1
|
Cholanian M, Krajewski-Hall SJ, McMullen NT, Rance NE. Chronic oestradiol reduces the dendritic spine density of KNDy (kisspeptin/neurokinin B/dynorphin) neurones in the arcuate nucleus of ovariectomised Tac2-enhanced green fluorescent protein transgenic mice. J Neuroendocrinol 2015; 27:253-63. [PMID: 25659412 PMCID: PMC4788980 DOI: 10.1111/jne.12263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 11/27/2022]
Abstract
Neurones in the arcuate nucleus that express neurokinin B (NKB), kisspeptin and dynorphin (KNDy) play an important role in the reproductive axis. Oestradiol modulates the gene expression and somatic size of these neurones, although there is limited information available about whether their dendritic structure, a correlate of cellular plasticity, is altered by oestrogens. In the present study, we investigated the morphology of KNDy neurones by filling fluorescent neurones in the arcuate nucleus of Tac2-enhanced green fluorescent protein (EGFP) transgenic mice with biocytin. Filled neurones from ovariectomised (OVX) or OVX plus 17β-oestradiol (E2)-treated mice were visualised with anti-biotin immunohistochemistry and reconstructed in three dimensions with computer-assisted microscopy. KNDy neurones exhibited two primary dendrites, each with a few branches confined to the arcuate nucleus. Quantitative analysis revealed that E2 treatment of OVX mice decreased the cell size and dendritic spine density of KNDy neurones. The axons of KNDy neurones originated from the cell body or proximal dendrite and gave rise to local branches that appeared to terminate within the arcuate nucleus. Numerous terminal boutons were also visualised within the ependymal layer of the third ventricle adjacent to the arcuate nucleus. Axonal branches also projected to the adjacent median eminence and exited the arcuate nucleus. Confocal microscopy revealed close apposition of EGFP and gonadotrophin-releasing hormone-immunoreactive fibres within the median eminence and confirmed the presence of KNDy axon terminals in the ependymal layer of the third ventricle. The axonal branching pattern of KNDy neurones suggests that a single KNDy neurone could influence multiple arcuate neurones, tanycytes in the wall of the third ventricle, axon terminals in the median eminence and numerous areas outside of the arcuate nucleus. In parallel with its inhibitory effects on electrical excitability, E2 treatment of OVX Tac2-EGFP mice induces structural changes in the somata and dendrites of KNDy neurones.
Collapse
Affiliation(s)
- Marina Cholanian
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona, USA
| | | | - Nathaniel T. McMullen
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Naomi E. Rance
- Department of Pathology, Neurology and the Evelyn F. McKnight Brain Institute University of Arizona College of Medicine, Tucson, AZ, USA
- CORRESPONDENCE TO: Naomi E. Rance, MD, PhD, Department of Pathology, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ 85724, USA, , phone: (520) 626-6099
| |
Collapse
|
2
|
Trifunović S, Manojlović-Stojanoski M, Ristić N, Nestorović N, Medigović I, Živanović J, Milošević V. Changes of growth hormone-releasing hormone and somatostatin neurons in the rat hypothalamus induced by genistein: a stereological study. Nutr Neurosci 2014; 19:467-474. [PMID: 25087680 DOI: 10.1179/1476830514y.0000000143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Genistein is a plant-derived estrogenic isoflavone commonly found in dietary and therapeutic supplements, due to its potential health benefits. Growth hormone-releasing hormone (GHRH) and somatostatin (SS) are neurosecretory peptides synthesized in neurons of the hypothalamus and regulate the growth hormone secretion. Early reports indicate that estrogens have highly involved in the regulation of GHRH and SS secretions. Since little is known about the potential effects of genistein on GHRH and SS neurons, we exposed rats to genistein. METHODS Genistein were administered to adult rats in dose of 30 mg/kg, for 3 weeks. The estradiol-dipropionate treatment was used as the adequate controls to genistein. Using applied stereology on histological sections of hypothalamus, we obtained the quantitative information on arcuate (Arc) and periventricular (Pe) nucleus volume and volume density of GHRH neurons and SS neurons. Image analyses were used to obtain GHRH and SS contents in the median eminence (ME). RESULTS Administration of estradiol-dipropionate caused the increase of Arc and Pe nucleus volume, SS neuron volume density, GHRH and SS staining intensity in the ME, when compared with control. Genistein treatment increased: Arc nucleus volume and the volume density of GHRH neurons (by 26%) and SS neurons (1.5 fold), accompanied by higher GHRH and SS staining intensity in the ME, when compared to the orhidectomized group. DISCUSSION These results suggest that genistein has a significant effect on hypothalamic region, involved in the regulation of somatotropic system function, and could contribute to the understanding of genistein as substance that alter the hormonal balance.
Collapse
Affiliation(s)
- Svetlana Trifunović
- a Department of Cytology , Institute for Biological Research 'Siniša Stanković', University of Belgrade , Belgrade , Serbia
| | - Milica Manojlović-Stojanoski
- a Department of Cytology , Institute for Biological Research 'Siniša Stanković', University of Belgrade , Belgrade , Serbia
| | - Nataša Ristić
- a Department of Cytology , Institute for Biological Research 'Siniša Stanković', University of Belgrade , Belgrade , Serbia
| | - Nataša Nestorović
- a Department of Cytology , Institute for Biological Research 'Siniša Stanković', University of Belgrade , Belgrade , Serbia
| | - Ivana Medigović
- a Department of Cytology , Institute for Biological Research 'Siniša Stanković', University of Belgrade , Belgrade , Serbia
| | - Jasmina Živanović
- a Department of Cytology , Institute for Biological Research 'Siniša Stanković', University of Belgrade , Belgrade , Serbia
| | - Verica Milošević
- a Department of Cytology , Institute for Biological Research 'Siniša Stanković', University of Belgrade , Belgrade , Serbia
| |
Collapse
|
3
|
Ruka KA, Burger LL, Moenter SM. Regulation of arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin by modulators of neurokinin 3 and κ-opioid receptors in adult male mice. Endocrinology 2013; 154:2761-71. [PMID: 23744642 PMCID: PMC3713217 DOI: 10.1210/en.2013-1268] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile GnRH release is essential to fertility and is modulated by gonadal steroids, most likely via steroid-sensitive afferents. Arcuate neurons coexpressing kisspeptin, neurokinin B (NKB), and dynorphin (KNDy neurons) are steroid-sensitive and have been postulated to both generate GnRH pulses and mediate steroid feedback on pulse frequency. KNDy neurons are proposed to interact with one another via NKB and dynorphin to activate and inhibit the KNDy network, respectively, and thus alter kisspeptin output to GnRH neurons. To test the roles of NKB and dynorphin on KNDy neurons and the steroid sensitivity of these actions, targeted extracellular recordings were made of Tac2(NKB)-GFP-identified neurons from castrate and intact male mice. Single-cell PCR confirmed most of these cells had a KNDy phenotype. The neurokinin 3 receptor (NK3R) agonist senktide increased action potential firing activity of KNDy neurons. Dynorphin reduced spontaneous KNDy neuron activity, but antagonism of κ-opioid receptors (KOR) failed to induce firing activity in quiescent KNDy neurons. Senktide-induced activation was greater in KNDy neurons from castrate mice, whereas dynorphin-induced suppression was greater in KNDy neurons from intact mice. Interactions of dynorphin with senktide-induced activity were more complex; dynorphin treatment after senktide had no consistent inhibitory effect, whereas pretreatment with dynorphin decreased senktide-induced activity only in KNDy neurons from intact but not castrate mice. These data suggest dynorphin-mediated inhibition of senktide-induced activity requires gonadal steroid feedback. Together, these observations support the hypotheses that activation of NK3R and KOR, respectively, excites and inhibits KNDy neurons and that gonadal steroids modulate these effects.
Collapse
MESH Headings
- Animals
- Arcuate Nucleus of Hypothalamus/cytology
- Arcuate Nucleus of Hypothalamus/metabolism
- Benzeneacetamides/pharmacology
- Dynorphins/genetics
- Dynorphins/metabolism
- Dynorphins/pharmacology
- Gonadotropin-Releasing Hormone/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Kisspeptins/genetics
- Kisspeptins/metabolism
- Male
- Membrane Potentials/drug effects
- Mice
- Mice, Transgenic
- Neurokinin B/genetics
- Neurokinin B/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/physiology
- Orchiectomy
- Peptide Fragments/pharmacology
- Pyrrolidines/pharmacology
- Receptors, Neurokinin-3/agonists
- Receptors, Neurokinin-3/genetics
- Receptors, Neurokinin-3/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Substance P/analogs & derivatives
- Substance P/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Kristen A Ruka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
4
|
Zehr JL, Todd BJ, Schulz KM, McCarthy MM, Sisk CL. Dendritic pruning of the medial amygdala during pubertal development of the male Syrian hamster. ACTA ACUST UNITED AC 2007; 66:578-90. [PMID: 16555234 DOI: 10.1002/neu.20251] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The medial amygdala (Me), a brain region essential for mating behavior, changes in size during puberty. In pre-, mid-, and late pubertal (21, 35, and 49 days of age) male Syrian hamsters, we examined neuronal structure in Me and protein levels of spinophilin and synaptophysin in the amygdaloid complex for evidence of synaptic plasticity coincident with behavioral and physiological development. Body weight, testes weight, and testosterone levels increased during puberty. Mounting behavior, including ectopic, nonintromittive, and intromittive mounts, also increased. Neuronal structure in the posterodorsal medial amygdala (MePD) was assessed in Golgi-impregnated neurons. Pruning occurred during puberty in the number of dendrites emanating from the cell body and in terminal dendritic spine densities. Approximately half of all MePD neurons analyzed had an axon emanating from a dendrite rather than the cell body. However, prepubertal males were more likely to have the axon emanating from a higher order dendritic segment (secondary or tertiary) than were mid- and late pubertal males. Finally, protein levels in the amygdaloid complex varied with pubertal age. Spinophilin decreased, while synaptophysin and GAPDH protein levels increased. These results suggest that puberty is a period of dramatic synaptic plasticity in Me. Specifically, pruning of dendrites and spines, in combination with axonal changes, is likely to modify the afferent influences and electrophysiological properties of Me neurons. Because the Me is an integral component of a social behavior neural network, these changes may be related not only to sexual behavior, but also to other behaviors that mature during puberty, including aggressive, risk-taking, fear-related, and parental behaviors.
Collapse
Affiliation(s)
- Julia L Zehr
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
5
|
Cunningham RL, Claiborne BJ, McGinnis MY. Pubertal exposure to anabolic androgenic steroids increases spine densities on neurons in the limbic system of male rats. Neuroscience 2007; 150:609-15. [PMID: 17980492 DOI: 10.1016/j.neuroscience.2007.09.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/16/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
Abstract
Human studies show that the number of teenagers abusing anabolic androgenic steroids (AAS) is increasing. During adolescence, brain development is altered by androgen exposure, which suggests that AAS may potentially alter central nervous system (CNS) development. The goal of the present study was to determine whether pubertal AAS exposure increased dendritic spine densities on neurons within the medial amygdala and the dorsal hippocampus. Pubertal gonadally intact male rats received the AAS testosterone propionate (5 mg/kg) or vehicle for 5 days/week for 4 weeks. To determine the long-term implications of pubertal AAS use, another set of males received the same AAS treatment and was then withdrawn from AAS exposure for 4 weeks. Results showed that pubertal AAS exposure significantly increased spine densities on neurons in the anterior medial amygdala, posterodorsal medial amygdala, and the cornu ammonis region 1 (CA1) of the hippocampus compared with gonadally intact control males. Spine densities returned to control levels within the anterior medial amygdala and the posterodorsal medial amygdala 4 weeks after withdrawal. However, spine densities remained significantly elevated after AAS withdrawal in the CA1 region of the hippocampus, suggesting that pubertal AAS exposure may have a long-lasting impact on CA1 hippocampal neuroanatomy. Since pubertal AAS exposure increased spine densities and most excitatory synapses in the CNS occur on dendritic spines, AAS may increase neuronal excitation. It is proposed that this increase in excitation may underlie the behavioral responses seen in pubertal AAS-treated male rats.
Collapse
Affiliation(s)
- R L Cunningham
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
6
|
Grill JD, Sonntag WE, Riddle DR. Dendritic stability in a model of adult-onset IGF-I deficiency. Growth Horm IGF Res 2005; 15:337-348. [PMID: 16143551 DOI: 10.1016/j.ghir.2005.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/01/2005] [Accepted: 07/09/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVE A significant decrease in plasma levels of insulin-like growth factor-I (IGF-I) is one of the most robust hallmarks of aging and may contribute to functional changes associated with senescence. This study examined the role of IGF-I in the maintenance of adult dendritic morphology. DESIGN We utilized a model of the aging-related decrease in plasma IGF-I to examine whether such a decrease, in itself, leads to dendritic changes in the cerebral cortex. The dw/dw rat, originally of the Lewis strain, suffers from a spontaneous mutation in which growth hormone (GH) production is severely decreased. Since GH is responsible for the production of circulating IGF-I by the liver, these animals are deficient in plasma IGF-I. Homozygous dw/dw rats were administered porcine GH to sustain IGF-I levels during development and then GH injections were stopped as adults in order to examine the effects of adult-onset GH and IGF-I deficiency. Animals sacrificed after two or eight weeks of GH and IGF-I deficiency were compared to age-matched dw/dw animals that received GH both developmentally and throughout adulthood (GH/IGF-I replete). The dendritic arbors of pyramidal neurons in cingulate cortex were labeled by intracellular injection and reconstructed in three dimensions. RESULTS Comparing GH/IGF-I replete and deficient dw/dw rats, we found no differences in the apical or basal arbors of either layer two or layer five pyramidal neurons. CONCLUSIONS These findings indicate that a decrease in plasma levels of IGF-I is not sufficient in itself to produce dendritic changes like those seen in aging animals.
Collapse
Affiliation(s)
- Joshua D Grill
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
7
|
Krajewski SJ, Anderson MJ, Iles-Shih L, Chen KJ, Urbanski HF, Rance NE. Morphologic evidence that neurokinin B modulates gonadotropin-releasing hormone secretion via neurokinin 3 receptors in the rat median eminence. J Comp Neurol 2005; 489:372-86. [PMID: 16025449 DOI: 10.1002/cne.20626] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies suggest that arcuate neurokinin B (NKB) neurons play a role in the regulation of gonadotropin secretion, but there is little information on the relationship between these neurons and the hypothalamic reproductive axis. In the present study, dual-label fluorescent immunohistochemistry was used to visualize the relationship between gonadotropin-releasing hormone (GnRH) neurons and either proNKB or NK3 receptor (NK3R) immunoreactivity. Immunocytochemistry was also combined with i.p. injections of the fluorescent retrograde tracer aminostilbamidine to determine whether arcuate neuroendocrine neurons expressed either proNKB or NK3R. A dense interweaving and close apposition of GnRH and proNKB-immunoreactive (ir) fibers was observed within the rat median eminence, where GnRH axons expressed NK3R immunoreactivity. These data provide morphological evidence that NKB neurons could influence GnRH secretion via interaction with NK3R in the rat median eminence. Colocalization of GnRH and NK3R was also identified in fiber tracts converging within the organum vasculosum of the lamina terminalis. In contrast, only a small number (16%) of GnRH-ir somata exhibited NK3R staining. ProNKB and NK3R-ir somata were identified within the arcuate nucleus, but none of these neurons were labeled by aminostilbamidine. Thus, we found no evidence that arcuate NKB neurons project to the primary capillary plexus of the portal system. Arcuate neuroendocrine neurons, however, were surrounded and closely apposed by proNKB-ir puncta and fibers. These data suggest that NKB neurons could indirectly influence anterior pituitary function by inputs to arcuate neuroendocrine neurons, but through a receptor other than NK3R. Our results provide an anatomic framework for putative interactions between NKB neurons and the hypothalamic reproductive axis.
Collapse
Affiliation(s)
- Sally J Krajewski
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
8
|
Krajewski SJ, Abel TW, Voytko ML, Rance NE. Ovarian steroids differentially modulate the gene expression of gonadotropin-releasing hormone neuronal subtypes in the ovariectomized cynomolgus monkey. J Clin Endocrinol Metab 2003; 88:655-62. [PMID: 12574196 DOI: 10.1210/jc.2002-020887] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In the present study, we compared the morphology and distribution of neurons expressing GnRH gene transcripts in the hypothalamus and forebrain of the cynomolgus monkey to that of the human. As in the human, three subtypes of GnRH neurons were identified. Type I GnRH neurons were small, oval cells with high levels of gene expression and were located within the basal hypothalamus. Type II GnRH neurons were small and sparsely labeled and were widely scattered in the hypothalamus, midline nuclei of the thalamus, and extended amygdala. Type III neurons displayed magnocellular morphology and intermediate labeling intensity and were located in the nucleus basalis of Meynert, caudate, and amygdala. In a second experiment, we determined the effect of estrogen or estrogen plus progesterone on the gene expression of GnRH neurons in the brains of young, ovariectomized cynomolgus monkeys. We report that hormone treatment resulted in a significant decrease in GnRH mRNA in type I neurons within the basal hypothalamus of ovariectomized monkeys. In contrast, there was no effect of hormone treatment on the gene expression of type III GnRH neurons in the nucleus basalis of Meynert. The present findings provide evidence that the increase in gene expression of type I GnRH neurons in postmenopausal women is secondary to the ovarian failure of menopause. The differential responses of type I and III GnRH neurons to hormone treatment provide additional evidence that distinct subpopulations of neurons expressing GnRH mRNA exist in the primate hypothalamus.
Collapse
Affiliation(s)
- Sally J Krajewski
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
9
|
Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:29-54. [PMID: 12086707 DOI: 10.1016/s0165-0173(02)00158-3] [Citation(s) in RCA: 618] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered dendritic spines are characteristic of traumatized or diseased brain. Two general categories of spine pathology can be distinguished: pathologies of distribution and pathologies of ultrastructure. Pathologies of spine distribution affect many spines along the dendrites of a neuron and include altered spine numbers, distorted spine shapes, and abnormal loci of spine origin on the neuron. Pathologies of spine ultrastructure involve distortion of subcellular organelles within dendritic spines. Spine distributions are altered on mature neurons following traumatic lesions, and in progressive neurodegeneration involving substantial neuronal loss such as in Alzheimer's disease and in Creutzfeldt-Jakob disease. Similarly, spine distributions are altered in the developing brain following malnutrition, alcohol or toxin exposure, infection, and in a large number of genetic disorders that result in mental retardation, such as Down's and fragile-X syndromes. An important question is whether altered dendritic spines are the intrinsic cause of the accompanying neurological disturbances. The data suggest that many categories of spine pathology may result not from intrinsic pathologies of the spiny neurons, but from a compensatory response of these neurons to the loss of excitatory input to dendritic spines. More detailed studies are needed to determine the cause of spine pathology in most disorders and relationship between spine pathology and cognitive deficits.
Collapse
Affiliation(s)
- John C Fiala
- Department of Biology, Boston University, 5 Cummington Street, MA 02215, USA.
| | | | | |
Collapse
|
10
|
Danzer SC, McMullen NT, Rance NE. Testosterone modulates the dendritic architecture of arcuate neuroendocrine neurons in adult male rats. Brain Res 2001; 890:78-85. [PMID: 11164770 DOI: 10.1016/s0006-8993(00)03083-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent studies have demonstrated that gonadectomy of adult male rats induces dendritic growth of neuroendocrine neurons in the arcuate nucleus. We have hypothesized that these changes are secondary to the loss of testosterone negative feedback. In the present study, we examined the effects of testosterone replacement on the dendritic morphology of arcuate neuroendocrine neurons in castrated rats. Rats were orchidectomized and implanted with silastic capsules designed to produce physiological levels of plasma testosterone (n=9) or empty silastic capsules (n=9) for 2 months. Retrograde labeling with systemically injected Fluoro-Gold, followed by intracellular injection of labeled neurons in a fixed slice preparation, were used to visualize arcuate neuroendocrine neurons. Quantitative analysis of dendritic morphology was performed using three-dimensional computer reconstruction. Serum levels of LH (luteinizing hormone) and testosterone were measured by radioimmunoassay. Treatment of castrated rats with physiological levels of testosterone significantly reduced dendritic length, volume and terminal branch number relative to the castrated rats receiving empty silastic capsules. Dendritic spine density was also greater in the testosterone-treated animals, although the total numbers of spines per dendrite was not significantly different between the two groups. In addition, testosterone replacement was effective in reducing serum LH to levels found in intact rats. These studies demonstrate that testosterone replacement suppresses the dendritic outgrowth of arcuate neuroendocrine neurons that occurs in response to castration. The parallel changes in dendritic arbor and serum LH after castration and hormone replacement suggests that the suppressive effects of testosterone are related to steroid negative feedback.
Collapse
Affiliation(s)
- S C Danzer
- Department of Pathology, University of Arizona College of Medicine, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
11
|
Abstract
Aging in women is associated with dramatic changes in neuronal morphology and neuropeptide gene expression in the medial basal hypothalamus. There is hypertrophy of neurons expressing substance P and neurokinin B gene transcripts in the infundibular (arcuate) nucleus, accompanied by increased tachykinin gene expression. In addition, gonadotropin-releasing hormone (GnRH) gene expression is increased in a separate subpopulation of neurons within the medial basal hypothalamus. In contrast, the number of neurons expressing proopiomelanocortin (POMC) mRNA in the infundibular nucleus of older women is decreased. To determine whether neuronal degeneration contributes to these phenomena, unbiased stereologic methods were used to compare the total number of infundibular neurons between groups of young (premenopausal) and older (postmenopausal) women. There was no significant difference in the total number of infundibular neurons between young (520,000 +/- 42,000 neurons, mean +/- SEM) and older women (505,000 +/- 51,000 neurons, mean +/- SEM). The mean volume of neuronal somata, however, was increased by 40% in the older women (young, 1,860 +/- 180 microm(3) vs. older, 2,610 +/- 230 microm(3), mean +/- SEM, P < 0.05). These data demonstrate that neuronal hypertrophy in older women is not accompanied by degeneration of the infundibular nucleus. We conclude that the loss of menstrual cyclicity in middle-aged women cannot be explained by loss of neurons within the hypothalamic control center for reproduction.
Collapse
Affiliation(s)
- T W Abel
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | |
Collapse
|
12
|
Danzer SC, Price RO, McMullen NT, Rance NE. Sex steroid modulation of neurokinin B gene expression in the arcuate nucleus of adult male rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 66:200-4. [PMID: 10095095 DOI: 10.1016/s0169-328x(99)00024-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human menopause is associated with hypertrophy and increased gene expression of neurokinin (NKB) neurons in the infundibular (arcuate) nucleus of the hypothalamus. We have hypothesized that these changes are secondary to gonadal failure. In the present study, we determined that orchidectomy resulted in an increase in the mean profile area and the number of neurons expressing NKB mRNA in the rat arcuate nucleus. No changes were seen when orchidectomy was combined with testosterone or estradiol replacement. These findings support our hypothesis and demonstrate that gonadal steroids modulate NKB neurons in the arcuate nucleus of adult male rats.
Collapse
Affiliation(s)
- S C Danzer
- Departments of Cell Biology and Anatomy, Pathology, and Neurology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The arcuate nucleus of the hypothalamus (ARN) is involved in a variety of functions known to be sexually dimorphic and altered by aging. Although the effects of sex and age on the synaptic organization and neurochemistry of the ARN have been extensively analyzed, data regarding sex-related differences and age-induced effects on the total number of neurons and volume of the ARN in adult and aged male and female rats are controversial. To address this issue, we have quantitatively analyzed the ARN of male and female Wistar rats aged 6 and 24 months. The optical fractionator, the optical rotator, and the Principle of Cavalieri were used as the estimators of the total number of neurons, mean nuclear volume of ARN neurons, and volume of the ARN, respectively. In addition, a Golgi study was carried out to analyze the dendritic trees of its neurons. We found that in young adult rats, the volume of the ARN is 0.9 mm3 in males and 0.7 mm3 in females, whereas the total number of neurons is 100 x 10(3) in males and 86 x 10(3) in females. ARN neurons of males and females have identical mean nuclear volumes, which we estimated to be 300 microm3. No significant effects of age were found in these parameters, both in males and in females. In adult rats, no sex-related differences were detected in the number of dendritic segments and in the total dendritic length, but the dendritic branching density and the spine density were greater in females than in males. In aged rats there was a significant reduction in the number of dendritic segments, in the total dendritic length, and in the branching and spine densities that, although evident in both sexes, was more marked in females. Our results show that the total number of neurons and the volume of the ARN are sexually dimorphic in adult and aged rats and that neither of these parameters is altered by aging. Conversely, aging induces regressive changes in the dendritic arborizations of ARN neurons of males and females and abolishes the sexual dimorphic pattern of their organization.
Collapse
Affiliation(s)
- S Leal
- Department of Anatomy, Porto Medical School, Portugal
| | | | | | | |
Collapse
|
14
|
Prince KN, Prince JS, Kinghorn EW, Fleming DE, Rhees RW. Effects of sexual behavioral manipulation on brain plasticity in adult rats. Brain Res Bull 1998; 47:349-55. [PMID: 9886787 DOI: 10.1016/s0361-9230(98)00118-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of the present study was to determine the effects of sexual behaviorial manipulation on brain plasticity in adult male rats. Adult male Sprague-Dawley rats that copulated during male sexual behavior testing were divided into four groups: control male; gonadectomized (Gdx) male; sexually active male; and sexually nonactive male. Female animals were used as an additional control group. At the end of a 12-week experimental period, the animals were again tested for male sexual behavior and tested for sexual motivation. Sexual behavior manipulations over the 12-week period resulted in significant differences in mount latency, mount frequency, intromission latency, intromission frequency, ejaculation latency, and the postejaculation interval. In the motivation test, significant differences in the number of approaches, contacts, and crossings of an electrified grid separating the test animal from a receptive female were also observed. Sexually dimorphic nucleus of the preoptic area (SDN-POA) volumes in sexually nonactive males were significantly smaller than in control males or sexually active males. Anteroventral periventricular nucleus (AVPV) volumes in the male groups were not significantly altered by sexual behavioral manipulations, however, the nonactive AVPV vol. was the only vol. not significantly different from the control female vol. These data demonstrate that in the adult rat, sexual behavioral manipulations resulted in significant alterations in behavior and in the vol. of the SDN-POA and that the effect of sexual behavior on the AVPV needs to be further investigated.
Collapse
Affiliation(s)
- K N Prince
- Department of Zoology, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | |
Collapse
|