
Affiliation(s)
- B Röll
- Lehrstuhl für Tierphysiologie, Fakultät für Biologie, Ruhr-Universität Bochum, D-44780, Bochum, Germany.
| |
Collapse
|
32
|
Topological specificity in reinnervation of the superior colliculus by regenerated retinal ganglion cell axons in adult hamsters. J Neurosci 2001. [PMID: 11157081 DOI: 10.1523/jneurosci.21-03-00951.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In normal rodents there is a precise topology of the retinocollicular projection, the nasotemporal and ventrodorsal axes of the retina being respectively projected onto the caudorostral and mediolateral axes of the contralateral superior colliculus (SC). We evaluated the distribution of regenerated retinal ganglion cell (RGC) axon terminals in the SC of adult hamsters in which an unbranched peripheral nerve graft was directed from the retina to the contralateral SC. Responses to visual stimulation of individual RGCs were recorded from terminal arbors of their regenerated axons in the reinnervated SC. Retinal positions of these RGCs were inferred from the locations of their visual receptive fields. At some sites in the reinnervated SC, axon terminal arbors converged from widely separated RGCs. Conversely, axon terminal arbors at widely separated sites in the SC could emanate from contiguous RGCs. To assess whether any tendency for order was superimposed on the apparent disorganization of the regenerated projection, we evaluated the relative positions of pairs of RGC terminals in the SC in relation to the relative retinal locations of the corresponding pairs of RGCs. Among the 983 pairs of RGCs able to be evaluated from nine animals studied 30-60 weeks after grafting, there was a statistically significant 3/2 tendency for the more nasally situated of two RGCs to project its terminal more caudally in the SC than that of the more temporally situated RGC. A similar tendency toward appropriate organization was not found with respect to the ventrodorsal axis of the retina and the mediolateral axis of the SC.
Collapse
|
33
|
Beaver RS, Dunlop SA, Harman AM, Stirling RV, Easter SS, Roberts JD, Beazley LD. Continued neurogenesis is not a pre-requisite for regeneration of a topographic retino-tectal projection. Vision Res 2001; 41:1765-70. [PMID: 11369040 DOI: 10.1016/s0042-6989(01)00053-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrophysiological recording demonstrated that visuo-tectal projections are topographically organised after optic nerve regeneration in aged Xenopus laevis. 3H-thymidine autoradiography confirmed previous reports [Taylor, Lack, & Easter, Eur. Journal of Neuroscience 1 (1989) 626-638] that cell division had already ceased at the retinal ciliary margin. The results demonstrate that, contrary to a previous suggestion [Holder & Clarke, Trends in Neuroscience 11 (1988) 94-99], continued neurogenesis is not a pre-requisite for the re-establishment of appropriate connections with target cells.
Collapse
Affiliation(s)
- R S Beaver
- Department of Zoology, The University of Western Australia, Western Australia 6907, Nedlands, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Rodger J, Bartlett CA, Harman AM, Thomas C, Beazley LD, Dunlop SA. Evidence that regenerating optic axons maintain long-term growth in the lizard Ctenophorus ornatus: growth-associated protein-43 and gefiltin expression. Neuroscience 2001; 102:647-54. [PMID: 11226701 DOI: 10.1016/s0306-4522(00)00506-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the lizard, Ctenophorus ornatus, the optic nerve regenerates but animals remain blind via the experimental eye, presumably as a result of axons failing to consolidate a retinotopic map in the optic tectum. Here we have examined immunohistochemically the expression of the growth-associated protein GAP-43 and the low-molecular-weight intermediate filament protein gefiltin, up to one year after optic nerve crush. Both proteins were found to be permanently up-regulated, suggesting that regenerating axons are held in a permanent state of re-growth. We speculate that, in the lizard, the continued expression of GAP-43 and the failure to switch from the expression of low- to high-molecular-weight intermediate filament proteins are associated with the inability to consolidate a retinotopic projection.
Collapse
Affiliation(s)
- J Rodger
- Department of Zoology, The University of Western Australia, WA 6907, Nedlands, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
LeBas NR, Marshall NJ. The role of colour in signalling and male choice in the agamid lizard Ctenophorus ornatus. Proc Biol Sci 2000; 267:445-52. [PMID: 10737400 PMCID: PMC1690562 DOI: 10.1098/rspb.2000.1020] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bright coloration and complex visual displays are frequent and well described in many lizard families. Reflectance spectrometry which extends into the ultraviolet (UV) allows measurement of such coloration independent of our visual system. We examined the role of colour in signalling and mate choice in the agamid lizard Ctenophorus ornatus. We found that throat reflectance strongly contrasted against the granite background of the lizards' habitat. The throat may act as a signal via the head-bobbing and push-up displays of C. ornatus. Dorsal coloration provided camouflage against the granite background, particularly in females. C. ornatus was sexually dichromatic for all traits examined including throat UV reflectance which is beyond human visual perception. Female throats were highly variable in spectral reflectance and males preferred females with higher throat chroma between 370 and 400 nm. However, female throat UV chroma is strongly correlated to both throat brightness and chest UV chroma and males may choose females on a combination of these colour variables. There was no evidence that female throat or chest coloration was an indicator of female quality. However, female brightness significantly predicted a female's laying date and, thus, may signal receptivity. One function of visual display in this species appears to be intersexual signalling, resulting in male choice of females.
Collapse
Affiliation(s)
- N R LeBas
- Department of Zoology, University of Western Australia, Nedlands, Australia.
| | | |
Collapse
|
36
|
Dunlop SA, Tran N, Tee LB, Papadimitriou J, Beazley LD. Retinal projections throughout optic nerve regeneration in the ornate dragon lizard,Ctenophorus ornatus. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000110)416:2<188::aid-cne5>3.0.co;2-c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Becker CG, Becker T. Gradients of ephrin-A2 and ephrin-A5b mRNA during retinotopic regeneration of the optic projection in adult zebrafish. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001120)427:3<469::aid-cne12>3.0.co;2-n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
|
39
|
Stirling RV, Dunlop SA, Beazley LD. An in vitro technique for electrophysiological mapping of reptilian retinotectal projections. J Neurosci Methods 1998; 81:85-9. [PMID: 9696313 DOI: 10.1016/s0165-0270(98)00020-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An in vitro procedure is described for electrophysiological mapping of the retinotectal projections using an eye-cup and brain stem preparation which remains viable for up to 30 h. The technique has been found to be successful in turtles and lizards and may be useful for other species in which metabolism is greatly depressed by low temperatures. There are several advantages over in vivo recording, including the longevity and stability of the preparation, an absence of confounding anaesthetic effects and the ability to record from the retina as well as from the brain. The technique offers opportunities to introduce pharmacological agents via the perfusate or to conduct anatomical tracing studies coincident with electrophysiological recording.
Collapse
Affiliation(s)
- R V Stirling
- Department of Zoology, University of Western Australia, Nedlands, Australia.
| | | | | |
Collapse
|
40
|
Lang DM, Monzón-Mayor M, Bandtlow CE, Stuermer CA. Retinal axon regeneration in the lizard Gallotia galloti in the presence of CNS myelin and oligodendrocytes. Glia 1998; 23:61-74. [PMID: 9562185 DOI: 10.1002/(sici)1098-1136(199805)23:1<61::aid-glia6>3.0.co;2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinal ganglion cell (RGC) axons in lizards (reptiles) were found to regenerate after optic nerve injury. To determine whether regeneration occurs because the visual pathway has growth-supporting glia cells or whether RGC axons regrow despite the presence of neurite growth-inhibitory components, the substrate properties of lizard optic nerve myelin and of oligodendrocytes were analyzed in vitro, using rat dorsal root ganglion (DRG) neurons. In addition, the response of lizard RGC axons upon contact with rat and reptilian oligodendrocytes or with myelin proteins from the mammalian central nervous system (CNS) was monitored. Lizard optic nerve myelin inhibited extension of rat DRG neurites, and lizard oligodendrocytes elicited DRG growth cone collapse. Both effects were partially reversed by antibody IN-1 against mammalian 35/250 kD neurite growth inhibitors, and IN-1 stained myelinated fiber tracts in the lizard CNS. However, lizard RGC growth cones grew freely across oligodendrocytes from the rat and the reptilian CNS. Mammalian CNS myelin proteins reconstituted into liposomes and added to elongating lizard RGC axons caused at most a transient collapse reaction. Growth cones always recovered within an hour and regrew. Thus, lizard CNS myelin and oligodendrocytes possess nonpermissive substrate properties for DRG neurons--like corresponding structures and cells in the mammalian CNS, including mammalian-like neurite growth inhibitors. Lizard RGC axons, however, appear to be far less sensitive to these inhibitory substrate components and therefore may be able to regenerate through the visual pathway despite the presence of myelin and oligodendrocytes that block growth of DRG neurites.
Collapse
Affiliation(s)
- D M Lang
- Faculty of Biology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
41
|
Beazley LD, Tennant M, Stewart TM, Anstee SD. The primary visual system of adult lizards demonstrates that neurogenesis is not obligatorily linked to central nerve regeneration but may be a prerequisite for the restoration of maps in the brain. Vision Res 1998; 38:789-93. [PMID: 9624430 DOI: 10.1016/s0042-6989(97)00212-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following optic nerve crush in the adult lizard Ctenophorus ornatus, most retinal ganglion cells regrow their axons into visual brain centres: however, the regenerated projections lack retinotopic order and the animals are blind via the experimental eye. Here we have used 3H-thymidine autoradiography to demonstrate that cell division is no longer taking place in the retina of normal adult lizards. We conclude that the optic nerve can regenerate in lizard even though cells are no longer being added to the retina. However, continued retinal neurogenesis may be linked to the ability to restore topographic maps.
Collapse
Affiliation(s)
- L D Beazley
- Department of Zoology, University of Western Australia, Nedlands, Australia.
| | | | | | | |
Collapse
|
42
|
Abstract
Axon order throughout the visual pathway of the quokka wallaby (Setonix brachyurus) was determined after localised retinal applications of the tracers DiI and/or DiASP. Postnatal days (P) 22-90 were studied to encompass the development and refinement of retinal projections. Order was essentially similar at all stages. Axons entered the optic nerve head true to their sector of retinal origin. In the optic nerve, nasal and temporal axons continued to reflect their retinal origin, dominating, respectively, the medial and lateral halves. By contrast, dorsal and ventral axons exchanged locations between the retrobulbar level and one-third the distance along the nerve; thus, the inversion of the dorsoventral retinal axis, imposed by the lens, was corrected. Decussating axons maintained their relative locations through the chiasm. At the base of the optic tract, nasal and temporal axons underwent an axial rotation to lie on the medial and lateral sides, respectively; thus nasal overlapped with ventral axons and temporal with dorsal axons. Axons maintained their alignments throughout the tract, and as a result, nasal and ventral axons invaded the superior colliculus medially, whereas temporal and dorsal axons invaded laterally. Each retinal quadrant terminated preferentially in its retinotopically appropriate sector of the colliculus. The arrangement of axons in the quokka visual pathway displays several novel features. Axon order is distinct throughout, involving a well-demarcated exchange of dorsal and ventral axons in the nerve and an axial rotation of nasal and temporal axons at the base of the tract; these relocations suggest decision regions for growing axons. The organisation presumably underlies the less extensive searching within the developing superior colliculus to generate retinotopic maps in the quokka and also in tammar wallaby [Marotte, J. Comp Neurol. 293:524-539, 1990] than in the rat [Simon and O'Leary, J. Neurosci. 12:1212-1232, 1992].
Collapse
|
43
|
Development of walking, swimming and neuronal connections after complete spinal cord transection in the neonatal opossum, Monodelphis domestica. J Neurosci 1998. [PMID: 9412512 DOI: 10.1523/jneurosci.18-01-00339.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of coordinated movements was quantitatively assessed in adult opossums (Monodelphis domestica) with thoracic spinal cords transected by (1) crushing 7-8 d after birth [postnatal days 7-8 (P7-P8)]; at 2-3 years of age, systematic behavioral tests (e.g., climbing, footprint analysis, and swimming) showed only minor differences between control (n = 5) and operated (n = 10) animals; and (2) cutting on P4-P6; at 1 month these opossums exhibited coordinated walking movements but were unable to right themselves from a supine position, unlike controls (n = 6). When tested at 2 or 6 months, they could right themselves and showed remarkable coordination, albeit with more differences from controls than after a crush. No animals with spinal cords that were crushed at P14-18 survived because of cannibalism by the mother. Morphological studies (n = 10) 3 months-3 years after crush at 1 week showed restoration of structural continuity and normal appearance at the lesion site. Animals with cut rather than crushed cords showed continuity but greater morphological deficits. That lesions were complete was demonstrated by examining morphology and nerve impulse conduction immediately after crushing or cutting the spinal cord in controls. After lumbar spinal cord injection of 10 kDa dextran amine, retrogradely labeled cells were found rostral to the lesion in hindbrain and midbrain nuclei. Conduction was restored across the site of the lesion. Thus complete spinal cord transection in neonatal Monodelphis was followed by development of coordinated movements and repair of the spinal cord, a process that included development of functional connections by axons that crossed the lesion.
Collapse
|