1
|
Engert J, Rak K, Bieniussa L, Scholl M, Hagen R, Voelker J. Evaluation of the Neurogenic Potential in the Rat Inferior Colliculus from Early Postnatal Days Until Adulthood. Mol Neurobiol 2021; 58:719-734. [PMID: 33011856 PMCID: PMC7843480 DOI: 10.1007/s12035-020-02151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
Neural stem cells (NSCs) have been recently identified in the inferior colliculus (IC). These cells are of particular interest, as no casual therapeutic options for impaired neural structures exist. This research project aims to evaluate the neurogenic potential in the rat IC from early postnatal days until adulthood. The IC of rats from postnatal day 6 up to 48 was examined by neurosphere assays and histological sections. In free-floating IC cell cultures, neurospheres formed from animals from early postnatal to adulthood. The amount of generated neurospheres decreased in older ages and increased with the number of cell line passages. Cells in the neurospheres and the histological sections stained positively with NSC markers (Doublecortin, Sox-2, Musashi-1, Nestin, and Atoh1). Dissociated single cells from the neurospheres differentiated and were stained positively for the neural lineage markers β-III-tubulin, glial fibrillary acidic protein, and myelin basic protein. In addition, NSC markers (Doublecortin, Sox-2, CDK5R1, and Ascl-1) were investigated by qRT-PCR. In conclusion, a neurogenic potential in the rat IC was detected and evaluated from early postnatal days until adulthood. The identification of NSCs in the rat IC and their age-specific characteristics contribute to a better understanding of the development and the plasticity of the auditory pathway and might be activated for therapeutic use.
Collapse
Affiliation(s)
- Jonas Engert
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Universitaetsklinikum Wuerzburg, Josef-Schneider-Strasse 11, D-97080, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Universitaetsklinikum Wuerzburg, Josef-Schneider-Strasse 11, D-97080, Wuerzburg, Germany.
| | - Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Universitaetsklinikum Wuerzburg, Josef-Schneider-Strasse 11, D-97080, Wuerzburg, Germany
| | - Miriam Scholl
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Universitaetsklinikum Wuerzburg, Josef-Schneider-Strasse 11, D-97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Universitaetsklinikum Wuerzburg, Josef-Schneider-Strasse 11, D-97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Universitaetsklinikum Wuerzburg, Josef-Schneider-Strasse 11, D-97080, Wuerzburg, Germany
| |
Collapse
|
2
|
Nguyen AO, Binder DK, Ethell IM, Razak KA. Abnormal development of auditory responses in the inferior colliculus of a mouse model of Fragile X Syndrome. J Neurophysiol 2020; 123:2101-2121. [PMID: 32319849 DOI: 10.1152/jn.00706.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sensory processing abnormalities are frequently associated with autism spectrum disorders, but the underlying mechanisms are unclear. Here we studied auditory processing in a mouse model of Fragile X Syndrome (FXS), a leading known genetic cause of autism and intellectual disability. Both humans with FXS and the Fragile X mental retardation gene (Fmr1) knockout (KO) mouse model show auditory hypersensitivity, with the latter showing a strong propensity for audiogenic seizures (AGS) early in development. Because midbrain abnormalities cause AGS, we investigated whether the inferior colliculus (IC) of the Fmr1 KO mice shows abnormal auditory processing compared with wild-type (WT) controls at specific developmental time points. Using antibodies against neural activity marker c-Fos, we found increased density of c-Fos+ neurons in the IC, but not auditory cortex, of Fmr1 KO mice at P21 and P34 following sound presentation. In vivo single-unit recordings showed that IC neurons of Fmr1 KO mice are hyperresponsive to tone bursts and amplitude-modulated tones during development and show broader frequency tuning curves. There were no differences in rate-level responses or phase locking to amplitude-modulated tones in IC neurons between genotypes. Taken together, these data provide evidence for the development of auditory hyperresponsiveness in the IC of Fmr1 KO mice. Although most human and mouse work in autism and sensory processing has centered on the forebrain, our new findings, along with recent work on the lower brainstem, suggest that abnormal subcortical responses may underlie auditory hypersensitivity in autism spectrum disorders.NEW & NOTEWORTHY Autism spectrum disorders (ASD) are commonly associated with sensory sensitivity issues, but the underlying mechanisms are unclear. This study presents novel evidence for neural correlates of auditory hypersensitivity in the developing inferior colliculus (IC) in Fmr1 knockout (KO) mouse, a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of ASD. Responses begin to show genotype differences between postnatal days 14 and 21, suggesting an early developmental treatment window.
Collapse
Affiliation(s)
- Anna O Nguyen
- Bioengineering Program, University of California, Riverside, California
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, California.,Division of Biomedical Sciences, University of California, Riverside, California
| | - Iryna M Ethell
- Graduate Neuroscience Program, University of California, Riverside, California.,Division of Biomedical Sciences, University of California, Riverside, California
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, California.,Psychology Department, University of California, Riverside, California
| |
Collapse
|
3
|
Hatano M, Kelly JB, Zhang H. Area-dependent change of response in the rat's inferior colliculus to intracochlear electrical stimulation following neonatal cochlear damage. Sci Rep 2019; 9:5643. [PMID: 30948747 PMCID: PMC6449351 DOI: 10.1038/s41598-019-41955-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/19/2019] [Indexed: 12/04/2022] Open
Abstract
To understand brain changes caused by auditory sensory deprivation, we recorded local-field potentials in the inferior colliculus of young adult rats with neonatal cochlear damage produced by systemic injections of amikacin. The responses were elicited by electrical stimulation of the entire cochlea and recorded at various locations along a dorsolateral-ventromedial axis of the inferior colliculus. We found that hair cells were completely destroyed and spiral ganglion neurons were severely damaged in the basal cochleae of amikacin-treated animals. Hair cells as well as spiral ganglion neurons were damaged also in the middle and apical areas of the cochlea, with the damage being greater in the middle than the apical area. Amplitudes of local-field potentials were reduced in the ventromedial inferior colliculus, but enhanced in the dorsolateral inferior colliculus. Latencies of responses were increased over the entire structure. The enhancement of responses in the dorsolateral inferior colliculus was in contrast with the damage of hair cells and spiral ganglion cells in the apical part of the cochlea. This contrast along with the overall increase of latencies suggests that early cochlear damage can alter neural mechanisms within the inferior colliculus and/or the inputs to this midbrain structure.
Collapse
Affiliation(s)
- Miyako Hatano
- Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Kanazawa, 920-8640, Ishikawa, Japan.
| | - Jack B Kelly
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
4
|
Arce ME, Sánchez SI, Correa MM, Ciuffo GM. Age-Related Changes in Ang II Receptor Localization and Expression in the Developing Auditory Pathway. Neurochem Res 2018; 44:412-420. [PMID: 30488363 DOI: 10.1007/s11064-018-2687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
We studied Ang II receptor localization in different nuclei of the auditory system, by means of binding autoradiography, during brain development. The inferior colliculus (IC), a large midbrain structure which serves as an obligatory synaptic station in both the ascending and descending auditory pathways, exhibited high Ang II AT2 binding at all ages (P0, P8, P15, P30), being maximal at P15. These observations were confirmed by in situ hybridization and immunofluorescence at P15, demonstrating that AT2 receptor mRNA localized at the same area recognized by AT2 antibodies and anti β III-tubulin suggesting the neuronal nature of the reactive cells. Ang II AT1 receptors were absent at early developmental ages (P0) in all nuclei of the auditory system and a low level was observed in the IC at the age P8. AT2 receptors were present at ventral cochlear nucleus and superior olivary complex, being higher at P15 and P8, respectively. We also explored the effect of prenatal administration of Ang II or PD123319 (AT2 antagonist) on binding of Ang II receptors at P0, P8, P15. Both treatments increased significantly the level of AT2 receptors at P0 and P8 in the IC. Although total binding in the whole IC from P15 animals showed no difference between treatments, the central nucleus of the IC exhibited higher binding. Our results supports a correlation between the timing of the higher expression of Ang II AT2 receptors in different nuclei, the onset of audition and the establishment of neuronal circuits of the auditory pathway.
Collapse
Affiliation(s)
- M E Arce
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - S I Sánchez
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - M M Correa
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - G M Ciuffo
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina.
| |
Collapse
|
5
|
Chen C, Cheng M, Ito T, Song S. Neuronal Organization in the Inferior Colliculus Revisited with Cell-Type-Dependent Monosynaptic Tracing. J Neurosci 2018; 38:3318-3332. [PMID: 29483283 PMCID: PMC6596054 DOI: 10.1523/jneurosci.2173-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023] Open
Abstract
The inferior colliculus (IC) is a critical integration center in the auditory pathway. However, because the inputs to the IC have typically been studied by the use of conventional anterograde and retrograde tracers, the neuronal organization and cell-type-specific connections in the IC are poorly understood. Here, we used monosynaptic rabies tracing and in situ hybridization combined with excitatory and inhibitory Cre transgenic mouse lines of both sexes to characterize the brainwide and cell-type-specific inputs to specific neuron types within the lemniscal IC core and nonlemniscal IC shell. We observed that both excitatory and inhibitory neurons of the IC shell predominantly received ascending inputs rather than descending or core inputs. Correlation and clustering analyses revealed two groups of excitatory neurons in the shell: one received inputs from a combination of ascending nuclei, and the other received inputs from a combination of descending nuclei, neuromodulatory nuclei, and the contralateral IC. In contrast, inhibitory neurons in the core received inputs from the same combination of all nuclei. After normalizing the extrinsic inputs, we found that core inhibitory neurons received a higher proportion of inhibitory inputs from the ventral nucleus of the lateral lemniscus than excitatory neurons. Furthermore, the inhibitory neurons preferentially received inhibitory inputs from the contralateral IC shell. Because IC inhibitory neurons innervate the thalamus and contralateral IC, the inhibitory inputs we uncovered here suggest two long-range disinhibitory circuits. In summary, we found: (1) dominant ascending inputs to the shell, (2) two subpopulations of shell excitatory neurons, and (3) two disinhibitory circuits.SIGNIFICANCE STATEMENT Sound undergoes extensive processing in the brainstem. The inferior colliculus (IC) core is classically viewed as the integration center for ascending auditory information, whereas the IC shell integrates descending feedback information. Here, we demonstrate that ascending inputs predominated in the IC shell but appeared to be separated from the descending inputs. The presence of inhibitory projection neurons is a unique feature of the auditory ascending pathways, but the connections of these neurons are poorly understood. Interestingly, we also found that inhibitory neurons in the IC core and shell preferentially received inhibitory inputs from ascending nuclei and contralateral IC, respectively. Therefore, our results suggest a bipartite domain in the IC shell and disinhibitory circuits in the IC.
Collapse
Affiliation(s)
- Chenggang Chen
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Mingxiu Cheng
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences, Beijing, 102206, China, and
| | - Tetsufumi Ito
- Anatomy II, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China,
| |
Collapse
|
6
|
Dillingham CH, Gay SM, Behrooz R, Gabriele ML. Modular-extramodular organization in developing multisensory shell regions of the mouse inferior colliculus. J Comp Neurol 2017; 525:3742-3756. [PMID: 28786102 DOI: 10.1002/cne.24300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/28/2017] [Indexed: 11/07/2022]
Abstract
The complex neuroanatomical connections of the inferior colliculus (IC) and its major subdivisions offer a juxtaposition of segregated processing streams with distinct organizational features. While the tonotopically layered central nucleus is well-documented, less is known about functional compartments in the neighboring lateral cortex (LCIC). In addition to a laminar framework, LCIC afferent-efferent patterns suggest a multimodal mosaic, consisting of a patchy modular network with surrounding extramodular domains. This study utilizes several neurochemical markers that reveal an emerging LCIC modular-extramodular microarchitecture. In newborn and post-hearing C57BL/6J and CBA/CaJ mice, histochemical and immunocytochemical stains were performed for acetylcholinesterase (AChE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), glutamic acid decarboxylase (GAD), cytochrome oxidase (CO), and calretinin (CR). Discontinuous layer 2 modules are positive for AChE, NADPH-d, GAD, and CO throughout the rostrocaudal LCIC. While not readily apparent at birth, discrete cell clusters emerge over the first postnatal week, yielding an identifiable modular network prior to hearing onset. Modular boundaries continue to become increasingly distinct with age, as surrounding extramodular fields remain largely negative for each marker. Alignment of modular markers in serial sections suggests each highlight the same periodic patchy network throughout the nascent LCIC. In contrast, CR patterns appear complementary, preferentially staining extramodular LCIC zones. Double-labeling experiments confirm that NADPH-d, the most consistent developmental modular marker, and CR label separate, nonoverlapping LCIC compartments. Determining how this emerging modularity may align with similar LCIC patch-matrix-like Eph/ephrin guidance patterns, and how each interface with, and potentially influence developing multimodal LCIC projection configurations is discussed.
Collapse
Affiliation(s)
| | - Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Roxana Behrooz
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
7
|
Connectional Modularity of Top-Down and Bottom-Up Multimodal Inputs to the Lateral Cortex of the Mouse Inferior Colliculus. J Neurosci 2017; 36:11037-11050. [PMID: 27798184 DOI: 10.1523/jneurosci.4134-15.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 09/04/2016] [Indexed: 12/14/2022] Open
Abstract
The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information.
Collapse
|
8
|
Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise. Neural Plast 2017; 2017:3026749. [PMID: 28589040 PMCID: PMC5446865 DOI: 10.1155/2017/3026749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.
Collapse
|
9
|
Wada H. Acoustic alterations of ultrasonic vocalization in rat pups induced by perinatal hypothyroidism. Neurotoxicology 2017; 59:175-182. [DOI: 10.1016/j.neuro.2016.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/29/2022]
|
10
|
Wallace MM, Harris JA, Brubaker DQ, Klotz CA, Gabriele ML. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem. Hear Res 2016; 335:64-75. [PMID: 26906676 DOI: 10.1016/j.heares.2016.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - J Aaron Harris
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Donald Q Brubaker
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Caitlyn A Klotz
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Mark L Gabriele
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA.
| |
Collapse
|
11
|
Wang HC, Bergles DE. Spontaneous activity in the developing auditory system. Cell Tissue Res 2015; 361:65-75. [PMID: 25296716 PMCID: PMC7046314 DOI: 10.1007/s00441-014-2007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
12
|
Development of intrinsic connectivity in the central nucleus of the mouse inferior colliculus. J Neurosci 2015; 34:15032-46. [PMID: 25378168 DOI: 10.1523/jneurosci.2276-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inferior colliculus (IC) in the mammalian midbrain is the major subcortical auditory integration center receiving ascending inputs from almost all auditory brainstem nuclei as well as descending inputs from the thalamus and cortex. In addition to these extrinsic inputs, the IC also contains a dense network of local, intracollicular connections, which are thought to provide gain control and contribute to the selectivity for complex acoustic features. However, in contrast to the organization of extrinsic IC afferents, the development and functional organization of intrinsic connections in the IC has remained poorly understood. Here we used laser-scanning photostimulation with caged glutamate to characterize the spatial distribution and strength of local synaptic connections in the central nucleus of the inferior colliculus of newborn mice until after hearing onset (P2-P22). We demonstrate the presence of an extensive excitatory and inhibitory intracollicular network already at P2. Excitatory and inhibitory synaptic maps to individual IC neurons formed continuous maps that largely overlapped with each other and that were aligned with the presumed isofrequency axis of the central nucleus of the IC. Although this characteristic organization was present throughout the first three postnatal weeks, the size of input maps was developmentally regulated as input maps underwent an expansion during the first week that was followed by a dramatic refinement after hearing onset. These changes occurred in parallel for excitatory and inhibitory input maps. However, the functional elimination of intrinsic connections was greater for excitatory than for inhibitory connections, resulting in a predominance of intrinsic inhibition after hearing onset.
Collapse
|
13
|
Ouda L, Burianová J, Balogová Z, Lu HP, Syka J. Structural changes in the adult rat auditory system induced by brief postnatal noise exposure. Brain Struct Funct 2014; 221:617-29. [PMID: 25408549 DOI: 10.1007/s00429-014-0929-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
In previous studies (Grécová et al., Eur J Neurosci 29:1921-1930, 2009; Bures et al., Eur J Neurosci 32:155-164, 2010), we demonstrated that after an early postnatal short noise exposure (8 min 125 dB, day 14) changes in the frequency tuning curves as well as changes in the coding of sound intensity are present in the inferior colliculus (IC) of adult rats. In this study, we analyze on the basis of the Golgi-Cox method the morphology of neurons in the IC, the medial geniculate body (MGB) and the auditory cortex (AC) of 3-month-old Long-Evans rats exposed to identical noise at postnatal day 14 and compare the results to littermate controls. In rats exposed to noise as pups, the mean total length of the neuronal tree was found to be larger in the external cortex and the central nucleus of the IC and in the ventral division of the MGB. In addition, the numerical density of dendritic spines was decreased on the branches of neurons in the ventral division of the MGB in noise-exposed animals. In the AC, the mean total length of the apical dendritic segments of pyramidal neurons was significantly shorter in noise-exposed rats, however, only slight differences with respect to controls were observed in the length of basal dendrites of pyramidal cells as well as in the neuronal trees of AC non-pyramidal neurons. The numerical density of dendritic spines on the branches of pyramidal AC neurons was lower in exposed rats than in controls. These findings demonstrate that early postnatal short noise exposure can induce permanent changes in the development of neurons in the central auditory system, which apparently represent morphological correlates of functional plasticity.
Collapse
Affiliation(s)
- Ladislav Ouda
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Jana Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Balogová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Hui Pin Lu
- Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
14
|
Cramer KS, Gabriele ML. Axon guidance in the auditory system: multiple functions of Eph receptors. Neuroscience 2014; 277:152-62. [PMID: 25010398 DOI: 10.1016/j.neuroscience.2014.06.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
Abstract
The neural pathways of the auditory system underlie our ability to detect sounds and to transform amplitude and frequency information into rich and meaningful perception. While it shares some organizational features with other sensory systems, the auditory system has some unique functions that impose special demands on precision in circuit assembly. In particular, the cochlear epithelium creates a frequency map rather than a space map, and specialized pathways extract information on interaural time and intensity differences to permit sound source localization. The assembly of auditory circuitry requires the coordinated function of multiple molecular cues. Eph receptors and their ephrin ligands constitute a large family of axon guidance molecules with developmentally regulated expression throughout the auditory system. Functional studies of Eph/ephrin signaling have revealed important roles at multiple levels of the auditory pathway, from the cochlea to the auditory cortex. These proteins provide graded cues used in establishing tonotopically ordered connections between auditory areas, as well as discrete cues that enable axons to form connections with appropriate postsynaptic partners within a target area. Throughout the auditory system, Eph proteins help to establish patterning in neural pathways during early development. This early targeting, which is further refined with neuronal activity, establishes the precision needed for auditory perception.
Collapse
Affiliation(s)
- K S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, United States.
| | - M L Gabriele
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States
| |
Collapse
|
15
|
Wallace MM, Kavianpour SM, Gabriele ML. Ephrin-B2 reverse signaling is required for topography but not pattern formation of lateral superior olivary inputs to the inferior colliculus. J Comp Neurol 2013; 521:1585-97. [PMID: 23042409 DOI: 10.1002/cne.23243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/05/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Graded and modular expressions of Eph-ephrins are known to provide positional information for the formation of topographic maps and patterning in the developing nervous system. Previously we have shown that ephrin-B2 is expressed in a continuous gradient across the tonotopic axis of the central nucleus of the inferior colliculus (CNIC), whereas patterns are discontinuous and modular in the lateral cortex of the IC (LCIC). The present study explores the involvement of ephrin-B2 signaling in the development of projections to the CNIC and LCIC arising from the lateral superior olivary nuclei (LSO) prior to hearing onset. Anterograde and retrograde fluorescent tracing methods in neonatal fixed tissue preparations were used to compare topographic mapping and the establishment of LSO layers/modules in wild-type and ephrin-B2(lacZ/+) mice (severely compromised reverse signaling). At birth, pioneer LSO axons occupy the ipsilateral IC in both groups but are delayed contralaterally in ephrin-B2(lacZ/+) mutants. By the onset of hearing, both wild-type and mutant projections form discernible layers bilaterally in the CNIC and modular arrangements within the ipsilateral LCIC. In contrast, ephrin-B2(lacZ/+) mice lack a reliable topography in LSO-IC projections, suggesting that fully functional ephrin-B2 reverse signaling is required for normal projection mapping. Taken together, these ephrin-B2 findings paired with known coexpression of EphA4 suggest the importance of these signaling proteins in establishing functional auditory circuits prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- Department of Biology, MSC 7801, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | |
Collapse
|
16
|
Chandrasekaran L, Xiao Y, Sivaramakrishnan S. Functional architecture of the inferior colliculus revealed with voltage-sensitive dyes. Front Neural Circuits 2013; 7:41. [PMID: 23518906 PMCID: PMC3602642 DOI: 10.3389/fncir.2013.00041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/28/2013] [Indexed: 11/22/2022] Open
Abstract
We used optical imaging with voltage-sensitive dyes to investigate the spatio-temporal dynamics of synaptically evoked activity in brain slices of the inferior colliculus (IC). Responses in transverse slices which preserve cross-frequency connections and in modified sagittal slices that preserve connections within frequency laminae were evoked by activating the lateral lemniscal tract. Comparing activity between small and large populations of cells revealed response areas in the central nucleus of the IC that were similar in magnitude but graded temporally. In transverse sections, these response areas are summed to generate a topographic response profile. Activity through the commissure to the contralateral IC required an excitation threshold that was reached when GABAergic inhibition was blocked. Within laminae, module interaction created temporal homeostasis. Diffuse activity evoked by a single lemniscal shock re-organized into distinct spatial and temporal compartments when stimulus trains were used, and generated a directional activity profile within the lamina. Using different stimulus patterns to activate subsets of microcircuits in the central nucleus of the IC, we found that localized responses evoked by low-frequency stimulus trains spread extensively when train frequency was increased, suggesting recruitment of silent microcircuits. Long stimulus trains activated a circuit specific to post-inhibitory rebound neurons. Rebound microcircuits were defined by a focal point of initiation that spread to an annular ring that oscillated between inhibition and excitation. We propose that much of the computing power of the IC is derived from local circuits, some of which are cell-type specific. These circuits organize activity within and across frequency laminae, and are critical in determining the stimulus-selectivity of auditory coding.
Collapse
Affiliation(s)
- Lakshmi Chandrasekaran
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | | | | |
Collapse
|
17
|
Cant NB. Patterns of convergence in the central nucleus of the inferior colliculus of the Mongolian gerbil: organization of inputs from the superior olivary complex in the low frequency representation. Front Neural Circuits 2013; 7:29. [PMID: 23509001 PMCID: PMC3589697 DOI: 10.3389/fncir.2013.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 02/07/2013] [Indexed: 11/13/2022] Open
Abstract
Projections to the inferior colliculus (IC) from the lateral and medial superior olivary nuclei (LSO and MSO) were studied in the gerbil (Meriones unguiculatus) with neuroanatomical tract-tracing methods. The terminal fields of projecting axons were labeled via anterograde transport of biotinylated dextran amine (BDA) and were localized on series of horizontal sections through the IC. In addition, to make the results easier to visualize in three dimensions and to facilitate comparisons among cases, the data were also reconstructed into the transverse plane. The results show that the terminal fields from the low frequency parts of the LSO and MSO are concentrated in a dorsal, lateral, and rostral area that is referred to as the "pars lateralis" of the central nucleus by analogy with the cat. This region also receives substantial input from both the contralateral and ipsilateral cochlear nuclei (Cant and Benson, 2008) and presumably plays a major role in processing binaural, low frequency information. The basic pattern of organization in the gerbil IC is similar to that of other rodents, although the low frequency part of the central nucleus in gerbils appears to be relatively greater than in the rat, consistent with differences in the audiograms of the two species.
Collapse
Affiliation(s)
- Nell B. Cant
- Department of Neurobiology, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
18
|
Kaltwaßer B, Schulenborg T, Beck F, Klotz M, Schäfer KH, Schmitt M, Sickmann A, Friauf E. Developmental changes of the protein repertoire in the rat auditory brainstem: a comparative proteomics approach in the superior olivary complex and the inferior colliculus with DIGE and iTRAQ. J Proteomics 2012. [PMID: 23201114 DOI: 10.1016/j.jprot.2012.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein profiles of developing neural circuits undergo manifold changes. The aim of this proteomic analysis was to quantify postnatal changes in two auditory brainstem areas in a comparative approach. Protein samples from the inferior colliculus (IC) and the superior olivary complex (SOC) were obtained from neonatal (P4) and young adult (P60) rats. The cytosolic fractions of both areas were examined by 2-D DIGE, and the plasma membrane-enriched fraction of the IC was analyzed via iTRAQ. iTRAQ showed a regulation in 34% of the quantified proteins. DIGE revealed 12% regulated spots in both the SOC and IC and, thus, numeric congruency. Although regulation in KEGG pathways displayed a similar pattern in both areas, only 13 of 71 regulated DIGE proteins were regulated in common, implying major area-specific differences. 89% of regulated glycolysis/gluconeogenesis and citrate cycle proteins were up-regulated in the SOC or IC, suggesting a higher energy demand in adulthood. Seventeen cytoskeleton proteins were regulated, consistent with complex morphological reorganization between P4 and P60. Fourteen were uniquely regulated in the SOC, providing further evidence for area-specific differences. Altogether, we provide the first elaborate catalog of proteins involved in auditory brainstem development, several of them possibly of particular developmental relevance.
Collapse
Affiliation(s)
- Bernd Kaltwaßer
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cheung MM, Lau C, Zhou IY, Chan KC, Zhang JW, Fan SJ, Wu EX. High fidelity tonotopic mapping using swept source functional magnetic resonance imaging. Neuroimage 2012; 61:978-86. [PMID: 22445952 DOI: 10.1016/j.neuroimage.2012.03.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/25/2022] Open
Abstract
Tonotopy, the topographic encoding of sound frequency, is the fundamental property of the auditory system. Invasive techniques lack the spatial coverage or frequency resolution to rigorously investigate tonotopy. Conventional auditory fMRI is corrupted by significant image distortion, sporadic acoustic noise and inadequate frequency resolution. We developed an efficient and high fidelity auditory fMRI method that integrates continuous frequency sweeping stimulus, distortion free MRI sequence with stable scanner noise and Fourier analysis. We demonstrated this swept source imaging (SSI) in the rat inferior colliculus and obtained tonotopic maps with ~2 kHz resolution and 40 kHz bandwidth. The results were vastly superior to those obtained by conventional fMRI mapping approach and in excellent agreement with invasive findings. We applied SSI to examine tonotopic injury following developmental noise exposure and observed that the tonotopic organization was significantly disrupted. With SSI, we also observed the subtle effects of sound pressure level on tonotopic maps, reflecting the complex neuronal responses associated with asymmetric tuning curves. This in vivo and noninvasive technique will greatly facilitate future investigation of tonotopic plasticity and disorders and auditory information processing. SSI can also be adapted to study topographic organization in other sensory systems such as retinotopy and somatotopy.
Collapse
Affiliation(s)
- Matthew M Cheung
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Gabriele ML, Brubaker DQ, Chamberlain KA, Kross KM, Simpson NS, Kavianpour SM. EphA4 and ephrin-B2 expression patterns during inferior colliculus projection shaping prior to experience. Dev Neurobiol 2011; 71:182-99. [PMID: 20886601 DOI: 10.1002/dneu.20842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central processing of complex auditory tasks requires elaborate circuitry. The auditory midbrain, or inferior colliculus (IC), epitomizes such precise organization, where converging inputs form discrete, tonotopically-arranged axonal layers. Previously in rat, we established that shaping of multiple afferent patterns in the IC central nucleus (CNIC) occurs prior to experience. This study implicates an Eph receptor tyrosine kinase and a corresponding ephrin ligand in signaling this early topographic registry. We report that EphA4 and ephrin-B2 expression patterns in the neonatal rat and mouse IC correlate temporally and spatially with that of developing axonal layers. DiI-labeling confirms projections arising from the lateral superior olive (LSO) form frequency-specific layers within the ipsilateral and contralateral mouse CNIC, as has been described in other species. Immunohistochemistry (EphA4 and ephrin-B2) and ephrin-B2 lacZ histochemistry reveal clear gradients in expression across the tonotopic axis, with most concentrated labeling observed in high-frequency, ventromedial aspects of the CNIC. Discrete patches of labeling were also discernible in the external cortex of the IC (ECIC; EphA4 patches in rat, ephrin-B2 patches in mouse). Observed gradients in the CNIC and compartmentalized ECIC expression persisted through the first postnatal week, before becoming less intense and more homogeneously distributed by the functional onset of hearing. EphA4 and ephrin-B2-positive neurons were evident in several auditory brainstem nuclei known to send patterened inputs to the IC. These findings suggest the involvement of cell-cell EphA4 and ephrin-B2 signaling in establishing order in the developing IC.
Collapse
Affiliation(s)
- Mark L Gabriele
- Department of Biology, James Madison University, MSC 7801, 820 Madison Drive, Harrisonburg, Virginia 22807, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Razak KA, Fuzessery ZM. Development of parallel auditory thalamocortical pathways for two different behaviors. Front Neuroanat 2010; 4. [PMID: 20941327 PMCID: PMC2952463 DOI: 10.3389/fnana.2010.00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 08/29/2010] [Indexed: 11/13/2022] Open
Abstract
Auditory thalamocortical connections are organized as parallel pathways that originate in different divisions of the medial geniculate body (MGB). These pathways may be involved in different functions. Surprisingly little is known about the development of these connections. Here we review studies of the organization and development of auditory thalamocortical pathways in the pallid bat. The pallid bat depends primarily on passive hearing of prey-generated noise for localizing prey, while reserving echolocation for general orientation and obstacle avoidance. In the inferior colliculus (IC) and the auditory cortex, physiological studies show that noise and echolocation calls are processed in segregated regions. Injection of retrograde tracers in physiologically characterized cortical sites show that the ventral division of the MGB (MGBv) projects to the cortical region selective for noise. The cortical region selective for echolocation calls receives input from the suprageniculate (SG) nucleus in the dorsal MGB, but not from the MGBv. Taken together, these studies reveal parallel IC-MGB-cortex pathways involved in echolocation and passive listening. There is overlap of thalamocortical pathways during development. At 2-weeks postnatal, when the bat begins to exhibit adult-like hearing thresholds, the SG projects to both noise- and echolocation call-selective regions. The MGBv, as in adults, projects only to the noise-selective region. The connections become adult-like only after 2-months postnatal. These data suggest that parallel auditory thalamocortical pathways may segregate in an experience-dependent fashion, a hypothesis that remains to be tested in any species.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology, University of California Riverside, CA, USA
| | | |
Collapse
|
22
|
Bureš Z, Grécová J, Popelář J, Syka J. Noise exposure during early development impairs the processing of sound intensity in adult rats. Eur J Neurosci 2010; 32:155-64. [DOI: 10.1111/j.1460-9568.2010.07280.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Razak KA, Zumsteg T, Fuzessery ZM. Development of auditory thalamocortical connections in the pallid bat, Antrozous pallidus. J Comp Neurol 2009; 515:231-42. [PMID: 19412955 DOI: 10.1002/cne.22050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Auditory thalamocortical connections are organized as parallel pathways originating in various nuclei of the medial geniculate body (MGB). The development of these pathways has not been studied. Therefore it remains unclear whether thalamocortical connections segregate before the onset of hearing or whether refinement of exuberant thalamocortical connections occurs following hearing onset. We studied this issue in the pallid bat. In adult pallid bats, parallel thalamocortical pathways represent two different sounds used in two different behaviors. The suprageniculate (SG) nucleus of the dorsal division of the MGB (MGBd) projects to a high-frequency cortical region selective for the echolocation calls, but not to a low-frequency cortical region sensitive to noise transients used in the localization of prey. Conversely, the ventral division (MGBv) projects to the low-frequency, but not the high-frequency, cortical region. Here we studied the development of these parallel pathways. Based on retrograde tracer injections in electrophysiologically characterized cortical loci, we show that there is an asymmetrical overlap in projection patterns from postnatal (P) day 15-60. The low-frequency region receives extensive input from both the SG and the MGBv. In contrast, the high-frequency region receives the great majority of its input from the SG, as in adults, whereas projections from the MGBv appear to make only a minor contribution, if any. By P150, these pathways are segregated and adult-like. These data suggest that these anatomically segregated pathways arise through postnatal refinement of initially overlapping connections.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
24
|
Fathke RL, Gabriele ML. Patterning of multiple layered projections to the auditory midbrain prior to experience. Hear Res 2009; 249:36-43. [PMID: 19271271 DOI: 10.1016/j.heares.2009.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The precise arrangement of patterned inputs into discrete functional domains is a common organizational feature of primary sensory structures. While the specific organization of patterned connections has been well documented in the visual and somatosensory systems, comparatively little is known about the arrangement of neighboring afferent patterns in the emerging auditory system. Here we report early projection specificity for multiple converging inputs to the rat central nucleus of the inferior colliculus (ICC). Afferents arising from the dorsal cochlear nucleus (DCN), the dorsal nucleus of the lateral lemniscus (DNLL), and the lateral superior olive (LSO) establish discernible axonal layers a week prior to experience. By hearing onset, contralateral DCN and contralateral LSO layers are clearly defined and segregated from contralateral DNLL terminal zones. Layering of the ipsilateral LSO projection, on the other hand, exhibits considerable spatial overlap with the contralateral DNLL pattern. This fine laminar structure of interdigitating and overlapping inputs likely underlies the complex signal processing performed in the auditory midbrain and may serve as a model system for examining competitive interactions between neighboring excitatory and inhibitory projections early in development.
Collapse
Affiliation(s)
- Robert L Fathke
- James Madison University, Department of Biology, MSC 7801, Harrisonburg, VA 22807, USA
| | | |
Collapse
|
25
|
Grécová J, Bureš Z, Popelář J, Šuta D, Syka J. Brief exposure of juvenile rats to noise impairs the development of the response properties of inferior colliculus neurons. Eur J Neurosci 2009; 29:1921-30. [DOI: 10.1111/j.1460-9568.2009.06739.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Lu HP, Chen ST, Poon PWF. Nuclear size of c-Fos expression at the auditory brainstem is related to the time-varying nature of the acoustic stimuli. Neurosci Lett 2009; 451:139-43. [DOI: 10.1016/j.neulet.2008.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
|
27
|
Thompson AM, Thompson GC. Experimental evidence that the serotonin transporter mediates serotonin accumulation in LSO neurons of the postnatal mouse. Brain Res 2008; 1253:60-8. [PMID: 19070605 DOI: 10.1016/j.brainres.2008.11.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/29/2022]
Abstract
During the same postnatal period of development when their terminal projection patterns in the midbrain are maturing, lateral superior olivary (LSO) neurons are immunoreactive for serotonin (5-HT). As there is no evidence that LSO neurons synthesize 5-HT, it is likely that they accumulate 5-HT via the 5-HT transporter. To determine if the 5-HT transporter is responsible for 5-HT inside postnatal mouse LSO neurons, pups (postnatal ages 5-6) were treated with fluoxetine and LSO neurons examined for 5-HT. We also evaluated whether LSO neurons containing 5-HT expressed the 5-HT transporter. To further rule out any potential synthesis of 5-HT, brainstem sections of mice at postnatal ages when 5-HT staining is the most robust were stained for the rate-limiting enzyme in the synthesis of 5-HT, tryptophan hydroxylase. Fluoxetine treatment reduced or in most cases, completely eliminated the number of neurons in the LSO stained for 5-HT. Postnatal LSO neurons containing 5-HT were immunoreactive for the 5-HT transporter; in older animals in which 5-HT was no longer observed in the LSO neurons, 5-HT transporter expression was similarly absent. Further, LSO neurons in mice at any age did not stain for tryptophan hydroxylase. These results indicate that LSO neurons express the functional 5-HT transporter to internalize 5-HT; this mechanism may serve to regulate extracellular 5-HT levels during maturation of their terminal endings in the inferior colliculus.
Collapse
Affiliation(s)
- Ann M Thompson
- The University of Oklahoma Health Sciences Center, Department of Otorhinolaryngology, Oklahoma City, OK 73126-0901, USA.
| | | |
Collapse
|
28
|
Thompson AM. Serotonin immunoreactivity in auditory brainstem neurons of the postnatal monoamine oxidase-A knockout mouse. Brain Res 2008; 1228:58-67. [PMID: 18634763 DOI: 10.1016/j.brainres.2008.06.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/23/2008] [Accepted: 06/23/2008] [Indexed: 11/18/2022]
Abstract
Altered levels of extracellular serotonin (5-HT) during development cause structural abnormalities in the neural projections of sensory systems. To better understand the potential role of 5-HT in the development of auditory system projections, we examined 5-HT immunoreactivity (IR) in auditory brainstem nuclei of postnatal mice. We previously observed 5-HT-IR in the lateral superior olive (LSO) of wild type mice. In the current study, we used a genetic model (monoamine oxidase-A knockout mouse) in which brain 5-HT levels are abnormally high to improve detection of 5-HT. In the cochlear nucleus of this knockout, 5-HT-IR cell bodies were observed in the dorsal cochlear nucleus (DCN), a primary relay to the inferior colliculus (IC). In the superior olivary complex, 5-HT-IR somata were observed in the LSO, another relay to the IC. Labeled somata were also observed within the IC itself. The 5-HT immunostaining in all 3 regions was transient and was not observed beyond postnatal day 8. These results suggest that 5-HT may play a role in the branching and refinement of DCN and LSO axon collaterals within the IC, as well as IC axon collaterals within the medial geniculate body. The pattern of expression indicates that 5-HT has a developmental role in select populations of neurons of the ascending auditory pathway prior to any influences of sound-evoked activity.
Collapse
Affiliation(s)
- Ann M Thompson
- The University of Oklahoma Health Sciences Center, Department of Otorhinolaryngology, Oklahoma City, OK 73126-0901, USA.
| |
Collapse
|
29
|
Franklin SR, Brunso-Bechtold JK, Henkel CK. Bilateral cochlear ablation in postnatal rat disrupts development of banded pattern of projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. Neuroscience 2008; 154:346-54. [PMID: 18372115 DOI: 10.1016/j.neuroscience.2008.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/25/2008] [Accepted: 02/13/2008] [Indexed: 11/16/2022]
Abstract
Axonal projections from the dorsal nucleus of the lateral lemniscus (DNLL) distribute contralaterally in a pattern of banded layers in the central nucleus of the inferior colliculus (IC). The banded pattern of DNLL projections is already in the IC by onset of hearing in postnatal rat pups. Previously, it was shown that unilateral cochlear ablation in neonatal rat pups disrupted the banded pattern in IC for the projections of the DNLL contralateral to the ablation but not those of the DNLL ipsilateral to the ablation. In the present study, bilateral cochlear ablation or sham surgery was performed at postnatal day 9 (P9) after which rat pups were killed at P12 and the brains removed to study axonal projections of the DNLL. A lipophilic carbocyanine dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), was placed in the dorsal tegmental commissure of Probst to label decussating DNLL axons that end in the central nucleus of the contralateral IC. The distribution of labeled fibers across the central nucleus of the IC was analyzed in digital images by comparing the pattern of labeling with a sine model of periodic distribution of banded layers. In the control group, labeled axons formed a regular pattern of dense banded layers in IC. In the bilateral cochlear ablation group, labeled axons in the IC were distributed diffusely and there was little or no regular pattern of dense bands of axonal labeling. The influence of the cochlea on developing auditory circuits possibly mediated by activity-dependent mechanisms is discussed.
Collapse
Affiliation(s)
- S R Franklin
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
30
|
Gabriele ML, Shahmoradian SH, French CC, Henkel CK, McHaffie JG. Early segregation of layered projections from the lateral superior olivary nucleus to the central nucleus of the inferior colliculus in the neonatal cat. Brain Res 2007; 1173:66-77. [PMID: 17850770 PMCID: PMC2075569 DOI: 10.1016/j.brainres.2007.07.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/18/2022]
Abstract
The central nucleus of the inferior colliculus (IC) is a laminated structure that receives multiple converging afferent projections. These projections terminate in a layered arrangement and are aligned with dendritic arbors of the predominant disc-shaped neurons, forming fibrodendritic laminae. Within this structural framework, inputs terminate in a precise manner, establishing a mosaic of partially overlapping domains that likely define functional compartments. Although several of these patterned inputs have been described in the adult, relatively little is known about their organization prior to hearing onset. The present study used the lipophilic carbocyanine dyes DiI and DiD to examine the ipsilateral and contralateral projections from the lateral superior olivary (LSO) nucleus to the IC in a developmental series of paraformaldehyde-fixed kitten tissue. By birth, the crossed and uncrossed projections had reached the IC and were distributed across the frequency axis of the central nucleus. At this earliest postnatal stage, projections already exhibited a characteristic banded arrangement similar to that described in the adult. The heaviest terminal fields of the two inputs were always complementary in nature, with the ipsilateral input appearing slightly denser. This early arrangement of interdigitating ipsilateral and contralateral LSO axonal bands that occupy adjacent sublayers supports the idea that the initial establishment of this highly organized mosaic of inputs that defines distinct synaptic domains within the IC occurs largely in the absence of auditory experience. Potential developmental mechanisms that may shape these highly ordered inputs prior to hearing onset are discussed.
Collapse
Affiliation(s)
- Mark L Gabriele
- James Madison University, Department of Biology, MSC 7801, Harrisonburg, VA 22807, USA.
| | | | | | | | | |
Collapse
|
31
|
Henkel CK, Keiger CJ, Franklin SR, Brunso-Bechtold JK. Development of banded afferent compartments in the inferior colliculus before onset of hearing in ferrets. Neuroscience 2007; 146:225-35. [PMID: 17324524 PMCID: PMC1973092 DOI: 10.1016/j.neuroscience.2007.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 01/05/2007] [Accepted: 01/12/2007] [Indexed: 11/28/2022]
Abstract
Axonal projections from the lateral superior olivary nuclei (LSO), as well as from the dorsal cochlear nucleus (DCN) and dorsal nucleus of the lateral lemniscus (DNLL), converge in frequency-ordered layers in the central nucleus of the inferior colliculus (IC) where they distribute among different synaptic compartments. A carbocyanine dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), was used as a tracer to study the postnatal development of axonal projections in the ferret IC. The results indicated that projections from all three nuclei are present at birth, but are not segregated into bands. During the postnatal week between approximately postnatal days 4 and 12 (P4-P12), axons from LSO proliferate in IC, become more branched, and segregate into a series of bands composed of densely packed fibers and endings. LSO projections in these afferent bands course parallel to IC layers and are separated by intervening regions with few endings. A modest fit of a sine curve (R2>0.15) to the pattern of spacing of LSO projections in IC indicated that regularly spaced bands are forming by P7. Similarly, banded patterns of DCN and DNLL projections to IC have developed by the end of the first postnatal week. Thus, well before hearing onset in ferret (P28-30), three different afferent projections have segregated into banded compartments along layers in the central nucleus of the ferret IC. Possible mechanisms in circuit development are discussed.
Collapse
Affiliation(s)
- C K Henkel
- Wake Forest University Health Sciences, Neuroscience Program and Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
32
|
FRANKLIN SR, BRUNSO-BECHTOLD JK, HENKEL CK. Unilateral cochlear ablation before hearing onset disrupts the maintenance of dorsal nucleus of the lateral lemniscus projection patterns in the rat inferior colliculus. Neuroscience 2006; 143:105-15. [PMID: 16971048 PMCID: PMC2048763 DOI: 10.1016/j.neuroscience.2006.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/26/2022]
Abstract
During postnatal development, ascending and descending auditory inputs converge to form fibrodendritic layers within the central nucleus of the inferior colliculus (IC). Before the onset of hearing, specific combinations of inputs segregate into bands separated by interband spaces. These bands may define functional zones within the IC. Previous studies in our laboratory have shown that unilateral or bilateral cochlear ablation at postnatal day 2 (P2) disrupts the development of afferent bands from the dorsal nucleus of the lateral lemniscus (DNLL) to the IC. These results suggest that spontaneous activity propagated from the cochlea is required for the segregation of afferent bands within the developing IC. To test if spontaneous activity from the cochlea also may be required to maintain segregated bands of DNLL input, we performed cochlear ablations in rat pups at P9, after DNLL bands already are established. All animals were killed at P12 and glass pins coated with carbocyanine dye, DiI (1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), subsequently were placed in the commissure of Probst to label the crossed projections from both DNLLs. When compared with surgical controls, experimental results showed a similar pattern of DNLL bands in the IC contralateral to the ablated cochlea, but a disruption of DNLL bands in the IC ipsilateral to the cochlear ablation. The present results suggest that cochlear ablation after DNLL bands have formed may affect the maintenance of banded DNLL projections within the central nucleus of the IC.
Collapse
Affiliation(s)
| | | | - C. K. HENKEL
- *Corresponding author. Tel: +1-919-716-4379; fax: +1-919-716-4534. E-mail address: (C. K. Henkel)
| |
Collapse
|
33
|
Brunso-Bechtold JK, Evans SD, Henkel CK. Synaptogenesis in the inferior colliculus of the pre-hearing postnatal ferret. Hear Res 2006; 218:1-4. [PMID: 16766149 DOI: 10.1016/j.heares.2006.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/23/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
Although intrinsic organization in the inferior colliculus (IC) has been surveyed in a variety of species, current knowledge of synaptogenesis within the mammalian inferior colliculus is limited. The present study surveyed the ultrastructure of the central nucleus of the inferior colliculus in postnatal day (P) P4, P7, P14, and P28 ferrets, prior to the onset of hearing at the end of the first postnatal month with the goal of beginning to characterize the time course of synapse formation in relation to the development of afferent projection patterns within the IC. Results suggest that initial synaptogenesis has occurred in the IC by P4 and continues during the period when maturation of the distribution of axons from brainstem auditory nuclei is taking place.
Collapse
Affiliation(s)
- Judy K Brunso-Bechtold
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.
| | | | | |
Collapse
|
34
|
Wahlsten D, Bishop KM, Ozaki HS. Recombinant inbreeding in mice reveals thresholds in embryonic corpus callosum development. GENES BRAIN AND BEHAVIOR 2006; 5:170-88. [PMID: 16507008 DOI: 10.1111/j.1601-183x.2005.00153.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The inbred strains BALB/cWah1 and 129P1/ReJ both show incomplete penetrance for absent corpus callosum (CC); about 14% of adult mice have no CC at all. Their F(1) hybrid offspring are normal, which proves that the strains differ at two or more loci pertinent to absent CC. Twenty-three recombinant inbred lines were bred from the F(2) cross of BALB/c and 129, and several of these expressed a novel and severe phenotype after only three or four generations of inbreeding - total absence of the CC and severe reduction of the hippocampal commissure (HC) in every adult animal. As inbreeding progressed, intermediate sizes of the CC and the HC remained quite rare. This striking phenotypic distribution in adults arose from developmental thresholds in the embryo. CC axons normally cross to the opposite hemisphere via a tissue bridge in the septal region at midline, where the HC forms before CC axons arrive. The primary defect in callosal agenesis in the BALB/c and 129 strains is severe retardation of fusion of the hemispheres in the septal region, and failure to form a CC is secondary to this defect. The putative CC axons arrive at midline at the correct time and place in all groups, but in certain genotypes, the bridge is not yet present. The relative timing of axon growth and delay of the septal bridge create a narrow critical period for forming a normal brain.
Collapse
Affiliation(s)
- D Wahlsten
- Department of Psychology, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
35
|
Cant NB, Benson CG. Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 2006; 495:511-28. [PMID: 16498677 PMCID: PMC2566545 DOI: 10.1002/cne.20888] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inferior colliculus (IC) receives its major ascending input from the cochlear nuclei, the superior olivary complex, and the nuclei of the lateral lemniscus. To understand better the terminal distribution of the inputs from these sources relative to one another, we made focal injections of a retrograde tracer, biotinylated dextran amine, in different parts of the IC in 74 gerbils (Meriones unguiculatus). The cases could be divided into three groups based on counts of labeled cells in brainstem auditory nuclei. Group 1 cases had labeled cells in both the cochlear nuclei and the lateral and medial superior olivary nuclei. Group 2 cases had labeled cells in the cochlear nuclei but few or none in the lateral and medial superior olivary nuclei. Both groups had labeled cells in the nuclei of the lateral lemniscus and the superior paraolivary nucleus. Group 3 cases had few labeled cells in any of the ascending auditory pathways. The group to which a case belonged was strongly related to the location of the injection site in the IC. The injection sites for both group 1 and group 2 were located in the central nucleus, but those for group 1 tended to be located laterally relative to those for group 2, which were located more medially and caudally. The injection sites for group 3 cases lay outside the central nucleus of the IC. The two regions of the central nucleus of the IC, distinguished on the basis of connectivity, are likely to subserve different functions.
Collapse
Affiliation(s)
- Nell B Cant
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
36
|
Henkel CK, Gabriele ML, McHaffie JG. Quantitative assessment of developing afferent patterns in the cat inferior colliculus revealed with calbindin immunohistochemistry and tract tracing methods. Neuroscience 2006; 136:945-55. [PMID: 16344162 PMCID: PMC1913559 DOI: 10.1016/j.neuroscience.2005.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/16/2005] [Accepted: 03/21/2005] [Indexed: 11/18/2022]
Abstract
The central nucleus of the inferior colliculus (CNIC) is comprised of an orderly series of fibrodendritic layers. These layers include integrative circuitry for as many as 13 different ascending auditory pathways, each tonotopically ordered. Calcium-binding proteins, such as calbindin-D28k (CB), may be useful neurochemical markers for specific subsets of afferent input in these layers and their spatial organization that are developmentally regulated. In this study, CB-immunohistochemistry was used to examine 1-42 postnatal-day-old kitten and adult cat CNIC and anterograde tracers were used to label afferent projections from the lateral superior olivary nucleus (LSO) to the CNIC at similar ages. A distinct axonal plexus that is CB-immunopositive is described. This CB-afferent compartment is present at birth and persists throughout the ages examined. Already at birth, the CB-immunostained plexus in kitten CNIC is organized into discrete bands that are approximately 75 microm thick and 500 microm long. In adult CNIC, the periodic banded pattern of CB-immunostained fibers is similar to that in kittens albeit bands are thicker (145 microm) and longer (700 microm). Growth in band thickness in adult cat appears proportional to growth of the IC, whereas length of the dense CB-immunostained bands is somewhat more focused in the central region of fibrodendritic layers. The banded pattern of the CB-immunostained plexus is well correlated with the location and dimension of afferent projections from the LSO in newborn kitten labeled with carbocyanine dye, 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and in adult cat labeled with wheat germ agglutinin conjugated with horseradish peroxidase. The results reveal a neurochemical marker for one type of synaptic compartment in CNIC layers, banding, that is organized before hearing onset in kittens, but that may undergo some postnatal pruning.
Collapse
Affiliation(s)
- C K Henkel
- Wake Forest University School of Medicine, Department of Neurobiology and Anatomy, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
37
|
Gabriele ML, Smoot JE, Jiang H, Stein BE, McHaffie JG. Early establishment of adult-like nigrotectal architecture in the neonatal cat: a double-labeling study using carbocyanine dyes. Neuroscience 2005; 137:1309-19. [PMID: 16359814 DOI: 10.1016/j.neuroscience.2005.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
Virtually nothing is known about the ontogeny of substantia nigra, pars reticulata projections to the midbrain superior colliculus, even though this pathway is critical for the basal ganglia modulation of midbrain-mediated visuomotor behaviors. The present studies used the lipophilic carbocyanine dyes 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and 1,1'-dioctodecyl-3,3,3',3'-tetramethylindodi, 4-chlorobenzenesulfonate salt to examine the crossed and uncrossed nigrotectal projections in neonatal cats, from parturition to 14 days postnatal (the technical limits of the tracing technique). In retrograde experiments, paired placement of the dyes in each superior colliculus produced numerous retrogradely-labeled nigrotectal neurons, with the uncrossed neurons far out numbering their crossed counterparts. No double-labeled neurons were observed, indicating that crossed and uncrossed nigrotectal neurons are segregated at birth. In anterograde experiments, dye placements into each substantia nigra, pars reticulata resulted in an iterative series of labeled patches, aligned medial-to-lateral across the intermediate and deep superior colliculus, a pattern reminiscent of the adult. Uncrossed neonatal axons had simple linear morphologies with few branch points; by contrast, crossed axons displayed more extensive terminal arbors that were distributed diffusely throughout the rostrocaudal extent of the contralateral superior colliculus In the final series of experiments, one dye was placed unilaterally in the substantia nigra, pars reticulata, while the second dye was positioned in the predorsal bundle, in order to bilaterally label superior colliculus output neurons. Although both crossed and uncrossed axons appeared to have contacted superior colliculus output neurons, crossed axons preferentially targeted the soma and proximal dendrites, whereas uncrossed terminals were distributed more distally. Throughout this early postnatal period, no significant changes in cellular morphologies or gross modification of terminal projection patterns were observed; however, the presence of growth cones in even the oldest animals studied suggests that the refinement of the nigrotectal projections extends well into postnatal life. Nevertheless, the segregation of crossed and uncrossed nigrotectal neurons into a highly organized afferent mosaic that has established synaptic contacts with superior colliculus output neurons indicates that many of the salient features characterizing nigrotectal projections are established prior to the onset of visual experience.
Collapse
Affiliation(s)
- M L Gabriele
- James Madison University, Department of Biology, MSC 7801, Harrisonburg, VA 22807, USA
| | | | | | | | | |
Collapse
|
38
|
Morley BJ. Nicotinic cholinergic intercellular communication: implications for the developing auditory system. Hear Res 2005; 206:74-88. [PMID: 16081000 DOI: 10.1016/j.heares.2005.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 02/24/2005] [Indexed: 02/02/2023]
Abstract
In this paper, research on the temporal and spatial distribution of cholinergic-related molecules in the lower auditory brainstem, with an emphasis on nicotinic acetylcholine receptors (nAChRs), is reviewed. The possible functions of acetylcholine (ACh) in driving selective auditory neurons before the onset of hearing, inducing glutamate receptor gene expression, synaptogenesis, differentiation, and cell survival are discussed. Experiments conducted in other neuronal and non-neuronal systems are drawn on extensively to discuss putative functions of ACh and nAChRs. Data from other systems may provide insight into the functions of ACh and nAChRs in auditory processing. The mismatch of presynaptic and postsynaptic markers and novel endogenous agonists of nAChRs are discussed in the context of non-classical interneuronal communication. The molecular mechanism that may underlie the many functions of ACh and its agonists is the regulation of intracellular calcium through nAChRs. The possible reorganization that may take place in the auditory system by the exposure to nicotine during critical developmental periods is also briefly considered.
Collapse
Affiliation(s)
- Barbara J Morley
- Boys Town National Research Hospital, Neurochemistry Laboratory, 555 North 30th Street, Omaha, NE 68131, USA.
| |
Collapse
|
39
|
GURUNG BINA, FRITZSCH BERND. Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing. J Comp Neurol 2004; 479:309-27. [PMID: 15457503 PMCID: PMC3901530 DOI: 10.1002/cne.20328] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Central auditory connections develop in mice before the onset of hearing, around postnatal day 7. Two previous studies have investigated the development of auditory nuclei projections and lateral lemniscal nuclear projections in embryonic rats, respectively. Here, we provide detail for the first time of the initiation and progression of projections from the inferior colliculus (IC) to the medial geniculate body (MGB) and from the MGB to the auditory cortex (AC). Overall, the developmental progression of projections follows that of terminal mitoses in various nuclei, suggesting the consistent use of a developmental timetable at a given nucleus, independent of that of other nuclei. Our data further suggest that neurons project specifically and reciprocally from the MGB to the AC as early as embryonic day 14.5. These projections develop approximately a day before the reciprocal connections between the MGB and IC and before development of projections from the auditory nuclei to the IC. The development of IC projections is prolonged and progresses from rostral to caudal areas. Brainstem nuclear projections to the IC arrive first from the lateral lemniscus nuclei then the superior olive and finally the cochlear nuclei. Overall, the auditory connection development strongly suggests that most of the overall specificity of nuclear connections is set up at least 2 weeks before the onset of sound-mediated cochlea responses in mice and, thus, is likely governed predominantly by molecular genetic clues.
Collapse
Affiliation(s)
- BINA GURUNG
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - BERND FRITZSCH
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
40
|
Happe HK, Morley BJ. Distribution and postnatal development of alpha 7 nicotinic acetylcholine receptors in the rodent lower auditory brainstem. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:29-37. [PMID: 15464215 DOI: 10.1016/j.devbrainres.2004.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2004] [Indexed: 11/30/2022]
Abstract
The distribution and quantity of the alpha 7 nicotinic acetylcholine receptor (nAChR) were mapped in the nuclei of the superior olivary complex, lateral lemniscus, and inferior colliculus in the developing and mature rat brain. Radioactive in situ hybridization and (125)I-alpha-bungarotoxin receptor binding were used to measure alpha 7 transcript and membrane-bound protein, respectively. The highest transcript and protein levels were found in the external nucleus of the inferior colliculus and paraolivary nucleus. More moderate levels of transcript and protein were measured in the ventral, intermediate, and dorsal nuclei of the lateral lemniscus, lateral and medial ventral posterior olivary nuclei, rostral periolivary region, lateral periolivary nucleus, caudal periolivary region, ventral and dorsal trapezoid nuclei, medial superior olive, and the lateral superior olive. Peak receptor expression generally occurred before the onset of hearing. The significant overlap of transcript and protein in these regions suggests that the alpha 7 nAChR is predominantly localized postynaptically on somata or proximal dendrites. In a separate experiment, alpha 7 transcript was quantified in the superior olivary complex, lateral lemniscus, and inferior colliculus of +/+ and null mutant (-/-) mice for the acetylcholinesterase (AChE) gene. The distribution and quantity of alpha 7 nAChR were not different in +/+ and -/- mice, suggesting that AChE may not induce or regulate alpha 7 transcription during the early postnatal period.
Collapse
Affiliation(s)
- H Kevin Happe
- Boys Town National Research Hospital, 555 North 30th St., Omaha, NE 68131, USA
| | | |
Collapse
|
41
|
Chang EH, Kotak VC, Sanes DH. Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system. J Neurophysiol 2003; 90:1479-88. [PMID: 12761279 DOI: 10.1152/jn.00386.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibitory transmission is critically involved in the functional maturation of neural circuits within the brain. However, the mechanisms involved in its plasticity and development remain poorly understood. At an inhibitory synapse of the developing auditory brain stem, we used whole cell recordings to determine the site of induction and expression of long-term depression (LTD), a robust activity-dependent phenomenon that decreases inhibitory synaptic gain and is postulated to underlie synapse elimination. Recordings were obtained from lateral superior olivary (LSO) neurons, and hyperpolarizing inhibitory potentials were evoked by stimulation of the medial nucleus of the trapezoid body (MNTB). Both postsynaptic glycine and GABAA receptors could independently display LTD when isolated pharmacologically. Focal application of GABA, but not glycine, on the postsynaptic LSO neuron was sufficient to induce depression of the amino acid-evoked response, or MNTB-evoked inhibitory postsynaptic potentials. This GABA-mediated depression, in the absence of MNTB stimulation, was blocked by a GABAB receptor antagonist. To assess whether a change in neurotransmitter release is associated with the LTD, the polyvalent cation, ruthenium red, was used to increase the frequency of miniature inhibitory synaptic events. Consistent with a postsynaptic locus of expression, we found that the mean amplitude of miniature events decreased after LTD with no change in their frequency of occurrence. Furthermore, there was no change in the paired-pulse ratio or release kinetics of evoked inhibitory responses. Together, these results provide direct evidence that activity-dependent LTD of inhibition has a postsynaptic locus of induction and alteration, and that GABA but not glycine plays a pivotal role.
Collapse
Affiliation(s)
- Eric H Chang
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
42
|
Henkel CK, Fuentes-Santamaria V, Alvarado JC, Brunso-Bechtold JK. Quantitative measurement of afferent layers in the ferret inferior colliculus: DNLL projections to sublayers. Hear Res 2003; 177:32-42. [PMID: 12618315 DOI: 10.1016/s0378-5955(02)00794-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the central nucleus of the inferior colliculus (IC), afferent projections are aligned with dendritic arbors of disk-shaped cells, forming fibrodendritic layers. One feature that may serve as a guide for study of the intrinsic organization of the IC layers is the segregation of certain inputs to bands and patches within the layers of the central nucleus. In this study, we used Phaseolus leucoagglutinin as an anterograde tracer to examine the projections from the dorsal nucleus of the lateral lemniscus to the contralateral IC in adult ferrets. The labeled afferent projections distributed along the IC layers in a series of bands where there were dense endings and interband spaces where there were few if any endings. Branches of individual labeled axons that were reconstructed distributed within a single afferent band. Measurements of both the terminal density distribution and the optical density across the band were similar indicating that afferent bands were approximately 85 microm thick. Quantitative measurements of the labeled afferent bands will enhance comparison with other afferent projections and analysis of afferent development and plasticity.
Collapse
Affiliation(s)
- Craig K Henkel
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine,Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
43
|
Bauer EE, Klug A, Pollak GD. Spectral determination of responses to species-specific calls in the dorsal nucleus of the lateral lemniscus. J Neurophysiol 2002; 88:1955-67. [PMID: 12364521 DOI: 10.1152/jn.2002.88.4.1955] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study evaluated how neurons in the dorsal nucleus of the lateral lemniscus (DNLL) in Mexican free-tailed bats respond to both tone bursts and species-specific calls. Up to 20 calls were presented to each neuron, of which 18 were social communication and 2 were echolocation calls. We also measured excitatory response regions (ERRs): the range of tone burst frequencies that evoked discharges at a fixed intensity. Neurons were unselective for one or another call in that each neuron responded to any call so long as the call had energy that encroached on its ERR. Additionally, responses were evoked by the same set of calls, and with similar spike counts, when they were presented normally or reversed. By convolving activity in the ERRs with the spectrogram of each call, we showed that responses to tones accurately predicted discharge patterns evoked by species-specific calls. DNLL cells are remarkably homogeneous in that neurons having similar BFs responded to each of the species-specific calls with similar response profiles. The homogeneity was further illustrated by the ability to accurately predict the response profiles of a particular DNLL cell to species-specific calls from the ERR of another similarly tuned DNLL cell. Thus DNLL neurons tuned to the same or similar frequencies responded to species-specific calls with latencies and temporal discharge patterns that were so similar as to be virtually interchangeable. What this suggests is that DNLL responses evoked by complex sounds can be largely explained by a simple summation of the excitation in each neuron's ERR. Finally, superimposing the spectrograms of each call on the responses evoked by that call revealed that the DNLL population response re-creates both the spectral and the temporal features of each signal.
Collapse
Affiliation(s)
- Eric E Bauer
- Section of Neurobiology, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
44
|
Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J Comp Neurol 2001; 434:262-74. [PMID: 11331528 DOI: 10.1002/cne.1176] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Immunohistochemistry and in situ hybridization have been used to survey constitutive heat shock protein (HSP)25 expression in the brain and spinal cord of the developing and adult mouse. The data reveal both transient and sustained patterns of expression and demonstrate robust differences between mice and rats. During development, HSP25 is transiently expressed in neurons of the inferior colliculus, various thalamic subnuclei, and the majority of Purkinje cells in the cerebellum. Sustained expression into adulthood is seen in neurons of the cranial nerve nuclei, spinal cord motoneurons, median preoptic nucleus, and a subset of Purkinje cells. Differences in HSP25 expression between adult rats and mice include the somatic motor nuclei innervating the extraocular muscles, which are HSP25 immunoreactive only in the rat. Similar differences in HSP25 expression are seen during the development of the inferior colliculus, thalamus, and cerebellum, where expression is restricted to mice.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Cell Biology & Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
45
|
Plasticity in the development of afferent patterns in the inferior colliculus of the rat after unilateral cochlear ablation. J Neurosci 2000. [PMID: 10995838 DOI: 10.1523/jneurosci.20-18-06939.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The central nucleus of the inferior colliculus (IC) is the site of convergence for nearly all ascending monaural and binaural projections. Several of these inputs, including inhibitory connections from the dorsal nucleus of the lateral lemniscus (DNLL), are highly ordered and organized into series of afferent bands or patches. Although inputs to the IC from the contralateral DNLL are present in the rat by birth [postnatal day 0 (P0)], the earliest indications of band formation are not evident until P4. Subsequently, the initially diffuse projection segregates into a pattern of bands and interband spaces, and by P12 adult-like, afferent-dense patches are established (Gabriele et al., 2000). To determine the role of the auditory periphery in the development of bands and patches before the onset of hearing (P12/P13), unilateral cochlear ablations were performed at P2 (before any evidence of banding). Rat pups were reared to P12, at which time glass pins coated with 1, 1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate were placed in fixed tissue in the commissure of Probst where DNLL fibers cross the midline. The results indicate that a unilateral cochlear ablation disrupts the normal development of afferent patches in the IC. Although the crossed DNLL projections labeled via commissural dye placement always mirrored each other in P12 controls, ablation cases exhibited a consistent, bilateral asymmetry in pattern formation and relative density of the labeled projections. Possible developmental mechanisms likely to be involved in the establishment of afferent bands and patches before the onset of hearing are discussed.
Collapse
|