1
|
Carlier L, Samson D, Khemtemourian L, Joliot A, Fuchs PFJ, Lequin O. Anionic lipids induce a fold-unfold transition in the membrane-translocating Engrailed homeodomain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184030. [PMID: 35988722 DOI: 10.1016/j.bbamem.2022.184030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Homeoprotein transcription factors have the property of interacting with membranes through their DNA-binding homeodomain, which is involved in unconventional internalization and secretion. Both processes depend on membrane-translocating events but their detailed molecular mechanisms are still poorly understood. We have previously characterized the conformational properties of Engrailed 2 homeodomain (EnHD) in aqueous solution and in micelles as membrane-mimetic environments. In the present study, we used small isotropic lipid bicelles as a more relevant membrane-mimetic model to characterize the membrane-bound state of EnHD. We show that lipid bicelles, in contrast to micelles, adequately reproduce the requirement of anionic lipids in the membrane binding and conformational transition of EnHD. The fold-unfold transition of EnHD induced by anionic lipids was characterized by NMR using 1H, 13C, 15N chemical shifts, nuclear Overhauser effects, residual dipolar couplings, intramolecular and intermolecular paramagnetic relaxation enhancements induced by site-directed spin-label or paramagnetic lipid probe, respectively. A global unpacking of EnHD helices is observed leading to a loss of the native fold. However, near-native propensities of EnHD backbone conformation are maintained in membrane environment, including not only the three helices but also the turn connecting helices H2 and H3. NMR and coarse-grained molecular dynamics simulations reveal that the EnHD adopts a shallow insertion in the membrane, with the three helices oriented parallel to the membrane. EnHD explores extended conformations and closed U-shaped conformations, which are stabilized by anionic lipid recruitment.
Collapse
Affiliation(s)
- Ludovic Carlier
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France.
| | - Damien Samson
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France
| | - Lucie Khemtemourian
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France
| | - Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL University, France
| | - Patrick F J Fuchs
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France; Université Paris Cité, UFR Sciences du Vivant, F-75013 Paris, France
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, F-75005 Paris, France.
| |
Collapse
|
2
|
Du Z, Xu N, Yang Y, Li G, Tai Z, Li N, Sun Y. Study on internal structure of casein micelles in reconstituted skim milk powder. Int J Biol Macromol 2022; 224:437-452. [DOI: 10.1016/j.ijbiomac.2022.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
3
|
Christiansen A, Weiel M, Winkler A, Schug A, Reinstein J. The Trimeric Major Capsid Protein of Mavirus is stabilized by its Interlocked N-termini Enabling Core Flexibility for Capsid Assembly. J Mol Biol 2021; 433:166859. [PMID: 33539884 DOI: 10.1016/j.jmb.2021.166859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Icosahedral viral capsids assemble with high fidelity from a large number of identical buildings blocks. The mechanisms that enable individual capsid proteins to form stable oligomeric units (capsomers) while affording structural adaptability required for further assembly into capsids are mostly unknown. Understanding these mechanisms requires knowledge of the capsomers' dynamics, especially for viruses where no additional helper proteins are needed during capsid assembly like for the Mavirus virophage that despite its complexity (triangulation number T = 27) can assemble from its major capsid protein (MCP) alone. This protein forms the basic building block of the capsid namely a trimer (MCP3) of double-jelly roll protomers with highly intertwined N-terminal arms of each protomer wrapping around the other two at the base of the capsomer, secured by a clasp that is formed by part of the C-terminus. Probing the dynamics of the capsomer with HDX mass spectrometry we observed differences in conformational flexibility between functional elements of the MCP trimer. While the N-terminal arm and clasp regions show above average deuterium incorporation, the two jelly-roll units in each protomer also differ in their structural plasticity, which might be needed for efficient assembly. Assessing the role of the N-terminal arm in maintaining capsomer stability showed that its detachment is required for capsomer dissociation, constituting a barrier towards capsomer monomerisation. Surprisingly, capsomer dissociation was irreversible since it was followed by a global structural rearrangement of the protomers as indicated by computational studies showing a rearrangement of the N-terminus blocking part of the capsomer forming interface.
Collapse
Affiliation(s)
- Alexander Christiansen
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanismsm Heidelberg, Germany
| | - Marie Weiel
- Karlsruhe Institute of Technology, Steinbuch Centre for Computing and Department of Physics, Eggenstein-Leopoldshafen, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology. Graz, Austria
| | - Alexander Schug
- Institute for Advanced Simulation, Jülich Supercomputing Center, Jülich, Germany
| | - Jochen Reinstein
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanismsm Heidelberg, Germany.
| |
Collapse
|
4
|
Cao F, Xia Y, Chen D, Xu N, Hemar Y, Li N, Sun Y. Insights on the structure of caseinate particles based on surfactants-induced dissociation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Hu X, Zhang X, Chen D, Li N, Hemar Y, Yu B, Tang S, Sun Y. How much can we trust polysorbates as food protein stabilizers - The case of bovine casein. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Juszczak LJ, Eisenberg AS. The Color of Cation-π Interactions: Subtleties of Amine-Tryptophan Interaction Energetics Allow for Radical-like Visible Absorbance and Fluorescence. J Am Chem Soc 2017; 139:8302-8311. [PMID: 28537725 DOI: 10.1021/jacs.7b03442] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several peptides and a protein with an inter- or intramolecular cation-π interaction between tryptophan (Trp) and an amine cation are shown to absorb and fluoresce in the visible region of the spectrum. Titration of indole with sodium hydroxide or ammonium hydroxide yields an increasing visible fluorescence as well. Visible absorption and multipeaked fluorescence excitation spectra correlate with experimental absorption spectra and the vibrational modes of calculated absorption spectra for the neutral Trp radical. The radical character of the cation-indole interaction is predicted to stem from the electrostatic dislocation of indole highest occupied molecular orbital (HOMO) charge density toward the cation with a subsequent electronic transition from the HOMO-2 to the HOMO. Because this is a vertical transition, fluorescence is possible. Hydrogen bonding at the indole amine most likely stabilizes the radical-like state. These results provide new spectroscopic tools for the investigation of cation-π interactions in numerous biological systems, among them, proteins and their myriad ligands, and show that one, or at most, two, point mutations with natural amino acids are all that is required to impart visible fluorescence to proteins.
Collapse
Affiliation(s)
- Laura J Juszczak
- Chemistry Department, Brooklyn College, The City University of New York , New York, New York 11210, United States.,PhD programs in Chemistry and Biochemistry, The Graduate Center, The City University of New York , New York, New York 10016, United States
| | - Azaria S Eisenberg
- Chemistry Department, Brooklyn College, The City University of New York , New York, New York 11210, United States
| |
Collapse
|
7
|
Bose D, Patra M, Chakrabarti A. Effect of pH on stability, conformation, and chaperone activity of erythroid & non-erythroid spectrin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:694-702. [PMID: 28373029 DOI: 10.1016/j.bbapap.2017.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 11/29/2022]
Abstract
Spectrin, a major component of the eukaryotic membrane skeleton, has been shown to have chaperone like activity. Here we investigate the pH induced changes in the structure and stability of erythroid and brain spectrin by spectroscopic methods. We also correlate these changes with modulations of chaperone potential at different pH. We have followed the pH induced structural changes by circular dichroism spectroscopy and intrinsic tryptophan fluorescence. It is seen that lowering the pH from 9 has little effect on structure of the proteins till about pH6. At pH4, there is significant change of the secondary structure of the proteins, along with a 5nm hypsochromic shift of the emission maxima. Below pH4 the proteins undergo acid denaturation. Probing exposed hydrophobic patches on the proteins using protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates that there is higher solvent accessibility of hydrophobic surfaces in both forms of spectrin at around pH4. Dynamic light scattering and 90° light scattering studies show that the both forms of spectrin forms oligomers at pH~4. Chemical unfolding data shows that these oligomers are less stable than the tetrameric form. Aggregation studies with BSA show that at pH4, both spectrins exhibit better chaperone activity. This enhancement of chaperone like activity appears to result from an increase in regions of solvent-exposed hydrophobicity and oligomeric state of the spectrins which in turn are induced by moderately acid pH. This may have in-vivo implications in cells facing stress conditions where cytoplasmic pH is lowered.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Malay Patra
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India.
| |
Collapse
|
8
|
Dasgupta M, Kishore N. Characterization and analysis of binding of Thioflavin T with partially folded and native states of α–lactalbumin protein by calorimetric and spectroscopic techniques. Int J Biol Macromol 2017; 95:376-384. [DOI: 10.1016/j.ijbiomac.2016.11.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/25/2016] [Accepted: 11/20/2016] [Indexed: 11/29/2022]
|
9
|
α-Lactalbumin and sodium dodecyl sulfate aggregates: Denaturation, complex formation and time stability. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Sun Y, Filho PLO, Bozelli JC, Carvalho J, Schreier S, Oliveira CLP. Unfolding and folding pathway of lysozyme induced by sodium dodecyl sulfate. SOFT MATTER 2015; 11:7769-7777. [PMID: 26308474 DOI: 10.1039/c5sm01231g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins may exhibit an unfolding or folding state in the presence of a surfactant. In the present study, the unfolding and folding pathway of hen egg white lysozyme (HEWL) induced by sodium dodecyl sulfate (SDS) is studied. The stoichiometry obtained from isothermal titration calorimetry (ITC) provides guidelines for other techniques. The fluorescence spectra and circular dichroism show that the fluorescence properties and secondary structure of proteins undergo a two-step change upon binding with SDS, in which the intensity decreases, the emission blue shifts and the helical conformation decreases at low ratios of SDS to HEWL, while all of them return to the native-like state upon the addition of SDS at higher ratios. At the end of the binding, HEWL presents a higher α-helical content but its tertiary structure is lost compared to its native state, which is namely a molten globule state. Small angle X-ray scattering (SAXS) analysis and the derived model reveal that the complexes possess a decorated core-shell structure, with the core composed of dodecyl chains and the shell consisting of SDS head groups with a protein in molten globule state. Five binding steps, including the individual details involved in the denaturation, were obtained to describe the unfolding and folding pathway of HEWL induced by SDS. The results of this study not only present details about the denaturation of protein induced by SDS and the structure of the complexes involved in each binding step, but also provide molecular insights into the mechanism of the higher helical conformation of proteins in the presence of surfactant micelles.
Collapse
Affiliation(s)
- Yang Sun
- Instituto de Física, Universidade de São Paulo, Rua do Matão 187, São Paulo-SP, 05314-970, Brasil.
| | | | | | | | | | | |
Collapse
|
11
|
Callis PR. Binding phenomena and fluorescence quenching. II: Photophysics of aromatic residues and dependence of fluorescence spectra on protein conformation. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Hoxha E, Campion SR. Structure-critical distribution of aromatic residues in the fibronectin type III protein family. Protein J 2014; 33:165-73. [PMID: 24563228 DOI: 10.1007/s10930-014-9549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over a thousand individual Fibronectin type III (FnIII) domain sequences, extracted from more than 60 different FnIII-dependent protein super-structures, were downloaded from curated database resources. Three regions of extreme sequence conservation within the well-characterized FnIII β-sandwich structure were respectively defined by near absolute conservation of a tryptophan (Trp) in β-strand-B, tyrosines (Tyr) in both β-strand-C and β-strand-F, and a leucine (Leu) residue in the unstructured region immediately preceding β-strand-F. Employing these four conserved landmarks, the entire FnIII sequence dataset was vertically registered to align the three conserved regions, and the cumulative distribution of all other amino acid functionality was determined and plotted relative to these landmark residues. Conserved aromatic sites were each found to be flanked by aliphatic residues that assure localization of these sites to the inaccessible hydrophobic interface between major sheet structures. Mapping the location of conserved aromatic sites in numerous PDB structures demonstrated the consistent pair-wise co-localization of the indole side-chain of the conserved strand-B Trp site to within 0.35 nm of the phenolic side-chain of the strand-C Tyr site located 8-14 amino acids distal. Likewise, the side-chain of the strand-F Tyr site co-localized to within 0.45 nm of the aliphatic side-chain of the conserved Leu that uniformly precedes it by six residues. While classic hydropathy-based theories would deem the "burying" of Tyr and Trp side-chains and/or their association with hydrophobic FnIII core residues thermodynamically unnecessary, alternative contributions of conserved Trp and Tyr residues, and particularly the role of the absolutely conserved tyrosine phenolic -OH in native FnIII structure-function are considered. A more global role for conserved FnIII aromaticity is also discussed in light of the aromatic conservation observed in other well-established protein families.
Collapse
Affiliation(s)
- Ema Hoxha
- Department of Science and Mathematics, Alvernia University, Reading, PA, 19607, USA
| | | |
Collapse
|
13
|
Eisenberg AS, Juszczak LJ. The broken ring: reduced aromaticity in Lys-Trp cations and high pH tautomer correlates with lower quantum yield and shorter lifetimes. J Phys Chem B 2014; 118:7059-69. [PMID: 24882092 PMCID: PMC4165537 DOI: 10.1021/jp503355h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several nonradiative processes compete with tryptophan fluorescence emission. The difficulty in spectral interpretation lies in associating specific molecular environmental features with these processes and thereby utilizing the fluorescence spectral data to identify the local environment of tryptophan. Here, spectroscopic and molecular modeling study of Lys-Trp dipeptide charged species shows that backbone-ring interactions are undistinguished. Instead, quantum mechanical ground state isosurfaces reveal variations in indole π electron distribution and density that parallel charge (as a function of pK(1), pK(2), and pK(R)) on the backbone and residues. A pattern of aromaticity-associated quantum yield and fluorescence lifetime changes emerges. Where quantum yield is high, isosurfaces have a charge distribution similar to the highest occupied molecular orbital (HOMO) of indole, which is the dominant fluorescent ground state of the (1)L(a) transition dipole moment. Where quantum yield is low, isosurface charge distribution over the ring is uneven, diminished, and even found off ring. At pH 13, the indole amine is deprotonated, and Lys-Trp quantum yield is extremely low due to tautomer structure that concentrates charge on the indole amine; the isosurface charge distribution bears scant resemblance to the indole HOMO. Such greatly diminished fluorescence has been observed for proteins where the indole nitrogen is hydrogen bonded, lending credence to the association of aromaticity changes with diminished quantum yield in proteins as well. Thus tryptophan ground state isosurfaces are an indicator of indole aromaticity, signaling the partition of excitation energy between radiative and nonradiative processes.
Collapse
Affiliation(s)
- Azaria Solomon Eisenberg
- Department of Chemistry, Brooklyn College of The City University of New York , 2900 Bedford Ave., Brooklyn, NY 11210, United States
| | | |
Collapse
|
14
|
Nagel ZD, Cun S, Klinman JP. Identification of a long-range protein network that modulates active site dynamics in extremophilic alcohol dehydrogenases. J Biol Chem 2013; 288:14087-14097. [PMID: 23525111 PMCID: PMC3656266 DOI: 10.1074/jbc.m113.453951] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/20/2013] [Indexed: 11/06/2022] Open
Abstract
A tetrameric thermophilic alcohol dehydrogenase from Bacillus stearothermophilus (ht-ADH) has been mutated at an aromatic side chain in the active site (Trp-87). The ht-W87A mutation results in a loss of the Arrhenius break seen at 30 °C for the wild-type enzyme and an increase in cold lability that is attributed to destabilization of the active tetrameric form. Kinetic isotope effects (KIEs) are nearly temperature-independent over the experimental temperature range, and similar in magnitude to those measured above 30 °C for the wild-type enzyme. This suggests that the rigidification in the wild-type enzyme below 30 °C does not occur for ht-W87A. A mutation at the dimer-dimer interface in a thermolabile psychrophilic homologue of ht-ADH, ps-A25Y, leads to a more thermostable enzyme and a change in the rate-determining step at low temperature. The reciprocal mutation in ht-ADH, ht-Y25A, results in kinetic behavior similar to that of W87A. Collectively, the results indicate that flexibility at the active site is intimately connected to a subunit interaction 20 Å away. The convex Arrhenius curves previously reported for ht-ADH (Kohen, A., Cannio, R., Bartolucci, S., and Klinman, J. P. (1999) Nature 399, 496-499) are proposed to arise, at least in part, from a change in subunit interactions that rigidifies the substrate-binding domain below 30 °C, and impedes the ability of the enzyme to sample the catalytically relevant conformational landscape. These results implicate an evolutionarily conserved, long-range network of dynamical communication that controls C-H activation in the prokaryotic alcohol dehydrogenases.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Shujian Cun
- Department of Chemistry, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, California 94720; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
15
|
Aprodu I, Stănciuc N, Banu I, Bahrim G. Probing thermal behaviour of microbial transglutaminase with fluorescence and in silico methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:794-802. [PMID: 22836726 DOI: 10.1002/jsfa.5799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/17/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Knowledge of transglutaminase behaviour at thermal treatment allows efficient applications in food processing. The heat-induced conformational changes of microbial transglutaminase were studied by fluorescence spectroscopy and a molecular modelling approach. RESULTS The experimental results indicate the unfolding of transglutaminase in a single-phase reaction, at temperatures over 60 °C. The incidence of conformational changes is also supported by the increase of both intrinsic and 1-anilino-8-naphthalene sulfonate fluorescence intensity with temperature. Changes in the secondary and tertiary structure of transglutaminase were outlined after running molecular dynamics simulations at temperatures ranging from 25 °C to 80 °C. CONCLUSION The motif's particularities varied with the temperature, suggesting structural rearrangements of the protein, mainly in helices. The largest deviation from the structure equilibrated at 25 °C was observed at 80 °C.
Collapse
Affiliation(s)
- Iuliana Aprodu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| | | | | | | |
Collapse
|
16
|
Riahi-Madvar A, Hosseinkhani S, Rezaee F. Implication of Arg213 and Arg337 on the kinetic and structural stability of firefly luciferase. Int J Biol Macromol 2013; 52:157-63. [DOI: 10.1016/j.ijbiomac.2012.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
17
|
Ghosh R, Mukherjee M, Chattopadhyay K, Ghosh S. Unusual Optical Resolution of All Four Tryptophan Residues in MPT63 Protein by Phosphorescence Spectroscopy: Assignment and Significance. J Phys Chem B 2012; 116:12489-500. [DOI: 10.1021/jp307526f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ranendu Ghosh
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Manini Mukherjee
- Department of Chemistry, Presidency University, Kolkata 700 073, India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Sanjib Ghosh
- Department of Chemistry, Presidency University, Kolkata 700 073, India
| |
Collapse
|
18
|
Ohlenschläger O, Kuhnert A, Schneider A, Haumann S, Bellstedt P, Keller H, Saluz HP, Hortschansky P, Hänel F, Grosse F, Görlach M, Pospiech H. The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res 2012; 40:8309-24. [PMID: 22730300 PMCID: PMC3458545 DOI: 10.1093/nar/gks591] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RecQL4 helicase is involved in the maintenance of genome integrity and DNA replication. Mutations in the human RecQL4 gene cause the Rothmund–Thomson, RAPADILINO and Baller–Gerold syndromes. Mouse models and experiments in human and Xenopus have proven the N-terminal part of RecQL4 to be vital for cell growth. We have identified the first 54 amino acids of RecQL4 (RecQL4_N54) as the minimum interaction region with human TopBP1. The solution structure of RecQL4_N54 was determined by heteronuclear liquid–state nuclear magnetic resonance (NMR) spectroscopy (PDB 2KMU; backbone root-mean-square deviation 0.73 Å). Despite low-sequence homology, the well-defined structure carries an overall helical fold similar to homeodomain DNA-binding proteins but lacks their archetypical, minor groove-binding N-terminal extension. Sequence comparison indicates that this N-terminal homeodomain-like fold is a common hallmark of metazoan RecQL4 and yeast Sld2 DNA replication initiation factors. RecQL4_N54 binds DNA without noticeable sequence specificity yet with apparent preference for branched over double-stranded (ds) or single-stranded (ss) DNA. NMR chemical shift perturbation observed upon titration with Y-shaped, ssDNA and dsDNA shows a major contribution of helix α3 to DNA binding, and additional arginine side chain interactions for the ss and Y-shaped DNA.
Collapse
Affiliation(s)
- Oliver Ohlenschläger
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstr. 11, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chaudhary N, Nagaraj R. Impact on the replacement of Phe by Trp in a short fragment of Aβ amyloid peptide on the formation of fibrils. J Pept Sci 2010; 17:115-23. [PMID: 21234983 DOI: 10.1002/psc.1339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/01/2010] [Accepted: 11/07/2010] [Indexed: 11/11/2022]
Abstract
Aβ(16-22) (Ac-KLVFFAE-NH(2) ) is one of the shortest amyloid fibril-forming sequences identified in β-amyloid peptide. At neutral pH, the peptide forms fibrils in the concentration range of 0.2-2.0 mM after ≥ 10 days of incubation. Structures of the fibrils proposed based on solid-state NMR and MD simulations studies suggest antiparallel arrangement of β-strands and aromatic interactions between the Phe residues. In an effort to examine the role of aromatic interactions between two Phe residues in Aβ(16-22) , we have studied the self-assembly of Aβ(16-22) (AβFF) and two of its variants, Ac-KLVFWAE-NH(2) (AβFW) and Ac-KLVWFAE-NH(2) (AβWF). The peptides were dissolved in methanol (MeOH) at a concentration of 1 mM and in water (AβFW and AβWF, 1 mM; AβFF, 330 µM). Peptide solutions (100 µM) were prepared in 50 mM sodium phosphate buffer at pH 7 by diluting from MeOH and water stock solutions. AβFW forms amyloid-like fibrils immediately from MeOH, as indicated by atomic force microscopy. Dilution of AβFW into phosphate buffer from stock solution prepared in MeOH results in fibrils, but with different morphology and dimensions. The secondary structure potentiated by MeOH seems to be important for the self-assembly of AβFW, as fibrils are not formed from water where the peptide is unordered. On the other hand, AβFF and AβWF do not form amyloid fibrils rapidly from any of the solvents used for dissolution. However, drying of AβWF from MeOH on mica surface gives rod-like and fibrous structures. Our study indicates that positioning of the aromatic residues F and W has an important role to play in promoting self-assembly of the Aβ(16-22) peptides.
Collapse
Affiliation(s)
- Nitin Chaudhary
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
20
|
Kelkar DA, Chaudhuri A, Haldar S, Chattopadhyay A. Exploring tryptophan dynamics in acid-induced molten globule state of bovine α-lactalbumin: a wavelength-selective fluorescence approach. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1453-63. [PMID: 20372885 DOI: 10.1007/s00249-010-0603-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/01/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
21
|
Organization and dynamics of tryptophans in the molten globule state of bovine α-lactalbumin utilizing wavelength-selective fluorescence approach: Comparisons with native and denatured states. Biochem Biophys Res Commun 2010; 394:1082-6. [DOI: 10.1016/j.bbrc.2010.03.130] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/20/2010] [Indexed: 10/19/2022]
|
22
|
Roles of trehalose and magnesium sulfate on structural and functional stability of firefly luciferase. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Callis PR. Exploring the Electrostatic Landscape of Proteins with Tryptophan Fluorescence. REVIEWS IN FLUORESCENCE 2009. [DOI: 10.1007/978-0-387-88722-7_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Aravind P, Suman SK, Mishra A, Sharma Y, Sankaranarayanan R. Three-dimensional domain swapping in nitrollin, a single-domain betagamma-crystallin from Nitrosospira multiformis, controls protein conformation and stability but not dimerization. J Mol Biol 2008; 385:163-77. [PMID: 18976659 DOI: 10.1016/j.jmb.2008.10.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 11/24/2022]
Abstract
The betagamma-crystallin superfamily has a well-characterized protein fold, with several members found in both prokaryotic and eukaryotic worlds. A majority of them contain two betagamma-crystallin domains. A few examples, such as ciona crystallin and spherulin 3a exist that represent the eukaryotic single-domain proteins of this superfamily. This study reports the high-resolution crystal structure of a single-domain betagamma-crystallin protein, nitrollin, from the ammonium-oxidizing soil bacterium Nitrosospira multiformis. The structure retains the characteristic betagamma-crystallin fold despite a very low sequence identity. The protein exhibits a unique case of homodimerization in betagamma-crystallins by employing its N-terminal extension to undergo three-dimensional (3D) domain swapping with its partner. Removal of the swapped strand results in partial loss of structure and stability but not dimerization per se as determined using gel filtration and equilibrium unfolding studies. Overall, nitrollin represents a distinct single-domain prokaryotic member that has evolved a specialized mode of dimerization hitherto unknown in the realm of betagamma-crystallins.
Collapse
Affiliation(s)
- Penmatsa Aravind
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | |
Collapse
|
25
|
Sugar binding to recombinant wild-type and mutant glucokinase monitored by kinetic measurement and tryptophan fluorescence. Biochem J 2008; 413:269-80. [DOI: 10.1042/bj20071718] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tryptophan fluorescence was used to study GK (glucokinase), an enzyme that plays a prominent role in glucose homoeostasis which, when inactivated or activated by mutations, causes diabetes mellitus or hypoglycaemia in humans. GK has three tryptophan residues, and binding of D-glucose increases their fluorescence. To assess the contribution of individual tryptophan residues to this effect, we generated GST–GK [GK conjugated to GST (glutathione transferase)] and also pure GK with one, two or three of the tryptophan residues of GK replaced with other amino acids (i.e. W99C, W99R, W167A, W167F, W257F, W99R/W167F, W99R/W257F, W167F/W257F and W99R/W167F/W257F). Enzyme kinetics, binding constants for glucose and several other sugars and fluorescence quantum yields (ϕ) were determined and compared with those of wild-type GK retaining its three tryptophan residues. Replacement of all three tryptophan residues resulted in an enzyme that retained all characteristic features of GK, thereby demonstrating the unique usefulness of tryptophan fluorescence as an indicator of GK conformation. Curves of glucose binding to wild-type and mutant GK or GST–GK were hyperbolic, whereas catalysis of wild-type and most mutants exhibited co-operativity with D-glucose. Binding studies showed the following order of affinities for the enzyme variants: N-acetyl-D-glucosamine>D-glucose>D-mannose>D-mannoheptulose>2-deoxy-D-glucose≫L-glucose. GK activators increased sugar binding of most enzymes, but not of the mutants Y214A/V452A and C252Y. Contributions to the fluorescence increase from Trp99 and Trp167 were large compared with that from Trp257 and are probably based on distinct mechanisms. The average quantum efficiency of tryptophan fluorescence in the basal and glucose-bound state was modified by activating (Y214A/V452A) or inactivating (C213R and C252Y) mutations and was interpreted as a manifestation of distinct conformational states.
Collapse
|
26
|
Hernández-Alcántara G, Rodríguez-Romero A, Reyes-Vivas H, Peon J, Cabrera N, Ortiz C, Enríquez-Flores S, De la Mora-De la Mora I, López-Velázquez G. Unraveling the mechanisms of tryptophan fluorescence quenching in the triosephosphate isomerase from Giardia lamblia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1493-500. [PMID: 18620084 DOI: 10.1016/j.bbapap.2008.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 05/09/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
In the native state several proteins exhibit a quenching of fluorescence of their tryptophans. We studied triosephosphate isomerase from Giardia lamblia (GlTIM) to dissect the mechanisms that account for the quenching of fluorescence of its Trp. GlTIM contains four Trp per monomer (Trp75, Trp162, Trp173, and Trp196) distributed throughout the 3D structure. The fluorescence of the denatured enzyme is 3-fold higher than that of native GlTIM. To ascertain the origin of this phenomenon, single and triple mutants of Trp per Phe were made. The intrinsic fluorescence was determined, and the data were interpreted on the basis of the crystal structure of the enzyme. Our data show that the fluorescence of all Trp residues is quenched through two different mechanisms. In one, fluorescence is quenched by aromatic-aromatic interactions due to the proximity and orientation of the indole groups of Trp196 and Trp162. The magnitude of the quenching of fluorescence in Trp162 is higher than in the other three Trp. Fluorescence quenching is also due to energy transfer to the charged residues that surround Trp 75, 173 and 196. Further analysis of the fluorescence of GlTIM showed that, among TIMs from other parasites, Trp at position 12 exhibits rather unique properties.
Collapse
|
27
|
Kamath SD, Kartha VB, Mahato KK. Dynamics of L-tryptophan in aqueous solution by simultaneous laser induced fluorescence (LIF) and photoacoustic spectroscopy (PAS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 70:187-94. [PMID: 17822948 DOI: 10.1016/j.saa.2007.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 05/31/2007] [Accepted: 06/10/2007] [Indexed: 05/17/2023]
Abstract
An experimental system for measuring simultaneously photoacoustic (PA) and fluorescence signals is described. The simultaneous measurement of laser induced fluorescence and photoacoustic signals provide a suitable method for the study of different quenching phenomena occurring in fluorescent systems. In this paper we report tryptophan solvation dynamics in water using fluorescence and photoacoustic spectra recorded simultaneously by photoacoustic and fluorescence signals as functions of concentration, indicate that quantum yield is maximum at low concentrations. Also, the energy lost in the fluorescence path of tryptophan, due to different quenching phenomena like self quenching, Resonance energy transfer (RET), solvation relaxation, etc. is clearly seen from the photoacoustic signal intensity which increases as the fluorescence intensity decreases.
Collapse
Affiliation(s)
- Sudha D Kamath
- Centre for Laser Spectroscopy, KMC Life Sciences Centre, Manipal Academy of Higher Education (Deemed University), Manipal 576 104, Karnataka, India
| | | | | |
Collapse
|
28
|
Abstract
This article probes the denatured state ensemble of ribonuclease Sa (RNase Sa) using fluorescence. To interpret the results obtained with RNase Sa, it is essential that we gain a better understanding of the fluorescence properties of tryptophan (Trp) in peptides. We describe studies of N-acetyl-L-tryptophanamide (NATA), a tripeptide: AWA, and six pentapeptides: AAWAA, WVSGT, GYWHE, HEWTV, EAWQE, and DYWTG. The latter five peptides have the same sequence as those surrounding the Trp residues studied in RNase Sa. The fluorescence emission spectra, the fluorescence lifetimes, and the fluorescence quenching by acrylamide and iodide were measured in concentrated solutions of urea and guanidine hydrochloride. Excited-state electron transfer from the indole ring of Trp to the carbonyl groups of peptide bonds is thought to be the most important mechanism for intramolecular quenching of Trp fluorescence. We find the maximum fluorescence intensities vary from 49,000 for NATA with two carbonyls, to 24,400 for AWA with four carbonyls, to 28,500 for AAWAA with six carbonyls. This suggests that the four carbonyls of AWA are better able to quench Trp fluorescence than the six carbonyls of AAWAA, and this must reflect a difference in the conformations of the peptides. For the pentapeptides, EAWQE has a fluorescence intensity that is more than 50% greater than DYWTG, showing that the amino acid sequence influences the fluorescence intensity either directly through side-chain quenching and/or indirectly through an influence on the conformational ensemble of the peptides. Our results show that peptides are generally better models for the Trp residues in proteins than NATA. Finally, our results emphasize that we have much to learn about Trp fluorescence even in simple compounds.
Collapse
|
29
|
Rana S, Kundu B, Durani S. A mixed-α,β miniprotein stereochemically reprogrammed to high-binding affinity for acetylcholine. Biopolymers 2007; 87:231-43. [PMID: 17879332 DOI: 10.1002/bip.20829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The protein-structure space is limited to L configuration in the asymmetric alpha-amino acid structures; the function space, on other hand, seems limitless because of the chemical diversity in the amino acid side chain structures. The chemical diversity in side chain structure may be multiplied beneficially with the stereochemical diversity in main chain structure; thus, de novo protein design may be explored for customizing molecular structures stereochemically and molecular functions chemically. Illustrating de novo design in the structure space of L and D alphabet, canonical all-beta folds of poly-L structure were reprogrammed as bracelet, boat, and canoe-shaped molecules-the "boat" as a receptor-like pocket and the "canoe" as a metal-ion receptor-simply by mutating specific L-amino acid residues to the corresponding D stereochemical structure. Demonstrating customization of molecular shape stereochemically and function chemically, a 15-residue mixed-alpha, beta miniprotein of canonical poly-L structure is now reprogrammed stereochemically as a cup-shaped receptor for acetylcholine via cation-pi interaction with a triad of aromatic side chains placed in mimicry of the acetylcholine-receptor sites both natural and artificial. Evidence from CD, fluorescence, NMR, DSC, ITC, MD, and molecular-docking studies is presented to show that a rationally designed 15-residue mixed-L, D peptide is a cooperatively ordered molecular fold in the stereochemically specified molecular morphology, submicromolar in affinity of acetylcholine and thus an acetylcholine receptor exceptionally small and simple. .
Collapse
Affiliation(s)
- Soumendra Rana
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | | | | |
Collapse
|
30
|
Martinho JMG, Santos AM, Fedorov A, Baptista RP, Taipa MA, Cabral JMS. Fluorescence of the Single Tryptophan of Cutinase: Temperature and pH Effect on Protein Conformation and Dynamics¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780015fotsto2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Harvey BJ, Bell E, Brancaleon L. A Tryptophan Rotamer Located in a Polar Environment Probes pH-Dependent Conformational Changes in Bovine β-Lactoglobulin A. J Phys Chem B 2007; 111:2610-20. [PMID: 17300189 DOI: 10.1021/jp065783a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bovine beta-lactoglobulin A (BLGA) is a well characterized globular protein whose tertiary structure has been investigated in detail. BLGA undergoes a pH-dependent conformational change which X-ray data described as involving mostly the loop connecting strands E and F and the deprotonation of a glutamic acid residue (Glu89). These structural changes have been investigated using, among other techniques, fluorescence spectroscopy. The intrinsic fluorescence of BLGA is dominated by two Trp residues. These residues are located far from the EF loop and would not be expected to probe the pH-induced conformational change of the protein. Trp19 is located at the bottom of the interior beta-barrel, whereas Trp61 is located at the aperture of the barrel near the CD loop and is "silent" in the emission of native BLGA because of the proximity of a disulfide moiety. Our study suggests that, surprisingly, the fluorescence of Trp19 has the characteristic of a more polar environment than structural models from X-ray data would suggest and that at least two distinct conformations (or rotamers) of Trp19 contribute to the fluorescence of the protein. The less populated rotamer (relative amplitude (alpha) approximately 20%, tau approximately 3 ns) probes a more polar environment and a pH-dependent conformational change of BLGA in the region of Trp19 which X-ray data do not detect. Finally, our study provides the estimate of the fluorescence lifetime of Trp61 in the "unquenched" form.
Collapse
Affiliation(s)
- Billie J Harvey
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | | |
Collapse
|
32
|
Glaaser IW, Bankston JR, Liu H, Tateyama M, Kass RS. A Carboxyl-terminal Hydrophobic Interface Is Critical to Sodium Channel Function. J Biol Chem 2006; 281:24015-23. [PMID: 16798729 DOI: 10.1074/jbc.m605473200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Perturbation of sodium channel inactivation, a finely tuned process that critically regulates the flow of sodium ions into excitable cells, is a common functional consequence of inherited mutations associated with epilepsy, skeletal muscle disease, autism, and cardiac arrhythmias. Understanding the structural basis of inactivation is key to understanding these disorders. Here we identify a novel role for a structural motif in the COOH terminus of the heart NaV1.5 sodium channel in determining channel inactivation. Structural modeling predicts an interhelical hydrophobic interface between paired EF hands in the proximal region of the NaV1.5 COOH terminus. The predicted interface is conserved among almost all EF hand-containing proteins and is the locus of a number of disease-associated mutations. Using the structural model as a guide, we provide biochemical and biophysical evidence that the structural integrity of this interface is necessary for proper Na+ channel inactivation gating. We thus demonstrate a novel role of the sodium channel COOH terminus structure in the control of channel inactivation and in pathologies caused by inherited mutations that disrupt it.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.
Collapse
Affiliation(s)
- Chia-Pin Pan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
34
|
Razeghifard MR. On-column refolding of recombinant human interleukin-4 from inclusion bodies. Protein Expr Purif 2004; 37:180-6. [PMID: 15294296 DOI: 10.1016/j.pep.2004.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/14/2004] [Indexed: 10/26/2022]
Abstract
Interleukin-4 (IL4) is a multifunctional cytokine which plays a key role in the immune system. Several antagonists/agonists of IL4 are reported through mutagenesis studies, but their solution structural studies using nuclear magnetic resonance (NMR) spectroscopy are hindered as milligram quantities of isotopically labeled protein are required for structural refinements. In this work, a His-tagged recombinant form of human IL4 was overexpressed in Escherichia coli under the control of a T7 promoter. The resulting inclusion bodies were separated from cellular debris by centrifugation and solubilized by 6M guanidine-HCl in the presence of reducing agents. The denatured IL4 was immobilized on Ni2+-fractogel beads and refolded in a single chromatographic step by gradual removal of denaturant. This protocol yielded 15-20 mg of isotope-enriched protein from 1L of culture grown in minimal medium. The refolded protein was highly pure and was correctly folded as judged by its two-dimensional NMR spectrum. To show the successful application of this refolding protocol to IL4 variants, 15N-labeled Y124D-IL4 was also prepared and its first two-dimensional NMR spectrum was presented.
Collapse
Affiliation(s)
- M Reza Razeghifard
- Department of Human Biological Chemistry and Genetics, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
35
|
Stollar EJ, Gelpí JL, Velankar S, Golovin A, Orozco M, Luisi BF. Unconventional interactions between water and heterocyclic nitrogens in protein structures. Proteins 2004; 57:1-8. [PMID: 15326588 DOI: 10.1002/prot.20216] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report an unusual interaction in which a water molecule approaches the heterocyclic nitrogen of tryptophan and histidine along an axis that is roughly perpendicular to the aromatic plane of the side chain. The interaction is distinct from the well-known conventional aromatic hydrogen-bond, and it occurs at roughly the same frequency in protein structures. Calculations indicate that the water-indole interaction is favorable energetically, and we find several cases in which such contacts are conserved among structural orthologs. The indole-water interaction links side chains and peptide backbone in turn regions, connects the side chains in beta-sheets, and bridges secondary elements from different domains. We suggest that the water-indole interaction can be indirectly responsible for the quenching of tryptophan fluorescence that is observed in the folding of homeodomains and, possibly, many other proteins. We also observe a similar interaction between water and the imidazole nitrogens of the histidine side chain. Taken together, these observations suggest that the unconventional water-indole and water-imidazole interactions provide a small but favorable contribution to protein structures.
Collapse
Affiliation(s)
- Elliott J Stollar
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Kayser V, Turton DA, Aggeli A, Beevers A, Reid GD, Beddard GS. Energy Migration in Novel pH-Triggered Self-Assembled β-Sheet Ribbons. J Am Chem Soc 2004; 126:336-43. [PMID: 14709100 DOI: 10.1021/ja035340+] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Energy migration between tryptophan residues has been experimentally demonstrated in self-assembled peptide tapes. Each peptide contains 11 amino acids with a Trp at position 6. The peptide self-assembly is pH-sensitive and forms amphiphilic tapes, which further stack in ribbons (double tapes) and fibrils in water depending on the concentration. Fluorescence spectra, quenching, and anisotropy experiments showed that when the pH is lowered from 9 to 2, the peptide self-assembly buries the tryptophan in a hydrophobic and restricted environment in the interior of stable ribbons as expected on the basis of the peptide design. These fluorescence data support directly and for the first time the presence of such ribbons which are characterized by a highly packed and stable hydrophobic interior. In common with Trp in many proteins, fluorescence lifetimes are nonexponential, but the average lifetime is shorter at low pH, possibly due to quenching with neighboring Phe residues. Unexpectedly, time-resolved fluorescence anisotropy does not change significantly with self-assembly when in water. In highly viscous sucrose-water mixtures, the anisotropy decay at low pH was largely unchanged compared to that in water, whereas at high pH, the anisotropy decay increased significantly. We concluded that depolarization at low pH was not due to rotational diffusion but mainly due to energy migration between adjacent tryptophan residues. This was supported by a master equation kinetic model of Trp-Trp energy migration, which showed that the simulated and experimental results are in good agreement, although on average only three Trp residues were visited before emission.
Collapse
Affiliation(s)
- Veysel Kayser
- Department of Chemistry and Centre for Chemical Dynamics, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
37
|
Stollar EJ, Mayor U, Lovell SC, Federici L, Freund SMV, Fersht AR, Luisi BF. Crystal structures of engrailed homeodomain mutants: implications for stability and dynamics. J Biol Chem 2003; 278:43699-708. [PMID: 12923178 DOI: 10.1074/jbc.m308029200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the crystal structures and biophysical characterization of two stabilized mutants of the Drosophila Engrailed homeodomain that have been engineered to minimize electrostatic repulsion. Four independent copies of each mutant occupy the crystal lattice, and comparison of these structures illustrates variation that can be partly ascribed to networks of correlated conformational adjustments. Central to one network is leucine 26 (Leu26), which occupies alternatively two side chain rotameric conformations (-gauche and trans) and different positions within the hydrophobic core. Similar sets of conformational substates are observed in other Engrailed structures and in another homeodomain. The pattern of structural adjustments can account for NMR relaxation data and sequence co-variation networks in the wider homeodomain family. It may also explain the dysfunction associated with a P26L mutation in the human ARX homeodomain protein. Finally, we observe a novel dipolar interaction between a conserved tryptophan and a water molecule positioned along the normal to the indole ring. This interaction may explain the distinctive fluorescent properties of the homeodomain family.
Collapse
Affiliation(s)
- Elliott J Stollar
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Martinho JMG, Santos AM, Fedorov A, Baptista RP, Taipa MA, Cabral JMS. Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics. Photochem Photobiol 2003; 78:15-22. [PMID: 12929743 DOI: 10.1562/0031-8655(2003)078<0015:fotsto>2.0.co;2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cutinase from Fusarium solani pisi is an enzyme with a single L-tryptophan (Trp) involved in a hydrogen bond with an alanine (Ala) residue and located close to a cystine formed by a disulfide bridge between two cysteine (Cys) residues. The Cys strongly quenches the fluorescence of Trp by both static and dynamic quenching mechanisms. The Trp fluorescence intensity increases by about fourfold on protein melting because of the disruption of the Ala-Trp hydrogen bond that releases the Trp from the vicinity of the cystine residue. The Trp forms charge-transfer complexes with the disulfide bridge, which is disrupted by UV light irradiation of the protein. This results in a 10-fold increase of the Trp fluorescence quantum yield because of the suppression of the static quenching by the cystine residue. The Trp fluorescence anisotropy decays are similar to those in other proteins and were interpreted in terms of the wobbling-in-cone model. The long relaxation time is attributed to the Brownian rotational correlation time of the protein as a whole below the protein-melting temperature and to protein-backbone dynamics above it. The short relaxation time is related to the local motion of the Trp, whose mobility increases on protein denaturation.
Collapse
Affiliation(s)
- J M G Martinho
- Centro de Química-Física Molecular, Instituto Superior Técnico, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
39
|
Pattanaik P, Ravindra G, Sengupta C, Maithal K, Balaram P, Balaram H. Unusual fluorescence of W168 in Plasmodium falciparum triosephosphate isomerase, probed by single-tryptophan mutants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:745-56. [PMID: 12581214 DOI: 10.1046/j.1432-1033.2003.03436.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasmodium falciparum triosephosphate isomerase (PfTIM) contains two tryptophan residues, W11 and W168. One is positioned in the interior of the protein, and the other is located on the active-site loop 6. Two single-tryptophan mutants, W11F and W168F, were constructed to evaluate the contributions of each chromophore to the fluorescence of the wild-type (wt) protein and to probe the utility of the residues as spectroscopic reporters. A comparative analysis of the fluorescence spectra of PfTIMwt and the two mutant proteins revealed that W168 possesses an unusual, blue-shifted emission (321 nm) and exhibits significant red-edge excitation shift of fluorescence. In contrast, W11 emits at 332 nm, displays no excitation dependence of fluorescence, and behaves like a normal buried chromophore. W168 has a much shorter mean lifetime (2.7 ns) than W11 (4.6 ns). The anomalous fluorescence properties of W168 are abolished on unfolding of the protein in guanidinium chloride (GdmCl) or at low pH. Analysis of the tryptophan environment using a 1.1-A crystal structure established that W168 is rigidly held by a complex network of polar interactions including a strong hydrogen bond from Y164 to the indole NH group. The environment is almost completely polar, suggesting that electrostatic effects determine the unusually low emission wavelength of W168. To our knowledge this is a unique observation of a blue-shifted emission from a tryptophan in a polar environment in the protein. The wild-type and mutant proteins show similar levels of enzymatic activity and secondary and tertiary structure. However, the W11F mutation appreciably destabilizes the protein to unfolding by urea and GdmCl. The fluorescence of W168 is shown to be extremely sensitive to binding of the inhibitor, 2-phosphoglycolic acid.
Collapse
Affiliation(s)
- Priyaranjan Pattanaik
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | | | | | | | | |
Collapse
|
40
|
Choudhary G, Yotsu-Yamashita M, Shang L, Yasumoto T, Dudley SC. Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule. Biophys J 2003; 84:287-94. [PMID: 12524282 PMCID: PMC1302610 DOI: 10.1016/s0006-3495(03)74849-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The highly selective sodium channel blocker, tetrodotoxin (TTX) has been instrumental in characterization of voltage-gated sodium channels. TTX occludes the ion-permeation pathway at the outer vestibule of the channel. In addition to a critical guanidinium group, TTX possesses six hydroxyl groups, which appear to be important for toxin block. The nature of their interactions with the outer vestibule remains debatable, however. The C-11 hydroxyl (C-11 OH) has been proposed to interact with the channel through a hydrogen bond to a carboxyl group, possibly from domain IV. On the other hand, previous experiments suggest that TTX interacts most strongly with pore loops of domains I and II. Energetic localization of the C-11 OH was undertaken by thermodynamic mutant cycle analysis assessing the dependence of the effects of mutations of the adult rat skeletal muscle Na(+) channel (rNa(v)1.4) and the presence of C-11 OH on toxin IC(50). Xenopus oocytes were injected with the mutant or native Na(+) channel mRNA, and currents were measured by two-electrode voltage clamp. Toxin blocking efficacy was determined by recording the reduction in current upon toxin exposure. Mutant cycle analysis revealed that the maximum interaction of the C-11 OH was with domain IV residue D1532 (DeltaDeltaG: 1.0 kcal/mol). Furthermore, C-11 OH had significantly less interaction with several domain I, II, and III residues. The pattern of interactions suggested that C-11 was closest to domain IV, probably involved in a hydrogen bond with the domain IV carboxyl group. Incorporating this data, a new molecular model of TTX binding is proposed.
Collapse
Affiliation(s)
- Gaurav Choudhary
- Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
41
|
Adams PD, Chen Y, Ma K, Zagorski MG, Sönnichsen FD, McLaughlin ML, Barkley MD. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 2002; 124:9278-86. [PMID: 12149035 DOI: 10.1021/ja0167710] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intramolecular quenching of tryptophan fluorescence by protein functional groups was studied in a series of rigid cyclic hexapeptides containing a single tryptophan. The solution structure of the canonical peptide c[D-PpYTFWF] (pY, phosphotyrosine) was determined in aqueous solution by 1D- and 2D-(1)H NMR techniques. The peptide backbone has a single predominant conformation. The tryptophan side chain has three chi(1) rotamers: a major chi(1) = -60 degrees rotamer with a population of 0.67, and two minor rotamers of equal population. The peptides have three fluorescence lifetimes of about 3.8, 1.8, and 0.3 ns with relative amplitudes that agree with the chi(1) rotamer populations determined by NMR. The major 3.8-ns lifetime component is assigned to the chi(1) = -60 degrees rotamer. The multiple fluorescence lifetimes are attributed to differences among rotamers in the rate of excited-state electron transfer to peptide bonds. Electron-transfer rates were calculated for the six preferred side chain rotamers using Marcus theory. A simple model with reasonable assumptions gives excellent agreement between observed and calculated lifetimes for the 3.8- and 1.8-ns lifetimes and assigns the 1.8-ns lifetime component to the chi(1) = 180 degrees rotamer. Substitution of phenylalanine by lysine on either side of tryptophan has no effect on fluorescence quantum yield or lifetime, indicating that intramolecular excited-state proton transfer catalyzed by the epsilon-ammonium does not occur in these peptides.
Collapse
Affiliation(s)
- Paul D Adams
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Dong K, Ren H, Allison WS. The fluorescence spectrum of the introduced tryptophans in the alpha 3(beta F155W)3gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 cannot be used to distinguish between the number of nucleoside di- and triphosphates bound to catalytic sites. J Biol Chem 2002; 277:9540-7. [PMID: 11779852 DOI: 10.1074/jbc.m106911200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been reported that shifts in the fluorescence emission spectrum of the introduced tryptophans in the betaF155W mutant of Escherichia coli F(1) (bovine heart mitochondria F(1) residue number) can quantitatively distinguish between the number of catalytic sites occupied with ADP and ATP during steady-state ATP hydrolysis (Weber, J., Bowman, C., and Senior, A. E. (1996) J. Biol. Chem. 271, 18711--18718). In contrast, addition of MgADP, Mg-5'-adenylyl beta,gamma-imidophosphate (MgAMP-PNP), and MgATP in 1:1 ratios to the alpha(3)(betaF155W)(3)gamma subcomplex of thermophilic Bacillus PS3 F(1) (TF(1)) induced nearly identical blue shifts in the fluorescence emission maximum that was accompanied by quenching. Addition of 2 mm MgADP induced a slightly greater blue shift and a slight increase in intensity over those observed with 1:1 MgADP. However, addition of 2 mm MgAMP-PNP or MgATP induced a much greater blue shift and substantially enhanced fluorescence intensity over those observed in the presence of stoichiometric MgADP or MgAMP-PNP. It is clear from these results that the fluorescence spectrum of the introduced tryptophans in the betaF155W mutant of TF(1) does not respond in regular increments at any wavelength as catalytic sites are filled with nucleotides. The fluorescence spectrum observed after entrapping MgADP-fluoroaluminate complexes in two catalytic sites of the betaF155W subcomplex indicates that the fluorescence emission spectrum of the enzyme is maximally perturbed when nucleotides are bound to two catalytic sites. This finding is consistent with accumulating evidence suggesting that only two beta subunits in the alpha(3)beta(3)gamma subcomplex of TF(1) can simultaneously exist in the completely closed conformation.
Collapse
Affiliation(s)
- Ken Dong
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0601, USA
| | | | | |
Collapse
|
43
|
Toptygin D, Savtchenko RS, Meadow ND, Roseman S, Brand L. Effect of the Solvent Refractive Index on the Excited-State Lifetime of a Single Tryptophan Residue in a Protein. J Phys Chem B 2002. [DOI: 10.1021/jp0133889] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitri Toptygin
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Regina S. Savtchenko
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Norman D. Meadow
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Saul Roseman
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Ludwig Brand
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
44
|
Neves-Petersen MT, Gryczynski Z, Lakowicz J, Fojan P, Pedersen S, Petersen E, Bjørn Petersen S. High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Protein Sci 2002; 11:588-600. [PMID: 11847281 PMCID: PMC2373466 DOI: 10.1110/ps.06002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Revised: 11/08/2001] [Accepted: 11/27/2001] [Indexed: 10/17/2022]
Abstract
It is well known that ultraviolet (UV) radiation may reduce or even abolish the biological activity of proteins and enzymes. UV light, as a component of sunlight, is illuminating all light-exposed parts of living organisms, partly composed of proteins and enzymes. Although a considerable amount of empirical evidence for UV damage has been compiled, no deeper understanding of this important phenomenon has yet emerged. The present paper presents a detailed analysis of a classical example of UV-induced changes in three-dimensional structure and activity of a model enzyme, cutinase from Fusarium solani pisi. The effect of illumination duration and power has been investigated. A photon-induced mechanism responsible for structural and functional changes is proposed. Tryptophan excitation energy disrupts a neighboring disulphide bridge, which in turn leads to altered biological activity and stability. The loss of the disulphide bridge has a pronounced effect on the fluorescence quantum yield, which has been monitored as a function of illumination power. A general theoretical model for slow two-state chemical exchange is formulated, which allows for calculation of both the mean number of photons involved in the process and the ratio between the quantum yields of the two states. It is clear from the present data that the likelihood for UV damage of proteins is directly proportional to the intensity of the UV radiation. Consistent with the loss of the disulphide bridge, a complex pH-dependent change in the fluorescence lifetimes is observed. Earlier studies in this laboratory indicate that proteins are prone to such UV-induced radiation damage because tryptophan residues typically are located as next spatial neighbors to disulphide bridges. We believe that these observations may have far-reaching implications for protein stability and for assessing the true risks involved in increasing UV radiation loads on living organisms.
Collapse
Affiliation(s)
- Maria Teresa Neves-Petersen
- The Biostructure and Protein Engineering Group, Department of Life Sciences, Aalborg University, Aalborg 9000, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Engelborghs Y. The analysis of time resolved protein fluorescence in multi-tryptophan proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2001; 57:2255-2270. [PMID: 11603842 DOI: 10.1016/s1386-1425(01)00485-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the last decades, considerable progress has been made in the analysis of the fluorescence decay of proteins with more than one tryptophan. The construction of single tryptophan containing proteins has shown that the lifetimes of the wild type proteins are often the linear combinations of the family lifetimes of the contributing tryptophan residues. Additivity is not followed when energy transfer takes place among tryptophan residues or when the structure of the remaining protein is altered upon the modification. Progress has also been made in the interpretation of the value of the lifetime and the linkage with the immediate environment. Probably all the irreversible processes leading to return to the ground state have been catalogued and their rate constants are documented. Also, the process of electron transfer to the peptide carbonyl is becoming more and more documented and is linked to the rotameric state of tryptophan. Reversible excited state processes are also being considered, including reversible interconversions between rotamers. Interesting information about tryptophan and its environment comes also from anisotropy measurements for proteins in the native, the denatured and the molten globule states. Alterations of protein fluorescence due to the effects of ligand binding or side chain modifications can be analyzed via the ratio of the quantum yields of the modified protein and the reference state. Using the ratio of quantum yields and the (amplitude weighted) average lifetime, three factors can be identified: (1) a change in the apparent radiative rate constant reflecting either static quenching or an intrinsic change in the radiative properties; (2) a change in dynamic quenching; and (3) a change in the balance of the populations of the microstates or local static quenching.
Collapse
Affiliation(s)
- Y Engelborghs
- Laboratory of Biomolecular Dynamics, University of Leuven, Belgium.
| |
Collapse
|
46
|
Preiss S, Argentaro A, Clayton A, John A, Jans DA, Ogata T, Nagai T, Barroso I, Schafer AJ, Harley VR. Compound effects of point mutations causing campomelic dysplasia/autosomal sex reversal upon SOX9 structure, nuclear transport, DNA binding, and transcriptional activation. J Biol Chem 2001; 276:27864-72. [PMID: 11323423 DOI: 10.1074/jbc.m101278200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mutations in the transcription factor SOX9 cause campomelic dysplasia/autosomal sex reversal. Here we identify and characterize two novel heterozygous mutations, F154L and A158T, that substitute conserved "hydrophobic core" amino acids of the high mobility group domain at positions thought to stabilize SOX9 conformation. Circular dichroism studies indicated that both mutations disrupt alpha-helicity within their high mobility group domain, whereas tertiary structure is essentially maintained as judged by fluorescence spectroscopy. In cultured cells, strictly nuclear localization was observed for wild type SOX9 and the F154L mutant; however, the A158T mutant showed a 2-fold reduction in nuclear import efficiency. Importin-beta was demonstrated to be the nuclear transport receptor recognized by SOX9, with both mutant proteins binding importin-beta with wild type affinity. Whereas DNA bending was unaffected, DNA binding was drastically reduced in both mutants (to 5% of wild type activity in F154L, 17% in A158T). Despite this large effect, transcriptional activation in cultured cells was only reduced to 26% in F154L and 62% in A158T of wild type activity, suggesting that a small loss of SOX9 transactivation activity could be sufficient to disrupt proper regulation of target genes during bone and testis formation. Thus, clinically relevant mutations of SOX9 affect protein structure leading to compound effects of reduced nuclear import and reduced DNA binding, the net effect being loss of transcriptional activation.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Active Transport, Cell Nucleus/genetics
- Adult
- Amino Acid Sequence
- Animals
- Bone and Bones/abnormalities
- COS Cells
- Cell Nucleus/metabolism
- Cells, Cultured
- Circular Dichroism
- DNA/metabolism
- Disorders of Sex Development
- Electrophoresis, Polyacrylamide Gel
- Female
- Genes, Dominant
- Heterozygote
- High Mobility Group Proteins/chemistry
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Humans
- Immunohistochemistry
- Infant, Newborn
- Karyopherins
- Karyotyping
- Kinetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nuclear Proteins/metabolism
- Phenotype
- Point Mutation
- Polymorphism, Single-Stranded Conformational
- Protein Binding
- Protein Conformation
- Protein Denaturation
- Protein Structure, Tertiary
- SOX9 Transcription Factor
- Sequence Analysis, DNA
- Spectrometry, Fluorescence
- Structure-Activity Relationship
- Temperature
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- Transfection
- Tryptophan/metabolism
Collapse
Affiliation(s)
- S Preiss
- Department of Genetics, University of Melbourne, Howard Florey Institute, University of Melbourne, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Subramaniam V, Jovin TM, Rivera-Pomar RV. Aromatic amino acids are critical for stability of the bicoid homeodomain. J Biol Chem 2001; 276:21506-11. [PMID: 11294843 DOI: 10.1074/jbc.m102292200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila Bicoid (Bcd) protein plays a dual role as a transcription and translation factor dependent on the unique DNA and RNA binding properties of the homeodomain (HD). We have used circular dichroism and fluorescence spectroscopy to probe the structure and stability of the Bcd-HD, for which a high resolution structure is not yet available. The fluorescence from the single tryptophan residue in the HD (Trp-48) is strongly quenched in the native state but is dramatically enhanced ( approximately 20-fold) upon denaturation. Similar results were obtained with the Ultrabithorax HD (Ubx-HD), suggesting that the unusual tryptophan fluorescence may be a general phenomenon of HD proteins. We have used site-directed mutagenesis to explore the role of aromatic acids in the structure of the Bcd-HD and to evaluate the proposal that interactions between the strictly conserved Trp residue in HDs and nearby aromatic residues are responsible for the fluorescence quenching in the native state. We determined that both Trp-48 and Phe-8 in the N-terminal region of the HD are individually necessary for structural stability of the Bcd-HD, the latter most likely as a factor coordinating the orientation of the N-terminal helix I and the recognition helix for efficient binding to a DNA target.
Collapse
Affiliation(s)
- V Subramaniam
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
48
|
Abstract
Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.
Collapse
Affiliation(s)
- S Koenig
- Department of Chemistry, University of York, Heslington, UK
| | | | | |
Collapse
|
49
|
Nanda V, Liang SM, Brand L. Hydrophobic clustering in acid-denatured IL-2 and fluorescence of a Trp NH-pi H-bond. Biochem Biophys Res Commun 2000; 279:770-8. [PMID: 11162427 DOI: 10.1006/bbrc.2000.4033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The single tryptophan at position 121 of human interleukin-2 (IL-2) can form an NH-pi hydrogen bond with Phe 117 involving the indole nitrogen and the benzene aromatic ring. At pH 5.5, this type of aromatic interaction results in a fluorescence quantum yield three-fold lower than that of a fully solvent exposed tryptophan. At pH 2.1, IL-2 forms a compact denatured state with twice the emission intensity of the native protein. Global analysis of time-resolved fluorescence emission at multiple emission wavelengths shows that native and acid-denatured IL-2 can be described by four decay components. The fractional amplitudes of the shortest sub-nanosecond lifetimes are higher in the native state, suggesting rapid quenching due to the NH-pi hydrogen bond. In the denatured state, longer lifetimes have greater fractional amplitudes, indicating a smaller population of hydrogen-bonded species. Electrostatic-dipolar relaxation of the tryptophan microenvironment upon excitation is greater in the native-state of IL-2 than the acid-denatured state. This suggests that acid-denaturation sequesters Trp 121 from polar residues, while maintaining an interaction with Phe 117. This is consistent with the model of secondary structure preservation and hydrophobic clustering in molten-globule intermediates.
Collapse
Affiliation(s)
- V Nanda
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|