1
|
Norekian TP, Moroz LL. The distribution and evolutionary dynamics of dopaminergic neurons in molluscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600886. [PMID: 38979169 PMCID: PMC11230423 DOI: 10.1101/2024.06.26.600886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is one of the most versatile neurotransmitters in invertebrates. It's distribution and plethora of functions is likely coupled to feeding ecology, especially in Euthyneura (the largest clade of molluscs), which presents the broadest spectrum of environmental adaptations. Still, the analyses of dopamine-mediated signaling were dominated by studies of grazers. Here, we characterize the distribution of dopaminergic neurons in representatives of two distinct ecological groups: the sea angel - obligate predatory pelagic mollusc Clione limacina (Pteropoda, Gymnosomata) and its prey - the sea devil Limacina helicina (Pteropoda, Thecosomata) as well as the plankton eater Melibe leonina (Nudipleura, Nudibranchia). By using tyrosine hydroxylase-immunoreactivity (TH-ir) as a reporter, we showed that the dopaminergic system is moderately conservative among euthyneurans. Across all studied species, small numbers of dopaminergic neurons in the central ganglia contrast to significant diversification of TH-ir neurons in the peripheral nervous system, primarily representing sensory-like cells, which predominantly concentrated in the chemotactic areas and projecting afferent axons to the central nervous system. Combined with α-tubulin immunoreactivity, this study illuminates the unprecedented complexity of peripheral neural systems in gastropod molluscs, with lineage-specific diversification of sensory and modulatory functions.
Collapse
Affiliation(s)
| | - Leonid L. Moroz
- Whitney Laboratory, University of Florida, St. Augustine, FL, USA
- Departments of Neuroscience and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Horváth R, Battonyai I, Maász G, Schmidt J, Fekete ZN, Elekes K. Chemical-neuroanatomical organization of peripheral sensory-efferent systems in the pond snail (Lymnaea stagnalis). Brain Struct Funct 2020; 225:2563-2575. [PMID: 32951073 PMCID: PMC7544616 DOI: 10.1007/s00429-020-02145-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022]
Abstract
Perception and processing of chemical cues are crucial for aquatic gastropods, for proper elaboration of adaptive behavior. The pond snail, Lymnaea stagnalis, is a model species of invertebrate neurobiology, in which peripheral sensory neurons with different morphology and transmitter content have partly been described, but we have little knowledge regarding their functional morphological organization, including their possible peripheral intercellular connections and networks. Therefore the aim of our study was to characterize the sensory system of the tentacles and the lip, as primary sensory regions, and the anterior foot of Lymnaea with special attention to the transmitter content of the sensory neurons, and their relationship to extrinsic elements of the central nervous system. Numerous bipolar sensory cells were demonstrated in the epithelial layer of the peripheral organs, displaying immunoreactivity to antibodies raised against tyrosine hydroxylase, histamine, glutamate and two molluscan type oligopeptides, FMRFamide and Mytilus inhibitory peptide. A subepithelial plexus was formed by extrinsic serotonin and FMRFamide immunoreactive fibers, whereas in deeper regions axon processess of different origin with various immunoreactivities formed networks, too. HPLC-MS assay confirmed the presence of the low molecular weight signal molecules in the three examined areas. Following double-labeling immunohistochemistry, close arrangements were observed, formed by sensory neurons and extrinsic serotonergic (and FMRFamidergic) fibers at axo-dendritic, axo-somatic and axo-axonic levels. Our results suggest the involvement of a much wider repertoire of signal molecules in peripheral sensory processes of Lymnaea, which can locally be modified by central input, hence influencing directly the responses to environmental cues.
Collapse
Affiliation(s)
- Réka Horváth
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary.
| | - Izabella Battonyai
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - Gábor Maász
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - János Schmidt
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, 7624, Pécs, Hungary
| | - Zsuzsanna N Fekete
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - Károly Elekes
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| |
Collapse
|
3
|
|
4
|
Young AP, Jackson DJ, Wyeth RC. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ 2020; 8:e8806. [PMID: 32219032 PMCID: PMC7085896 DOI: 10.7717/peerj.8806] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
RNA-fluorescence in situ hybridization (FISH) is a powerful tool to visualize target messenger RNA transcripts in cultured cells, tissue sections or whole-mount preparations. As the technique has been developed over time, an ever-increasing number of divergent protocols have been published. There is now a broad selection of options available to facilitate proper tissue preparation, hybridization, and post-hybridization background removal to achieve optimal results. Here we review the technical aspects of RNA-FISH, examining the most common methods associated with different sample types including cytological preparations and whole-mounts. We discuss the application of commonly used reagents for tissue preparation, hybridization, and post-hybridization washing and provide explanations of the functional roles for each reagent. We also discuss the available probe types and necessary controls to accurately visualize gene expression. Finally, we review the most recent advances in FISH technology that facilitate both highly multiplexed experiments and signal amplification for individual targets. Taken together, this information will guide the methods development process for investigators that seek to perform FISH in organisms that lack documented or optimized protocols.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Daniel J Jackson
- Department of Geobiology, Georg-August Universität Göttingen, Göttingen, Germany
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| |
Collapse
|
5
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
6
|
Beach GA, Habib MR, El Hiani Y, Miller MW, Croll RP. Localization of keyhole limpet hemocyanin-like immunoreactivity in the nervous system of Biomphalaria alexandrina. J Neurosci Res 2019; 97:1469-1482. [PMID: 31379045 PMCID: PMC10401489 DOI: 10.1002/jnr.24497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023]
Abstract
Recent years have led to increased effort to describe and understand the peripheral nervous system and its influence on central mechanisms and behavior in gastropod molluscs. This study revealed that an antibody raised against keyhole limpet hemocyanin (KLH) cross-reacts with an antigen(s) found extensively in both the central and the peripheral nervous systems of Biomphalaria alexandrina. The results revealed KLH-like immunoreactive (LIR) neurons in the cerebral, pedal, buccal, left pleural, right parietal, and visceral ganglion within the CNS with fibers projecting throughout all the peripheral nerves. Numerous KLH-LIR peripheral sensory neurons located in the foot, lips, tentacles, mantle, esophagus, and penis exhibited a bipolar morphology with long tortuous dendrites. KLH-LIR cells were also present in the eye and statocyst, thus suggesting the labeling of multiple sensory modalities/cell types. KLH-LIR cells did not co-localize with tyrosine hydroxylase (TH)-LIR cells, which have previously been described in this and other gastropods. The results thus provide descriptions of thousands of peripheral sensory neurons, not previously described in detail. Future research should seek to pair sensory modalities with peripheral cell type and attempt to further elucidate the nature of KLH-like reactivity. These findings also emphasize the need for caution when analyzing results obtained through use of antibodies raised against haptens conjugated to carrier proteins, suggesting the need for stringent controls to help limit potential confounds caused by cross-reactivity. In addition, this study is the first to describe neuronal cross-reactivity with KLH in Biomphalaria, which could provide a substrate for host-parasite interactions with a parasitic trematode, Schistosoma.
Collapse
Affiliation(s)
- Griffin A Beach
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yassine El Hiani
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Mark W Miller
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Roger P Croll
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Zaitseva OV, Shumeev AN, Petrov SA. Common and Distinctive Features in the Organization of Catecholamine-Containing Systems in Gastropods and Nemerteans: Evolutionary Aspects. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Brown JW, Schaub BM, Klusas BL, Tran AX, Duman AJ, Haney SJ, Boris AC, Flanagan MP, Delgado N, Torres G, Rolón-Martínez S, Vaasjo LO, Miller MW, Gillette R. A role for dopamine in the peripheral sensory processing of a gastropod mollusc. PLoS One 2018; 13:e0208891. [PMID: 30586424 PMCID: PMC6306152 DOI: 10.1371/journal.pone.0208891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022] Open
Abstract
Histological evidence points to the presence of dopamine (DA) in the cephalic sensory organs of multiple gastropod molluscs, suggesting a possible sensory role for the neurotransmitter. We investigated the sensory function of DA in the nudipleuran Pleurobranchaea californica, in which the central neural correlates of sensation and foraging behavior have been well characterized. Tyrosine hydroxylase-like immunoreactivity (THli), a signature of the dopamine synthetic pathway, was similar to that found in two other opisthobranchs and two pulmonates previously studied: 1) relatively few (<100) THli neuronal somata were observed in the central ganglia, with those observed found in locations similar to those documented in the other snails but varying in number, and 2) the vast majority of THli somata were located in the peripheral nervous system, were associated with ciliated, putative primary sensory cells, and were highly concentrated in chemotactile sensory organs, giving rise to afferent axons projecting to the central nervous system. We extended these findings by observing that applying a selective D2/D3 receptor antagonist to the chemo- and mechanosensory oral veil-tentacle complex of behaving animals significantly delayed feeding behavior in response to an appetitive stimulus. A D1 blocker had no effect. Recordings of the two major cephalic sensory nerves, the tentacle and large oral veil nerves, in a deganglionated head preparation revealed a decrease of stimulus-evoked activity in the former nerve following application of the same D2/D3 antagonist. Broadly, our results implicate DA in sensation and engender speculation regarding the foraging-based decisions the neurotransmitter may serve in the nervous system of Pleurobranchaea and, by extension, other gastropods.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Program in Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - Brittany M. Schaub
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bennett L. Klusas
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Andrew X. Tran
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alexander J. Duman
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Samantha J. Haney
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Abigail C. Boris
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Megan P. Flanagan
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nadia Delgado
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Grace Torres
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Solymar Rolón-Martínez
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Lee O. Vaasjo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Rhanor Gillette
- Program in Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular & Integrative Physiology and the Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
9
|
Pavlova GA. The similarity of crawling mechanisms in aquatic and terrestrial gastropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 205:1-11. [PMID: 30302551 DOI: 10.1007/s00359-018-1294-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Crawling gastropods are unique models for studying the functioning of smooth muscles and ciliated epithelia, since they cover the foot sole and are involved in locomotion, allowing for direct investigation. Two types of crawling are known: creeping by muscular waves in terrestrial gastropods such as Helix and сiliary gliding in aquatic gastropods such as Lymnaea. It was found that the smooth muscles that underlie the ciliated epithelium in Lymnaea are involved in gliding and contribute significantly to fast crawling. Thus, the locomotor apparatus is fundamentally the same in both snails and the difference between crawling reflects an adaptation to a habitat. The control of crawling speed is also the same. Tonic contraction, relaxation, and rhythmic contractions are involved in this control. During a locomotor episode, the sole length and crawling speed spontaneously change and directly correlate with each other via the contraction force of the muscle cells in the locomotory waves. Dopamine, unlike ergometrine, decreases the sole length and crawling speed. Serotonin stimulates, increases crawling and determines the number of muscle cells involved in the locomotory waves for each locomotor episode. This control (taking into account heterogeneity) apparently might exist in any other phasic smooth muscle, including vertebrates.
Collapse
Affiliation(s)
- Galina A Pavlova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia.
| |
Collapse
|
10
|
Vaasjo LO, Quintana AM, Habib MR, Mendez de Jesus PA, Croll RP, Miller MW. GABA-like immunoreactivity in Biomphalaria: Colocalization with tyrosine hydroxylase-like immunoreactivity in the feeding motor systems of panpulmonate snails. J Comp Neurol 2018; 526:1790-1805. [PMID: 29633264 DOI: 10.1002/cne.24448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022]
Abstract
The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of γ-aminobutyric acid-like immunoreactivity (GABAli) in the nervous system of the panpulmonates Biomphalaria glabrata and Biomphalaria alexandrina, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocalized with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod Aplysia californica (Díaz-Ríos, Oyola, & Miller, 2002), double-labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli-THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli-THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, Lymnaea stagnalis and Helisoma trivolvis. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.
Collapse
Affiliation(s)
- Lee O Vaasjo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Alexandra M Quintana
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Paola A Mendez de Jesus
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark W Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
11
|
Starunov VV, Voronezhskaya EE, Nezlin LP. Development of the nervous system in Platynereis dumerilii (Nereididae, Annelida). Front Zool 2017; 14:27. [PMID: 28559917 PMCID: PMC5445494 DOI: 10.1186/s12983-017-0211-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
Background The structure and development of the nervous system in Lophotrochozoa has long been recognized as one of the most important subjects for phylogenetic and evolutionary discussion. Many recent papers have presented comprehensive data on the structure and development of catecholaminergic, serotonergic and FMRFamidergic parts of the nervous system. However, relatively few papers contain detailed descriptions of the nervous system in Annelida, one of the largest taxa of Lophotrochozoa. The polychaete species Platynereis dumerilii has recently become one of the more popular model animals in evolutionary and developmental biology. The goal of the present study was to provide a detailed description of its neuronal development. The data obtained will contribute to a better understanding of the basic features of neuronal development in polychaetes. Results We have studied the development of the nervous system in P. dumerilii utilizing histo- and immunochemical labelling of catecholamines, serotonin, FMRFamide related peptides, and acetylated tubulin. The first neuron differentiates at the posterior extremity of the protrochophore, reacts to the antibodies against both serotonin and FMRFamide. Then its fibres run forwards along the ventral side. Soon, more neurons appear at the apical extreme, and their basal neurites form the basel structure of the developing brain (cerebral neuropil and circumesophageal connectives). Initial development of the nervous system starts in two rudiments: anterior and posterior. At the nectochaete stage, segmental ganglia start to differentiate in the anterior-to-posterior direction, and the first structures of the stomatogastric and peripheral nervous system appear. All connectives including the unpaired ventral cord develop from initially paired nerves. Conclusions We present a detailed description of Platynereis dumerilii neuronal development based on anti-acetylated tubulin, serotonin, and FMRFamide-like immunostaining as well as catecholamine histofluorescence. The development of the nervous system starts from peripheral pioneer neurons at both the posterior and anterior poles of the larva, and their neurites form a scaffold upon which the adult central nervous system develops. The anterior-to-posterior mode of the ventral ganglia development challenges the primary heteronomy concept. Comparison with the development of Mollusca reveals substantial similarities with early neuronal development in larval Solenogastres. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0211-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viktor V Starunov
- Department of Invertebrate Zoology, St-Petersburg State University, St-Petersburg, 199034 Russia.,Zoological Institute Rus, Acad. Sci, St-Petersburg, 199034 Russia
| | | | - Leonid P Nezlin
- Institute of Developmental Biology, Rus. Acad. Sci, Moscow, 119991 Russia
| |
Collapse
|
12
|
Matsuo R, Tanaka M, Fukata R, Kobayashi S, Aonuma H, Matsuo Y. Octopaminergic system in the central nervous system of the terrestrial slugLimax. J Comp Neurol 2016; 524:3849-3864. [DOI: 10.1002/cne.24039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ryota Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Marin Tanaka
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Rena Fukata
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Sanuki Kagawa 769-2193 Japan
| | - Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute of Electronic Science; Hokkaido University; Sapporo Hokkaido 060-0812 Japan
- Japan Science and Technology Agency; CREST; Kawaguchi Saitama 332-0012 Japan
| | - Yuko Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| |
Collapse
|
13
|
RNA synthesis and turnover in the molluscan nervous system studied by Click-iT method. Brain Res 2016; 1633:139-148. [PMID: 26749075 DOI: 10.1016/j.brainres.2015.12.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022]
Abstract
RNA synthesis can be detected by means of the in vivo incorporation of 5-ethynyluridine (EU) in newly-synthesized RNA with the relatively simple Click-iT method. We used this method to study the RNA synthesis in the CNS tissue of adult and juvenile terrestrial snails Helix lucorum L. Temporally, first labeled neurons were detected in the adult CNS after 4-h of isolated CNS incubation in EU solution, while 12-h of incubation led to extensive labeling of most CNS neurons. The EU labeling was present as the nuclear and nucleolar staining. The cytoplasm staining was observed after 2-3 days of CNS washout following the EU exposure for 16 h. In juvenile CNS, the first staining reaction was apparent as the staining of apical region in the procerebral lobe of cerebral ganglia after 1h of CNS incubation in EU, while the maximum pattern of staining was obtained after 4h of CNS incubation. Thus, age-related differences in RNA synthesis are present. Activation of neurons elicited by serotonin and caffeine applications noticeably increased the intensity of staining. EU readily penetrates into the bodies of juvenile snails immersed in the EU solution. When the intact juvenile animals were immersed in the EU solution for 1h, the procerebrum staining, similar to the one detected in the incubated juvenile CNS, was observed.
Collapse
|
14
|
Liu Z, Zhou Z, Wang L, Song X, Chen H, Wang W, Liu R, Wang M, Wang H, Song L. The enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2015; 45:250-259. [PMID: 25907641 DOI: 10.1016/j.fsi.2015.03.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Enkephalinergic neuroendocrine-immune regulatory system is one of the most important neuroendocrine-immune systems in both vertebrates and invertebrates for its significant role in the immune regulation. In the present study, the early onset of enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas were investigated to illustrate the function of neural regulation on the innate immune system in oyster larvae. [Met(5)]-enkephalin (Met-ENK) was firstly observed on the marginal of the dorsal half of D-hinged larvae. Six immune-related molecules, including four PRRs (CgCTL-1, CgCTL-2, CgCTL-4, CgNatterin-3) and two immune effectors (CgTNF-1 and CgEcSOD) were detected in the early developmental stages of trochophore, D-hinged and umbo larvae of oyster. After incubated with [Met(5)]-enkephalin, the mRNA expression level of all the PRRs changed significantly (p < 0.05). In trochophore larvae, the expression level of CgNatterin-3 decreased dramatically (p < 0.05) at 6 h, and the expression level of CgCTL-4 was significantly down-regulated at 3 h and 6 h (p < 0.05), respectively. In D-hinged and umbo larvae, only CgCTL-1 was significantly down-regulated and the differences were significant at 3 h and 6 h (p < 0.05), while the expression level of CgCTL-2 and CgCTL-4 increased significantly at 3 h after treatment (p < 0.05). Moreover, the expression levels of immune effectors were up-regulated significantly at 3 h and 6 h in trochophore larvae (p < 0.05). The expression level of CgTNF-1 in both blank and experiment groups was up-regulated but there was no significant difference in D-hinged larvae stage. On the contrary, the expression level of CgEcSOD in D-hinged larvae decreased dramatically at 3 h and 6 h after [Met(5)]-enkephalin incubation (p < 0.05). In umbo larvae, the expression level of CgTNF-1 and CgEcSOD in the experiment group increased significantly at 6 h after [Met(5)]-enkephalin treatment (p < 0.05), while no significant difference was found in the blank group. In addition, the anti-bacterial activities of the total protein extract from trochophore, D-hinged and umbo larvae increased significantly (p < 0.05) at both 3 h and 6 h after [Met(5)]-enkephalin incubation compared to that in the blank group, and PO activities of both D-hinged and umbo larvae total protein extract increased significantly (p < 0.05) while no significant difference was observed in trochophore larvae. The PO activities of the total protein extract in all the experiment groups decreased after the treatment with [Met(5)]-enkephalin for 6 h, but no significant difference was observed when compared to the blank group. Furthermore, after incubation for 6 h, the concentration of both CgTNF-1 and CgIL17-5 increased dramatically compared to that in the blank group (p < 0.05). These results together indicated that the enkephalinergic nervous system of oyster was firstly appeared in D-hinged larvae, while the primitive immune defense system existed in the region of prototroch in trochophore larvae and developed maturely after D-hinged larvae. The developing immune system could be regulated by the neurotransmitter [Met(5)]-enkephalin released by the neuroendocrine system in oyster C. gigas.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiaorui Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
15
|
Gillette R, Brown JW. The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior. Integr Comp Biol 2015; 55:1058-69. [PMID: 26163678 DOI: 10.1093/icb/icv081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
How and why did complex brain and behavior evolve? Clues emerge from comparative studies of animals with simpler morphology, nervous system, and behavioral economics. The brains of vertebrates, arthropods, and some annelids have highly derived executive structures and function that control downstream, central pattern generators (CPGs) for locomotion, behavioral choice, and reproduction. For the vertebrates, these structures-cortex, basal ganglia, and hypothalamus-integrate topographically mapped sensory inputs with motivation and memory to transmit complex motor commands to relay stations controlling CPG outputs. Similar computations occur in the central complex and mushroom bodies of the arthropods, and in mammals these interactions structure subjective thought and socially based valuations. The simplest model systems available for comparison are opisthobranch molluscs, which have avoided selective pressure for complex bodies, brain, and behavior through potent chemical defenses. In particular, in the sea-slug Pleurobranchaea californica the functions of vertebrates' olfactory bulb and pallium are performed in the peripheral nervous system (PNS) of the chemotactile oral veil. Functions of hypothalamus and basal ganglia are combined in Pleurobranchaea's feeding motor network. The actions of basal ganglia on downstream locomotor regions and spinal CPGs are analogous to Pleurobranchaea's feeding network actions on CPGs for agonist and antagonist behaviors. The nervous systems of opisthobranch and pulmonate gastropods may conserve or reflect relations of the ancestral urbilaterian. Parallels and contrasts in neuronal circuits for action selection in Pleurobranchaea and vertebrates suggest how a basic set of decision circuitry was built upon in evolving segmentation, articulated skeletons, sociality, and highly invested reproductive strategies. They suggest (1) an origin of olfactory bulb and pallium from head-region PNS; (2) modularization of an ancestral feeding network into discrete but interacting executive modules for incentive comparison and decision (basal ganglia), and homeostatic functions (hypothalamus); (3) modification of a multifunctional premotor network for turns and locomotion, and its downstream targets for mid-brain and hind-brain motor areas and spinal CPGs; (4) condensation of a distributed serotonergic network for arousal into the raphe nuclei, with superimposed control by a peptidergic hypothalamic network mediating appetite and arousal; (5) centralization and condensation of the dopaminergic sensory afferents of the PNS, and/or the disperse dopaminergic elements of central CPGs, into the brain nuclei mediating valuation, reward, and motor arousal; and (6) the urbilaterian possessed the basic circuit relations integrating sensation, internal state, and learning for cost-benefit approach-avoidance decisions.
Collapse
Affiliation(s)
- Rhanor Gillette
- *Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 Goodwin Avenue, 524 Burrill Hall, Urbana, IL 61801, USA;
| | - Jeffrey W Brown
- Program in Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni. PLoS One 2015; 10:e0129800. [PMID: 26086611 PMCID: PMC4472778 DOI: 10.1371/journal.pone.0129800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites.
Collapse
|
17
|
Zaitseva OV, Shumeev AN, Korshunova TA, Martynov AV. Heterochronies in the formation of the nervous and digestive systems in early postlarval development of opisthobranch mollusks: Organization of major organ systems of the arctic dorid Cadlina laevis. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015030152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Feiner M, Laforsch C, Letzel T, Geist J. Sublethal effects of the beta-blocker sotalol at environmentally relevant concentrations on the New Zealand mudsnail Potamopyrgus antipodarum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2510-2515. [PMID: 25132045 DOI: 10.1002/etc.2699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/17/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Monitoring sublethal effects of pharmaceuticals on nontarget species in aquatic environments has become an important topic in ecotoxicology, yet few studies have been conducted concerning the effects of beta-blockers on aquatic organisms. The present study investigated the effects of the beta-blocker sotalol (SOT) at 3 environmentally relevant concentrations on life-history traits of the New Zealand mudsnail Potamopyrgus antipodarum. Based on the pharmacodynamic properties of SOT, the authors hypothesized reduced numbers of embryos in the brood pouches, decelerated growth of adult snails, and smaller size of neonates, but no effect on mortality rates of adults. Contrary to the hypothesis, the total number of embryos was significantly higher after 56 d of exposure at nominal concentrations of 0.05 µg/L and 1.0 µg/L by 107% and 73%, respectively. No differences in embryo numbers were observed at earlier time-points. Therefore, the mode of action seems to be an extension of the reproductive period rather than an increase of the embryo production. Furthermore, our results indicate a hormetic dose-response relationship, because no effects were observed at the highest test-concentration (6.5 µg/L). Mortality, growth of adult snails, and neonate sizes were not affected by the beta-blocker. Given the strong influence on reproduction, the effects of sublethal concentrations of SOT and other beta-blockers deserve better consideration in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Mona Feiner
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| | | | | | | |
Collapse
|
19
|
Vallejo D, Habib MR, Delgado N, Vaasjo LO, Croll RP, Miller MW. Localization of tyrosine hydroxylase-like immunoreactivity in the nervous systems of Biomphalaria glabrata and Biomphalaria alexandrina, intermediate hosts for schistosomiasis. J Comp Neurol 2014; 522:2532-52. [PMID: 24477836 PMCID: PMC4043854 DOI: 10.1002/cne.23548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/09/2022]
Abstract
Planorbid snails of the genus Biomphalaria are major intermediate hosts for the digenetic trematode parasite Schistosoma mansoni. Evidence suggests that levels of the neurotransmitter dopamine (DA) are reduced during the course of S. mansoni multiplication and transformation within the snail. This investigation used immunohistochemical methods to localize tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, in the nervous system of Biomphalaria. The two species examined, Biomphalaria glabrata and Biomphalaria alexandrina, are the major intermediate hosts for S. mansoni in sub-Saharan Africa, where more than 90% of global cases of human intestinal schistosomiasis occur. TH-like immunoreactive (THli) neurons were distributed throughout the central nervous system (CNS) and labeled fibers were present in all commissures, connectives, and nerves. Some asymmetries were observed, including a large distinctive neuron (LPeD1) in the pedal ganglion described previously in several pulmonates. The majority of TH-like immunoreactive neurons were detected in the peripheral nervous system (PNS), especially in lip and foot regions of the anterior integument. Independent observations supporting the dopaminergic phenotype of THli neurons included 1) block of LPeD1 synaptic signaling by the D2/3 antagonist sulpiride, and 2) the similar localization of aqueous aldehyde (FaGlu)-induced fluorescence. The distribution of THli neurons indicates that, as in other gastropods, dopamine functions as a sensory neurotransmitter and in the regulation of feeding and reproductive behaviors in Biomphalaria. It is hypothesized that infection could stimulate transmitter release from dopaminergic sensory neurons and that dopaminergic signaling could contribute to modifications of both host and parasite behavior.
Collapse
Affiliation(s)
- Deborah Vallejo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| | - Mohammed R. Habib
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
- Theodor Bilharz Research Institute, Giza, Egypt
| | - Nadia Delgado
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| | - Lee O. Vaasjo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd del Valle, San Juan, Puerto Rico 00901
| |
Collapse
|
20
|
Zaitseva OV, Petrov SA. Biogenic amines in the nervous system of nemerteans. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 451:228-30. [PMID: 23975463 DOI: 10.1134/s001249661304008x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Indexed: 11/23/2022]
Affiliation(s)
- O V Zaitseva
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, 199034, Russia
| | | |
Collapse
|
21
|
Moroz LL. Phylogenomics meets neuroscience: how many times might complex brains have evolved? ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 2:3-19. [PMID: 22776469 DOI: 10.1556/abiol.63.2012.suppl.2.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The origin of complex centralized brains is one of the major evolutionary transitions in the history of animals. Monophyly (i.e. presence of a centralized nervous system in urbilateria) vs polyphyly (i.e. multiple origins by parallel centralization of nervous systems within several lineages) are two historically conflicting scenarios to explain such transitions. However, recent phylogenomic and cladistic analysis suggests that complex brains may have independently evolved at least 9 times within different animal lineages. Indeed, even within the phylum Mollusca cephalization might have occurred at least 5 times. Emerging molecular data further suggest that at the genomic level such transitions might have been achieved by changes in expression of just a few transcriptional factors - not surprising since such events might happen multiple times over 700 million years of animal evolution. Both cladistic and genomic analyses also imply that neurons themselves evolved more than once. Ancestral polarized secretory cells were likely involved in coordination of ciliated locomotion in early animals, and these cells can be considered as evolutionary precursors of neurons within different lineages. Under this scenario, the origins of neurons can be linked to adaptations to stress/injury factors in the form of integrated regeneration-type cellular response with secretory signaling peptides as early neurotransmitters. To further reconstruct the parallel evolution of nervous systems genomic approaches are essential to probe enigmatic neurons of basal metazoans, selected lophotrochozoans (e.g. phoronids, brachiopods) and deuterostomes.
Collapse
Affiliation(s)
- L L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd. St. Augustine Florida 32080, USA.
| |
Collapse
|
22
|
Zhou Z, Wang L, Shi X, Yue F, Wang M, Zhang H, Song L. The expression of dopa decarboxylase and dopamine beta hydroxylase and their responding to bacterial challenge during the ontogenesis of scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2012; 33:67-74. [PMID: 22521420 DOI: 10.1016/j.fsi.2012.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Dopa decarboxylase (DDC) and dopamine beta hydroxylase (DBH) is responsible for the synthesis of dopamine and norepinephrine, respectively. In the present study, dopa decarboxylase (CfDDC) and dopamine beta hydroxylase (CfDBH) were selected as indicator to investigate the development of catecholaminergic nervous system in the larvae of scallop Chlamys farreri. The CfDDC and CfDBH transcripts were all detectable during the whole ontogenesis expect for the CfDDC transcripts in 2-cell embryos stage. The expression level of CfDDC and CfDBH mRNA increased significantly in the veliger stage, and reached the peak in late (35.64-fold, P < 0.05) and mid-veliger (400.21-fold, P < 0.05) larvae, respectively. By immunofluorescence, two CfDDC immunoreactive areas were observed in the trochophore and D-hinged larvae, and then three CfDDC immunoreactive areas and two immunopositive fibres formed in early and late veliger larvae, respectively. Two CfDBH immunopositive fibers appeared initially in the early D-hinged stage, and another two similar fibers developed in the late D-hinged stage. The bacteria Vibrio anguillarum challenge could induce the mRNA expression of CfDDC and CfDBH in different developmental stage. The significantly increase of CfDDC mRNA was observed in the trochophore larvae at 12 h (8.61-fold, P < 0.05) and in late D-hinged larvae at 24 h (1.56-fold, P < 0.05) post challenge. The expression level of CfDBH mRNA decreased significantly in late D-hinged larvae at 6 h (0.45-fold, P < 0.05), whereas it increased significantly in late veliger larvae at 12 h after bacterial challenge (14.52-fold, P < 0.05). These results concluded that the scallop catecholaminergic nervous system appeared firstly as the form of dopaminergic neurons in the trochophore larvae, and the developing catecholaminergic nervous system in the trochophore, D-hinged and veliger larvae of scallop could respond to the immune stimulation in different patterns.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Kodirov SA. The neuronal control of cardiac functions in Molluscs. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:102-16. [PMID: 21736949 PMCID: PMC5480900 DOI: 10.1016/j.cbpa.2011.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 05/12/2011] [Accepted: 06/17/2011] [Indexed: 01/19/2023]
Abstract
In this manuscript, I review the current and relevant classical studies on properties of the Mollusca heart and their central nervous system including ganglia, neurons, and nerves involved in cardiomodulation. Similar to mammalian brain hemispheres, these invertebrates possess symmetrical pairs of ganglia albeit visceral (only one) ganglion and the parietal ganglia (the right ganglion is bigger than the left one). Furthermore, there are two major regulatory drives into the compartments (pericard, auricle, and ventricle) and cardiomyocytes of the heart. These are the excitatory and inhibitory signals that originate from a few designated neurons and their putative neurotransmitters. Many of these neurons are well-identified, their specific locations within the corresponding ganglion are mapped, and some are termed as either heart excitatory (HE) or inhibitory (HI) cells. The remaining neurons are classified as cardio-regulatory, and their direct and indirect actions on the heart's function have been documented. The cardiovascular anatomy of frequently used experimental animals, Achatina, Aplysia, Helix, and Lymnaea is relatively simple. However, as in humans, it possesses all major components including even trabeculae and atrio-ventricular valves. Since the myocardial cells are enzymatically dispersible, multiple voltage dependent cationic currents in isolated cardiomyocytes are described. The latter include at least the A-type K(+), delayed rectifier K(+), TTX-sensitive Na(+), and L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Department of Biophysics, Saint Petersburg University, Saint Petersburg 199034, Russia.
| |
Collapse
|
24
|
Wyeth RC, Croll RP. Peripheral sensory cells in the cephalic sensory organs of Lymnaea stagnalis. J Comp Neurol 2011; 519:1894-913. [PMID: 21452209 DOI: 10.1002/cne.22607] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The peripheral nervous system in gastropods plays a key role in the neural control of behaviors, but is poorly studied in comparison with the central nervous system. Peripheral sensory neurons, although known to be widespread, have been studied in a patchwork fashion across several species, with no comprehensive treatment in any one species. We attempted to remedy this limitation by cataloging peripheral sensory cells in the cephalic sensory organs of Lymnaea stagnalis employing backfills, vital stains, histochemistry, and immunohistochemistry. By using at least two independent methods to corroborate observations, we mapped four different cell types. We have found two different populations of bipolar sensory cells that appear to contain catecholamines(s) and histamine, respectively. Each cell had a peripheral soma, an epithelial process bearing cilia, and a second process projecting to the central nervous system. We also found evidence for two populations of nitric oxide-producing sensory cells, one bipolar, probably projecting centrally, and the second unipolar, with only a single epithelial process and no axon. The various cell types are presumably either mechanosensory or chemosensory, but the complexity of their distributions does not allow formation of hypotheses regarding modality. In addition, our observations indicate that yet more peripheral sensory cell types are present in the cephalic sensory organs of L. stagnalis. These results are an important step toward linking sensory cell morphology to modality. Moreover, our observations emphasize the size of the peripheral nervous system in gastropods, and we suggest that greater emphasis be placed on understanding its role in gastropod neuroethology.
Collapse
Affiliation(s)
- Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada.
| | | |
Collapse
|
25
|
DICKINSON AMANDAJ, CROLL ROGERP. A culture technique for experimental studies of embryonic development in the pond snailLymnaea stagnalis. INVERTEBR REPROD DEV 2010. [DOI: 10.1080/07924259.2001.9652496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Hatakeyama D, Mita K, Kobayashi S, Sadamoto H, Fujito Y, Hiripi L, Elekes K, Ito E. Glutamate transporters in the central nervous system of a pond snail. J Neurosci Res 2010; 88:1374-86. [PMID: 19937812 DOI: 10.1002/jnr.22296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies on glutamate (GLU) and its receptors in the pond snail Lymnaea stagnalis have suggested that GLU functions as a neurotransmitter in various behaviors, particularly for generation of feeding rhythm. The uptake mechanism of GLU is not yet known in Lymnaea. In the present study, we characterized the GLU transporters and examined their functions in the feeding circuits of the central nervous system (CNS) in Lymnaea. First, measurement of the accumulation of (3)H-labeled GLU revealed the presence of GLU transport systems in the Lymnaea CNS. The highest accumulation rate was observed in the buccal ganglia, supporting the involvement of GLU transport systems in feeding behavior. Second, we cloned two types of GLU transporters from the Lymnaea CNS, the excitatory amino acid transporter (LymEAAT) and the vesicular GLU transporter (LymVGLUT). When we compared their amino acid sequences with those of mammalian EAATs and VGLUTs, we found that the functional domains of both types are well conserved. Third, in situ hybridization revealed that the mRNAs of LymEAAT and LymVGLUT are localized in large populations of nerve cells, including the major feeding motoneurons in the buccal ganglia. Finally, we inhibited LymEAAT and found that changes in the firing patterns of the feeding motoneurons that have GLUergic input were similar to those obtained following stimulation with GLU. Our results confirmed the presence of GLU uptake systems in the Lymnaea CNS and showed that LymEAAT is required for proper rhythm generation, particularly for generation of the feeding rhythm.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hiripi L, Elekes K. A 5-HT1A-like receptor is involved in the regulation of the embryonic rotation of Lymnaea stagnalis L. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:57-61. [PMID: 20188856 DOI: 10.1016/j.cbpc.2010.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
Cilia driven rotation of the pond snail Lymnaea stagnalis embryos is regulated by serotonin (5-HT). In the present study, physiological and biochemical assays were used to identify the 5-HT receptor type involved in rotation. The 5-HTergic agonists applied stimulated the rotation by 180-400% and their rank order potency was as follows: LSD>5-HT>8-OH-DPAT>WB4101>>5-CT. The applied antagonists, spiperone, propranalol and mianserin inhibited the 5-HT or 8-OH-DPAT stimulated rotation of the embryos by 50-70%. (3)H-5-HT was bound specifically to the washed pellet of the embryo homogenates. The specific binding of (3)H-5-HT was saturable and showed a single, high affinity binding site with K(d) 7.36 nM and B(max) 221 fmol/mg pellet values. This is the first report demonstrating the high affinity binding of (3)H-5-HT to the native receptor in molluscs. All of the pharmacons that stimulated the rotation or inhibited the 5-HT or 8-OH-DPAT evoked stimulation displaced effectively the binding of (3)H-5-HT. 5-HT resulted in the inhibition of forskolin stimulated cAMP accumulation, showing that 5-HT is negatively coupled to adenylate cyclase. Our results suggest that in the 5-HTergic regulation of the embryonic rotation in L. stagnalis a 5-HT(1A)-like receptor of the vertebrate type is involved.
Collapse
Affiliation(s)
- László Hiripi
- Department of Experimental Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, H-8237 Tihany, P.O.B. 35, Hungary.
| | | |
Collapse
|
28
|
Muscular waves contribute to gliding rate in the freshwater gastropod Lymnaea stagnalis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:241-8. [DOI: 10.1007/s00359-010-0509-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/29/2010] [Accepted: 01/31/2010] [Indexed: 11/27/2022]
|
29
|
Baratte S, Bonnaud L. Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis. J Comp Neurol 2009; 517:539-49. [PMID: 19795495 DOI: 10.1002/cne.22174] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Within Mollusca, cephalopods exhibit a particularly complex nervous system. The adult brain is formed from the fusion of several "typical" molluscan ganglia but it remains poorly understood how these ganglia emerge, migrate, and differentiate during embryogenesis. We studied the development of both central and peripheral nervous system by antibodies raised against alpha-tubulin and tyrosine hydroxylase (TH) in Sepia officinalis embryos to visualize neurites and catecholamine-containing neurons, respectively. In early embryos, when organs start delineating, some ganglia already exhibited a significant fiber network. TH-like immunoreactivity was detected in these fibers and in some primary sensory neurons in the embryo periphery. These data attest to the occurrence of an early embryonic sensory nervous system, likely effective, transient in part, and in relation to the perception of external cues. Concerning the peripheral nervous network, the stellate ganglia emerged as a plexus of numerous converging axons from TH-like immunoreactive sensory cells, first at the mantle edge, and then in the whole mantle surface. Later, TH-immunopositive motor fibers, originating from the stellate ganglia, penetrated the circular muscles of the mantle. These patterns reveal the setup of a mantle midline with likely attractive and repulsive properties. Our findings seem to challenge the widespread, still accepted, view of a late differentiation of cephalopod ganglia, and provides significant data for further investigations about axonal guidance during cephalopod development.
Collapse
Affiliation(s)
- S Baratte
- Laboratory Biologie des Organismes Aquatiques et Ecosystemes, UMR CNRS 7208, Museum National d'Histoire Naturelle, DMPA, 75005 Paris, France.
| | | |
Collapse
|
30
|
Hatakeyama D, Aonuma H, Ito E, Elekes K. Localization of glutamate-like immunoreactive neurons in the central and peripheral nervous system of the adult and developing pond snail, Lymnaea stagnalis. THE BIOLOGICAL BULLETIN 2007; 213:172-186. [PMID: 17928524 DOI: 10.2307/25066633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigated the distribution and projection patterns of central and peripheral glutamate-like immunoreactive (GLU-LIR) neurons in the adult and developing nervous system of Lymnaea. Altogether, 50-60 GLU-LIR neurons are present in the adult central nervous system. GLU-LIR labeling is shown in the interganglionic bundle system and at the varicosities in neuropil of the central ganglia. In the periphery, the foot, lip, and tentacle contain numerous GLU-LIR bipolar sensory neurons. In the juvenile Lymnaea, GLU-LIR elements at the periphery display a pattern of distribution similar to that seen in adults, whereas labeled neurons increase in number in the different ganglia of the central nervous system from juvenile stage P1 up to adulthood. During embryogenesis, GLU-LIR innervation can be detected first at the 50% stage of embryonic development (the E50% stage) in the neuropil of the cerebral and pedal ganglia, followed by the emergence of labeled pedal nerve roots at the E75% stage. Before hatching, at the E90% stage, a few GLU-LIR sensory cells can be found in the caudal foot region. Our findings indicate a wide range of occurrence and a broad role for glutamate in the gastropod nervous system; hence they provide a basis for future studies on glutamatergic events in networks underlying different behaviors.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
31
|
Wollesen T, Wanninger A, Klussmann-Kolb A. Neurogenesis of cephalic sensory organs of Aplysia californica. Cell Tissue Res 2007; 330:361-79. [PMID: 17710438 DOI: 10.1007/s00441-007-0460-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 06/21/2007] [Indexed: 11/30/2022]
Abstract
The opisthobranch gastropod Aplysia californica serves as a model organism in experimental neurobiology because of its simple and well-known nervous system. However, its nervous periphery has been less intensely studied. We have reconstructed the ontogeny of the cephalic sensory organs (labial tentacles, rhinophores, and lip) of planktonic, metamorphic, and juvenile developmental stages. FMRFamide and serotonergic expression patterns have been examined by immunocytochemistry in conjunction with epifluorescence and confocal laser scanning microscopy. We have also applied scanning electron microscopy to analyze the ciliary distribution of these sensory epithelia. Labial tentacles and the lip develop during metamorphosis, whereas rhinophores appear significantly later, in stage 10 juveniles. Our study has revealed immunoreactivity against FMRFamides and serotonin in all major nerves. The common labial nerve develops first, followed by the labial tentacle base nerve, oral nerve, and rhinophoral nerve. We have also identified previously undescribed neuronal pathways and other FMRFamide-like-immunoreactive neuronal elements, such as peripheral ganglia and glomerulus-like structures, and two groups of conspicuous transient FMRFamide-like cell somata. We have further found two distinct populations of FMRFamide-positive cell somata located both subepidermally and in the inner regions of the cephalic sensory organs in juveniles. The latter population partly consists of sensory cells, suggesting an involvement of FMRFamide-like peptides in the modulation of peripheral sensory processes. This study is the first concerning the neurogenesis of cephalic sensory organs in A. californica and may serve as a basis for future studies of neuronal elements in gastropod molluscs.
Collapse
Affiliation(s)
- Tim Wollesen
- Institute of Ecology, Evolution and Diversity, J. W. Goethe University, Siesmayerstrasse 70, 60323, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
32
|
Croll RP. Development of embryonic and larval cells containing serotonin, catecholamines, and FMRFamide-related peptides in the gastropod mollusc Phestilla sibogae. THE BIOLOGICAL BULLETIN 2006; 211:232-47. [PMID: 17179383 DOI: 10.2307/4134546] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The present immunocytochemical study provides one of the first detailed descriptions of the development of cells containing a variety of neurotransmitters during much of the larval life of a nudibranch gastropod. Throughout much of early development, serotonergic cells were located only in the apical organ; as larvae approached metamorphosis, serotonergic cells were also detected in the cerebropleural and pedal ganglia. Cells exhibiting tyrosine hydroxylase immunoreactivity (indicative of catecholamine synthesis) were first located near the mouth but by late embryonic stages were also located in the apical organ and near the velum and eyes. By late larval stages, numerous catecholaminergic cells were found in the foot, with concentrations in the propodium. Finally, the first cells exhibiting FMRFamide immunoreactivity were detected posterior to the neuropil of the cerebropleural ganglia in the early embryo. Fibers that presumably originated from these cells subsequently invaded the cerebral and pedal ganglia and the apical organ. By early larval stages, a second pair of peptidergic neurons was located near the first pair, and additional peptidergic neurons were located in the apical organ and peripheral positions in the foot and medial and dorsal to the eyes. In addition to providing a unique phyletic perspective to our understanding of gastropod neural development, the present study also sets the stage for future studies into changes in the nervous system as this gastropod undergoes metamorphosis.
Collapse
Affiliation(s)
- Roger P Croll
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| |
Collapse
|
33
|
Catalán M, Dreon MS, Heras H, Pollero RJ, Fernández SN, Winik B. Pallial oviduct of Pomacea canaliculata (Gastropoda): ultrastructural studies of the parenchymal cellular types involved in the metabolism of perivitellins. Cell Tissue Res 2006; 324:523-33. [PMID: 16453107 DOI: 10.1007/s00441-005-0132-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 11/23/2005] [Indexed: 11/29/2022]
Abstract
Seasonal variations in the morphology of the parenchymal mass and function of the albumen gland/capsule gland complex have been studied in Pomacea canaliculata, together with the cellular types involved in the synthesis and secretion of perivitellin fluid components. The two major parenchymal cell types, albumen secretory cells (AS) and labyrinthic cells (LC), undergo seasonal variations throughout the annual reproductive cycle, which is divided into three periods. Both cellular types show maximal development and structural complexity during the reproductive period (spring and summer). AS cells have a well-developed Golgi complex and rough endoplasmic reticulum and their secretory granules show electron-dense particles of about 20 nm (probably galactogen). These cells are uniquely involved in ovorubin and PV2 perivitellin synthesis and their secretory granules are the single storage site for these two major perivitellins, as revealed by immunoelectron microscopy. AS also possess calcium deposits that infiltrate the cytoplasmic matrix. The luminal surfaces of LC exhibit long cilia intermingled with sparce short microvilli. Basally, the plasma membrane shows deep irregular folds that extend through the cytoplasm up to the subapical region. Calcium deposits infiltrate the cytoplasm and accumulate in the extracellular space of the basal labyrinth. Nerve terminals seem to be involved in the regulation of parenchymal cell secretion. At the post-reproductive period, AS markedly change their aspect following the release of most of the secretory granules into the acinar lumen. LC decrease in volume, the number of their cilia decreases, their cytoplasmic folds are much thinner and their extracellular spaces lack calcium particles. At the pre-reproductive period (winter), AS and LC recover and prepare for the subsequent period.
Collapse
Affiliation(s)
- M Catalán
- Departamento Servicios de Microscopía Electrónica, INSIBIO, UNT-CONICET, Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
34
|
Faccioni-Heuser MC, Zancan DM, Achaval M. Monoamines in the pedal plexus of the land snail Megalobulimus oblongus (Gastropoda, Pulmonata). Braz J Med Biol Res 2004; 37:1043-53. [PMID: 15264012 DOI: 10.1590/s0100-879x2004000700014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In molluscs, the number of peripheral neurons far exceeds those found in the central nervous system. Although previous studies on the morphology of the peripheral nervous system exist, details of its organization remain unknown. Moreover, the foot of the terrestrial species has been studied less than that of the aquatic species. As this knowledge is essential for our experimental model, the pulmonate gastropod Megalobulimus oblongus, the aim of the present study was to investigate monoamines in the pedal plexus of this snail using two procedures: glyoxylic acid histofluorescence to identify monoaminergic structures, and the unlabeled antibody peroxidase anti-peroxidase method using antiserum to detect the serotonergic component of the plexus. Adult land snails weighing 48-80 g, obtained from the counties of Barra do Ribeiro and Charqueadas (RS, Brazil), were utilized. Monoaminergic fibers were detected throughout the pedal musculature. Blue fluorescence (catecholamines, probably dopamine) was observed in nerve branches, pedal and subepithelial plexuses, and in the pedal muscle cells. Yellow fluorescence (serotonin) was only observed in thick nerves and in muscle cells. However, when immunohistochemical methods were used, serotonergic fibers were detected in the pedal nerve branches, the pedal and subepithelial plexuses, the basal and lateral zones of the ventral integument epithelial cells, in the pedal ganglion neurons and beneath the ventral epithelium. These findings suggest catecholaminergic and serotonergic involvement in locomotion and modulation of both the pedal ganglion interneurons and sensory information. Knowledge of monoaminergic distribution in this snail s foot is important for understanding the pharmacological control of reflexive responses and locomotive behavior.
Collapse
Affiliation(s)
- M C Faccioni-Heuser
- Laboratório de Histofisiologia Comparada, Departamento de ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
35
|
Hegedus E, Kaslin J, Elekes K. Embryogenesis of the histaminergic system in the pond snail, Lymnaea stagnalis L.: an immunocytochemical and biochemical study. ACTA BIOLOGICA HUNGARICA 2004; 55:301-13. [PMID: 15270247 DOI: 10.1556/abiol.55.2004.1-4.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Embryogenesis of the histaminergic system in the pond snail, Lymnaea stagnalis, was investigated by means of immunocytochemistry and HPLC assay. From the earliest onset of the of histamine-immunoreactive (HA-IR) elements, the labelled neurons were confined to the pedal, cerebral and buccal ganglia, whereas no IR cells within the pleural, parietal and visceral ganglia were detectable during the embryogenesis. Peripheral projections of the embryonic HA-IR neurons were missing. No transient HA-IR neurons could be found either inside or outside the CNS. The first HA-IR elements appeared at about E55% of embryonic development, at the beginning of metamorphosis, and were represented by three pairs of neurons located in the cerebral ganglia. Following metamorphosis, four pairs of HA-IR neurons were added; two of them occurred in the pedal (E65% stage of development) and two in the buccal (E90% stage of development) ganglia. During embryogenesis, HA-IR fibers were present in the cerebro-pedal connectives and in the cerebral, pedal and buccal commissures, whereas only little arborization could be observed in the neuropil of the ganglia. HPLC measurements revealed a gradual increase of HA content in the embryos during development, corresponding well to the course of the appearance of immunolabeled elements. It is suggested that the developing HAergic system plays a specific role in the process of gangliogenesis and CNS plasticity of embryonic Lymnaea.
Collapse
Affiliation(s)
- E Hegedus
- Department of Experimental Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, PO Box. 35, H-8237 Tihany, Hungary.
| | | | | |
Collapse
|
36
|
Nezlin LP, Voronezhskaya EE. Novel, posterior sensory organ in the trochophore larva of Phyllodoce maculata (Polychaeta). Proc Biol Sci 2004; 270 Suppl 2:S159-62. [PMID: 14667369 PMCID: PMC1809934 DOI: 10.1098/rsbl.2003.0072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new posterior sensory organ (PSO), located at the dorsal midline of the hyposphere, is described by immunocytochemical detection of acetylated alpha tubulin and serotonin (5-HT) in a laser-scanning microscope, as well as three-dimensional reconstructions after optical serial sectioning in the trochophore larva of the polychaete Phyllodoce maculata (Phyllodocidae). The unpaired PSO consists of five bipolar sensory cells, two of them being 5-HT immunopositive, which send axons to the cerebral ganglion and prototroch nerve. The dendrites of these cells project to the surface and bear one cilium each. A single neuronal fibre from the apical sensory organ innervates the PSO.
Collapse
Affiliation(s)
- L P Nezlin
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808, Russia.
| | | |
Collapse
|
37
|
Croll RP. Complexities of a simple system: new lessons, old challenges and peripheral questions for the gill withdrawal reflex of Aplysia. ACTA ACUST UNITED AC 2003; 43:266-74. [PMID: 14629929 DOI: 10.1016/j.brainresrev.2003.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gill withdrawal reflex of Aplysia is generally depicted as a simple behaviour mediated by a simple neural circuit in a simple organism. Such a view has permitted a clear focus upon synapses between relatively small numbers of identified neurones, which are known to participate in the reflex and its plasticity. Ensuing research has provided some of the first and still among the most powerful explanations of the cellular underpinnings of learning and memory. In reality, however, the reflexive withdrawal of the gill and other mantle organs is anything but simple. First, the behaviour itself is complex and varies depending upon the strength of the tactile stimulus and where it is applied. In addition, over 100 central neurones are activated by stimuli, which elicit the withdrawal reflex and likely change their activities during learning (although not all of these cells necessarily contribute to the actual withdrawal response). Moreover, multiple mechanisms are activated at both presynaptic and postsynaptic sites to orchestrate the numerous modifications that underlie observed changes in synaptic efficacy. The picture becomes even more complicated when hundreds of additional peripheral neurones, which are known to participate in various aspects of the response, are also considered. Recent work has shifted attention back to these peripheral cells by suggesting that they might be the previously unidentified light touch receptors that mediate both central and peripheral components of the reflex. While daunting, the complexity of the total circuitry mediating the gill withdrawal reflex may provide yet another important lesson: even in simple systems, memory may not be localized to specific loci, but rather may be an emergent property of physiological mechanisms distributed throughout the entire circuitry.
Collapse
Affiliation(s)
- Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, 5859 University Ave, Halifax, Nova Scotia, Canada B3H 4H7.
| |
Collapse
|
38
|
Pulver SR, Thirumalai V, Richards KS, Marder E. Dopamine and histamine in the developing stomatogastric system of the lobster Homarus americanus. J Comp Neurol 2003; 462:400-14. [PMID: 12811809 DOI: 10.1002/cne.10767] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dopamine and histamine are neuromodulators found in the adult stomatogastric nervous system (STNS) of several crustacean species. We used antibodies against tyrosine hydroxylase (TH) and histamine to map the distribution and developmental acquisition of the dopamine and histamine neurons in the STNS of the lobster, Homarus americanus. Embryos, larvae, juvenile and adult animals were studied. TH labeling was present in the STNS as early as E80-85 (80-85% of embryonic development). A subset of preparations in embryos, larvae, juveniles, and adults contained 1-5 labeled somata in the stomatogastric ganglion. Histamine staining appeared in the STNS as early as E50. The distribution of both TH and histamine staining remained relatively constant through development. Electrophysiological recordings demonstrated that receptors for both amines are present in the embryo. Bath application of dopamine increased the frequency of the pyloric rhythm in embryos, and evidence for dopaminergic activation of peripherally initiated spiking in motor axons was seen. In embryos and adults, histamine inhibited the motor patterns produced by the stomatogastric ganglion (STG). These data suggest that the dopaminergic and histaminergic systems in H. americanus appear relatively early in development and that the effects of each are largely maintained through development.
Collapse
Affiliation(s)
- Stefan R Pulver
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
39
|
Voronezhskaya EE, Khabarova MY. Function of the apical sensory organ in the development of invertebrates. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2003; 390:231-4. [PMID: 12940149 DOI: 10.1023/a:1024453416281] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- E E Voronezhskaya
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119991 Russia
| | | |
Collapse
|
40
|
Boyle JP, Yoshino TP. Monoamines in the albumen gland, plasma, and central nervous system of the snail Biomphalaria glabrata during egg-laying. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:411-22. [PMID: 12020657 DOI: 10.1016/s1095-6433(02)00091-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The potential role of selected biogenic monoamines and related compounds in the reproductive physiology of the freshwater snail Biomphalaria glabrata was investigated. Extracts of the albumen gland (AG), plasma, and central nervous system (CNS) were subjected to high pressure liquid chromatography with electrochemical detection (HPLC-ED), and under the extraction and separation conditions employed the following amines were detected: tyrosine, dihydroxyphenylalanine (DOPA), dopamine, and tryptophan in the AG; DOPA, tyrosine, and tryptophan in the plasma; DOPA, tyrosine, dopamine and 5-hydroxytryptamine in the CNS. These compounds were then quantified in individual samples taken from snails known to be in a particular stage of the egg-laying process. AG dopamine levels were highest in snails in the first stage of the reproductive process, when the AG is secreting perivitelline fluid around each fertilized ovum. Significant decreases in AG protein content during the later stages of the egg-laying process were also evident. Plasma tyrosine and DOPA levels were lowest in snails that contained a fully packaged egg mass, while no changes in monoamine content were observed in the CNS. These data provide insights into the role(s) that monoamines, especially catecholamine-related compounds, may play in B. glabrata reproductive physiology.
Collapse
Affiliation(s)
- Jon P Boyle
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
41
|
Díaz-Ríos M, Oyola E, Miller MW. Colocalization of gamma-aminobutyric acid-like immunoreactivity and catecholamines in the feeding network of Aplysia californica. J Comp Neurol 2002; 445:29-46. [PMID: 11891652 DOI: 10.1002/cne.10152] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Functional consequences of neurotransmitter coexistence and cotransmission can be readily studied in certain experimentally favorable invertebrate motor systems. In this study, whole-mount histochemical methods were used to identify neurons in which gamma-aminobutyric acid (GABA)-like immunoreactivity (GABAli) was colocalized with catecholamine histofluorescence (CAh; FaGlu method) and tyrosine hydroxylase (TH)-like immunoreactivity (THli) in the feeding motor circuitry (buccal and cerebral ganglia) of the marine mollusc Aplysia californica. In agreement with previous reports, five neurons in the buccal ganglia were found to exhibit CAh. These included the paired B20 buccal-cerebral interneurons (BCIs), the paired B65 buccal interneurons, and an unpaired cell with projections to both cerebral-buccal connectives (CBCs). Experiments in which the FaGlu method was combined with the immunohistochemical detection of GABA revealed double labeling of all five of these neurons. An antibody generated against TH, the rate-limiting enzyme in the biosynthesis of catecholamines, was used to obtain an independent determination of GABA-CA colocalization. Biocytin backfills of the CBC performed in conjunction with TH immunohistochemistry revealed labeling of the rostral B20 cell pair and the unpaired CBI near the caudal surface of the right hemiganglion. THli was also present in a prominent bilateral pair of caudal neurons that were not stained with CBC backfills. On the basis of their position, size, shape, and lack of CBC projections, the lateral THli neurons were identified as B65. Double-labeling immunohistochemical experiments revealed GABAli in all five buccal THli neurons. Finally, GABAli was observed in individual B20 and B65 neurons that were identified using electrophysiological criteria and injected with a marker (neurobiotin). Similar methods were used to demonstrate that a previously identified catecholaminergic cerebral-buccal interneuron (CBI) designated CBI-1 contained THli but did not contain GABAli. Although numerous THli and GABAli neurons and fibers were present in the cerebral and buccal ganglia, additional instances of their colocalization were not observed. These findings indicate that GABA and a catecholamine (probably dopamine) are colocalized in a limited number of interneurons within the central pattern generator circuits that control feeding-related behaviors in Aplysia.
Collapse
Affiliation(s)
- Manuel Díaz-Ríos
- Institute of Neurobiology, Department of Anatomy, University of Puerto Rico, 201 Blvd. del Valle, San Juan, Puerto Rico 00901
| | | | | |
Collapse
|
42
|
Voronezhskaya EE, Tyurin SA, Nezlin LP. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 2002; 444:25-38. [PMID: 11835180 DOI: 10.1002/cne.10130] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chitons are the most primitive molluscs and, thus, a matter of considerable interest for understanding both basic principles of molluscan neurogenesis and phylogeny. The development of the nervous system in trochophores of the chiton Ischnochiton hakodadensis from hatching to metamorphosis is described in detail by using confocal laser scanning microscopy and antibodies raised against serotonin, FMRFamide, and acetylated alpha tubulin. The earliest nervous elements detected were peripheral neurons located in the frontal hemisphere of posthatching trochophores and projecting into the apical organ. Among them, two pairs of unique large lateral cells appear to pioneer the pathways of developing adult nervous system. Chitons possess an apical organ that contains the largest number of neurons among all molluscan larvae investigated so far. Besides, many pretrochal neurons are situated outside the apical organ. The prototroch is not innervated by larval neurons. The first neurons of the developing adult central nervous system (CNS) appear later in the cerebral ganglion and pedal cords. None of the neurons of the larval nervous system are retained in the adult CNS. They cease to express their transmitter content and disintegrate after settlement. Although the adult CNS of chitons resembles that of polychaetes, their general scenario of neuronal development resembles that of advanced molluscs and differs from annelids. Thus, our data demonstrate the conservative pattern of molluscan neurogenesis and suggest independent origin of molluscan and annelid trochophores.
Collapse
Affiliation(s)
- Elena E Voronezhskaya
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808, Russia
| | | | | |
Collapse
|
43
|
Crisp KM, Klukas KA, Gilchrist LS, Nartey AJ, Mesce KA. Distribution and development of dopamine- and octopamine-synthesizing neurons in the medicinal leech. J Comp Neurol 2002; 442:115-29. [PMID: 11754166 DOI: 10.1002/cne.10077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although the medicinal leech is a well-studied system in which many neurons and circuits have been identified with precision, descriptions of the distributions of some of the major biogenic amines, such as dopamine (DA) and octopamine (OA), have yet to be completed. In the European medicinal leech Hirudo medicinalis and the American medicinal leech Macrobdella decora,we have presented the first immunohistochemical study of DA neurons in the entire central nervous system, and of OA-immunoreactive (ir) neurons in the head and tail brains. Dopaminergic neurons were identified using the glyoxylic acid method and antisera to DA and its rate-limiting synthetic enzyme tyrosine hydroxylase (TH). Octopaminergic neurons were recognized using a highly specific antiserum raised against OA. An antibody raised against DA-beta-hydroxylase (DbetaH), the mammalian enzyme that converts DA to norepinephrine (NE), was found to immunostain OA-ir neurons. This antibody appears to cross-react with the closely related invertebrate enzyme tyramine-beta-hydroxylase, which converts tyramine to OA, suggesting that the OA-ir cells are indeed octopaminergic, capable of synthesizing OA. Because the DbetaH antiserum selectively immunostained the OA-ir neurons, but not the DA-synthesizing cells, our results also indicate that the DA-ir neurons synthesize DA and not NE as their end product. The expression of TH immunoreactivity was found to emerge relatively early in development, on embryonic day 9 (47-48% of development). In contrast, OA expression remained absent as late as embryonic day 20. Higher order processes of some of the dopaminergic and octopaminergic neurons in the adult brain were observed to project to a region previously described as a neurohemal complex. Several TH-ir processes were also seen in the stomatogastric nerve ring, suggesting that DA may play a role in the regulation of biting behavior. By mapping the distributions and developmental expression pattern of DA and OA neurons in the leech, we aim to gain a better understanding of the functional roles of aminergic neurons and how they influence behavior.
Collapse
Affiliation(s)
- Kevin M Crisp
- Graduate Program in Neuroscience, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|
44
|
Croll RP. Catecholamine-containing cells in the central nervous system and periphery of Aplysia californica. J Comp Neurol 2001; 441:91-105. [PMID: 11745637 DOI: 10.1002/cne.1399] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have suggested the presence of numerous catecholamine-containing cells in both the central ganglia and peripheral tissues of Aplysia, but they often offered conflicting or incomplete accounts of numbers, locations, and morphologies. The current study combines aldehyde-induced histofluorescence and tyrosine hydroxylase-like immunoreactivity together with confocal microscopy to provide details of these cells. Approximately 35-50 neurones in the cerebral ganglia, 4-8 neurones in the pedal ganglia, 5 neurones in the buccal ganglia, and numerous small fibres in various nerve trunks exhibited both immunoreactivity and aldehyde-induced fluorescence. Approximately 20 cells in the pedal ganglia and 4 cells in the buccal ganglia exhibited only immunoreactivity whereas 15-20 neurons in the cerebral ganglia exhibited only aldehyde-induced fluorescence. No somata in the pleural or abdominal ganglia exhibited aldehyde-induced fluorescence or immunoreactivity. Both aldehyde-induced histofluorescence and immunoreactivity also labelled what appeared to be two classes of catecholamine-containing cells in the gill, siphon, oesophagus, rhinophore, tentacle, and reproductive organs. The more numerous, but smaller cells had subepithelial somata and processes penetrating the overlying body wall, thus suggesting a sensory function. Another class of neurones had larger somata, often located more deeply within the tissue, and occasionally appeared to be multipolar. Processes from these various peripheral cells appeared to comprise the major component of afferent fibres and to form an extensive peripheral plexus, often associated with various muscles. The morphologies of the peripheral cells thus suggest involvement in both local and centrally mediated reflexes and responses, but additional studies must test such hypothesised functions and determine the sensory modalities that the cells mediate.
Collapse
Affiliation(s)
- R P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| |
Collapse
|
45
|
Mesce KA, DeLorme AW, Brelje TC, Klukas KA. Dopamine-synthesizing neurons include the putative H-cell homologue in the moth Manduca sexta. J Comp Neurol 2001; 430:501-17. [PMID: 11169483 DOI: 10.1002/1096-9861(20010219)430:4<501::aid-cne1046>3.0.co;2-u] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The catecholamine dopamine (DA) plays a fundamental role in the regulation of behavior and neurodevelopment across animal species. Uncovering the embryonic origins of neurons that express DA opens a path for a deeper understanding of how DA expression is regulated and, in turn, how DA regulates the activities of the nervous system. In a well-established insect model, Manduca sexta, we identified the putative homologue of the embryonic grasshopper "H-cell" using intracellular techniques, laser scanning confocal microscopy, and immunohistochemistry. In both species, this neuron possesses four axons and has central projections resembling the letter H. The H-cell in grasshoppers is known to be derived from the midline precursor 3 cell (MP3) and to pioneer the pathways of the longitudinal connectives; in Drosophila, the H-cell is also known to be derived from MP3. In the current study, we demonstrate that the Manduca H-cell is immunoreactive to antibodies raised against DA and its rate-limiting synthetic enzyme, tyrosine hydroxylase (TH). In larvae and adults, one DA/TH-immunoreactive (-ir) H-cell per ganglion is present. In embryos, individual ganglia contain a single midline TH-ir cell body positioned along side its putative sibling. Such observations are consistent with the known secondary transformation (in grasshoppers) of only one of the two MP3 progeny during early development. Although a hallmark feature of invertebrate neurons is the fairly stereotypical position of neuronal somata, we found that the H-cell somata can "flip-flop" by 180 degrees between an anterior and posterior position. This variability appears to be random and is not restricted to any particular ganglion. Curiously, what is segment-specific is the absence of the DA/TH-ir H-cell in the metathoracic (T3) ganglion as well as the unique structure of the H-cell in the subesophageal ganglion. Because this is the first immunohistochemical study of DA neurons in Manduca, we have provided the distribution pattern and morphologies of dopaminergic neurons, in addition to the H-cells, within the ventral nerve cord during development.
Collapse
Affiliation(s)
- K A Mesce
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
The mammalian epidermal growth factor (EGF) is expressed in the developing and adult CNS, and it has been implicated in the control of cell proliferation, differentiation, and neurotrophic events. Despite extensive evolutionary conservation of the EGF motif in a range of different types of proteins, secreted EGF homologs with neurotrophic actions have not been reported in invertebrates. In this study, we present a novel member of the family of EGF-like growth factors, an EGF homolog from the mollusc Lymnaea stagnalis (L-EGF), and we demonstrate that this protein has neurotrophic activity. Purified L-EGF is a 43-residue peptide and retains the typical structural characteristics of the EGF motif. The L-EGF cDNA reveals a unique precursor organization. In contrast to the multidomain mammalian EGFs, it consists of only two domains, a signal peptide and a single EGF motif. Conspicuously, the L-EGF precursor lacks a transmembrane domain, setting it apart from all other members of the EGF-family. L-EGF mRNA is expressed throughout embryonic development, in the juvenile CNS, but not in the normal adult CNS. However, expression in the adult CNS is upregulated after injury, suggesting a role of L-EGF in repair functions. This notion is supported by the observation that L-EGF evokes neurite outgrowth in specific adult Lymnaea neurons in vitro, which could be inhibited by an EGF receptor tyrosine kinase inhibitor. In conclusion, our findings further substantiate the notion that the EGF family has an early phylogenetic origin, and our data support a neurotrophic role for L-EGF during development and injury repair.
Collapse
|
47
|
Pires A, Guilbault TR, Mitten JV, Skiendzielewski JA. Catecholamines in larvae and juveniles of the prosobranch gastropod, Crepidula fornicata. Comp Biochem Physiol C Toxicol Pharmacol 2000; 127:37-47. [PMID: 11081411 DOI: 10.1016/s0742-8413(00)00128-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated roles of catecholamines in metamorphosis of the prosobranch gastropod, Crepidula fornicata. Levels of DOPA, norepinephrine (NE) and dopamine (DA) were measured by high-pressure liquid chromatography (HPLC) in competent larvae and juvenile siblings that metamorphosed in response to the natural adult-derived cue or to elevated K+. Competent larvae contained 1.58 +/- 0.26 (S.E.M.) x 10(-2) pmol DOPA, 0.91 +/- 0.45 x 10(-2) pmol NE, and 0.290 +/- 0.087 pmol DA (mean values per microg total protein, n = 4 batches of larvae). Levels of DA per individual were not different between larvae and juvenile siblings; levels of NE were higher in juveniles. The tyrosine hydroxylase (TH) inhibitor alpha-methyl-DL-m-tyrosine (alpha-MMT) depleted DOPA and DA to approximately half of control values without affecting levels of NE. Depletion of DOPA and DA was accompanied by inhibition of metamorphosis in response to the natural cue but not to elevated K+. The dopamine-beta-hydroxylase inhibitor diethyldithiocarbamate (DDTC) induced high frequencies of metamorphosis at concentrations of 0.1-10 microM. In juveniles induced by 10 microM DDTC, levels of both NE and DA averaged approximately 80% of those in control larvae. Catecholamines may function as endogenous regulators of metamorphosis in C. fornicata.
Collapse
Affiliation(s)
- A Pires
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Gastropod research is providing many insights into mechanisms of neural regeneration. These observations were made possible by the pioneering work of individuals who described the nervous systems of gastropods, mapped prominent neurons and determined their roles and connections, and developed the techniques for culturing them. This information has allowed questions about injury responses, target selection, and pathway cues to be explored at the level of individually identified neurons. Because of gastropod studies, more is known about axon sealing, growth cone formation and behavior, signals that travel from the site of axotomy to the soma, and the second messengers that are activated there. The responses in neurons and non-neuronal cells during neural development and injury are coordinated by chemical messenger systems that are highly conserved, including neurotransmitters, cytokines, and neurotrophins. The nervous system is modified in learning paradigms by some of the same messenger systems activated by injury, because learning and injury both challenge neurons to change. The conservation of basic mechanisms that coordinate neuronal plasticity allows us to approach basic questions in relatively simple nervous systems with reasonable confidence that the findings will be relevant for other nervous systems, including possible applications to the mammalian nervous system.
Collapse
Affiliation(s)
- S B Moffett
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
49
|
Croll RP. Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails. Microsc Res Tech 2000; 49:570-8. [PMID: 10862113 DOI: 10.1002/1097-0029(20000615)49:6<570::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide-related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism.
Collapse
Affiliation(s)
- R P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| |
Collapse
|
50
|
Koene JM, Jansen RF, Ter Maat A, Chase R. A conserved location for the central nervous system control of mating behaviour in gastropod molluscs: evidence from a terrestrial snail. J Exp Biol 2000; 203:1071-80. [PMID: 10683166 DOI: 10.1242/jeb.203.6.1071] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of the right mesocerebrum in the expression of mating behaviour in the garden snail Helix aspersa. Using an in vivo stimulation and recording technique, we provide evidence for both sensory and motor functions in the mesocerebral neuronal population. Some neurones were specifically sensitive to tactile stimuli delivered to the skin on the superior tentacles and around the genital pore. Electrical stimulation of the right mesocerebrum evoked genital eversion and, in combination with tactile stimulation, dart-shooting and penial eversion. Genital eversions were also elicited by injections of APGWamide. During courtship, one recorded unit increased its activity only in correlation with penial eversion, while six other units increased their activity only during dart-shooting. Three additional units increased their activity during both types of behaviour. In addition, most of the recorded units showed increased neuronal activity during times of contact with a partner. Comparison of our results with available data from other molluscs leads us to conclude that the right anteromedial region of the cerebral ganglion is an evolutionarily conserved region of the gastropod brain specialised for the control of male mating behaviour. It is striking to find such functional conservation in the central nervous system of phylogenetically distant gastropods given the large differences in behaviour during mating.
Collapse
Affiliation(s)
- J M Koene
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1 Canada and Faculty of Biology, Vrije Universiteit, De Boelelaan 1087, The Netherlands.
| | | | | | | |
Collapse
|