1
|
Więckowska M, Cichon N, Szelenberger R, Gorniak L, Bijak M. Ochratoxin A and Its Role in Cancer Development: A Comprehensive Review. Cancers (Basel) 2024; 16:3473. [PMID: 39456567 PMCID: PMC11506779 DOI: 10.3390/cancers16203473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Ochratoxin A (OTA) is widely recognized for its broad spectrum of toxic effects and is classified as a potential human carcinogen, placed in group 2B by the International Agency for Research on Cancer (IARC). Its presence in food and beverages poses a significant health hazard. Extensive research has documented the efficient absorption and distribution of OTA throughout the body via the bloodstream and tissues, underscoring the associated health risk. Additionally, ongoing studies aim to clarify the link between OTA exposure and carcinogenesis. The obtained results indicate a strong correlation between OTA and renal cell carcinoma (RCC), with potential associations with other malignancies, including hepatocellular carcinoma (HCC), gallbladder cancer (GBC), and squamous cell carcinoma (SCC). OTA is implicated in oxidative stress, lipid peroxidation, apoptosis, DNA damage, adduct formation, miRNA deregulation, and distributions in the cell cycle, all of which may contribute to carcinogenesis. Conclusions: Despite significant research efforts, the topic remains inexhaustible and requires further investigation. The obtained results do not yield definitive conclusions, potentially due to species-specific differences in the animal models used and challenges in extrapolating these results to humans. In our review, we delve deeper into the potential mechanisms underlying OTA-induced carcinogenesis and discuss existing limitations, providing directions for future research.
Collapse
Affiliation(s)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (L.G.); (M.B.)
| | | | | | | |
Collapse
|
2
|
Mantle P. Optimised Fermentation Production of Radiolabelled Ochratoxin A by Aspergillus ochraceus with Maximum 14C in the Pentaketide Moiety for Exploring Its Rat Renal Toxicology. Toxins (Basel) 2023; 16:8. [PMID: 38251225 PMCID: PMC10820727 DOI: 10.3390/toxins16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
In the context of the mysterious Balkan endemic nephropathy of the 1900s, and the discovery in the 1960s of the potent mycotoxin ochratoxin A, experimental research projects sought to explore any inter-relationship. Experimental lifetime administration of the toxin to male rats had revealed renal DNA adducts with the toxin, correlated with renal tumours, confirmation of which required molecular evidence. Consequently, production of 14C-ochratoxin A of a high specific radioactivity was required, practical biosynthetic detail of which had not previously been published. A fermentation study of Aspergillus ochraceous was carried out during 2002 for a European project, to select for the production of high-quality 14C-ochratoxin A, necessarily exploring for the maximum diversion of 14C-sodium acetate into the pentaketide portion of mycotoxin. Experimentation necessarily had to optimise the competitive context of fungal growth dynamics and addition of the biosynthetic precursor in the early days of shaken-flask fermentation before adding the radiolabelled precursor. From optimal fermentation, 50 mg of the 14C ochratoxin A was supplied within a European project for DNA adduct experimentation, but that proved negative as subsequently published. Experimental description of the radiolabelled ochratoxin A production was later made in a doctoral thesis, but is first publicised here. Further review of the literature reveals an explanation for the published failure to confirm rat DNA/ochratoxin A adduct formation, for which further experimentation is now recommended.
Collapse
Affiliation(s)
- Peter Mantle
- Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Yang L, Yang L, Cai Y, Luo Y, Wang H, Wang L, Chen J, Liu X, Wu Y, Qin Y, Wu Z, Liu N. Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114948. [PMID: 37105098 DOI: 10.1016/j.ecoenv.2023.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Lihan Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifei Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Li Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming Liu
- College of Animal Science and Technology, Shandong Agricultural University, China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Mantle P, Roberts A, Beaumont C. Notoamide R: A Prominent Diketopiperazine Fermentation Metabolite amongst Others of Aspergillus ochraceus in the Absence of Ochratoxins. Molecules 2023; 28:3518. [PMID: 37110751 PMCID: PMC10143996 DOI: 10.3390/molecules28083518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Ochratoxin A is historically the most notable secondary metabolite of Aspergillus ochraceus on account of its toxicity to animals and fish. Currently, over 150 compounds of diverse structure and biosynthesis is a challenge to predict the array for any particular isolate. A brief focus 30 years ago on the failure to produce ochratoxins in foods in Europe and the USA revealed consistent failures to produce ochratoxin A by isolates from some USA beans. Analysis for familiar or novel metabolites particularly focused on a compound for which mass and NMR analyses were inconclusive. Resort to 14C-labelled biosynthetic precursors, particularly phenylalanine, to search for any close alternative to ochratoxins, was combined with conventional shredded-wheat/shaken-flask fermentation. This yielded, for an extract, an autoradiograph of a preparative silica gel chromatogram, which was subsequently analysed for an excised fraction using spectroscopic methodologies. Circumstances then delayed progress for many years until the present collaboration revealed notoamide R. Meanwhile, pharmaceutical discovery around the turn of the millennium revealed stephacidins and notoamides, biosynthetically combining indole, isoprenyl and diketopiperazine components. Later, in Japan, notoamide R was added as a metabolite of an Aspergillus sp. isolated from a marine mussel, and the compound was recovered from 1800 Petri dish fermentations. Renewed attention to our former studies in England has since shown for the first time that notoamide R can be a prominent metabolite of A. ochraceus, sourced from a single shredded wheat flask culture with its structure confirmed by spectroscopic data, and in the absence of ochratoxins. Renewed attention to the archived autoradiographed chromatogram allowed further exploration, but in particular has stimulated a fundamental biosynthetic approach to considering influences redirecting intermediary metabolism to secondary metabolite accumulation.
Collapse
Affiliation(s)
- Peter Mantle
- Biochemistry Department and Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK
| | - Andrew Roberts
- Analytical Development, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Claire Beaumont
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| |
Collapse
|
5
|
Valadas J, Sachett A, Marcon M, Bastos LM, Piato A. Ochratoxin A induces locomotor impairment and oxidative imbalance in adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21144-21155. [PMID: 36264473 DOI: 10.1007/s11356-022-23692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of filamentous fungi widely found as a contaminant in food and with high toxic potential. Studies have shown that this toxin causes kidney and liver damage; however, data on the central nervous system effects of exposure to OTA are still scarce. Thus, this study aimed to investigate the effects of exposure to OTA on behavioral and neurochemical parameters in adult zebrafish. The animals were treated with different doses of OTA (1.38, 2.77, and 5.53 mg/kg) with intraperitoneal injections and submitted to behavioral evaluations in the open tank and social interaction tests. Subsequently, they were euthanized, and the brains were used to assess markers associated with oxidative status. In the open tank test, OTA altered distance traveled, absolute turn angle, mean speed, and freezing time. However, no significant effects were observed in the social interaction test. Moreover, OTA also increased glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR) levels and decreased non-protein thiols (NPSH) levels in the zebrafish brain. This study showed that OTA can affect behavior and neurochemical levels in zebrafish.
Collapse
Affiliation(s)
- Jéssica Valadas
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil
| | - Adrieli Sachett
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil
| | - Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Leonardo M Bastos
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Stoev SD. New Evidences about the Carcinogenic Effects of Ochratoxin A and Possible Prevention by Target Feed Additives. Toxins (Basel) 2022; 14:380. [PMID: 35737041 PMCID: PMC9230445 DOI: 10.3390/toxins14060380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
A review of the carcinogenic effects of ochratoxin A (OTA) on various tissues and internal organs in laboratory and farm animals is made. Suggestions are made regarding how to recognize and differentiate the common spontaneous neoplastic changes characteristic for advanced age and the characteristic neoplasia in different tissues and organs in laboratory animals/poultry exposed to OTA. The synergistic effects of OTA together with its natural combination of penicillic acid are also investigated regarding possible carcinogenic effects. The malignancy and the target location of OTA-induced neoplasia is studied. The sex-differences of such neoplasia are investigated in the available literature. The time of appearance of the first neoplasia is investigated in long-term carcinogenic studies with OTA-treated animals. The possibility of target feed additives or herbs to counteract the toxic and carcinogenic effects of OTA is studied in the available literature. Some effective manners of prophylaxis and/or prevention against OTA contamination of feedstuffs/foods or animal production are suggested. The suitability of various laboratory animals to serve as experimental model for humans with regard to OTA-induced tumorigenesis is investigated.
Collapse
Affiliation(s)
- Stoycho D Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
7
|
Jolly PE, Akinyemiju TF, Sakhuja S, Sheth R. Association of aflatoxin B1 levels with mean CD4 cell count and uptake of ART among HIV infected patients: A prospective study. PLoS One 2022; 17:e0260873. [PMID: 35085253 PMCID: PMC8794094 DOI: 10.1371/journal.pone.0260873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Background Aflatoxin suppresses cellular immunity and accentuates HIV-associated changes in T- cell phenotypes and B- cells. Objective This prospective study was conducted to examine the association of aflatoxin levels with CD4 T-cell count and antiretroviral therapy uptake over time. Methods Sociodemographic and food data were collected from antiretroviral therapy naïve HIV-infected patients. CD4+ counts were collected from participants’ medical records. Plasma samples were tested for aflatoxin B1 albumin adducts, hepatitis B surface antigen, and HIV viral load. Participants were separated into high and low aflatoxin groups based on the median aflatoxin B1 albumin adduct level of 10.4 pg/ml for data analysis. Results Participants with high aflatoxin B1 albumin adduct levels had lower mean CD4 at baseline and at each follow-up period. Adjusted multivariable logistic regression analysis showed that higher baseline aflatoxin B1 adduct levels were associated with statistically significant lower CD4 counts (est = -66.5, p = 0.043). Not starting ART and low/middle socioeconomic status were associated with higher CD4 counts (est = 152.2, p<0.001) and (est = 86.3, p = 0.027), respectively. Conclusion Consistent correlations of higher aflatoxin B1 adduct levels with lower CD4 over time indicate that there is an independent early and prolonged effect of aflatoxin on CD4 even with the initiation of antiretroviral therapy. The prospective study design, evaluation of baseline and follow-up measures, extensive control for potential confounders, and utilization of objective measures of aflatoxin exposure and CD4 count provide compelling evidence for a strong epidemiologic association that deserves careful attention in HIV care and treatment programs.
Collapse
Affiliation(s)
- Pauline E. Jolly
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| | - Tomi F. Akinyemiju
- Department of Population Health Sciences, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Swati Sakhuja
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Roshni Sheth
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
8
|
Samuel MS, Jeyaram K, Datta S, Chandrasekar N, Balaji R, Selvarajan E. Detection, Contamination, Toxicity, and Prevention Methods of Ochratoxins: An Update Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13974-13989. [PMID: 34783556 DOI: 10.1021/acs.jafc.1c05994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ochratoxins (OTs) with nephrotoxic, immunosuppressive, teratogenic, and carcinogenic properties are thermostable fungal subordinate metabolites. OTs contamination can occur before or after harvesting, during the processing, packing, distribution, and storage of food. Mold development and mycotoxin contamination can occur in any crop or cereal that has not been stored properly for long periods of time and is subjected to high levels of humidity and temperature. Ochratoxin A (OTA) presents a significant health threat to creatures and individuals. There is also a concern of how human interaction with OTA will also express the remains of OTA from feedstuffs into animal-derived items. Numerous approaches have been studied for the reduction of the OTA content in agronomic products. These methods can be classified into two major classes: inhibition of OTA adulteration and decontamination or detoxification of food. A description of the various mycotoxins, the organism responsible for the development of mycotoxins, and their adverse effects are given. In the current paper, the incidence of OTA in various fodder and food materials is discussed, which is accompanied by a brief overview of the OTA mode of synthesis, physicochemical properties, toxic effects of various types of ochratoxins, and OTA decontamination adaptation methods. To our knowledge, we are the first to report on the structure of many naturally accessible OTAs and OTA metabolism. Finally, this paper seeks to be insightful and draw attention to dangerous OTA, which is too frequently neglected and overlooked in farm duplication from the list of discrepancy studies.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Kanimozhi Jeyaram
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore 641022, Tamil Nadu, India
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan 106, ROC
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
9
|
Herman D, Mantle P. Rat Tumour Histopathology Associated with Experimental Chronic Dietary Exposure to Ochratoxin A in Prediction of the Mycotoxin's Risk for Human Cancers. Toxins (Basel) 2021; 13:205. [PMID: 33808971 PMCID: PMC8000298 DOI: 10.3390/toxins13030205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023] Open
Abstract
Mammalian animal toxicity of ochratoxin A (OTA) has focused largely in the past half-century on pigs because of initial recognition of it as a principal cause of intermittent growth suppression and renal disease caused by mouldy feed. Subsequent classical toxicology has used laboratory rodents because renal pathology in pigs raised questions concerning possible involvement in the human idiopathic bilateral renal atrophy of Balkan endemic nephropathy for which OTA was a focus of attention for human nephropathy through 1980s and into 2000s. Emphasis on human nephropathy has more recently concerned the plant metabolite aristolochic acid. Recognition that agricultural management can often minimise food and feed-stuff spoilage by OTA-producing Aspergilli and Penicillia has moderated some of the risks for animals. Legislation for human food safety combined with sophisticated analysis generally provides safety in the developed world. Chronic experimental exposure of male rats, in the absence of clinical dis-ease, specifically causes renal cancer. The possibility of this as a unique model for the human has generated considerable experimental evidence which may be more directly relevant for carcinogenesis in the complex kidney than that obtained from biochemical toxicities in vitro. Nevertheless, there does not appear to be any case of human renal or urinary tract cancer for which there is verified etiological proof for causation by OTA, contrary to much claim in the literature. To contribute to such debate, histopathology review of OTA/rat renal cancers, augmented where appropriate by immune profiles, has been completed for all remaining tumours in our research archive. Overall consistency of positivity for vimentin, is matched with occasional positives either for CD10 or the cytokeratin MNF 116. The current situation is discussed. Suggestion that OTA could cause human testicular cancer has also been challenged as unsupported by any experimental findings in rats, where the Leydig cell tumour immune profile does not match that of human germ cell neoplasms.
Collapse
Affiliation(s)
- Diana Herman
- Pathology Department, County Hospital Timisoara, 300736 Timisoara, Romania;
| | - Peter Mantle
- Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
10
|
Pastor L, Vettorazzi A, Guruceaga E, López de Cerain A. Time Course of Renal Transcriptomics after Subchronic Exposure to Ochratoxin A in Fisher Rats. Toxins (Basel) 2021; 13:177. [PMID: 33652839 PMCID: PMC7996782 DOI: 10.3390/toxins13030177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin ochratoxin A (OTA) is a potent nephrocarcinogen, mainly in male rats. The aim of this study was to determine the time course of gene expression (GeneChip® Rat Gene 2.0 ST Array, Affymetrix) in kidney samples from male and female F344 rats, treated daily (p.o) with 0.50 mg/kg b.w. (body weight) of OTA for 7 or 21 days, and evaluate if there were differences between both sexes. After OTA treatment, there was an evolution of gene expression in the kidney over time, with more differentially expressed genes (DEG) at 21 days. The gene expression time course was different between sexes with respect to the number of DEG and the direction of expression (up or down): the female response was progressive and consistent over time, whereas males had a different early response with more DEG, most of them up-regulated. The statistically most significant DEG corresponded to metabolism enzymes (Akr1b7, Akr1c2, Adh6 down-regulated in females; Cyp2c11, Dhrs7, Cyp2d1, Cyp2d5 down-regulated in males) or transporters (Slc17a9 down-regulated in females; Slco1a1 (OATP-1) and Slc51b and Slc22a22 (OAT) down-regulated in males). Some of these genes had also a basal sex difference and were over-expressed in males or females with respect to the other sex.
Collapse
Affiliation(s)
- Laura Pastor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| | - Elizabeth Guruceaga
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
- Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, E-31008 Pamplona, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| |
Collapse
|
11
|
Follow up long term preliminary studies on carcinogenic and toxic effects of ochratoxin A in rats and the putative protection of phenylalanine. Toxicon 2020; 190:41-49. [PMID: 33316297 DOI: 10.1016/j.toxicon.2020.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Carcinogenic effects of ochratoxin A (OTA) on liver, kidneys, intestine, lung and eyes of Wistar rats exposed to 10 ppm or 5 ppm OTA in the diet and additionally supplemented or not with phenylalanine (PHE) were examined during 24-months experimental period. OTA was seen to provoke strong degenerative changes and slight pericapillary oedema in most internal organs, e.g. kidneys, liver, intestine, spleen and brain. Six of total nine neoplasms were identified as malignant and three as benign. Five of total six malignant neoplasms and two of total three benign neoplasms were seen in male rats. The pathological finding in rats after two weeks feeding with OTA-contaminated feed was dominated by degenerative changes in various internal organs, which were weaker in the group additionally supplemented with PHE. The protective effect of PHE was evident with respect to OTA-induced decrease of serum glucose and serum protein, but this protection was not singnificant with respect to serum enzymes activity. The number of neoplasms in PHE-supplemented group exposed to 10 ppm OTA was similar to that in the group exposed to twice lower feed levels of OTA alone, suggesting about a possible protective effect of PHE. The rats would not be able to serve as experimental model for humans with regard to OTA-induced tumorigenesis, because the target organ of OTA-toxicity in humans and pigs is mainly the kidney as opposed to the significant damages and carcinogenic effects seen in various organs in rats exposed to OTA.
Collapse
|
12
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
13
|
Stoev SD. Long term preliminary studies on toxic and carcinogenic effect of individual or simultaneous exposure to ochratoxin A and penicillic acid in mice. Toxicon 2020; 184:192-201. [PMID: 32569847 DOI: 10.1016/j.toxicon.2020.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022]
Abstract
Carcinogenic effects of ochratoxin A (OTA) on liver, kidneys, intestine, muscles and subcutaneous tissue of BALB/c albino mice divided in three experimental and one control groups (30 mice in each group - 15 males and 15 females) and exposed to 10 ppm OTA and/or 50-60 ppm penicillic acid (PA) in the diet were seen. A total 22 neoplasias were found to be induced in the mice during 20 months' experimental period. Among them 14 were malignant and 8 benign. The number of neoplasias was significantly higher in the mice treated simultaneously with OTA and PA (14) compared to those in mice treated with OTA only (8). The number of malignant neoplasias was also higher (14) compared to benign neoplasias (8). Nine of a total fourteen malignant neoplasis and five of a total eight benign neoplasias were seen in the male mice. Pathological changes in mice after two weeks' experimental period were characterized by degenerative changes in kidneys, liver and gastrointestinal tract, which were better expressed in the mice exposed simultaneously to OTA and PA. A strong synergistic effect was found between OTA and PA towards tumorogenesis. It seems that mice are not a good experimental model for humans with regard to OTA-induced tumourigenesis, because the target organ of OTA-toxicity in humans or pigs is mainly the kidney, but not the liver, intestines, subcutaneous tissue or muscles as seen in this study.
Collapse
Affiliation(s)
- Stoycho D Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000, Stara Zagora, Bulgaria.
| |
Collapse
|
14
|
Marijani E, Charo-Karisa H, Gnonlonfin GJB, Kigadye E, Okoth S. Effects of aflatoxin B 1 on reproductive performance of farmed Nile tilapia. Int J Vet Sci Med 2019; 7:35-42. [PMID: 31692918 PMCID: PMC6818110 DOI: 10.1080/23144599.2019.1678315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/29/2019] [Indexed: 11/12/2022] Open
Abstract
This study evaluated the effect of dietary aflatoxin B1 (AFB1) on growth, milt and egg quality in matured Nile tilapia (Oreochromis niloticus). Triplicate groups of Nile tilapia (initial body weight 24.1 ± 2.6 g) were fed with either of four diets (Diets 1 to 4) designed to contain 0, 20, 200 and 2000 μg AFB1 kg−1 diets for 24 weeks. After 24 weeks of AFB1 exposure, growth was significantly (P <0.05) different between the control and the AFB1 exposed treatments in both sexes. No significant differences were observed in 17β-oestradiol, absolute fecundity, oocytes volume and diameters between AFB1 exposure groups and the control group. However, we observed a significant reduction in relative fecundity and gonad somatic index (GSI) in females fed 2000 μg AFB1 kg−1 diet. On the other hand, we observed significant differences (P <0.05) in gonadosomatic index (GSI), testosterone, milt count and motility between males in the control group and AFB1 treatments. We conclude that rearing Nile tilapia with aflatoxin-contaminated diets for a prolonged period affects milt quality, fecundity (at higher doses) and growth performance. This implies that for optimal seed production, provision of aflatoxin free diets should be part of the management practices in Nile tilapia hatcheries.
Collapse
Affiliation(s)
- Esther Marijani
- Open University of Tanzania, Department of Food and Nutrition, Dar es Salaam, Tanzania
| | | | | | - Emmanuel Kigadye
- Open University of Tanzania, Department of Food and Nutrition, Dar es Salaam, Tanzania
| | - Sheila Okoth
- School of Biological Science, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
15
|
de Almeida ÂB, Corrêa IP, Furuie JL, de Farias Pires T, do Rocio Dalzoto P, Pimentel IC. Inhibition of growth and ochratoxin A production in Aspergillus species by fungi isolated from coffee beans. Braz J Microbiol 2019; 50:1091-1098. [PMID: 31515726 DOI: 10.1007/s42770-019-00152-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/04/2019] [Indexed: 11/24/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin found in several agricultural commodities. Produced by Aspergillus spp., it is nephrotoxic and hepatotoxic and can be carcinogenic. Preventive measures are preventing fungal growth and OTA production. In this study, fungal strains (Rhizopus oryzae, Lichtheimia ramosa, Aspergillus westerdijkiae, Aspergillus niger, Aspergillus tamarii, Aspergillus sp., and Aspergillus fumigatus) isolated from coffee beans were identified for their abilities to inhibit the growth of Aspergillus ochraceus, Aspergillus westerdijkiae, Aspergillus carbonarius, and Aspergillus niger, and OTA production. All fungi strains tested were able to inhibit growth of the four Aspergillus species and OTA production, where A. niger showed the best results in both tests. L. ramosa showed the lowest growth-reducing potential, while the other fungal strains had a growth-reducing potential higher than 70% against all Aspergillus species tested. Regarding OTA production, L. ramosa and Aspergillus sp. completely inhibited the mycotoxin production by A. ochraceus and non-toxigenic strain A. niger completely inhibited OTA production by A. niger. Our findings indicate that the strains tested can be used as an alternative means to control growth of OTA-producing fungi and production of the mycotoxin in coffee beans.
Collapse
Affiliation(s)
- Ângela Bozza de Almeida
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Isabela Pauluk Corrêa
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Jason Lee Furuie
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil.
| | - Thiago de Farias Pires
- Laboratório de Genética e Cardiologia Molecular, Universidade de São Paulo, Instituto do Coração, São Paulo, Brazil
| | - Patrícia do Rocio Dalzoto
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Ida Chapaval Pimentel
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| |
Collapse
|
16
|
Lee JY, Lim W, Ryu S, Kim J, Song G. Ochratoxin A mediates cytotoxicity through the MAPK signaling pathway and alters intracellular homeostasis in bovine mammary epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:366-373. [PMID: 30577004 DOI: 10.1016/j.envpol.2018.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/18/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Ochratoxin A (OTA), a secondary metabolite of the genera Penicillium and Aspergillus, contaminates many types of food and causes apoptosis as well as immunosuppression in many animal species. However, a mechanistic analysis of OTA-mediated cytotoxicity in bovine mammary epithelial cells has not yet been performed. Hence, we investigated the effects of OTA on bovine mammary epithelial (MAC-T) cells using several mechanistic analyses. We report that OTA may induce cell cycle arrest and apoptosis via MAPK and JNK signaling pathways in MAC-T cells. Moreover, homeostasis of cellular components, such as that of the mitochondrial membrane, was disrupted by OTA, leading to a decrease in mitochondrial and cytosolic Ca2+ in MAC-T cells. In addition, we evaluated the effects of OTA on inflammatory responses and major tight junction regulators, such as occludin and claudin 3. In summation, we suggest that OTA contamination may adversely affect bovine mammary epithelial cells, leading to improper lactation and decreased milk quality. This article aims to improve the understanding of physiological mechanisms involved in lactation, in addition to providing a guideline for the stabilization of industrial milk production by countering exogenous contaminants in livestock.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Soomin Ryu
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S, Balmas V, Hassan ZU, Jaoua S, Migheli Q. Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. Int J Food Microbiol 2018; 284:1-10. [DOI: 10.1016/j.ijfoodmicro.2018.06.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 01/17/2023]
|
18
|
Vettorazzi A, Pastor L, Guruceaga E, López de Cerain A. Sex-dependent gene expression after ochratoxin A insult in F344 rat kidney. Food Chem Toxicol 2018; 123:337-348. [PMID: 30449730 DOI: 10.1016/j.fct.2018.10.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023]
Abstract
Ochratoxin A (OTA) is a potent rodent nephrocarcinogen; being males more sensitive than females. The objective was to study the response between sexes at gene expression level (whole genome transcriptomics) in kidneys of F344 rats treated with 0.21 or 0.50 mg/kg bw OTA for 21 days. DNA methylation analysis of selected genes was also studied (MALDI-TOF mass spectrometry). OTA-induced response was dose-dependent in males and females, although clearer in males. Females showed a higher number of altered genes than males but functional analysis revealed a higher number of significantly enriched toxicity lists in 0.21 mg/kg treated males. OTA modulated damage, signaling and metabolism related lists, as well as inflammation, proliferation and oxidative stress in both sexes. Eleven toxicity lists (damage, fibrosis, cell signaling and metabolism) were exclusively altered in males while renal safety biomarker and biogenesis of mitochondria lists were exclusively enriched in females. A high number of lists (39) were significantly enriched in both sexes. However, they contained many sex-biased OTA-modulated genes, mainly phase I and II, transporters and nuclear receptors, but also others related to cell proliferation/apoptosis. No biologically relevant changes were observed in the methylation of selected genes.
Collapse
Affiliation(s)
- Ariane Vettorazzi
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain.
| | - Laura Pastor
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain.
| | - Elizabeth Guruceaga
- IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain; Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, E-31008, Pamplona, Spain.
| | - Adela López de Cerain
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain.
| |
Collapse
|
19
|
Abstract
The important renal tumors that can be induced by exposure of rats to chemical carcinogens are renal tubule tumors (RTTs) derived from tubule epithelium; renal pelvic carcinoma derived from the urothelial lining of the pelvis; renal mesenchymal tumors (RMTs) derived from the interstitial connective tissue; and nephroblastoma derived from the metanephric primordia. However, almost all of our knowledge concerning mechanisms of renal carcinogenesis in the rodent pertains to the adenomas and carcinomas originating from renal tubule epithelium. Currently, nine mechanistic pathways can be identified in either the rat or mouse following chemical exposure. These include direct DNA reactivity, indirect DNA reactivity through free radical formation, multiphase bioactivation involving glutathione conjugation, mitotic disruption, sustained cell proliferation from direct cytotoxicity, sustained cell proliferation by disruption of a physiologic process (alpha 2u-globulin nephropathy), exaggerated pharmacologic response, species-dominant metabolic pathway, and chemical exacerbation of chronic progressive nephropathy. Spontaneous occurrence of RTTs in the rat will be included since one example is a confounder for interpreting kidney tumor results in chemical carcinogenicity studies in rats.
Collapse
|
20
|
Anthocyanins enhance yeast’s adsorption of Ochratoxin A during the alcoholic fermentation. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3162-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Enciso JM, López de Cerain A, Pastor L, Azqueta A, Vettorazzi A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem Toxicol 2018; 116:379-387. [DOI: 10.1016/j.fct.2018.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
|
22
|
Soler L, Oswald I. The importance of accounting for sex in the search of proteomic signatures of mycotoxin exposure. J Proteomics 2018; 178:114-122. [DOI: 10.1016/j.jprot.2017.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
23
|
Sex differences in ochratoxin a toxicity in F344 rats after 7 and 21 days of daily oral administration. Food Chem Toxicol 2018; 111:363-373. [DOI: 10.1016/j.fct.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
|
24
|
Ostry V, Malir F, Toman J, Grosse Y. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res 2017; 33:65-73. [PMID: 27888487 DOI: 10.1007/s12550-016-0265-7] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
Humans are constantly exposed to mycotoxins (e.g. aflatoxins, ochratoxins), mainly via food intake of plant and animal origin. The health risks stemming from mycotoxins may result from their toxicity, in particular their carcinogenicity. In order to prevent these risks, the International Agency for Research on Cancer (IARC) in Lyon (France)-through its IARC Monographs programme-has performed the carcinogenic hazard assessment of some mycotoxins in humans, on the basis of epidemiological data, studies of cancer in experimental animals and mechanistic studies. The present article summarizes the carcinogenic hazard assessments of those mycotoxins, especially aflatoxins (aflatoxin B1, B2, G1, G2 and M1), fumonisins (fumonisin B1 and B2) and ochratoxin A (OTA). New information regarding the genotoxicity of OTA (formation of OTA-DNA adducts), the role of OTA in oxidative stress and the identification of epigenetic factors involved in OTA carcinogenesis-should they indeed provide strong evidence that OTA carcinogenicity is mediated by a mechanism that also operates in humans-could lead to the reclassification of OTA.
Collapse
Affiliation(s)
- Vladimir Ostry
- Center for Health, Nutrition and Food, National Institute of Public Health in Prague, Palackeho 3a, 61242, Brno, Czech Republic.
| | - Frantisek Malir
- Faculty of Science, Department of Biology, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Jakub Toman
- Faculty of Science, Department of Biology, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Yann Grosse
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon, France
| |
Collapse
|
25
|
Pastor L, Vettorazzi A, Campión J, Cordero P, López de Cerain A. Gene expression kinetics of renal transporters induced by ochratoxin A in male and female F344 rats. Food Chem Toxicol 2016; 98:169-178. [PMID: 27771458 DOI: 10.1016/j.fct.2016.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin that contaminates foodstuffs. The most relevant concern is its high kidney carcinogenicity in male rats and its unclear mechanism of action. It has been hypothesized that variations in transport mechanisms in kidney cells may be the reason of different sex-dependent sensitivities towards OTA. The aim of this study was to analyze, by RT- qPCR, renal transporters expression in 15-week-old male (M) and female (F) F344 rats at basal level and after single oral OTA administration (0.50 mg/kg bw). Temporal profiles (24h, 48h, 72h, 96h, 1 and 2 months) were studied per sex and transporter. The reference gene for all comparisons was Ppia. At basal level, sex differences were confirmed for Oatp1, Bcrp (M>F) and Oat2 (F>M). OTA tended to inhibit the expression of almost all transporters in both sexes, but clearly induced the expression of Oat2 in males. Regarding time profiles, the highest sex differences involved Oat (Slc22) transporters: Oat2, Oat3 and Oat5 expression showed a significant increase in males (24h) while Oat1, Oat2 and Oat5 level decreased in females (48h). Overall, basal sex differences in F344 rats and the specific sex-dependent response to OTA of Oat2 might contribute to high kidney damage in male rats.
Collapse
Affiliation(s)
- Laura Pastor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain.
| | - Javier Campión
- Department of Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain; Current address: Making Genetics SL, Plaza CEIN 5, 31110 Noain, Spain.
| | - Paul Cordero
- Department of Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain; Current address: Institute for Liver and Digestive Health, University College London, Rowland Hill Street, London NW3 2PF, United Kingdom.
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|
26
|
Manda P, Adanou KM, Ardjouma D, Adepo AJB, Dano DS. Occurrence of ochratoxin A in spices commercialized in Abidjan (Côte d'Ivoire). Mycotoxin Res 2016; 32:137-43. [PMID: 27040819 DOI: 10.1007/s12550-016-0248-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced mostly by several species of Aspergillus and Penicillium. OTA is nephrotoxic in all animal species in which it has been tested and is cancerogenic in rodents. It is associated with Balkan endemic nephropathy. It is naturally present in many crop products such as cereals (barley, wheat, maize) and dried fruits, spices, coffee, wine, olives, and cocoa. The aim of this study was to assess the contamination of three Ivoirian spices with OTA (ginger, chili, and pepper) widely consumed by the population. A total of 90 spice samples (ginger: n = 30; chili: n = 30; pepper n = 30) was taken from various sales outlets of Abidjan. OTA was quantified using an HPLC apparatus coupled with a fluorimetric detector. The chili and ginger samples were contaminated with OTA at a mean concentration of 57.48 ± 174 and 0.12 ± 0.15 μg/kg, respectively. No contamination of the pepper samples was detected. Eight (26.67 %) of the chili samples exceeded the maximum limit of 15 μg/kg established by European regulation. These results should serve as an alert on the risk to the consumer population of these products that are highly contaminated with OTA.
Collapse
Affiliation(s)
- Pierre Manda
- Laboratoire de Toxicologie et Hygiène Agro-Industrielle, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, BPV 34, Abidjan, Côte d'Ivoire.
| | - Ketty Michele Adanou
- Laboratoire de Toxicologie et Hygiène Agro-Industrielle, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, BPV 34, Abidjan, Côte d'Ivoire
| | - Dembelé Ardjouma
- Laboratoire Central d'Agrochimie et d'Ecotoxicologie, Laboratoire National pour le Développement Agricole, Abidjan, Côte d'Ivoire
| | - Aholia Jean Baptiste Adepo
- Laboratoire de Toxicologie et Hygiène Agro-Industrielle, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, BPV 34, Abidjan, Côte d'Ivoire
| | - Djédjé Sébastien Dano
- Laboratoire de Toxicologie et Hygiène Agro-Industrielle, UFR Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët Boigny, BPV 34, Abidjan, Côte d'Ivoire
| |
Collapse
|
27
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J. Ochratoxin A: 50 Years of Research. Toxins (Basel) 2016; 8:E191. [PMID: 27384585 PMCID: PMC4963825 DOI: 10.3390/toxins8070191] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/21/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Since ochratoxin A (OTA) was discovered, it has been ubiquitous as a natural contaminant of moldy food and feed. The multiple toxic effects of OTA are a real threat for human beings and animal health. For example, OTA can cause porcine nephropathy but can also damage poultries. Humans exposed to OTA can develop (notably by inhalation in the development of acute renal failure within 24 h) a range of chronic disorders such as upper urothelial carcinoma. OTA plays the main role in the pathogenesis of some renal diseases including Balkan endemic nephropathy, kidney tumors occurring in certain endemic regions of the Balkan Peninsula, and chronic interstitial nephropathy occurring in Northern African countries and likely in other parts of the world. OTA leads to DNA adduct formation, which is known for its genotoxicity and carcinogenicity. The present article discusses how renal carcinogenicity and nephrotoxicity cause both oxidative stress and direct genotoxicity. Careful analyses of the data show that OTA carcinogenic effects are due to combined direct and indirect mechanisms (e.g., genotoxicity, oxidative stress, epigenetic factors). Altogether this provides strong evidence that OTA carcinogenicity can also occur in humans.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| | - Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Brno 61242, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, Auzeville-Tolosane 31320, France.
| | - Jan Malir
- Institute of State and Law, Czech Academy of Sciences, Narodni 18, Prague 11600, Czech Republic.
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| |
Collapse
|
28
|
Heussner A, Paget T. Evaluation of renal in vitro models used in ochratoxin research. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) induces renal carcinomas in rodents with a specific localisation in the S3 segment of proximal tubules and distinct early severe tissue alterations, which have been observed also in other species. Pronounced species- and sex-specific differences in toxicity occur and similar effects cannot be excluded in humans, however precise mechanism(s) remain elusive until today. In such cases, the use of in vitro models for mechanistic investigations can be very useful; in particular if a non-genotoxic mechanism of cancer formation is assumed which include cytotoxic effects. However, potential genotoxic mechanisms can also be investigated in vitro. A crucial issue of in vitro research is the choice of the appropriate cell model. Apparently, the cellular target of OTA is the renal proximal tubular cell; therefore cells from this tissue area are the most reasonable model. Furthermore, cells from affected species should be used and can be compared to cells of human origin. Another important parameter is whether to use primary cultures or to choose a cell line from the huge variety of cell lines available. In any case, important characteristics and quality controls need to be verified beforehand. Therefore, this review discusses the renal in vitro models that have been used for the investigation of renal ochratoxin toxicity. In particular, we discuss the choice of the models and the essential parameters making them suitable models for ochratoxin research together with exemplary results from this research. Furthermore, new promising models such as hTERT-immortalised cells and 3D-cultures are briefly discussed.
Collapse
Affiliation(s)
- A.H. Heussner
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| | - T. Paget
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| |
Collapse
|
29
|
Abassi H, Ayed-Boussema I, Shirley S, Abid S, Bacha H. Ochratoxin A and T-2 Toxin Induce Clonogenicity and Cell Migration in Human Colon Carcinoma and Fetal Lung Fibroblast Cell Lines. J Biochem Mol Toxicol 2016; 30:128-35. [PMID: 26849850 DOI: 10.1002/jbt.21771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/10/2015] [Indexed: 11/07/2022]
Abstract
T-2 toxin and Ochratoxin A (OTA) are toxic secondary metabolites produced by various fungi, and together they contaminate feedstuffs worldwide. T-2 toxin and OTA may exert carcinogenic action in rodent. Despite the various in vivo experiments, carcinogenicity of these two mycotoxins has not yet been proven for human. In this current study, we proposed to investigate, in Human colon carcinoma cells and fetal lung fibroblast-like cells transfected with MYC, the effect of T-2 toxin and OTA on cell clonogenicity and cell migration. Results of the present investigation showed that T2-toxin as well as OTA has an important clonogenic effect in all cell lines, suggesting that these mycotoxins could promote the transcription of c-myc gene. Furthermore, T-2 toxin and OTA enhanced the migration effect of HCT116 cells at very low concentrations, proposing that these mycotoxins may exhibit carcinogenesis-like properties in the studied cells.
Collapse
Affiliation(s)
- Haila Abassi
- Laboratoire de Recherche sur les Substances Biologiquement Compatibles (LRSBC), Faculté de Médecine Dentaire, 5019, Monastir, Tunisia
| | - Imen Ayed-Boussema
- Laboratoire de Recherche sur les Substances Biologiquement Compatibles (LRSBC), Faculté de Médecine Dentaire, 5019, Monastir, Tunisia
| | - Sarah Shirley
- INSERM, U866, Université de Bourgogne, Dijon, F-21000, France
| | - Salwa Abid
- Laboratoire de Recherche sur les Substances Biologiquement Compatibles (LRSBC), Faculté de Médecine Dentaire, 5019, Monastir, Tunisia
| | - Hassen Bacha
- Laboratoire de Recherche sur les Substances Biologiquement Compatibles (LRSBC), Faculté de Médecine Dentaire, 5019, Monastir, Tunisia.
| |
Collapse
|
30
|
Ciarcia R, Damiano S, Squillacioti C, Mirabella N, Pagnini U, Florio A, Severino L, Capasso G, Borrelli A, Mancini A, Boffo S, Romano G, Giordano A, Florio S. Recombinant Mitochondrial Manganese Containing Superoxide Dismutase Protects Against Ochratoxin A‐Induced Nephrotoxicity. J Cell Biochem 2015; 117:1352-8. [DOI: 10.1002/jcb.25425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Roberto Ciarcia
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”80137 NaplesItaly
| | - Sara Damiano
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”80137 NaplesItaly
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”80137 NaplesItaly
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”80137 NaplesItaly
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”80137 NaplesItaly
| | - Alessia Florio
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”80137 NaplesItaly
| | - Lorella Severino
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”80137 NaplesItaly
| | | | - Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Department of Experimental OncologyIstituto Nazionale Tumori, “Fondazione G. Pascale”IRCCS, NaplesItaly
| | - Aldo Mancini
- Leadhexa Biotechnologies Inc.San FranciscoCalifornia
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular MedicineCenter of BiotechnologyCollege of Science and TechnologyTemple UniversityPhiladelphiaPennsylvania
| | - Gaetano Romano
- Sbarro Institute for Cancer Research and Molecular MedicineCenter of BiotechnologyCollege of Science and TechnologyTemple UniversityPhiladelphiaPennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular MedicineCenter of BiotechnologyCollege of Science and TechnologyTemple UniversityPhiladelphiaPennsylvania
- Department of MedicineSurgery and NeuroscienceUniversity of SienaSienaItaly
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal ProductionsUniversity of Naples “Federico II”80137 NaplesItaly
| |
Collapse
|
31
|
Ioannidis AG, Kogkaki EA, Natskoulis PI, Nychas GJE, Panagou EZ. Modelling the influence of temperature, water activity and sodium metabisulphite on the growth and OTA production of Aspergillus carbonarius isolated from Greek wine grapes. Food Microbiol 2015; 49:12-22. [DOI: 10.1016/j.fm.2015.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 11/30/2022]
|
32
|
Jean FB, Philippe AN, Karim K, Mariam O, Sylvain RB, Eloi S, Nicolas B. Assessment of aflatoxin B1 and ochratoxin A levels in sorghum malts and beer in Ouagadougou. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajfs2015.1306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Lappa IK, Kizis D, Natskoulis PI, Panagou EZ. Comparative study of growth responses and screening of inter-specific OTA production kinetics by A. carbonarius isolated from grapes. Front Microbiol 2015; 6:502. [PMID: 26074896 PMCID: PMC4444842 DOI: 10.3389/fmicb.2015.00502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/06/2015] [Indexed: 11/15/2022] Open
Abstract
The aim of this work was to assess OchratoxinA (OTA) production of different Aspergillus carbonarius isolates, evaluate their growth profile through different growth measurements, and reveal any underlying correlation between them. Ten different isolates of A. carbonarius isolated from Greek vineyards located in different geographical regions were examined in vitro for their OTA production potential after an incubation period of up to 11 days. All fungal isolates grew on a synthetic grape juice medium (SGM) similar to grape composition at optimum conditions of temperature and water activity (25°C and 0.98 aw). Samples for OTA determination were removed at 3, 5, 7, 9, and 11 days of growth and analyzed by HPLC. Based on OTA measurements the isolates were characterized by diverse OTA production ranging from 50 to 2000 ppb at day 11. The different fungal growth responses (colony diameter, colony area, biomass, biomass dry weight, and colony density) have been measured and correlated with toxin production by means of principal components analysis (PCA), confirming satisfactory correlation and explained over 99% of data variability. Leudeking-Piret model was also used to study OTA production with time, revealing a mixed-growth associated trend and pointing a fail-safe model with slightly better prediction through colony area. This approach contributes to the assessment of correlation between mycotoxin production and different methods of fungal growth determination in relation to time.
Collapse
Affiliation(s)
- Iliada K Lappa
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens Athens, Greece
| | - Dimosthenis Kizis
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens Athens, Greece ; Laboratory of Mycology, Department of Phytopathology, Benaki Phytopathological Institute Athens, Greece
| | - Pantelis I Natskoulis
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens Athens, Greece
| | - Efstathios Z Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens Athens, Greece
| |
Collapse
|
34
|
Kogkaki EA, Natskoulis PI, Magan N, Panagou EZ. Effect of interaction between Aspergillus carbonarius and non-ochratoxigenic grape-associated fungal isolates on growth and ochratoxin A production at different water activities and temperatures. Food Microbiol 2015; 46:521-527. [DOI: 10.1016/j.fm.2014.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
|
35
|
Mantle P, Kilic MA, Mor F, Ozmen O. Contribution of organ vasculature in rat renal analysis for ochratoxin a: relevance to toxicology of nephrotoxins. Toxins (Basel) 2015; 7:1005-17. [PMID: 25811304 PMCID: PMC4417951 DOI: 10.3390/toxins7041005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/12/2014] [Accepted: 03/17/2015] [Indexed: 02/02/2023] Open
Abstract
Assumptions surrounding the kidney as a target for accumulation of ochratoxin A (OTA) are addressed because the contribution of the toxin in blood seems invariably to have been ignored. Adult rats were maintained for several weeks on toxin-contaminated feed. Using standard perfusion techniques, animals were anaesthetised, a blood sample was taken, one kidney was ligated, and the other kidney perfused with physiological saline in situ under normal blood pressure. Comparative analysis of OTA in pairs of kidneys showed marked reduction in the perfused organ in the range 37%-98% (mean 75%), demonstrating the general efficiency of perfusion supported also by histology, and implying a major role of blood in the total OTA content of kidney. Translation of OTA values in plasma to whole blood, and its predicted contribution as a 25% vascular compartment in kidney gave values similar to those in non-perfused kidneys. Thus, apparent 'accumulation' of OTA in kidney is due to binding to plasma proteins and long half-life in plasma. Attention should be re-focused on whole animal pharmacokinetics during chronic OTA exposure. Similar principles may be applied to DNA-OTA adducts which are now recognised as occurring in blood; application could also extend to other nephrotoxins such as aristolochic acid. Thus, at least, quantitative reassessment in urological tissues seems necessary in attributing adducts specifically as markers of potentially-tumourigenic exposure.
Collapse
Affiliation(s)
- Peter Mantle
- Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK.
| | - Mehmet A Kilic
- Molecular Biology Section, Department of Biology, Science Faculty, Akdeniz University, Antalya 07058, Turkey.
| | - Firdevs Mor
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur 15030, Turkey.
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur 15030, Turkey.
| |
Collapse
|
36
|
Corcuera LA, Vettorazzi A, Arbillaga L, Pérez N, Gil AG, Azqueta A, González-Peñas E, García-Jalón JA, López de Cerain A. Genotoxicity of Aflatoxin B1 and Ochratoxin A after simultaneous application of the in vivo micronucleus and comet assay. Food Chem Toxicol 2014; 76:116-24. [PMID: 25530104 DOI: 10.1016/j.fct.2014.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are genotoxic mycotoxins that can contaminate a variety of foodstuffs, the liver and the kidney being their target organs, respectively. The micronucleus (MN) assay (bone marrow) and the comet assay (liver and kidney) were performed simultaneously in F344 rats, treated with AFB1 (0.25 mg/kg b.w.), OTA (0.5 mg/kg b.w.) or both mycotoxins. After AFB1 treatment, histopathology and biochemistry analysis showed liver necrosis, focal inflammation and an increase in Alanine Aminotransferase and Aspartate Aminotransferase. OTA alone did not cause any alteration. The acute hepatotoxic effects caused by AFB1 were less pronounced in animals treated with both mycotoxins. With regard to the MN assay, after 24 h, positive results were obtained for AFB1 and negative results were obtained for OTA, although both toxins caused bone marrow toxicity. In the combined treatment, OTA reduced the toxicity and the number of MN produced by AFB1. In the comet assay, after 3 h, positive results were obtained for AFB1 in the liver and for OTA in the kidney. The combined treatment reduced DNA damage in the liver and had no influence in the kidney. Altogether, these results may be indicative of an antagonistic relationship regarding the genotoxicity of both mycotoxins.
Collapse
Affiliation(s)
- Laura-Ana Corcuera
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Leire Arbillaga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Noemí Pérez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Ana Gloria Gil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Jose Antonio García-Jalón
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|
37
|
Vettorazzi A, González-Peñas E, de Cerain AL. Ochratoxin A kinetics: A review of analytical methods and studies in rat model. Food Chem Toxicol 2014; 72:273-88. [DOI: 10.1016/j.fct.2014.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/04/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022]
|
38
|
Mor F, Kilic MA, Ozmen O, Yilmaz M, Eker I, Uran K. The effects of orchidectomy on toxicological responses to dietary ochratoxin A in Wistar rats. ACTA ACUST UNITED AC 2014; 66:267-75. [PMID: 24813088 DOI: 10.1016/j.etp.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
Ochratoxin A (OTA) causes pathological lesions in the organs of animals. Males are more sensitive to OTA exposure than females but the reasons for this are unknown. The objective of this study was to explore the role of testosterone in male rats with OTA-related pathogenesis. To test the effect of testosterone on OTA toxicity, the testes of a group of rats were surgically removed. Male and female rats (approximately 300 and 200 g) were fed with OTA-contaminated feed (initially approximately 300 μg kg(-1) b.w. per day) for 24 weeks. The organs of all the animals were collected and their organ lesion pathology, caspase-3 expression, OTA plasma and organ concentrations and total plasma testosterone concentrations were evaluated. OTA treatment created serious lesions in the kidney, liver and testes of rats. The major histopathological changes in the kidney and liver were karyomegaly, hemorrhages and vacuolization. In the testes, there was a marked decrease in the amount of spermatozoon. The degrees of organ lesion were evaluated and the castrated males had the lowest kidney and liver lesion scores, indicating that testosterone reduction in males dramatically reduces OTA-related organ damage. The plasma OTA levels for the intact males, the castrated and the females were 6.34, 8.42 and 12.5 μg ml(-1), respectively. In conclusion, despite the similar plasma OTA levels of the intact and castrated males, OTA is less toxic in the castrated males. Therefore, the well-known gender specific toxicity of OTA seems to be related to the testosterone levels of rats.
Collapse
Affiliation(s)
- Firdevs Mor
- Mehmet Akif Ersoy University, Faculty of Veterinary, Department of Pharmacology and Toxicology, 15030 Burdur, Turkey.
| | - Mehmet A Kilic
- Akdeniz University, Science Faculty, Department of Biology, Molecular Biology Section, 07058 Antalya, Turkey.
| | - Ozlem Ozmen
- Mehmet Akif Ersoy University, Faculty of Veterinary, Department of Pathology, 15030 Burdur, Turkey.
| | - Mesut Yilmaz
- Akdeniz University, Science Faculty, Department of Biology, Molecular Biology Section, 07058 Antalya, Turkey; Akdeniz University, Faculty of Aquaculture, Department of Fishery, 07058 Antalya, Turkey.
| | - Ilknur Eker
- Akdeniz University, Science Faculty, Department of Chemistry, 07058 Antalya, Turkey
| | - Kemal Uran
- Akdeniz University, Science Faculty, Department of Biology, Molecular Biology Section, 07058 Antalya, Turkey; Ministry of Agriculture, State Food Safety Laboratory, Antalya, Turkey
| |
Collapse
|
39
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Novotna E. Ochratoxin A: developmental and reproductive toxicity-an overview. ACTA ACUST UNITED AC 2014; 98:493-502. [PMID: 24395216 DOI: 10.1002/bdrb.21091] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022]
Abstract
Ochratoxin A (OTA) is nephrotoxic, hepatotoxic, reprotoxic, embryotoxic, teratogenic, neurotoxic, immunotoxic, and carcinogenic for laboratory and farm animals. Male and female reproductive health has deteriorated in many countries during the last few decades. A number of toxins in environment are suspected to affect reproductive system in male and female. OTA is one of them. OTA has been found to be teratogenic in several animal models including rat, mouse, hamster, quail, and chick, with reduced birth weight and craniofacial abnormalities being the most common signs. The presence of OTA also results in congenital defects in the fetus. Neither the potential of OTA to cause malformations in human nor its teratogenic mode of action is known. Exposure to OTA leads to increased embryo lethality manifested as resorptions or dead fetuses. The mechanism of OTA transfer across human placenta (e.g., which transporters are involved in the transfer mechanism) is not fully understood. Some of the toxic effects of OTA are potentiated by other mycotoxins or other contaminants. Therefore, OTA exposure of pregnant women should be minimized. OTA has been shown to be an endocrine disruptor and a reproductive toxicant, with abilities of altering sperm quality. Other studies have shown that OTA is a testicular toxin in animals. Thus, OTA is a biologically plausible cause of testicular cancer in man.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | | | | | |
Collapse
|
40
|
Ali R, Guo X, Lin H, Khan QM, Ismail M, Waheed U, Ali T, Bhalli JA. Mutant frequency in comparison to oxidative DNA damage induced by ochratoxin A in L5178Ytk+/−(3.7.2C) mouse lymphoma cells. Drug Chem Toxicol 2013; 37:227-32. [DOI: 10.3109/01480545.2013.838775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Sorrenti V, Di Giacomo C, Acquaviva R, Barbagallo I, Bognanno M, Galvano F. Toxicity of ochratoxin a and its modulation by antioxidants: a review. Toxins (Basel) 2013; 5:1742-66. [PMID: 24152986 PMCID: PMC3813909 DOI: 10.3390/toxins5101742] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin involved in the development of different types of cancers in rats, mice and humans. A growing number of in vitro and in vivo studies has been collected and has described evidence compatible with a role for oxidative stress in OTA toxicity and carcinogenicity. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Several studies have been performed to try to counteract the adverse effects of oxygen radicals generated under OTA-exposure. A number of molecules with various antioxidant properties were tested, using in vivo or in vitro models. Protection against OTA-induced DNA damage, lipid peroxidation, as well as cytotoxicity were observed, further confirming the link between OTA toxicity and oxidative damage. These studies demonstrated that antioxidants are able to counteract the deleterious effects of chronic consumption or exposure to OTA and confirmed the potential effectiveness of dietary strategies to counteract OTA toxicity.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Ignazio Barbagallo
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Matteo Bognanno
- Agriculture Department, Mediterranean University of Reggio Calabria, Reggio Calabria89122, Italy; E-Mail:
| | - Fabio Galvano
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| |
Collapse
|
42
|
Bokhari FM. Implications of fungal infections and mycotoxins in camel diseases in Saudi Arabia. Saudi J Biol Sci 2013; 17:73-81. [PMID: 23961061 DOI: 10.1016/j.sjbs.2009.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Natural feed ingredients (corn, barley and wheat bran) and compound feed (manufactured pellet) are two types of fodder used for animal feeding, especially camel in Saudi Arabia. Twenty samples of each type of fodder were collected from seven different regions and screened for the presence of fungi, aflatoxins, ochratoxin and zearalenone. Fungal isolation of natural feed ingredients yielded 10 genera and 38 species of different fungi. Compound fodder samples were contaminated with 16 genera and 32 species of fungi. Total counts of Aspergillus, Penicillium and Fusarium in the animal feed samples were ranged from 54 to 223 × 10(3), 31.9 to 60 × 10(3) and 18 to 29 × 10(3) CFU/g, respectively. These isolates when tested for aflatoxin, ochratoxin and zearalenone producing ability, revealed this property in only four isolate, identified as Aspergillus flavus, A. parasiticus, A. ochraceus and Fusarium graminaerum. The percentage of toxigenic fungi was ranged from 5.5% to 30% for natural feed ingredients and from 4.5% to 20% for compound feed. The incidence of aflatoxins (AFT) in samples of natural feed ingredients was found to be ranged from 1 to 24.8 ppb, ochratoxin A (OTA) ranged from 1 to 44 ppb and zearalenone (ZON) ranged from 1 to 23 ppb. Contamination of compound feed with aflatoxin and ochratoxin A was ranged from 1 to 6.4 ppb and 1 to 4.7 ppb, respectively. All samples collected were found contaminated with fungi or their toxins and natural feed samples were more contaminated compared to compound feed samples. The concentrations detected were in the allowed limit (<20 ppb) except four samples of natural feed ingredients which were above the allowed limit of the tested mycotoxins. In conclusion, feed samples were contaminated with fungi and some toxigenic isolates which were responsible about mycotoxin production. Some samples had exceeded amount of AFT, OTA and ZON and may be contaminated with other mycotoxins which mean implication of fungi in camel health problems and death in Saudi Arabia.
Collapse
Affiliation(s)
- Fardos M Bokhari
- Faculty of Sciences, Biology Department, King Abdel Aziz University, P.O. Box 12161, Jeddah 21473, Saudi Arabia
| |
Collapse
|
43
|
A review on ochratoxin A transcriptomic studies. Food Chem Toxicol 2013; 59:766-83. [PMID: 23747715 DOI: 10.1016/j.fct.2013.05.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
The mycotoxin Ochratoxin A (OTA) is a potent renal carcinogen in male rats. Transcriptomic studies on OTA (4 in vitro, 6 in vivo, 2 in vitro/in vivo) have been reviewed. The aim of 6 of them was mainly mechanistic whereas the rest had mostly predictive (1) or evaluation (5) purposes. An overall tendency towards gene expression downregulation was observed, probably as a result of protein synthesis inhibition. DNA damage response genes were not deregulated in most of the studies. Genes involved in acute renal injury, cell survival and cell proliferation were upregulated in several in vivo studies. Apoptosis genes were deregulated in vitro but less affected in vivo; activation of several MAPKs has been observed. Many genes related to oxidative stress or involved in cell-to-cell interaction pathways (Wnt) or cytoskeleton structure appeared to be deregulated either in vitro or in vivo. Regucalcin was highly downregulated in vivo and other calcium homeostasis genes were significantly deregulated in vitro. Genes related to OTA transport (OATs) and metabolism (CYPs) appeared downregulated in vivo. Overall, the mechanism of action of OTA remains unclear, however transcriptomic data have contributed to new mechanistic hypothesis generation and to in vitro-in vivo comparison.
Collapse
|
44
|
Abbas Z, Blank R, Wein S, Wolffram S. Effect of quercetin on the toxicokinetics of ochratoxin A in rats. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:861-6. [PMID: 23724859 DOI: 10.1080/19440049.2013.793823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies indicate that the intestinal absorption of the nephrotoxic mycotoxin ochratoxin A (OTA) occurs mainly through passive diffusion of the undissociated form. However, several in vitro studies have shown that OTA is partly re-secreted into the intestinal lumen by the multi-drug resistance associated protein (MRP2) and breast cancer resistance protein (BRCP). In vitro studies using Caco-2 cells have shown that some polyphenols (quercetin, genistein, resveratrol) may impair OTA efflux through competitive inhibition of MRP2, possibly resulting in an increased systemic availability of OTA. Among the tested polyphenols, quercetin showed the highest potential as efflux pump inhibitor; therefore, the aim of the present in vivo study was to investigate possible effects of quercetin on the toxicokinetics of OTA in rats. Eighteen growing male F344 Fisher rats (body weight: 200 g) were allocated to two dietary treatments consisting of (1) a commercial, flavonoid-free balanced diet containing 10 mg OTA/kg derived from inoculated wheat and (2) the same diet supplemented with 100 mg quercetin/kg. The animals were fed restrictively (~0.7 of ad libitum intake, 13 g/d) to avoid differences in OTA intake. Animals were kept in metabolism cages to facilitate total urine and faeces collection. After 6 days on trial, rats were euthanised and blood, liver, kidney, muscle and brain samples were taken from each animal. Faeces, urine and tissue samples were analysed for OTA and its main metabolite ochratoxin α by high-performance liquid chromatography using fluorescence detection. Quercetin supplementation had no effect (P > 0.05) on feed consumption, OTA-intake, water intake and body weight gain. Faecal and urinary excretion of OTA and ochratoxin α and concentrations of OTA in all tissues were not affected by quercetin supplementation. Based on the total excretion and tissue concentrations of OTA, it is concluded that the polyphenol quercetin has no impact on the toxicokinetics of OTA in vivo.
Collapse
Affiliation(s)
- Zein Abbas
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-Universtät, Kiel, Germany
| | | | | | | |
Collapse
|
45
|
|
46
|
Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 2013; 6:1476-82. [PMID: 23031521 DOI: 10.1017/s1751731111002278] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A meta-analysis was carried out in order to study the association of mycotoxins with performance and organ weights in growing pigs. A total of 85 articles published between 1968 and 2010 were used, totaling 1012 treatments and 13 196 animals. The meta-analysis followed three sequential analyses: graphical, correlation and variance-covariance. The presence of mycotoxins in diets was seen to reduce the feed intake by 18% and the weight gain in 21% compared with the control group. Deoxynivalenol and aflatoxins were the mycotoxins with the greatest impact on the feed intake and growth of pigs, reducing by 26% and 16% in the feed intake and by 26% and 22% in the weight gain. The mycotoxin concentration in diets and the animal age at challenge were the variables that more improved the coefficient of determination in equations for estimating the effect of mycotoxins on weight gain. The mycotoxin effect on growth proved to be greater in younger animals. In addition, the residual analysis showed that the greater part of the variation in weight gain was explained by the variation in feed intake (87%). The protein and methionine levels in diets could influence the feed intake and the weight gain in challenged animals. The weight gain in challenged pigs showed a positive correlation with the methionine level in diets (0.68). The mycotoxin effect on growth was greater in males compared with the effect on females. The reduction in weight gain was of 15% in the female group and 19% in the male group. Mycotoxin presence in pig diets has interfered in the relative weight of the liver, the kidneys and the heart. Mycotoxins have an influence on performance and organ weight in pigs. However, the magnitude of the effects varies with the type and concentration of mycotoxin, sex and the animal age, as well as nutritional factors.
Collapse
|
47
|
Palabiyik S, Erkekoglu P, Zeybek N, Kızılgun M, Sahin G, Giray BK. Ochratoxin A causes oxidative stress and cell death in rat liver. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2012.1446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of ochratoxin A (OTA) on oxidant/antioxidant status and on histopathological changes and apoptotic cell death in livers of male Sprague-Dawley rats has been investigated. OTA (0.5 mg/kg body weight/day) was administered by oral route for 14 days. Plasma biochemical parameters, activities of liver selenoenzymes (glutathione peroxidase-1, thioredoxin reductase) and antioxidant enzymes (catalase, superoxide dismutase, glutathione S-transferase), and levels of total glutathione and thiobarbituric acid reactive substance in hepatic tissue were measured. In addition, histopathological examinations were performed and apoptotic cell death of hepatocytes was evaluated by the TdT-mediated dUTP nick-end labelling (TUNEL) assay. OTA exposure was found to induce focal necrosis of hepatocytes and mononuclear cell infiltration. Besides, exposure to OTA caused an imbalance in oxidant and antioxidant parameters in the rat liver, as evidenced by significant decreases in glutathione S-transferase activity and glutathione levels, and marked increases in concentrations of thiobarbituric acid reactive substances. Furthermore, TUNEL analysis revealed a significant ~2.7-fold increase in the number of TUNEL-positive liver cells of rats exposed to OTA compared to the control group. The results of this study showed that oxidative stress is at least one of the mechanisms underlying the hepatic toxicity of OTA, and that both necrosis and apoptosis are types of cell death in the hepatic toxicity of this mycotoxin.
Collapse
Affiliation(s)
- S.S. Palabiyik
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Atatürk University, 25240 Erzurum, Turkey
| | - P. Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
| | - N.D. Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, 06100 Ankara, Turkey
| | - M. Kızılgun
- Department of Biochemistry, Diskapi Children's Health and Diseases, Hematology, Oncology Training and Research Hospital, 06590 Ankara, Turkey
| | - G. Sahin
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Eastern Mediterranean University, Famagusta T.R. North Cyprus via Mersin 10, Turkey
| | - B. Kocer Giray
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
48
|
Corcuera L, Vettorazzi A, Arbillaga L, González-Peñas E, López de Cerain A. An approach to the toxicity and toxicokinetics of aflatoxin B1 and ochratoxin A after simultaneous oral administration to fasted F344 rats. Food Chem Toxicol 2012; 50:3440-6. [DOI: 10.1016/j.fct.2012.06.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 11/29/2022]
|
49
|
Comparative immunohistochemical analysis of ochratoxin A tumourigenesis in rats and urinary tract carcinoma in humans; mechanistic significance of p-S6 ribosomal protein expression. Toxins (Basel) 2012; 4:643-62. [PMID: 23105973 PMCID: PMC3475221 DOI: 10.3390/toxins4090643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is considered to be a possible human urinary tract carcinogen, based largely on a rat model, but no molecular genetic changes in the rat carcinomas have yet been defined. The phosphorylated-S6 ribosomal protein is a marker indicating activity of the mammalian target of rapamycin, which is a serine/threonine kinase with a key role in protein biosynthesis, cell proliferation, transcription, cellular metabolism and apoptosis, while being functionally deregulated in cancer. To assess p-S6 expression we performed immunohistochemistry on formalin-fixed and paraffin-embedded tumours and normal tissues. Marked intensity of p-S6 expression was observed in highly proliferative regions of rat renal carcinomas and a rare angiosarcoma, all of which were attributed to prolonged exposure to dietary OTA. Only very small OTA-generated renal adenomas were negative for p-S6. Examples of rat subcutaneous fibrosarcoma and testicular seminoma, as well as of normal renal tissue, showed no or very weak positive staining. In contrast to the animal model, human renal cell carcinoma, upper urinary tract transitional cell carcinoma from cases of Balkan endemic nephropathy, and a human angiosarcoma were negative for p-S6. The combined findings are reminiscent of constitutive changes in the rat tuberous sclerosis gene complex in the Eker strain correlated with renal neoplasms, Therefore rat renal carcinogenesis caused by OTA does not obviously mimic human urinary tract tumourigenesis.
Collapse
|
50
|
Armando M, Pizzolitto R, Dogi C, Cristofolini A, Merkis C, Poloni V, Dalcero A, Cavaglieri L. Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. J Appl Microbiol 2012; 113:256-64. [DOI: 10.1111/j.1365-2672.2012.05331.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|