1
|
Kreeger LJ, Honnuraiah S, Maeker S, Shea S, Fishell G, Goodrich LV. An Anatomical and Physiological Basis for Flexible Coincidence Detection in the Auditory System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582808. [PMID: 38464181 PMCID: PMC10925315 DOI: 10.1101/2024.02.29.582808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Animals navigate the auditory world by recognizing complex sounds, from the rustle of a predator to the call of a potential mate. This ability depends in part on the octopus cells of the auditory brainstem, which respond to multiple frequencies that change over time, as occurs in natural stimuli. Unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds, octopus cells must detect momentary coincidence of excitatory inputs from the cochlea during an ongoing sound on both the millisecond and submillisecond time scale. Here, we show that octopus cells receive inhibitory inputs on their dendrites that enhance opportunities for coincidence detection in the cell body, thereby allowing for responses both to rapid onsets at the beginning of a sound and to frequency modulations during the sound. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.
Collapse
Affiliation(s)
- Lauren J Kreeger
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Suraj Honnuraiah
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sydney Maeker
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Siobhan Shea
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lisa V Goodrich
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| |
Collapse
|
2
|
Wicke KD, Oppe L, Geese C, Sternberg AK, Felmy F. Neuronal morphology and synaptic input patterns of neurons in the intermediate nucleus of the lateral lemniscus of gerbils. Sci Rep 2023; 13:14182. [PMID: 37648787 PMCID: PMC10468510 DOI: 10.1038/s41598-023-41180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
The lateral lemniscus encompasses processing stages for binaural hearing, suppressing spurious frequencies and frequency integration. Within the lemniscal fibres three nuclei can be identified, termed after their location as dorsal, intermediate and ventral nucleus of the lateral lemniscus (DNLL, INLL and VNLL). While the DNLL and VNLL have been functionally and anatomically characterized, less is known about INLL neurons. Here, we quantitatively describe the morphology, the cellular orientation and distribution of synaptic contact sites along dendrites in mature Mongolian gerbils. INLL neurons are largely non-inhibitory and morphologically heterogeneous with an overall perpendicular orientation regarding the lemniscal fibers. Dendritic ranges are heterogeneous and can extend beyond the nucleus border. INLL neurons receive VGluT1/2 containing glutamatergic and a mix of GABA- and glycinergic inputs distributed over the entire dendrite. Input counts suggest that numbers of excitatory exceed the inhibitory contact sites. Axonal projections indicate connectivity to ascending and descending auditory structures. Our data show that INLL neurons form a morphologically heterogeneous continuum and incoming auditory information is processed on thin dendrites of various length and biased to perpendicular orientation. Together with the different axonal projection patterns, this indicates that the INLL is a highly complex structure that might hold many unexplored auditory functions.
Collapse
Affiliation(s)
- Kathrin D Wicke
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Leon Oppe
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Carla Geese
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Anna K Sternberg
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Felix Felmy
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
3
|
Pätz C, Console-Meyer L, Felmy F. Structural arrangement of auditory brainstem nuclei in the bats Phyllostomus discolor and Carollia perspicillata. J Comp Neurol 2022; 530:2762-2781. [PMID: 35703441 DOI: 10.1002/cne.25355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/24/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022]
Abstract
The structure of the mammalian auditory brainstem is evolutionarily highly plastic, and distinct nuclei arrange in a species-dependent manner. Such anatomical variability is present in the superior olivary complex (SOC) and the nuclei of the lateral lemniscus (LL). Due to the structure-function relationship in the auditory brainstem, the identification of individual nuclei supports the understanding of sound processing. Here, we comparatively describe the nucleus arrangement and the expression of functional markers in the auditory brainstem of the two bat species Phyllostomus discolor and Carollia perspicillata. Using immunofluorescent labeling, we describe the arrangement and identity of the SOC and LL nuclei based on the expression of synaptic markers (vesicular glutamate transporter 1 and glycine transporter 2), calcium-binding proteins, as well as the voltage-gated ion channel subunits Kv1.1 and HCN1. The distribution of excitatory and inhibitory synaptic labeling appears similar between both species and matches with that of other mammals. The detection of calcium-binding proteins indicates species-dependent differences and deviations from other mammals. Kv1.1 and HCN1 show largely the same expression pattern in both species, which diverges from other mammals, indicating functional adaptations in the cellular physiology of bat neurons.
Collapse
Affiliation(s)
- Christina Pätz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Laura Console-Meyer
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Suthakar K, Ryugo DK. Projections from the ventral nucleus of the lateral lemniscus to the cochlea in the mouse. J Comp Neurol 2021; 529:2995-3012. [PMID: 33754334 DOI: 10.1002/cne.25143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/01/2023]
Abstract
Auditory efferents originate in the central auditory system and project to the cochlea. Although the specific anatomy of the olivocochlear (OC) efferents can vary between species, two types of auditory efferents have been identified based upon the general location of their cell bodies and their distinctly different axon terminations in the organ of Corti. In the mouse, the relatively small somata of the lateral (LOC) efferents reside in the lateral superior olive (LSO), have unmyelinated axons, and terminate around ipsilateral inner hair cells (IHCs), primarily against the afferent processes of type I auditory nerve fibers. In contrast, the larger somata of the medial (MOC) efferents are distributed in the ventral nucleus of the trapezoid body (VNTB), have myelinated axons, and terminate bilaterally against the base of multiple outer hair cells (OHCs). Using in vivo retrograde cell body marking, anterograde axon tracing, immunohistochemistry, and electron microscopy, we have identified a group of efferent neurons in mouse, whose cell bodies reside in the ventral nucleus of the lateral lemniscus (VNLL). By virtue of their location, we call them dorsal efferent (DE) neurons. Labeled DE cells were immuno-negative for tyrosine hydroxylase, glycine, and GABA, but immuno-positive for choline acetyltransferase. Morphologically, DEs resembled LOC efferents by their small somata, unmyelinated axons, and ipsilateral projection to IHCs. These three classes of efferent neurons all project axons directly to the cochlea and exhibit cholinergic staining characteristics. The challenge is to discover the contributions of this new population of neurons to auditory efferent function.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Hearing Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia.,Department of Otolaryngology, Head, Neck & Skull Base Surgery, St. Vincent's Hospital, Sydney, New South Wales, Australia.,The Johns Hopkins University School of Medicine, Otolaryngology-HNS, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Harris S, Afram R, Shimano T, Fyk-Kolodziej B, Walker PD, Braun RD, Holt AG. Dopamine in Auditory Nuclei and Lemniscal Projections is Poised to Influence Acoustic Integration in the Inferior Colliculus. Front Neural Circuits 2021; 15:624563. [PMID: 33746717 PMCID: PMC7973212 DOI: 10.3389/fncir.2021.624563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) modulates the activity of nuclei within the ascending and descending auditory pathway. Previous studies have identified neurons and fibers in the inferior colliculus (IC) which are positively labeled for tyrosine hydroxylase (TH), a key enzyme in the synthesis of dopamine. However, the origins of the tyrosine hydroxylase positive projections to the inferior colliculus have not been fully explored. The lateral lemniscus (LL) provides a robust inhibitory projection to the inferior colliculus and plays a role in the temporal processing of sound. In the present study, immunoreactivity for tyrosine hydroxylase was examined in animals with and without 6-hydroxydopamine (6-OHDA) lesions. Lesioning, with 6-OHDA placed in the inferior colliculus, led to a significant reduction in tyrosine hydroxylase immuno-positive labeling in the lateral lemniscus and inferior colliculus. Immunolabeling for dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT), enzymes responsible for the synthesis of norepinephrine (NE) and epinephrine (E), respectively, were evaluated. Very little immunoreactivity for DBH and no immunoreactivity for PNMT was found within the cell bodies of the dorsal, intermediate, or ventral nucleus of the lateral lemniscus. The results indicate that catecholaminergic neurons of the lateral lemniscus are likely dopaminergic and not noradrenergic or adrenergic. Next, high-pressure liquid chromatography (HPLC) analysis was used to confirm that dopamine is present in the inferior colliculus and nuclei that send projections to the inferior colliculus, including the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus, and auditory cortex (AC). Finally, fluorogold, a retrograde tracer, was injected into the inferior colliculus of adult rats. Each subdivision of the lateral lemniscus contained fluorogold within the somata, with the dorsal nucleus of the lateral lemniscus showing the most robust projections to the inferior colliculus. Fluorogold-tyrosine hydroxylase colocalization within the lateral lemniscus was assessed. The dorsal and intermediate nuclei neurons exhibiting similar degrees of colocalization, while neurons of the ventral nucleus had significantly fewer colocalized fluorogold-tyrosine hydroxylase labeled neurons. These results suggest that several auditory nuclei that project to the inferior colliculus contain dopamine, dopaminergic neurons in the lateral lemniscus project to the inferior colliculus and that dopaminergic neurotransmission is poised to play a pivotal role in the function of the inferior colliculus.
Collapse
Affiliation(s)
- Sharonda Harris
- Department of Pharmacology and Therapeutics, University of Florida School of Medicine, Gainesville, FL, United States
| | - Renee Afram
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Bozena Fyk-Kolodziej
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Paul D. Walker
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Rod D. Braun
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Avril Genene Holt
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
6
|
Yildirim C, Özkaya B, Bal R. KATP and TRPM2-like channels couple metabolic status to resting membrane potential of octopus neurons in the mouse ventral cochlear nucleus. Brain Res Bull 2021; 170:115-128. [PMID: 33581312 DOI: 10.1016/j.brainresbull.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022]
Abstract
ATP-sensitive potassium (KATP) channels and transient receptor potential melastatin 2 (TRPM2) channels are commonly expressed both pre- and postsynaptically in the central nervous system (CNS). We hypothesized that KATP and TRPM2 may couple metabolic status to the resting membrane potential of octopus neurons of the mouse ventral cochlear nucleus (VCN). Therefore, we studied the expression of KATP channels and TRPM2 channels in octopus cells by immunohistochemical techniques and their contribution to neuronal electrical properties by the electrophysiological patch clamp technique. In immunohistochemical staining of octopus cells, labelling with Kir6.2 and SUR1 antibodies was strong, and labelling with the SUR2 antibody was moderate, but labelling with Kir6.1 was very weak. Octopus cells had intense staining with TRPM2 antibodies. In patch clamp recordings, bath application of KATP channel agonists H2O2 (880 μM), ATZ (1 mM), cromakalim (50 μM), diazoxide (200 μM), NNC 55-0118 and NN 414 separately resulted in hyperpolarizations of resting potential to different extents. Application of 8-Bro-cADPR (50 μM), a specific antagonist of TRPM2 channels, in the presence of H2O2 (880 μM) resulted in further hyperpolarization by approximately 1 mV. The amplitudes of H2O2-induced outward KATP currents and ADPR-induced inward currents were 206.1 ± 31.5 pA (n = 4) and 136.8 ± 22.4 pA, respectively, at rest. Their respective reversal potentials were -77 ± 2.6 mV (n = 3) and -6.3 ± 2.9 (n = 3) and -6.3 ± 2.9 (n = 3). In conclusion, octopus cells appear to possess both KATP channels and TRPM2-like channels. KATP might largely be constituted by SUR1-Kir6.2 subunits and SUR2-Kir6.2 subunits. Both KATP and TRPM2-like channels might have a modulatory action in setting the membrane potential.
Collapse
Affiliation(s)
- Caner Yildirim
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Beytullah Özkaya
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
7
|
Carney LH. Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural and Hidden Hearing Loss. J Assoc Res Otolaryngol 2018; 19:331-352. [PMID: 29744729 PMCID: PMC6081887 DOI: 10.1007/s10162-018-0669-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
An important topic in contemporary auditory science is supra-threshold hearing. Difficulty hearing at conversational speech levels in background noise has long been recognized as a problem of sensorineural hearing loss, including that associated with aging (presbyacusis). Such difficulty in listeners with normal thresholds has received more attention recently, especially associated with descriptions of synaptopathy, the loss of auditory nerve (AN) fibers as a result of noise exposure or aging. Synaptopathy has been reported to cause a disproportionate loss of low- and medium-spontaneous rate (L/MSR) AN fibers. Several studies of synaptopathy have assumed that the wide dynamic ranges of L/MSR AN fiber rates are critical for coding supra-threshold sounds. First, this review will present data from the literature that argues against a direct role for average discharge rates of L/MSR AN fibers in coding sounds at moderate to high sound levels. Second, the encoding of sounds at supra-threshold levels is examined. A key assumption in many studies is that saturation of AN fiber discharge rates limits neural encoding, even though the majority of AN fibers, high-spontaneous rate (HSR) fibers, have saturated average rates at conversational sound levels. It is argued here that the cross-frequency profile of low-frequency neural fluctuation amplitudes, not average rates, encodes complex sounds. As described below, this fluctuation-profile coding mechanism benefits from both saturation of inner hair cell (IHC) transduction and average rate saturation associated with the IHC-AN synapse. Third, the role of the auditory efferent system, which receives inputs from L/MSR fibers, is revisited in the context of fluctuation-profile coding. The auditory efferent system is hypothesized to maintain and enhance neural fluctuation profiles. Lastly, central mechanisms sensitive to neural fluctuations are reviewed. Low-frequency fluctuations in AN responses are accentuated by cochlear nucleus neurons which, either directly or via other brainstem nuclei, relay fluctuation profiles to the inferior colliculus (IC). IC neurons are sensitive to the frequency and amplitude of low-frequency fluctuations and convert fluctuation profiles from the periphery into a phase-locked rate profile that is robust across a wide range of sound levels and in background noise. The descending projection from the midbrain (IC) to the efferent system completes a functional loop that, combined with inputs from the L/MSR pathway, is hypothesized to maintain "sharp" supra-threshold hearing, reminiscent of visual mechanisms that regulate optical accommodation. Examples from speech coding and detection in noise are reviewed. Implications for the effects of synaptopathy on control mechanisms hypothesized to influence supra-threshold hearing are discussed. This framework for understanding neural coding and control mechanisms for supra-threshold hearing suggests strategies for the design of novel hearing aid signal-processing and electrical stimulation patterns for cochlear implants.
Collapse
Affiliation(s)
- Laurel H Carney
- Departments of Biomedical Engineering, Neuroscience, and Electrical & Computer Engineering, Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Ave., Box 603, Rochester, NY, 14642, USA.
| |
Collapse
|
8
|
Greene NT, Anbuhl KL, Ferber AT, DeGuzman M, Allen PD, Tollin DJ. Spatial hearing ability of the pigmented Guinea pig (Cavia porcellus): Minimum audible angle and spatial release from masking in azimuth. Hear Res 2018; 365:62-76. [PMID: 29778290 DOI: 10.1016/j.heares.2018.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/11/2018] [Accepted: 04/25/2018] [Indexed: 11/17/2022]
Abstract
Despite the common use of guinea pigs in investigations of the neural mechanisms of binaural and spatial hearing, their behavioral capabilities in spatial hearing tasks have surprisingly not been thoroughly investigated. To begin to fill this void, we tested the spatial hearing of adult male guinea pigs in several experiments using a paradigm based on the prepulse inhibition (PPI) of the acoustic startle response. In the first experiment, we presented continuous broadband noise from one speaker location and switched to a second speaker location (the "prepulse") along the azimuth prior to presenting a brief, ∼110 dB SPL startle-eliciting stimulus. We found that the startle response amplitude was systematically reduced for larger changes in speaker swap angle (i.e., greater PPI), indicating that using the speaker "swap" paradigm is sufficient to assess stimulus detection of spatially separated sounds. In a second set of experiments, we swapped low- and high-pass noise across the midline to estimate their ability to utilize interaural time- and level-difference cues, respectively. The results reveal that guinea pigs can utilize both binaural cues to discriminate azimuthal sound sources. A third set of experiments examined spatial release from masking using a continuous broadband noise masker and a broadband chirp signal, both presented concurrently at various speaker locations. In general, animals displayed an increase in startle amplitude (i.e., lower PPI) when the masker was presented at speaker locations near that of the chirp signal, and reduced startle amplitudes (increased PPI) indicating lower detection thresholds when the noise was presented from more distant speaker locations. In summary, these results indicate that guinea pigs can: 1) discriminate changes in source location within a hemifield as well as across the midline, 2) discriminate sources of low- and high-pass sounds, demonstrating that they can effectively utilize both low-frequency interaural time and high-frequency level difference sound localization cues, and 3) utilize spatial release from masking to discriminate sound sources. This report confirms the guinea pig as a suitable spatial hearing model and reinforces prior estimates of guinea pig hearing ability from acoustical and physiological measurements.
Collapse
Affiliation(s)
- Nathaniel T Greene
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Kelsey L Anbuhl
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alexander T Ferber
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Marisa DeGuzman
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paul D Allen
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
| | - Daniel J Tollin
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Mellott JG, Beebe NL, Schofield BR. GABAergic and non-GABAergic projections to the superior colliculus from the auditory brainstem. Brain Struct Funct 2018; 223:1923-1936. [PMID: 29302743 DOI: 10.1007/s00429-017-1599-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/22/2017] [Indexed: 02/02/2023]
Abstract
The superior colliculus (SC) contains an auditory space map that is shaped by projections from several subcortical auditory nuclei. Both GABAergic (inhibitory) and excitatory cells contribute to these inputs, but there are contradictory reports regarding the sources of these inputs. We used retrograde tracing techniques in guinea pigs to identify cells in the auditory brainstem that project to the SC. We combined retrograde tracing with immunohistochemistry for glutamic acid decarboxylase (GAD) to identify putative GABAergic cells that participate in this pathway. Following a tracer injection in the SC, the nucleus of the brachium of the inferior colliculus (NBIC) contained the most labeled cells, followed by the inferior colliculus (IC). Smaller populations were observed in the sagulum, paralemniscal area, periolivary nuclei and ventrolateral tegmental nucleus. Overall, only 10% of the retrogradely labeled cells were GAD immunopositive. The presumptive inhibitory cells were observed in the NBIC, IC, superior paraolivary nucleus, sagulum and paralemniscal area. We conclude that the guinea pig SC receives input from a diverse set of auditory brainstem nuclei, some of which provide GABAergic input. These diverse origins of input to the SC likely represent a variety of functions. Inputs from the NBIC and IC likely provide spatial information for guiding orienting behaviors. Inputs from subcollicular nuclei are less likely to provide spatial information; rather, they may provide a shorter route for auditory information to reach the SC, and could generate avoidance or escape responses to an external threat.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA.
| |
Collapse
|
10
|
Oertel D, Cao XJ, Ison JR, Allen PD. Cellular Computations Underlying Detection of Gaps in Sounds and Lateralizing Sound Sources. Trends Neurosci 2017; 40:613-624. [PMID: 28867348 DOI: 10.1016/j.tins.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
In mammals, acoustic information arises in the cochlea and is transmitted to the ventral cochlear nuclei (VCN). Three groups of VCN neurons extract different features from the firing of auditory nerve fibers and convey that information along separate pathways through the brainstem. Two of these pathways process temporal information: octopus cells detect coincident firing among auditory nerve fibers and transmit signals along monaural pathways, and bushy cells sharpen the encoding of fine structure and feed binaural pathways. The ability of these cells to signal with temporal precision depends on a low-voltage-activated K+ conductance (gKL) and a hyperpolarization-activated conductance (gh). This 'tale of two conductances' traces gap detection and sound lateralization to their cellular and biophysical origins.
Collapse
Affiliation(s)
- Donata Oertel
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA.
| | - Xiao-Jie Cao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA
| | - James R Ison
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY 14627, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Allen
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Felix Ii RA, Gourévitch B, Gómez-Álvarez M, Leijon SCM, Saldaña E, Magnusson AK. Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus. Front Neural Circuits 2017; 11:37. [PMID: 28620283 PMCID: PMC5449481 DOI: 10.3389/fncir.2017.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds.
Collapse
Affiliation(s)
- Richard A Felix Ii
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | - Boris Gourévitch
- Institut Pasteur, Unité de Génétique et Physiologie de l'AuditionParis, France.,Institut National de la Santé et de la Recherche Médicale, UMRS 1120Paris, France.,Université Pierre et Marie CurieParis, France
| | - Marcelo Gómez-Álvarez
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden.,Neuroscience Institute of Castilla y León (INCyL), Universidad de SalamancaSalamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL)Salamanca, Spain
| | - Sara C M Leijon
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León (INCyL), Universidad de SalamancaSalamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL)Salamanca, Spain
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
12
|
Baumann VJ, Koch U. Perinatal nicotine exposure impairs the maturation of glutamatergic inputs in the auditory brainstem. J Physiol 2017; 595:3573-3590. [PMID: 28190266 DOI: 10.1113/jp274059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Chronic perinatal nicotine exposure causes abnormal auditory brainstem responses and auditory processing deficits in children and animal models. The effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem was investigated in granule cells in the ventral nucleus of the lateral lemniscus, which receive a single calyx-like input from the cochlear nucleus. Perinatal nicotine exposure caused a massive reduction in the amplitude of the excitatory input current. This caused a profound decrease in the number and temporal precision of spikes in these neurons. Perinatal nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons. ABSTRACT Maternal smoking causes chronic nicotine exposure during early development and results in auditory processing deficits including delayed speech development and learning difficulties. Using a mouse model of chronic, perinatal nicotine exposure we explored to what extent synaptic inputs to granule cells in the ventral nucleus of the lateral lemniscus are affected by developmental nicotine treatment. These neurons receive one large calyx-like input from octopus cells in the cochlear nucleus and play a role in sound pattern analysis, including speech sounds. In addition, they exhibit high levels of α7 nicotinic acetylcholine receptors, especially during early development. Our whole-cell patch-clamp experiments show that perinatal nicotine exposure causes a profound reduction in synaptic input amplitude. In contrast, the number of inputs innervating each neuron and synaptic release properties of this calyx-like synapse remained unaltered. Spike number and spiking precision in response to synaptic stimulation were greatly diminished, especially for later stimuli during a stimulus train. Moreover, chronic nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons, indicating a direct action of nicotine in this brain area. This presumably direct effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem might be one of the underlying causes for auditory processing difficulties in children of heavy smoking mothers.
Collapse
Affiliation(s)
- Veronika J Baumann
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
13
|
Ingham NJ, Itatani N, Bleeck S, Winter IM. Enhancement of forward suppression begins in the ventral cochlear nucleus. Brain Res 2016; 1639:13-27. [PMID: 26944300 PMCID: PMC4907312 DOI: 10.1016/j.brainres.2016.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 11/23/2022]
Abstract
A neuron׳s response to a sound can be suppressed by the presentation of a preceding sound. It has been suggested that this suppression is a direct correlate of the psychophysical phenomenon of forward masking, however, forward suppression, as measured in the responses of the auditory nerve, was insufficient to account for behavioural performance. In contrast the neural suppression seen in the inferior colliculus and auditory cortex was much closer to psychophysical performance. In anaesthetised guinea-pigs, using a physiological two-interval forced-choice threshold tracking algorithm to estimate suppressed (masked) thresholds, we examine whether the enhancement of suppression can occur at an earlier stage of the auditory pathway, the ventral cochlear nucleus (VCN). We also compare these responses with the responses from the central nucleus of the inferior colliculus (ICc) using the same preparation. In both nuclei, onset-type neurons showed the greatest amounts of suppression (16.9-33.5dB) and, in the VCN, these recovered with the fastest time constants (14.1-19.9ms). Neurons with sustained discharge demonstrated reduced masking (8.9-12.1dB) and recovery time constants of 27.2-55.6ms. In the VCN the decrease in growth of suppression with increasing suppressor level was largest for chopper units and smallest for onset-type units. The threshold elevations recorded for most unit types are insufficient to account for the magnitude of forward masking as measured behaviourally, however, onset responders, in both the cochlear nucleus and inferior colliculus demonstrate a wide dynamic range of suppression, similar to that observed in human psychophysics.
Collapse
Affiliation(s)
- Neil J Ingham
- Centre for the Neural Basis of Hearing, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| | - Naoya Itatani
- Centre for the Neural Basis of Hearing, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Stefan Bleeck
- Centre for the Neural Basis of Hearing, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Ian M Winter
- Centre for the Neural Basis of Hearing, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
14
|
Altieri SC, Zhao T, Jalabi W, Romito-DiGiacomo RR, Maricich SM. En1 is necessary for survival of neurons in the ventral nuclei of the lateral lemniscus. Dev Neurobiol 2016; 76:1266-1274. [PMID: 26914477 DOI: 10.1002/dneu.22388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 11/06/2022]
Abstract
The ventral nuclei of the lateral lemniscus (VNLL) are part of the central auditory system thought to participate in temporal sound processing. While the timing and location of VNLL neurogenesis have been determined, the genetic factors that regulate VNLL neuron development are unknown. Here, we use genetic fate-mapping techniques to demonstrate that all glycinergic and glycinergic/GABAergic VNLL neurons derive from a cellular lineage that expresses the homeobox transcription factor Engrailed 1 (En1). We also show that En1 deletion does not affect migration or adoption of a neuronal cell fate but does lead to VNLL neuron death during development. Furthermore, En1 deletion blocks expression of the transcription factor FoxP1 in a subset of VNLL neurons. Together, these data identify En1 as a gene important for VNLL neuron development and survival. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1266-1274, 2016.
Collapse
Affiliation(s)
- Stefanie C Altieri
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, 15224
| | - Tianna Zhao
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, 15224
| | - Walid Jalabi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, 44106
| | | | - Stephen M Maricich
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, 15224. .,Childrens' Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, 15224.
| |
Collapse
|
15
|
Gessele N, Garcia-Pino E, Omerbašić D, Park TJ, Koch U. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber). PLoS One 2016; 11:e0146428. [PMID: 26760498 PMCID: PMC4711988 DOI: 10.1371/journal.pone.0146428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
Collapse
Affiliation(s)
- Nikodemus Gessele
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Elisabet Garcia-Pino
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Damir Omerbašić
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thomas J. Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ursula Koch
- Neurophysiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
16
|
Caspari F, Baumann VJ, Garcia-Pino E, Koch U. Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus. Front Neural Circuits 2015; 9:74. [PMID: 26635535 PMCID: PMC4649059 DOI: 10.3389/fncir.2015.00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
The ventral nucleus of the lateral lemniscus (VNLL) provides a major inhibitory projection to the inferior colliculus (IC). Neurons in the VNLL respond with various firing patterns and different temporal precision to acoustic stimulation. The present study investigates the underlying intrinsic and synaptic properties of various cell types in different regions of the VNLL, using in vitro electrophysiological recordings from acute brain slices of mice and immunohistochemistry. We show that the biophysical membrane properties and excitatory input characteristics differed between dorsal and ventral VNLL neurons. Neurons in the ventral VNLL displayed an onset-type firing pattern and little hyperpolarization-activated current (Ih). Stimulation of lemniscal inputs evoked a large all-or-none excitatory response similar to Calyx of Held synapses in neurons in the lateral part of the ventral VNLL. Neurons that were located within the fiber tract of the lateral lemniscus, received several and weak excitatory input fibers. In the dorsal VNLL onset-type and sustained firing neurons were intermingled. These neurons showed large Ih and were strongly immunopositive for the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) subunit. Both neuron types received several excitatory inputs that were weaker and slower compared to ventrolateral VNLL neurons. Using a mouse model that expresses channelrhodopsin under the promotor of the vesicular GABA transporter (VGAT) suggests that dorsal and ventral neurons were inhibitory since they were all depolarized by light stimulation. The diverse membrane and input properties in dorsal and ventral VNLL neurons suggest differential roles of these neurons for sound processing.
Collapse
Affiliation(s)
- Franziska Caspari
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | - Veronika J Baumann
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | | | - Ursula Koch
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
17
|
Decreased temporal precision of neuronal signaling as a candidate mechanism of auditory processing disorder. Hear Res 2015; 330:213-20. [PMID: 26119177 DOI: 10.1016/j.heares.2015.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/09/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022]
Abstract
The sense of hearing is the fastest of our senses and provides the first all-or-none action potential in the auditory nerve in less than four milliseconds. Short stimulus evoked latencies and their minimal variability are hallmarks of auditory processing from spiral ganglia to cortex. Here, we review how even small changes in first spike latencies (FSL) and their variability (jitter) impact auditory temporal processing. We discuss a number of mouse models with degraded FSL/jitter whose mutations occur exclusively in the central auditory system and therefore might serve as candidates to investigate the cellular mechanisms underlying auditory processing disorders (APD).
Collapse
|
18
|
Spencer MJ, Nayagam DAX, Clarey JC, Paolini AG, Meffin H, Burkitt AN, Grayden DB. Broadband onset inhibition can suppress spectral splatter in the auditory brainstem. PLoS One 2015; 10:e0126500. [PMID: 25978772 PMCID: PMC4433210 DOI: 10.1371/journal.pone.0126500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/02/2015] [Indexed: 12/02/2022] Open
Abstract
In vivo intracellular responses to auditory stimuli revealed that, in a particular population of cells of the ventral nucleus of the lateral lemniscus (VNLL) of rats, fast inhibition occurred before the first action potential. These experimental data were used to constrain a leaky integrate-and-fire (LIF) model of the neurons in this circuit. The post-synaptic potentials of the VNLL cell population were characterized using a method of triggered averaging. Analysis suggested that these inhibited VNLL cells produce action potentials in response to a particular magnitude of the rate of change of their membrane potential. The LIF model was modified to incorporate the VNLL cells’ distinctive action potential production mechanism. The model was used to explore the response of the population of VNLL cells to simple speech-like sounds. These sounds consisted of a simple tone modulated by a saw tooth with exponential decays, similar to glottal pulses that are the repeated impulses seen in vocalizations. It was found that the harmonic component of the sound was enhanced in the VNLL cell population when compared to a population of auditory nerve fibers. This was because the broadband onset noise, also termed spectral splatter, was suppressed by the fast onset inhibition. This mechanism has the potential to greatly improve the clarity of the representation of the harmonic content of certain kinds of natural sounds.
Collapse
Affiliation(s)
- Martin J. Spencer
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
- National ICT Australia, Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
- Centre for Neural Engineering, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - David A. X. Nayagam
- Bionics Institute, Melbourne, Australia
- Department of Pathology, University of Melbourne, Melbourne, Australia
| | | | - Antonio G. Paolini
- Health Innovations Research Institute, RMIT University, Melbourne, Australia
| | - Hamish Meffin
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
- National ICT Australia, Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
- Centre for Neural Engineering, University of Melbourne, Melbourne, Australia
| | - Anthony N. Burkitt
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
- National ICT Australia, Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
- Centre for Neural Engineering, University of Melbourne, Melbourne, Australia
- Bionics Institute, Melbourne, Australia
| | - David B. Grayden
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
- National ICT Australia, Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
- Centre for Neural Engineering, University of Melbourne, Melbourne, Australia
- Bionics Institute, Melbourne, Australia
| |
Collapse
|
19
|
Liu HH, Huang CF, Wang X. Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:500-9. [PMID: 25465088 DOI: 10.13918/j.issn.2095-8137.2014.6.500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Under free field conditions, we used single unit extracellular recording to study the detection of acoustic signals by neurons in the ventral nucleus of the lateral lemniscus (VNLL) in Kunming mouse (Mus musculus). The results indicate two types of firing patterns in VNLL neurons: onset and sustained. The first spike latency (FSL) of onset neurons was shorter than that of sustained neurons. With increasing sound intensity, the FSL of onset neurons remained stable and that of sustained neurons was shortened, indicating that onset neurons are characterized by precise timing. By comparing the values of Q10 and Q30 of the frequency tuning curve, no differences between onset and sustained neurons were found, suggesting that firing pattern and frequency tuning are not correlated. Among the three types of rate-intensity function (RIF) found in VNLL neurons, the proportion of monotonic RIF is the largest, followed by saturated RIF, and non-monotonic RIF. The dynamic range (DR) in onset neurons was shorter than in sustained neurons, indicating different capabilities in intensity tuning of different firing patterns and that these differences are correlated with the type of RIF. Our results also show that the best frequency of VNLL neurons was negatively correlated with depth, supporting the view point that the VNLL has frequency topologic organization.
Collapse
Affiliation(s)
- Hui-Hua Liu
- College of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Cai-Fei Huang
- College of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Xin Wang
- College of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
20
|
Schofield BR, Mellott JG, Motts SD. Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus. Front Neuroanat 2014; 8:70. [PMID: 25100950 PMCID: PMC4103406 DOI: 10.3389/fnana.2014.00070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/27/2014] [Indexed: 01/03/2023] Open
Abstract
Experiments in several species have identified direct projections to the medial geniculate nucleus (MG) from cells in subcollicular auditory nuclei. Moreover, many cochlear nucleus cells that project to the MG send collateral projections to the inferior colliculus (IC) (Schofield et al., 2014). We conducted three experiments to characterize projections to the MG from the superior olivary and the lateral lemniscal regions in guinea pigs. For experiment 1, we made large injections of retrograde tracer into the MG. Labeled cells were most numerous in the superior paraolivary nucleus, ventral nucleus of the trapezoid body, lateral superior olivary nucleus, ventral nucleus of the lateral lemniscus, ventrolateral tegmental nucleus, paralemniscal region and sagulum. Additional sources include other periolivary nuclei and the medial superior olivary nucleus. The projections are bilateral with an ipsilateral dominance (66%). For experiment 2, we injected tracer into individual MG subdivisions. The results show that the subcollicular projections terminate primarily in the medial MG, with the dorsal MG a secondary target. The variety of projecting nuclei suggest a range of functions, including monaural and binaural aspects of hearing. These direct projections could provide the thalamus with some of the earliest (i.e., fastest) information regarding acoustic stimuli. For experiment 3, we made large injections of different retrograde tracers into one MG and the homolateral IC to identify cells that project to both targets. Such cells were numerous and distributed across many of the nuclei listed above, mostly ipsilateral to the injections. The prominence of the collateral projections suggests that the same information is delivered to both the IC and the MG, or perhaps that a common signal is being delivered as a preparatory indicator or temporal reference point. The results are discussed from functional and evolutionary perspectives.
Collapse
Affiliation(s)
- Brett R Schofield
- Auditory Neuroscience Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Jeffrey G Mellott
- Auditory Neuroscience Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Susan D Motts
- Department of Physical Therapy, Arkansas State University Jonesboro, AR, USA
| |
Collapse
|
21
|
Abstract
In the auditory system, large somatic synapses convey strong excitation that supports temporally precise information transfer. The information transfer of such synapses has predominantly been investigated in the endbulbs of Held in the anterior ventral cochlear nucleus and the calyx of Held in the medial nucleus of the trapezoid body. These large synapses either work as relays or integrate over a small number of inputs to excite the postsynaptic neuron beyond action potential (AP) threshold. In the monaural system, another large somatic synapse targets neurons in the ventral nucleus of the lateral lemniscus (VNLL). Here, we comparatively analyze the mechanisms of synaptic information transfer in endbulbs in the VNLL and the calyx of Held in juvenile Mongolian gerbils. We find that endbulbs in the VNLL are functionally surface-scaled versions of the calyx of Held with respect to vesicle availability, release efficacy, and synaptic peak currents. This functional scaling is achieved by different calcium current kinetics that compensate for the smaller AP in VNLL endbulbs. However, the average postsynaptic current in the VNLL fails to elicit APs in its target neurons, even though equal current suffices to generate APs in neurons postsynaptic to the calyx of Held. In the VNLL, a postsynaptic A-type outward current reduces excitability and prevents AP generation upon a single presynaptic input. Instead, coincidence detection of inputs from two converging endbulbs is ideal to reliably trigger APs. Thus, even large endbulbs do not guarantee one-to-one AP transfer. Instead, information flow appears regulated by circuit requirements.
Collapse
|
22
|
Recio-Spinoso A, Joris PX. Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus. J Neurophysiol 2013; 111:817-35. [PMID: 24285864 DOI: 10.1152/jn.00971.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Besides the rapid fluctuations in pressure that constitute the "fine structure" of a sound stimulus, slower fluctuations in the sound's envelope represent an important temporal feature. At various stages in the auditory system, neurons exhibit tuning to envelope frequency and have been described as modulation filters. We examine such tuning in the ventral nucleus of the lateral lemniscus (VNLL) of the pentobarbital-anesthetized cat. The VNLL is a large but poorly accessible auditory structure that provides a massive inhibitory input to the inferior colliculus. We test whether envelope filtering effectively applies to the envelope spectrum when multiple envelope components are simultaneously present. We find two broad classes of response with often complementary properties. The firing rate of onset neurons is tuned to a band of modulation frequencies, over which they also synchronize strongly to the envelope waveform. Although most sustained neurons show little firing rate dependence on modulation frequency, some of them are weakly tuned. The latter neurons are usually band-pass or low-pass tuned in synchronization, and a reverse-correlation approach demonstrates that their modulation tuning is preserved to nonperiodic, noisy envelope modulations of a tonal carrier. Modulation tuning to this type of stimulus is weaker for onset neurons. In response to broadband noise, sustained and onset neurons tend to filter out envelope components over a frequency range consistent with their modulation tuning to periodically modulated tones. The results support a role for VNLL in providing temporal reference signals to the auditory midbrain.
Collapse
Affiliation(s)
- Alberto Recio-Spinoso
- Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and
| | | |
Collapse
|
23
|
Mylius J, Brosch M, Scheich H, Budinger E. Subcortical auditory structures in the Mongolian gerbil: I. Golgi architecture. J Comp Neurol 2013; 521:1289-321. [PMID: 23047461 DOI: 10.1002/cne.23232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/25/2012] [Accepted: 10/02/2012] [Indexed: 12/17/2022]
Abstract
By means of the Golgi-Cox and Nissl methods we investigated the cyto- and fiberarchitecture as well as the morphology of neurons in the subcortical auditory structures of the Mongolian gerbil (Meriones unguiculatus), a frequently used animal model in auditory neuroscience. We describe the divisions and subdivisions of the auditory thalamus including the medial geniculate body, suprageniculate nucleus, and reticular thalamic nucleus, as well as of the inferior colliculi, nuclei of the lateral lemniscus, superior olivary complex, and cochlear nuclear complex. In this study, we 1) confirm previous results about the organization of the gerbil's subcortical auditory pathway using other anatomical staining methods (e.g., Budinger et al. [2000] Eur J Neurosci 12:2452-2474); 2) add substantially to the knowledge about the laminar and cellular organization of the gerbil's subcortical auditory structures, in particular about the orientation of their fibrodendritic laminae and about the morphology of their most distinctive neuron types; and 3) demonstrate that the cellular organization of these structures, as seen by the Golgi technique, corresponds generally to that of other mammalian species, in particular to that of rodents.
Collapse
Affiliation(s)
- Judith Mylius
- Special Laboratory Primate Neurobiology, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany
| | | | | | | |
Collapse
|
24
|
Spencer MJ, Grayden DB, Bruce IC, Meffin H, Burkitt AN. An investigation of dendritic delay in octopus cells of the mammalian cochlear nucleus. Front Comput Neurosci 2012; 6:83. [PMID: 23125831 PMCID: PMC3486622 DOI: 10.3389/fncom.2012.00083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 09/24/2012] [Indexed: 12/04/2022] Open
Abstract
Octopus cells, located in the mammalian auditory brainstem, receive their excitatory synaptic input exclusively from auditory nerve fibers (ANFs). They respond with accurately timed spikes but are broadly tuned for sound frequency. Since the representation of information in the auditory nerve is well understood, it is possible to pose a number of questions about the relationship between the intrinsic electrophysiology, dendritic morphology, synaptic connectivity, and the ultimate functional role of octopus cells in the brainstem. This study employed a multi-compartmental Hodgkin-Huxley model to determine whether dendritic delay in octopus cells improves synaptic input coincidence detection in octopus cells by compensating for the cochlear traveling wave delay. The propagation time of post-synaptic potentials from synapse to soma was investigated. We found that the total dendritic delay was approximately 0.275 ms. It was observed that low-threshold potassium channels in the dendrites reduce the amplitude dependence of the dendritic delay of post-synaptic potentials. As our hypothesis predicted, the model was most sensitive to acoustic onset events, such as the glottal pulses in speech when the synaptic inputs were arranged such that the model's dendritic delay compensated for the cochlear traveling wave delay across the ANFs. The range of sound frequency input from ANFs was also investigated. The results suggested that input to octopus cells is dominated by high frequency ANFs.
Collapse
Affiliation(s)
- Martin J Spencer
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne Melbourne, VIC, Australia ; National ICT Australia Melbourne, VIC, Australia ; Centre for Neural Engineering, University of Melbourne VIC, Australia
| | | | | | | | | |
Collapse
|
25
|
Manzoor NF, Licari FG, Klapchar M, Elkin RL, Gao Y, Chen G, Kaltenbach JA. Noise-induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the dorsal cochlear nucleus. J Neurophysiol 2012; 108:976-88. [PMID: 22552192 DOI: 10.1152/jn.00833.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Intense noise exposure causes hyperactivity to develop in the mammalian dorsal cochlear nucleus (DCN) and inferior colliculus (IC). It has not yet been established whether the IC hyperactivity is driven by hyperactivity from extrinsic sources that include the DCN or instead is maintained independently of this input. We have investigated the extent to which IC hyperactivity is dependent on input from the contralateral DCN by comparing recordings of spontaneous activity in the IC of noise-exposed and control hamsters before and after ablation of the contralateral DCN. One group of animals was binaurally exposed to intense sound (10 kHz, 115 dB SPL, 4 h), whereas the control group was not. Both groups were studied electrophysiologically 2-3 wk later by first mapping spontaneous activity along the tonotopic axis of the IC to confirm induction of hyperactivity. Spontaneous activity was then recorded at a hyperactive IC locus over two 30-min periods, one with DCNs intact and the other after ablation of the contralateral DCN. In a subset of animals, activity was again mapped along the tonotopic axis after the time course of the activity was recorded before and after DCN ablation. Following recordings, the brains were fixed, and histological evaluations were performed to assess the extent of DCN ablation. Ablation of the DCN resulted in major reductions of IC hyperactivity. Levels of postablation activity in exposed animals were similar to the levels of activity in the IC of control animals, indicating an almost complete loss of hyperactivity in exposed animals. The results suggest that hyperactivity in the IC is dependent on support from extrinsic sources that include and may even begin with the DCN. This finding does not rule out longer term compensatory or homeostatic adjustments that might restore hyperactivity in the IC over time.
Collapse
Affiliation(s)
- N F Manzoor
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Song N, Shi H, Li C, Yin S. Differences in developmental changes in GABAergic response between bushy and stellate cells in the rat anteroventral cochlear nucleus. Int J Dev Neurosci 2012; 30:397-403. [DOI: 10.1016/j.ijdevneu.2012.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/08/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ning‐ying Song
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Hai‐bo Shi
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Chun‐yan Li
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Shan‐kai Yin
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| |
Collapse
|
27
|
Krützfeldt NOE, Logerot P, Kubke MF, Wild JM. Connections of the auditory brainstem in a songbird, Taeniopygia guttata. II. Projections of nucleus angularis and nucleus laminaris to the superior olive and lateral lemniscal nuclei. J Comp Neurol 2010; 518:2135-48. [PMID: 20394062 DOI: 10.1002/cne.22324] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three nuclei of the lateral lemniscus are present in the zebra finch, ventral (LLV), intermediate (LLI), and dorsal (LLD). LLV is separate from the superior olive (OS): it lies closer to the spinal lemniscus and extends much further rostrally around the pontine periphery. LLI extends from a caudal position ventrolateral to the principal sensory trigeminal nucleus (LLIc) to a rostral position medial to the ventrolateral parabrachial nucleus (LLIr). LLD consists of posterior (LLDp) and anterior (LLDa) parts, which are largely coextensive rostrocaudally, although LLDa lies medial to LLDp. All nuclei are identifiable on the basis of cytochrome oxidase activity. The cochlear nucleus angularis (NA) and the third-order nucleus laminaris (NL) project on OS predominantly ipsilaterally, on LLV and LLI predominantly contralaterally, and on LLD contralaterally only. The NA projections are heavier than those of NL and differ from them primarily in their terminations within LLD: NA projects to LLDp, whereas NL projects to LLDa. In this the projections are similar to those in the barn owl (Takahashi and Konishi [1988] J Comp Neurol 274:212-238), in which time and intensity pathways remain separate as far as the central nucleus of the inferior colliculus (MLd). In contrast, in the zebra finch, although NA and NL projections remain separate within LLD, the projections of LLDa and LLDp become intermixed within MLd (Wild et al., J Comp Neurol, this issue), consistent with the intermixing of the direct NA and NL projections to MLd (Krützfeldt et al., J Comp Neurol, this issue).
Collapse
Affiliation(s)
- Nils O E Krützfeldt
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, PB 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
28
|
Bal R, Baydas G, Naziroglu M. Electrophysiological properties of ventral cochlear nucleus neurons of the dog. Hear Res 2009; 256:93-103. [DOI: 10.1016/j.heares.2009.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/22/2009] [Accepted: 07/12/2009] [Indexed: 11/24/2022]
|
29
|
Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience 2009; 163:372-87. [PMID: 19539725 DOI: 10.1016/j.neuroscience.2009.06.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
GABAergic neurotransmission contributes to shaping the response properties of inferior colliculus (IC) neurons. In rodents, the superior paraolivary nucleus (SPON) is a prominent and well-defined cell group of the superior olivary complex that sends significant but often neglected GABAergic projections to the IC. To investigate the trajectory, distribution and morphology of these projections, we injected the neuroanatomical tracer biotinylated dextran amine into the SPON of albino rats. Our results demonstrate that: (1) the SPON innervates densely all three subdivisions of the ipsilateral IC: central nucleus (CNIC), dorsal cortex (DCIC) and external cortex (ECIC). The SPON also sends a sparse projection to the contralateral DCIC via the commissure of the IC. (2) SPON axons are relatively thick (diameter >1.2 microm), ascend to the midbrain tectum in the medial aspect of the lateral lemniscus, and, for the most part, do not innervate the nuclei of the lateral lemniscus. (3) SPON fibers ramify profusely within the IC and bear abundant en passant and terminal boutons. (4) The axons of neurons in discrete regions of the SPON form two laminar terminal plexuses in the ipsilateral IC: a medial plexus that spans the CNIC and DCIC parallel to the known fibrodendritic laminae of the CNIC, and a lateral plexus located in the ECIC and oriented more or less parallel to the surface of the IC. (5) The projection from SPON to the ipsilateral IC is topographic: medial SPON neurons innervate the ventromedial region of the CNIC and DCIC and the ventrolateral region of the ECIC, whereas more laterally situated SPON neurons innervate more dorsolateral regions of the CNIC and DCIC and more dorsomedial regions of the ECIC. Thus, SPON fibers follow a pattern of distribution within the IC similar to that previously reported for intracollicular and corticocollicular projections.
Collapse
|
30
|
Rhode WS, Roth GL, Recio-Spinoso A. Response properties of cochlear nucleus neurons in monkeys. Hear Res 2009; 259:1-15. [PMID: 19531377 DOI: 10.1016/j.heares.2009.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Much of what is known about how the cochlear nuclei participate in mammalian hearing comes from studies of non-primate mammalian species. To determine to what extent the cochlear nuclei of primates resemble those of other mammalian orders, we have recorded responses to sound in three primate species: marmosets, cynomolgus macaques, and squirrel monkeys. These recordings show that the same types of temporal firing patterns are found in primates that have been described in other mammals. Responses to tones of neurons in the ventral cochlear nucleus have similar tuning, latencies, post-stimulus time and interspike interval histograms as those recorded in non-primate cochlear nucleus neurons. In the dorsal cochlear nucleus, too, responses were similar. From these results it is evident that insights gained from non-primate studies can be applied to the peripheral auditory system of primates.
Collapse
Affiliation(s)
- William S Rhode
- Department of Physiology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | |
Collapse
|
31
|
Electrophysiological properties of octopus neurons of the cat cochlear nucleus: an in vitro study. J Assoc Res Otolaryngol 2009; 10:281-93. [PMID: 19277784 DOI: 10.1007/s10162-009-0159-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/05/2009] [Indexed: 12/25/2022] Open
Abstract
Electrophysiological studies from mice in vitro have suggested that octopus cells of the mammalian ventral cochlear nucleus (VCN) are anatomically and biophysically specialized for detecting the coincident firing of a population of auditory nerve fibers. Recordings from cats in vivo have shown that octopus cells fire rapidly and with exceptional temporal precision as they convey the timing of that coincidence to higher auditory centers. The current study addresses the question whether the biophysical properties of octopus cells that have until now been examined only in mice, are shared by octopus cells in cats. Whole-cell patch-clamp recordings confirm that octopus cells in brain slices from kittens share the anatomical and biophysical features of octopus cells in mice. As in mice, octopus cells in kittens have large cell bodies and thick dendrites that extend in one direction. Voltage changes produced by depolarizing and hyperpolarizing current injection were small and rapid. Input resistances and membrane time constants in octopus cells of 16-day-old kittens were 15.8 +/- 1.5 MOmega (n = 16) and 1.28 +/- 0.3 ms (n = 16), respectively. Octopus cells fired only a single action potential at the onset of a depolarizing current pulse; suprathreshold stimuli were greater than 1.8 nA. A tetrodotoxin (TTX)-sensitive sodium conductance (gNa) was responsible for the generation of the action potentials. Octopus cells displayed outward rectification that lasted for the duration of the depolarizing pulses. Hyperpolarizations produced by the injection of current exhibited a depolarizing sag of the membrane potential toward the resting value. A 4-aminopyridine (4-AP) and alpha-dendrotoxin (alpha-DTX)-sensitive, low-voltage-activated potassium conductance (gKL) and a ZD7288-sensitive, mixed-cation conductance (gh) were partially activated at rest, giving the octopus cells low input resistances and, as a consequence, brief time constants. In 7-day-old kittens, action potentials were taller and broader, input resistances higher, and both inward and outward rectification was weaker than in 16-day-old kittens. Also as in mice, stellate cells of the VCN fired trains of action potentials with constant interspike intervals when they were depolarized (n = 10) and bushy cells of the VCN fired only a single action potential at the onset of depolarizations (n = 6). In conclusion, the similarity of octopus cells in mice and kittens suggests that the anatomical and biophysical specializations that allow octopus cells to detect and convey synchronous firing among auditory nerve fibers are common to all mammals.
Collapse
|
32
|
Kelly JB, van Adel BA, Ito M. Anatomical projections of the nuclei of the lateral lemniscus in the albino rat (rattus norvegicus). J Comp Neurol 2009; 512:573-93. [DOI: 10.1002/cne.21929] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Benson CG, Cant NB. The ventral nucleus of the lateral lemniscus of the gerbil (Meriones unguiculatus): organization of connections with the cochlear nucleus and the inferior colliculus. J Comp Neurol 2008; 510:673-90. [PMID: 18709666 DOI: 10.1002/cne.21820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The spatial organization of projections from the ventral cochlear nucleus (VCN) to the ventral nucleus of the lateral lemniscus (VNLL) and from the VNLL to the central nucleus of the inferior colliculus (CNIC) was investigated by using neuroanatomical tracing methods in the gerbil. In order to label cells in the VNLL that project to the CNIC, focal injections of biotinylated dextran amine (BDA) were made into different CNIC regions. Retrogradely labeled cells were distributed throughout the dorsal-to-ventral axis of the VNLL in all cases. In contrast, the distribution of labeled cells across the lateral-to-medial dimension of the VNLL was related to the location of the injection site along the dorsolateral to ventromedial (frequency) axis of the CNIC. Cells projecting to dorsolateral (low-frequency) regions of the CNIC were located peripherally in the VNLL, mainly laterally and caudally, whereas those projecting to ventromedial (high-frequency) regions of the CNIC tended to be clustered centrally. Projections to the VNLL were labeled anterogradely following injections of BDA in the VCN. The distribution of terminal fields in the VNLL closely paralleled the topographic arrangement of cells projecting to the CNIC; projections from ventrolateral (low-frequency) areas of the VCN terminated mainly along the lateral and caudal borders of the VNLL, whereas projections from dorsomedial (high-frequency) areas terminated in more central regions. The results demonstrate a topographic organization of the major afferent and efferent connections of the gerbil VNLL.
Collapse
Affiliation(s)
- Christina G Benson
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
34
|
Motts SD, Slusarczyk AS, Sowick CS, Schofield BR. Distribution of cholinergic cells in guinea pig brainstem. Neuroscience 2008; 154:186-95. [PMID: 18222049 PMCID: PMC2475650 DOI: 10.1016/j.neuroscience.2007.12.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 12/01/2022]
Abstract
We used an antibody to choline acetyltransferase (ChAT) to label cholinergic cells in guinea pig brainstem. ChAT-immunoreactive (IR) cells comprise several prominent groups, including the pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, and parabigeminal nucleus, as well as the cranial nerve somatic motor and parasympathetic nuclei. Additional concentrations are present in the parabrachial nuclei and superior colliculus. Among auditory nuclei, the majority of ChAT-IR cells are in the superior olive, particularly in and around the lateral superior olive, the ventral nucleus of the trapezoid body and the superior paraolivary nucleus. A discrete group of ChAT-IR cells is located in the sagulum, and additional cells are scattered in the nucleus of the brachium of the inferior colliculus. A group of ChAT-IR cells lies dorsal to the dorsal nucleus of the lateral lemniscus. A few ChAT-IR cells are found in the cochlear nucleus and the ventral nucleus of the lateral lemniscus. The distribution of cholinergic cells in guinea pigs is largely similar to that of other species; differences occur mainly in cell groups that have few ChAT-IR cells. The results provide a basis for further studies to characterize the connections of these cholinergic groups.
Collapse
Affiliation(s)
- S D Motts
- Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Department of Neurobiology, P.O. Box 95, 4209 State Route 44, Rootstown, OH 44272, USA
| | | | | | | |
Collapse
|
35
|
Shivdasani MN, Mauger SJ, Rathbone GD, Paolini AG. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants. J Neurophysiol 2007; 99:1-13. [PMID: 17928560 DOI: 10.1152/jn.00629.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multichannel techniques were used to assess the frequency specificity of activation in the central nucleus of the inferior colliculus (CIC) produced by electrical stimulation of localized regions within the ventral cochlear nucleus (VCN). Data were recorded in response to pure tones from 141 and 193 multiunit clusters in the rat VCN and the CIC, respectively. Of 141 VCN sites, 126 were individually stimulated while recording responses in the CIC. A variety of CIC response types were seen with an increase in both electrical and acoustic stimulation levels. The majority of sites exhibited monotonic rate-level types acoustically, whereas spike rate saturation was achieved predominantly with electrical stimulation. In 20.6% of the 364 characteristic frequency aligned VCN-CIC pairs, the CIC sites did not respond to stimulation. In 26% of the 193 CIC sites, a high correlation was observed between acoustic tuning and electrical tuning obtained through VCN stimulation. A high degree of frequency specificity was found in 58% of the 118 lowest threshold VCN-CIC pairs. This was dependent on electrode placement within the VCN because a higher degree of frequency specificity was achieved with stimulation of medial, central, and posterolateral VCN regions than more anterolateral regions. Broadness of acoustic tuning in the CIC played a role in frequency-specific activation. Narrowly tuned CIC sites showed the lowest degree of frequency specificity on stimulation of the anterolateral VCN regions. These data provide significant implications for auditory brain stem implant electrode placement, current localization, power requirements, and facilitation of information transfer to higher brain centers.
Collapse
Affiliation(s)
- Mohit N Shivdasani
- The Bionic Ear Institute, East Melbourne Victoria, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Wallace MN, Anderson LA, Palmer AR. Phase-locked responses to pure tones in the auditory thalamus. J Neurophysiol 2007; 98:1941-52. [PMID: 17699690 DOI: 10.1152/jn.00697.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accurate temporal coding of low-frequency tones by spikes that are locked to a particular phase of the sine wave (phase-locking), occurs among certain groups of neurons at various processing levels in the brain. Phase-locked responses have previously been studied in the inferior colliculus and neocortex of the guinea pig and we now describe the responses in the auditory thalamus. Recordings were made from 241 single units, 32 (13%) of which showed phase-locked responses. Units with phase-locked responses were mainly (82%) located in the ventral division of the medial geniculate body (MGB), and also the medial division (18%), but were not found in the dorsal or shell divisions. The upper limiting frequency of phase-locking varied greatly between units (60-1,100 Hz) and between anatomical divisions. The upper limit in the ventral division was 520 Hz and in the medial was 1,100 Hz. The range of steady-state delays calculated from phase plots also varied: ventral division, 8.6-14 ms (mean 11.1 ms; SD 1.56); medial division, 7.5-11 ms (mean 9.3 ms; SD 1.5). Taken together, these measurements are consistent with the medial division receiving a phase-locked input directly from the brain stem, without an obligatory relay in the inferior colliculus. Cells in both the ventral and medial divisions of the MGB showed a response that phase-locked to the fundamental frequency of a guinea pig purr and may be involved in analyzing communication calls.
Collapse
Affiliation(s)
- Mark N Wallace
- Medical Research Council, Institute of Hearing Research, University Park, Nottingham, UK.
| | | | | |
Collapse
|
37
|
Chase SM, Young ED. First-spike latency information in single neurons increases when referenced to population onset. Proc Natl Acad Sci U S A 2007; 104:5175-80. [PMID: 17360369 PMCID: PMC1829282 DOI: 10.1073/pnas.0610368104] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well known that many stimulus parameters, such as sound location in the auditory system or contrast in the visual system, can modulate the timing of the first spike in sensory neurons. Could first-spike latency be a candidate neural code? Most studies measuring first-spike latency information assume that the brain has an independent reference for stimulus onset from which to extract latency. This assumption creates an obvious confound that casts doubt on the feasibility of first-spike latency codes. If latency is measured relative to an internal reference of stimulus onset calculated from the responses of the neural population, the information conveyed by the latency of single neurons might decrease because of correlated changes in latency across the population. Here we assess the effects of a realistic model of stimulus onset detection on the first-spike latency information conveyed by single neurons in the auditory system. Contrary to expectation, we find that on average, the information contained in single neurons does not decrease; in fact, the majority of neurons show a slight increase in the information conveyed by latency referenced to a population onset. Our results show that first-spike latency codes are a feasible mechanism for information transfer even when biologically plausible estimates of stimulus onset are taken into account.
Collapse
Affiliation(s)
- Steven M Chase
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
38
|
Nayagam DAX, Clarey JC, Paolini AG. Intracellular responses and morphology of rat ventral complex of the lateral lemniscus neurons in vivo. J Comp Neurol 2007; 498:295-315. [PMID: 16856136 DOI: 10.1002/cne.21058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The function of the ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL), collectively termed ventral complex of the lateral lemniscus (VCLL), is unclear. Several studies have suggested that it plays a role in coding the temporal aspects of sound. In our study, a sample (n = 161) of intracellular responses to dichotically presented noise or tone bursts was collected from the VCLL of urethane-anesthetized rats in vivo. Intracellular recordings revealed six distinct response types to tones, distinguished by their synaptic and membrane characteristics as well as firing pattern. Three of these response types were correlated with distinct cellular morphologies revealed by intracellular injection of neurobiotin. 3D reconstructions of recorded neurons within the VCLL showed the spatial distribution of various response properties, including response type, laterality, characteristic frequency (CF), and binaural influences. Cells that responded to monaural (55%) or binaural (45%) stimulation were distributed throughout the VCLL. Almost all VCLL units were responsive to contralateral stimulation (97%). Most neurons were excited by contralateral stimulation (83%), many exclusively (43%), and some in conjunction with ipsilateral inhibition (28%) or excitation (12%). The INLL contained mostly binaural neurons (65%), typically with ipsilateral inhibition and contralateral excitation. These results indicate that the VCLL is not a monaural structure and there is a dorsal-ventral segregation of binaural and monaural cells. 3D reconstructions of intracellular CFs did not reveal the presence of any tonotopic arrangement within the VCLL. Presumably, the proposed timing role of this structure does not require a systematic representation of tonal frequency.
Collapse
|
39
|
Zhang H, Kelly JB. Responses of Neurons in the Rat's Ventral Nucleus of the Lateral Lemniscus to Amplitude-Modulated Tones. J Neurophysiol 2006; 96:2905-14. [PMID: 16928797 DOI: 10.1152/jn.00481.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recordings were made from single neurons in the rat's ventral nucleus of the lateral lemniscus (VNLL) to determine responses to amplitude-modulated (AM) tones. The neurons were first characterized on the basis of their response to tone bursts presented to the contralateral ear and a distinction was made between those with transient onset responses and those with sustained responses. Sinusoidal AM tones were then presented to the contralateral ear with a carrier that matched the neuron's characteristic frequency (CF). Modulation transfer functions were generated on the basis of firing rate (MTFFR) and vector strength (MTFVS). Ninety-two percent of onset neurons that responded continuously to AM tones had band-pass MTFFRs with best modulation frequencies from 10 to 300 Hz. Fifty-four percent of sustained neurons had band-pass MTFFRs with best modulation frequencies from 10 to 500 Hz; other neurons had band-suppressed, all-pass, low-pass, or high-pass functions. Most neurons showed either band-pass or low-pass MTFVS. Responses were well synchronized to the modulation cycle with maximum vector strengths ranging from 0.37 to 0.98 for sustained neurons and 0.78 to 0.99 for onset neurons. The upper frequency limit for response synchrony was higher than that reported for inferior colliculus, but lower than that seen in more peripheral structures. Results suggest that VNLL neurons, especially those with onset responses to tone bursts, are sensitive to temporal features of sounds and narrowly tuned to different modulation rates. However, there was no evidence of a topographic relation between dorsoventral position along the length of VNLL and best modulation frequency as determined by either firing rate or vector strength.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Psychology, Carleton University, 329 Life Science Research Building, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
40
|
Batra R. Responses of neurons in the ventral nucleus of the lateral lemniscus to sinusoidally amplitude modulated tones. J Neurophysiol 2006; 96:2388-98. [PMID: 16899642 DOI: 10.1152/jn.00442.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluctuations in the amplitude of a sound play an important role in our perception of pitch and acoustic space, but their neural analysis has not been fully elucidated. The ventral nucleus of the lateral lemniscus (VNLL) has been implicated in the processing of such temporal features of a sound. This study examines responses of neurons in the VNLL of unanesthetized rabbits to sinusoidally amplitude modulated tones, a type of stimulus that has often been used to investigate encoding of temporal information. Modulation transfer functions of responses were calculated in two ways: based on discharge rates (rMTFs) and on synchronization to the envelope (tMTFs). Among the variety of rMTFs, two types were readily identifiable: flat and band-pass. The responses of neurons exhibiting these types of rMTF differed in several ways. Neurons with flat rMTFs typically had moderate rates of spontaneous activity, sustained responses to short tone bursts, and low-pass or band-pass tMTFs. Neurons with band-pass rMTFs typically had low spontaneous activity, onset responses to short tone bursts, and flat tMTFs. The vast majority synchronized strongly to the modulation envelope. The best modulation frequencies of neurons with band-pass rMTFs extended from 14 to 283 Hz. The presence of neurons with band-pass rMTFs in the VNLL suggests that this nucleus plays a role in converting the temporal code for modulation frequency used in lower structures into a rate-based code for use higher in the auditory pathway. The substantial number of neurons with more complex modulation transfer functions indicates that the VNLL has other functions.
Collapse
Affiliation(s)
- Ranjan Batra
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| |
Collapse
|
41
|
McGinley MJ, Oertel D. Rate thresholds determine the precision of temporal integration in principal cells of the ventral cochlear nucleus. Hear Res 2006; 216-217:52-63. [PMID: 16647828 DOI: 10.1016/j.heares.2006.02.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 11/25/2022]
Abstract
The three types of principal cells of the ventral cochlear nucleus (VCN), bushy, octopus, and T stellate, differ in the detection of coincidence among synaptic inputs. To explore the role of the action-potential-generation mechanism in the detection of coincident inputs, we examined responses to depolarizing currents that increased at varying rates. To fire an action potential, bushy cells, likely of the globular subtype, had to be depolarized faster than 4.8+/-2.8 mV/ms, octopus cells faster than 9.5+/-3.6 mV/ms, and T stellate cells fired irrespective of the rate of depolarization. The threshold rate of depolarization permitted definition of a time window over which depolarization could contribute to generating action potentials. This integration window differed between cell types. It was 5.3+/-1.8 ms for bushy cells and 1.4+/-0.3 ms for octopus cells. T Stellate cells fired action potentials in response to even slow depolarizations, showing that their integration window was unlimited so that temporal summation in these cells is limited by the time course of synaptic potentials. The rate of depolarization threshold in octopus and bushy cells was decreased by alpha-dendrotoxin while T stellate cells were largely insensitive to alpha-dendrotoxin indicating that low-voltage-activated K+ conductances (gKL) are important determinants of the integration window.
Collapse
Affiliation(s)
- Matthew J McGinley
- Department of Physiology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Zhang H, Kelly JB. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to monaural and binaural tone bursts. J Neurophysiol 2006; 95:2501-12. [PMID: 16394068 DOI: 10.1152/jn.01215.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses to monaural and binaural tone bursts were recorded from neurons in the rat's ventral nucleus of the lateral lemniscus (VNLL). Most of the neurons (55%) had V- or U-shaped frequency-tuning curves with a single clearly defined characteristic frequency (CF). However, many neurons had more complex, multipeaked tuning curves (37%), or other patterns (8%). Temporal firing patterns included both onset and sustained responses to contralateral tone bursts. Onset and sustained responses were distributed along the dorsoventral length of VNLL with no indication of segregation into different regions. Onset neurons had shorter average first-spike latencies than neurons with sustained responses (means, 8.3 vs. 14.8 ms). They also had less jitter, as reflected in the SD of first-spike latencies, than neurons with sustained responses (means, 0.59 and 4.2 ms, respectively). The extent of jitter decreased with an increase in stimulus intensity for neurons with sustained responses, but remained unchanged for onset neurons tested over the same range. Many neurons had binaural responses, primarily of the excitatory/inhibitory (EI) type, widely distributed along the dorsoventral extent of VNLL. Local application of the AMPA receptor antagonist NBQX reduced excitatory responses, indicating that responses were dependent on synaptic activity and not recorded from passing fibers. The results show that many neurons in VNLL have a precision of timing that is well suited for processing auditory temporal information. In the rat, these neurons are intermingled among cells with less precise temporal response features and include cells with binaural as well as monaural responses.
Collapse
Affiliation(s)
- Huiming Zhang
- Laboratory of Sensory Neuroscience, Department of Psychology, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
43
|
Liu LF, Palmer AR, Wallace MN. Phase-locked responses to pure tones in the inferior colliculus. J Neurophysiol 2005; 95:1926-35. [PMID: 16339005 DOI: 10.1152/jn.00497.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the auditory system, some ascending pathways preserve the precise timing information present in a temporal code of frequency. This can be measured by studying responses that are phase-locked to the stimulus waveform. At each stage along a pathway, there is a reduction in the upper frequency limit of the phase-locking and an increase in the steady-state latency. In the guinea pig, phase-locked responses to pure tones have been described at various levels from auditory nerve to neocortex but not in the inferior colliculus (IC). Therefore we made recordings from 161 single units in guinea pig IC. Of these single units, 68% (110/161) showed phase-locked responses. Cells that phase-locked were mainly located in the central nucleus but also occurred in the dorsal cortex and external nucleus. The upper limiting frequency of phase-locking varied greatly between units (80-1,034 Hz) and between anatomical divisions. The upper limits in the three divisions were central nucleus, >1,000 Hz; dorsal cortex, 700 Hz; external nucleus, 320 Hz. The mean latencies also varied and were central nucleus, 8.2 +/- 2.8 (SD) ms; dorsal cortex, 17.2 ms; external nucleus, 13.3 ms. We conclude that many cells in the central nucleus receive direct inputs from the brain stem, whereas cells in the external and dorsal divisions receive input from other structures that may include the forebrain.
Collapse
Affiliation(s)
- Liang-Fa Liu
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD UK
| | | | | |
Collapse
|
44
|
Fuentes-Santamaría V, Cantos R, Alvarado JC, García-Atarés N, López DE. Morphologic and neurochemical abnormalities in the auditory brainstem of the genetically epilepsy-prone hamster (GPG/Vall). Epilepsia 2005; 46:1027-45. [PMID: 16026555 DOI: 10.1111/j.1528-1167.2005.68104.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE This study was performed to evaluate whether audiogenic seizures, in a strain of genetically epilepsy-prone hamsters (GPG/Vall), might be associated with morphologic alterations in the cochlea and auditory brainstem. In addition, we used parvalbumin as a marker of neurons with high levels of activity to examine changes within neurons. METHODS Cochlear histology as well as parvalbumin immunohistochemistry were performed to assess possible abnormalities in the GPG/Vall hamster. Densitometry also was used to quantify levels of parvalbumin immunostaining within neurons and fibers in auditory nuclei. RESULTS In the present study, missing outer hair cells and spiral ganglion cells were observed in the GPG/Vall hamster. In addition, an increase was noted in the size of spiral ganglion cells as well as a decrease in the volume and cell size of the cochlear nucleus (CN), the superior olivary complex nuclei (SOC), and the nuclei of the lateral lemniscus (LL) and the inferior colliculus (IC). These alterations were accompanied by an increase in levels of parvalbumin immunostaining within CN, SOC, and LL neurons, as well as within parvalbumin-immunostained fibers in the CN and IC. CONCLUSIONS These data are consistent with a cascade of atrophic changes starting in the cochlea and extending along the auditory brainstem in an animal model of inherited epilepsy. Our data also show an upregulation in parvalbumin immunostaining in the neuropil of the IC that may reflect a protective mechanism to prevent cell death in the afferent sources to this nucleus.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, U.S.A.
| | | | | | | | | |
Collapse
|
45
|
Irfan N, Zhang H, Wu SH. Synaptic transmission mediated by ionotropic glutamate, glycine and GABA receptors in the rat’s ventral nucleus of the lateral lemniscus. Hear Res 2005; 203:159-71. [PMID: 15855041 DOI: 10.1016/j.heares.2004.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/30/2004] [Indexed: 01/22/2023]
Abstract
The synaptic pharmacology of the ventral nucleus of the lateral lemniscus (VNLL) was investigated in brain slices obtained from rats of 14-37 days old using intracellular recording techniques. Excitatory and inhibitory synaptic potentials (EPSPs and IPSPs) were elicited by electrical stimulation of the lemniscal pathway and recorded from neurons with five types of intrinsic firing patterns (onset, pause, adapting, regular and bursting types). Synaptic receptors that mediated the EPSPs and IPSPs were identified using AMPA, NMDA, GABA(A) and glycine receptor antagonists. The early/short EPSPs were mediated by AMPA receptors. The late/long EPSPs, encountered only in neurons of younger animals, were mediated by NMDA receptors. The IPSPs in most neurons were mediated by glycine receptors. In some neurons the IPSPs were mediated by GABA(A) receptors or both glycine and GABA(A) receptors. The temporal dynamics of fast AMPA EPSPs and glycinergic IPSPs were very similar. AMPA EPSPs and glycinergic (and/or GABAergic) IPSPs could be encountered in a single neuron. The results suggest that the VNLL not only relays incoming signals rapidly from the lower brainstem to the inferior colliculus, but also integrates excitatory and inhibitory inputs to modify and process auditory information.
Collapse
Affiliation(s)
- Nashwa Irfan
- Institute of Neuroscience, Carleton University, 335 Life Sciences Research Building, 1125 Colonel By Drive, Ottawa, Ont., Canada
| | | | | |
Collapse
|
46
|
Nayagam DAX, Clarey JC, Paolini AG. Powerful, onset inhibition in the ventral nucleus of the lateral lemniscus. J Neurophysiol 2005; 94:1651-4. [PMID: 15817650 DOI: 10.1152/jn.00167.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function of the ventral nucleus of the lateral lemniscus (VNLL), a secondary processing site within the auditory brain stem, is unclear. It is known to be a major source of inhibition to the inferior colliculus (IC). It is also thought to play a role in coding the temporal aspects of sound, such as onsets and the periodic components of complex stimuli. In vivo intracellular recordings from VNLL neurons (n = 56) in urethane anesthetized rats revealed the presence of large-amplitude, short-duration, onset inhibition in a subset of neurons (14.3%). This inhibition occurred before the first action potential (AP) elicited by noise or tone bursts, was broadly tuned to tonal frequency and was shown to delay the first AP. Our data suggest it is a result of an intrinsic circuit activated by the octopus cell pathway originating in the contralateral cochlear nucleus; this pathway is known to convey exquisitely timed and broadly tuned onset information. This powerful inhibition within the VNLL appears to control the timing of this structure's inhibitory output to higher centers, which has important auditory processing outcomes. The circuit also provides a pathway for fast, broadly tuned, onset inhibition to the IC.
Collapse
|
47
|
Schofield BR, Coomes DL. Auditory cortical projections to the cochlear nucleus in guinea pigs. Hear Res 2005; 199:89-102. [PMID: 15574303 DOI: 10.1016/j.heares.2004.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 08/04/2004] [Indexed: 11/26/2022]
Abstract
We used anterograde tracing techniques to examine projections from auditory cortex to the cochlear nucleus in guinea pigs. Following injection of dextrans into the temporal cortex, labeled axons were present bilaterally in the cochlear nucleus. The distribution of boutons within the cochlear nucleus was similar on the two sides. The majority of boutons was usually located on the ipsilateral side. Most of the boutons were located in the granule cell areas, where many small boutons and a few larger, mossy-type endings were labeled. Additional small, labeled boutons were found in all layers of the dorsal cochlear nucleus, with the majority located in the fusiform cell layer. Labeled boutons were also present in the ventral cochlear nucleus, where they were located in the small cell cap as well as magnocellular parts of both posteroventral and anteroventral cochlear nucleus. Similar results were obtained with injections restricted to primary auditory cortex or to the dorsocaudal auditory field. The results illustrate direct cortical projections to the cochlear nucleus that are likely to modulate the activity in a number of ascending auditory pathways.
Collapse
Affiliation(s)
- Brett R Schofield
- Department of Anatomical Sciences and Neurobiology, University of Louisville, 500 S. Preston Street, Louisville, KY 40202, USA.
| | | |
Collapse
|
48
|
Arnott RH, Wallace MN, Shackleton TM, Palmer AR. Onset neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus. J Assoc Res Otolaryngol 2004; 5:153-70. [PMID: 15357418 PMCID: PMC2538402 DOI: 10.1007/s10162-003-4036-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Considerable circumstantial evidence suggests that cells in the ventral cochlear nucleus, that respond predominantly to the onset of pure tone bursts, have a stellate morphology and project, among other places, to the dorsal cochlear nucleus. The characteristics of such cells make them leading candidates for providing the so-called "wideband inhibitory input" which is an essential part of the processing machinery of the dorsal cochlear nucleus. Here we use juxtacellular labeling with biocytin to demonstrate directly that large stellate cells, with onset responses, terminate profusely in the dorsal cochlear nucleus. They also provide widespread local innervation of the anteroventral cochlear nucleus and a small innervation of the posteroventral cochlear nucleus. In addition, some onset cells project to the contralateral dorsal cochlear nucleus.
Collapse
Affiliation(s)
- Robert H. Arnott
- MRC Institute of Hearing Research, University Park, NG7 2RD Nottingham, UK
| | - Mark N. Wallace
- MRC Institute of Hearing Research, University Park, NG7 2RD Nottingham, UK
| | | | - Alan R. Palmer
- MRC Institute of Hearing Research, University Park, NG7 2RD Nottingham, UK
| |
Collapse
|
49
|
Lee CC, Schreiner CE, Imaizumi K, Winer JA. Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience 2004; 128:871-87. [PMID: 15464293 DOI: 10.1016/j.neuroscience.2004.06.062] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Combined physiological and connectional studies show significant non-topographic extrinsic projections to frequency-specific domains in the cat auditory cortex. These frequency-mismatched loci in the thalamus, ipsilateral cortex, and commissural system complement the predicted topographic and tonotopic projections. Two tonotopic areas, the primary auditory cortex (AI) and the anterior auditory field (AAF), were electrophysiologically characterized by their frequency organization. Next, either cholera toxin beta subunit or cholera toxin beta subunit gold conjugate was injected into frequency-matched locations in each area to reveal the projection pattern from the thalamus and cortex. Most retrograde labeling was found at tonotopically appropriate locations within a 1 mm-wide strip in the thalamus and a 2-3 mm-wide expanse of cortex (approximately 85%). However, approximately 13-30% of the neurons originated from frequency-mismatched locations far from their predicted positions in thalamic nuclei and cortical areas, respectively. We propose that these heterotopic projections satisfy at least three criteria that may be necessary to support the magnitude and character of plastic changes in physiological studies. First, they are found in the thalamus, ipsilateral and commissural cortex; since this reorganization could arise from any of these routes and may involve each, such projections ought to occur in them. Second, they originate from nuclei and areas with or without tonotopy; it is likely that plasticity is not exclusively shaped by spectral influences and not limited to cochleotopic regions. Finally, the projections are appropriate in magnitude and sign to plausibly support such rearrangements; given the rapidity of some aspects of plastic changes, they should be mediated by substantial existing connections. Alternative roles for these heterotopic projections are also considered.
Collapse
Affiliation(s)
- C C Lee
- Division of Neurobiology, Department of Molecular and Cell Biology, Room 285 Life Sciences Addition, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| | | | | | | |
Collapse
|
50
|
Cant NB, Benson CG. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 2003; 60:457-74. [PMID: 12787867 DOI: 10.1016/s0361-9230(03)00050-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cochlear nuclear complex gives rise to widespread projections to nuclei throughout the brainstem. The projections arise from separate, well-defined populations of cells. None of the cell populations in the cochlear nucleus projects to all brainstem targets, and none of the targets receives inputs from all cell types. The projections of nine distinguishable cell types in the cochlear nucleus-seven in the ventral cochlear nucleus and two in the dorsal cochlear nucleus-are described in this review. Globular bushy cells and two types of spherical bushy cells project to nuclei in the superior olivary complex that play roles in sound localization based on binaural cues. Octopus cells convey precisely timed information to nuclei in the superior olivary complex and lateral lemniscus that, in turn, send inhibitory input to the inferior colliculus. Cochlear root neurons send widespread projections to areas of the reticular formation involved in startle reflexes and autonomic functions. Type I multipolar cells may encode complex features of natural stimuli and send excitatory projections directly to the inferior colliculus. Type II multipolar cells send inhibitory projections to the contralateral cochlear nuclei. Fusiform cells in the dorsal cochlear nucleus appear to be important for the localization of sounds based on spectral cues and send direct excitatory projections to the inferior colliculus. Giant cells in the dorsal cochlear nucleus also project directly to the inferior colliculus; some of them may convey inhibitory inputs to the contralateral cochlear nucleus as well.
Collapse
Affiliation(s)
- Nell B Cant
- Department of Neurobiology, Duke University Medical Center, P.O. Box 3209, Durham, NC 27710, USA.
| | | |
Collapse
|