1
|
Kim J, Kim HS, Shim JJ, Lee J, Kim AY, Kim J. Critical role of the fibroblast growth factor signalling pathway in Ewing's sarcoma octamer-binding transcription factor 4-mediated cell proliferation and tumorigenesis. FEBS J 2019; 286:4443-4472. [PMID: 31155838 DOI: 10.1111/febs.14946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Certain bone and soft tissue (BST) tumours harbour a chromosomal translocation [t(6;22)(p21;q12)], which fuses the Ewing's sarcoma (EWS) gene at 22q12 with the octamer-binding transcription factor 4 (Oct-4) gene at 6p21, resulting in the chimeric EWS-Oct-4 protein that possesses high transactivation ability. Although abnormal activation of signalling pathways can lead to human cancer development, the pathways underlying these processes in human BST tumours remain poorly explored. Here, we investigated the functional significance of fibroblast growth factor (FGF) signalling in human BST tumours. To identify the gene(s) involved in the FGF signalling pathway and potentially regulated by EWS-Oct-4 (also called EWS-POU5F1), we performed RNA-Seq analysis, electrophoretic mobility shift assays, chromatin immunoprecipitation assays, and xenograft assays. Treating GBS6 or ZHBTc4 cells-expressing EWS-Oct-4 with the small molecule FGF receptor (FGFR) inhibitors PD173074, NVPBGJ398, ponatinib, and dovitinib suppressed cellular proliferation. Gene expression analysis revealed that, among 22 Fgf and four Fgfr family members, Fgf-4 showed the highest upregulation (by 145-fold) in ZHBTc4 cells-expressing EWS-Oct-4. Computer-assisted analysis identified a putative EWS-Oct-4-binding site at +3017/+3024, suggesting that EWS-Oct-4 regulates Fgf-4 expression in human BST tumours. Fgf-4 enhancer constructs showed that EWS-Oct-4 transactivated the Fgf-4 gene reporter in vitro, and that overexpression of EWS-Oct-4 stimulated endogenous Fgf-4 gene expression in vivo. Finally, PD173074 significantly decreased tumour volume in mice. Taken together, these data suggest that FGF-4 signalling is involved in EWS-Oct-4-mediated tumorigenesis, and that its inhibition impairs tumour growth in vivo significantly.
Collapse
Affiliation(s)
- Junghoon Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Hyo Sun Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Jung-Jae Shim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Jungwoon Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Ah-Young Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
2
|
Lee J, Kim J, Kang I, Kim H, Han YM, Kim J. The EWS-Oct-4 fusion gene encodes a transforming gene. Biochem J 2007; 406:519-26. [PMID: 17564582 PMCID: PMC2049031 DOI: 10.1042/bj20070243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The t(6;22)(p21;q12) translocation associated with human bone and soft-tissue tumours results in a chimaeric molecule fusing the NTD (N-terminal domain) of the EWS (Ewing's sarcoma) gene to the CTD (C-terminal domain) of the Oct-4 (octamer-4) embryonic gene. Since the N-terminal domains of EWS and Oct-4 are structurally different, in the present study we have assessed the functional consequences of the EWS-Oct-4 fusion. We find that this chimaeric gene encodes a nuclear protein which binds DNA with the same sequence specificity as the parental Oct-4 protein. Comparison of the transactivation properties of EWS-Oct-4 and Oct-4 indicates that the former has higher transactivation activity for a known target reporter gene containing Oct-4 binding. Deletion analysis of the functional domains of EWS-Oct-4 indicates that the EWS (NTD), the POU domain and the CTD of EWS-Oct-4 are necessary for full transactivation potential. EWS-Oct-4 induced the expression of fgf-4 (fibroblast growth factor 4) and nanog, which are potent mitogens as well as Oct-4 downstream target genes whose promoters contain potential Oct-4-binding sites. Finally, ectopic expression of EWS-Oct-4 in Oct-4-null ZHBTc4 ES (embryonic stem) cells resulted in increased tumorigenic growth potential in nude mice. These results suggest that the oncogenic effect of the t(6;22) translocation is due to the EWS-Oct-4 chimaeric protein and that fusion of the EWS NTD to the Oct-4 DNA-binding domain produces a transforming chimaeric product.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 6/genetics
- DNA-Binding Proteins
- Embryonic Stem Cells/metabolism
- Gene Expression Regulation
- Humans
- Mice
- Mice, Nude
- Octamer Transcription Factor-3/genetics
- Octamer Transcription Factor-3/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogenes/physiology
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing
- Translocation, Genetic
Collapse
Affiliation(s)
- Jungwoon Lee
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Ja Young Kim
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - In Young Kang
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Hye Kyoung Kim
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Yong-Mahn Han
- †Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Jungho Kim
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
3
|
Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16:159-78. [PMID: 15863032 DOI: 10.1016/j.cytogfr.2005.01.004] [Citation(s) in RCA: 938] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.
Collapse
Affiliation(s)
- Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
Wang P, Branch DR, Bali M, Schultz GA, Goss PE, Jin T. The POU homeodomain protein OCT3 as a potential transcriptional activator for fibroblast growth factor-4 (FGF-4) in human breast cancer cells. Biochem J 2003; 375:199-205. [PMID: 12841847 PMCID: PMC1223663 DOI: 10.1042/bj20030579] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 06/09/2003] [Accepted: 07/03/2003] [Indexed: 01/04/2023]
Abstract
The POU (representing a homeodomain protein family of which the founder members are Pit-1, Oct-1/2 and Unc-86) homeodomain protein OCT3/Oct-3 (where OCT stands for octamer-binding protein) is an embryonic transcription factor expressed in oocytes, embryonic stem and embryonic carcinoma cells. We have demonstrated previously that human breast cancer cells regain the ability to express OCT3 mRNA [Jin, Branch, Zhang, Qi, Youngson and Goss (1999) Int. J. Cancer 81, 104-112]. Antibodies against human OCT3 were not available when this study was conducted. By using a human OCT3-glutathione S-transferase fusion protein to affinity purify a polyclonal antibody against the mouse Oct-3, we obtained an antibody that enabled us to detect OCT3 in human breast cancer cells by Western-blot analysis. Thus we have now confirmed that OCT3 is expressed in human breast cancer cells but not in normal human breasts and in three other organs. When breast cancer cell lines were treated with all- trans -retinoic acid, OCT3 expression was repressed, associated with decreased cell proliferation. Although another POU protein Brn-3 has been shown to be a repressor for BRCA1 (breast-cancer susceptibility gene 1), OCT3 does not repress human or mouse BRCA1/Brca-1 promoters. However, OCT3 is capable of activating a fusion promoter containing the fibroblast growth factor-4 (FGF-4) enhancer element. In addition, we documented for the first time that human breast cancer cells express FGF-4 protein, and its expression could be inhibited by all- trans -retinoic acid. Furthermore, overexpressing OCT3 stimulated endogenous FGF-4 expression in MCF7 breast cancer cell line. These observations indicate that OCT3 protein is selectively expressed in human breast cancer cells, and its expression may be implicated in mammary gland tumorigenesis via up-regulating FGF-4 expression.
Collapse
Affiliation(s)
- Peixiang Wang
- Department of Medicine, University of Toronto, 67 College Street, Toronto, ON, Canada M5G 2M1
| | | | | | | | | | | |
Collapse
|
5
|
Morini M, Astigiano S, Mora M, Ricotta C, Ferrari N, Mantero S, Levi G, Rossini M, Barbieri O. Hyperplasia and impaired involution in the mammary gland of transgenic mice expressing human FGF4. Oncogene 2000; 19:6007-14. [PMID: 11146552 DOI: 10.1038/sj.onc.1204011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fgf4, a member of the fibroblast growth factor family, is frequently amplified in a variety of human cancers, however, its expression in neoplastic tissues is rarely detectable. This makes uncertain its involvement in tumour aetiology, although several in-vitro studies link Fgf4 overexpression to malignant transformation and metastatization of culture cells. We generated a transgenic mouse model in which the whey acidic protein (WAP) promoter directs expression of human Fgf4 to mammary tissues during late pregnancy and throughout lactation, with the purpose of studying the involvement of this growth factor in mammary tumorigenesis. Expression of the transgene was specifically detected in lobular-alveolar cells of lactating mammary glands that, by histological analysis, displayed hyperplastic areas and a disorganized structure. This was accompanied by an increased number of red blood cells and expression, in alveolar epithelial cells, of the vascular endothelial growth factor, which is absent in wild type controls. The most striking effect caused by FGF4 overexpression was on the remodelling of mammary tissue at the end of lactation. Indeed, transgenic animals showed a delayed involution of the gland due to a dramatic reduction in the overall number of apoptotic cells, which are normally present in the organ after weaning. Nevertheless, none of the animals examined developed neoplastic lesions of the mammary gland even after several pregnancies and at old age. Our work represents the first in-vivo demonstration of the anti-apoptotic and angiogenic properties of FGF4.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Apoptosis
- Blotting, Western
- Cell Transformation, Neoplastic
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Fibroblast Growth Factor 4
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/physiology
- Gene Expression Regulation
- Humans
- Hyperplasia/blood
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Immunohistochemistry
- Lactation
- Lymphokines/genetics
- Lymphokines/metabolism
- Mammary Glands, Animal/abnormalities
- Mammary Glands, Animal/blood supply
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/blood supply
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Transgenic
- Milk Proteins/analysis
- Milk Proteins/biosynthesis
- Milk Proteins/genetics
- Neovascularization, Pathologic
- Phenotype
- Pregnancy
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Transgenes/genetics
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- M Morini
- Unità Transgenici, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bagheri-Yarmand R, Kourbali Y, Mabilat C, Morère JF, Martin A, Lu H, Soria C, Jozefonvicz J, Crépin M. The suppression of fibroblast growth factor 2/fibroblast growth factor 4-dependent tumour angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7). Br J Cancer 1998; 78:111-8. [PMID: 9662260 PMCID: PMC2062947 DOI: 10.1038/bjc.1998.451] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Our previous studies showed that carboxymethyl benzylamide dextran (CMDB7) blocks basic fibroblast growth factor (FGF-2)-dependent cell proliferation of a human breast epithelial line (HBL100), suggesting its potential role as a potent antiangiogenic substance. The derived cell line (HH9), which was transformed with the hst/FGF4 gene, has been shown to be highly proliferative in vitro and to induce angiogenic tumours in nude mice. We show here that CMDB7 inhibits the mitogenic activities of the conditioned media from HBL 100 and HH9 cells in a dose-dependent manner. When HH9 cells were injected s.c. into nude mice, CMDB7 treatment (300 mg kg(-1) week(-1)) suppressed the tumour take and the tumour growth by about 50% and 80% respectively. Immunohistochemical analysis showed a highly significant decrease, by more than threefold, in the endothelial density of viable tumour regions, together with a significant increase in the necrosis area. This antiangiogenic activity of CMDB7 was further demonstrated by direct inhibition of calf pulmonary artery (CPAE) and human umbilical vein (HUVEC) endothelial cell proliferation and migration in vitro. In addition, we showed that CMDB7 inhibits specifically the mitogenic effects of the growth factors that bind to heparin such as FGF-2, FGF-4, platelet-derived growth factor (PDGF-BB) and transforming growth factor (TGF-beta1), but not those of epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). These results demonstrate that CMDB7 inhibits FGF-2/FGF-4-dependent tumour growth and angiogenesis, most likely by disrupting the autocrine and paracrine effects of growth factors released from the tumour cells.
Collapse
Affiliation(s)
- R Bagheri-Yarmand
- Laboratoire d'Oncologie Moléculaire Humaine (EA 445), UFR Léonard de Vinci, Université Paris-Nord, Bobigny, France
| | | | | | | | | | | | | | | | | |
Collapse
|