1
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
2
|
Lataster L, Huber HM, Böttcher C, Föller S, Takors R, Radziwill G. Cell Cycle Control by Optogenetically Regulated Cell Cycle Inhibitor Protein p21. BIOLOGY 2023; 12:1194. [PMID: 37759593 PMCID: PMC10525493 DOI: 10.3390/biology12091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
The progression through the cell cycle phases is driven by cyclin-dependent kinases and cyclins as their regulatory subunits. As nuclear protein, the cell cycle inhibitor p21/CDKN1A arrests the cell cycle at the growth phase G1 by inhibiting the activity of cyclin-dependent kinases. The G1 phase correlates with increased cell size and cellular productivity. Here, we applied an optogenetic approach to control the subcellular localization of p21 and its nuclear functions. To generate light-controllable p21, appropriate fusions with the blue light switch cryptochrome 2/CIBN and the AsLOV-based light-inducible nuclear localization signal, LINuS, were used. Both systems, p21-CRY2/CIB1 and p21-LINuS, increased the amounts of cells arrested in the G1 phase correlating with the increased cell-specific productivity of the reporter-protein-secreted alkaline phosphatase. Varying the intervals of blue LED light exposure and the light dose enable the fine-tuning of the systems. Light-controllable p21 implemented in producer cell lines could be applied to steer the uncoupling of cell proliferation and cell cycle arrest at the G1 phase optimizing the production of biotherapeutic proteins.
Collapse
Affiliation(s)
- Levin Lataster
- Faculty of Biology, Institute of Biology II, University of Freiburg, 79098 Freiburg, Germany; (L.L.)
| | - Hanna Mereth Huber
- Faculty of Biology, Institute of Biology II, University of Freiburg, 79098 Freiburg, Germany; (L.L.)
| | - Christina Böttcher
- Faculty of Biology, Institute of Biology II, University of Freiburg, 79098 Freiburg, Germany; (L.L.)
| | - Stefanie Föller
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.F.); (R.T.)
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.F.); (R.T.)
| | - Gerald Radziwill
- Faculty of Biology, Institute of Biology II, University of Freiburg, 79098 Freiburg, Germany; (L.L.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79098 Freiburg, Germany
| |
Collapse
|
3
|
Coulet M, Lachkar S, Leduc M, Trombe M, Gouveia Z, Perez F, Kepp O, Kroemer G, Basmaciogullari S. Identification of Small Molecules Affecting the Secretion of Therapeutic Antibodies with the Retention Using Selective Hook (RUSH) System. Cells 2023; 12:1642. [PMID: 37371112 DOI: 10.3390/cells12121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. We created a U2OS cell line which co-expresses a variant of streptavidin addressed to the lumen-facing membrane of the endoplasmic reticulum (ER) and a recombinant anti-PD-L1 antibody. The heavy chain of the antibody was modified at its C-terminus, to which a furin cleavage site, a green fluorescent protein (GFP), and a streptavidin binding peptide (SBP) were added. We show that the U2OS cell line stably expresses the streptavidin hook and the recombinant antibody bait, which is retained in the ER through the streptavidin-SBP interaction. We further document that the addition of biotin to the culture medium triggers the antibody release from the ER, its trafficking through the Golgi where the GFP-SBP moiety is clipped off, and eventually its release in the extra cellular space, with specific antigen-binding properties. The use of this clone in screening campaigns led to the identification of lycorine as a secretion enhancer, and nigericin and tyrphostin AG-879 as secretion inhibitors. Altogether, our data support the utility of this approach for the identification of agents that could be used to improve recombinant production yields and also for a better understanding of the regulatory mechanism at work in the conventional secretion pathway.
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Sylvie Lachkar
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Marion Leduc
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | | | - Zelia Gouveia
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | | |
Collapse
|
4
|
Jerez-Longres C, Gómez-Matos M, Becker J, Hörner M, Wieland FG, Timmer J, Weber W. Engineering a material-genetic interface as safety switch for embedded therapeutic cells. BIOMATERIALS ADVANCES 2023; 150:213422. [PMID: 37084636 DOI: 10.1016/j.bioadv.2023.213422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Encapsulated cell-based therapies involve the use of genetically-modified cells embedded in a material in order to produce a therapeutic agent in a specific location in the patient's body. This approach has shown great potential in animal model systems for treating diseases such as type I diabetes or cancer, with selected approaches having been tested in clinical trials. Despite the promise shown by encapsulated cell therapy, though, there are safety concerns yet to be addressed, such as the escape of the engineered cells from the encapsulation material and the resulting production of therapeutic agents at uncontrolled sites in the body. For that reason, there is great interest in the implementation of safety switches that protect from those side effects. Here, we develop a material-genetic interface as safety switch for engineered mammalian cells embedded into hydrogels. Our switch allows the therapeutic cells to sense whether they are embedded in the hydrogel by means of a synthetic receptor and signaling cascade that link transgene expression to the presence of an intact embedding material. The system design is highly modular, allowing its flexible adaptation to other cell types and embedding materials. This autonomously acting switch constitutes an advantage over previously described safety switches, which rely on user-triggered signals to modulate activity or survival of the implanted cells. We envision that the concept developed here will advance the safety of cell therapies and facilitate their translation to clinical evaluation.
Collapse
Affiliation(s)
- Carolina Jerez-Longres
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
| | - Marieta Gómez-Matos
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Jan Becker
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Franz-Georg Wieland
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany; Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Ernst-Zermelo-Strasse 1, 79104 Freiburg, Germany
| | - Jens Timmer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany; Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Ernst-Zermelo-Strasse 1, 79104 Freiburg, Germany
| | - Wilfried Weber
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Department of Materials Science and Materials Engineering, Saarland University, 66123 Saarbrücken, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; SGBM - Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
Donaldson J, Kleinjan DJ, Rosser S. Synthetic biology approaches for dynamic CHO cell engineering. Curr Opin Biotechnol 2022; 78:102806. [PMID: 36194920 DOI: 10.1016/j.copbio.2022.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Fed-batch culture of Chinese hamster ovary (CHO) cells remains the most commonly used method for producing biopharmaceuticals. Static CHO cell-line engineering approaches have incrementally improved productivity, growth and product quality through permanent knockout of genes with a negative impact on production, or constitutive overexpression of genes with a positive impact. However, during fed-batch culture, conditions (such as nutrient availability) are continually changing. Therefore, traits that are most beneficial during early-phase culture (such as high growth rate) may be less desirable in late phase. Unlike with static approaches, dynamic cell line engineering strategies can optimise such traits by implementing synthetic sense-and-respond programmes. Here, we review emerging synthetic biology tools that can be used to build dynamic, self-regulating CHO cells, capable of detecting intra-/extracellular cues and generating user-defined responses tailored to the stage-specific needs of the production process.
Collapse
Affiliation(s)
- James Donaldson
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dirk-Jan Kleinjan
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Susan Rosser
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Enhanced recombinant protein production in CHO cell continuous cultures under growth-inhibiting conditions is associated with an arrested cell cycle in G1/G0 phase. PLoS One 2022; 17:e0277620. [PMCID: PMC9662745 DOI: 10.1371/journal.pone.0277620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Low temperature and sodium butyrate (NaBu) are two of the most used productivity-enhancing strategies in CHO cell cultures during biopharmaceutical manufacturing. While these two approaches alter the balance in the reciprocal relationship between cell growth and productivity, we do not fully understand their mechanisms of action beyond a gross cell growth inhibition. Here, we used continuous culture to evaluate the differential effect of low temperature and NaBu supplementation on CHO cell performance and gene expression profile. We found that an increase in cell-productivity under growth-inhibiting conditions was associated with the arrest of cells in the G1/G0 phase. A transcriptome analysis revealed that the molecular mechanisms by which low temperature and NaBu arrested cell cycle in G1/G0 differed from each other through the deregulation of different cell cycle checkpoints and regulators. The individual transcriptome changes in pattern observed in response to low temperature and NaBu were retained when these two strategies were combined, leading to an additive effect in arresting the cell cycle in G1/G0 phase. The findings presented here offer novel molecular insights about the cell cycle regulation during the CHO cell bioprocessing and its implications for increased recombinant protein production. This data provides a background for engineering productivity-enhanced CHO cell lines for continuous manufacturing.
Collapse
|
7
|
Wijaya AW, Verhagen N, Teleki A, Takors R. Compartment-specific 13C metabolic flux analysis reveals boosted NADPH availability coinciding with increased cell-specific productivity for IgG1 producing CHO cells after MTA treatment. Eng Life Sci 2021; 21:832-847. [PMID: 34899120 PMCID: PMC8638276 DOI: 10.1002/elsc.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/26/2023] Open
Abstract
Increasing cell-specific productivities (CSPs) for the production of heterologous proteins in Chinese hamster ovary (CHO) cells is an omnipresent need in the biopharmaceutical industry. The novel additive 5'-deoxy-5'-(methylthio)adenosine (MTA), a chemical degradation product of S-(5'-adenosyl)-ʟ-methionine (SAM) and intermediate of polyamine biosynthesis, boosts the CSP of IgG1-producing CHO cells by 50%. Compartment-specific 13C flux analysis revealed a fundamental reprogramming of the central metabolism after MTA addition accompanied by cell-cycle arrest and increased cell volumes. Carbon fluxes into the pentose-phosphate pathway increased 22 fold in MTA-treated cells compared to that in non-MTA-treated reference cells. Most likely, cytosolic ATP inhibition of phosphofructokinase mediated the carbon detour. Mitochondrial shuttle activity of the α-ketoglurarate/malate antiporter (OGC) reversed, reducing cytosolic malate transport. In summary, NADPH supply in MTA-treated cells improved three fold compared to that in non-MTA-treated cells, which can be regarded as a major factor for explaining the boosted CSPs.
Collapse
Affiliation(s)
| | - Natascha Verhagen
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Attila Teleki
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
8
|
Torres M, Dickson AJ. Combined gene and environmental engineering offers a synergetic strategy to enhance r-protein production in Chinese hamster ovary cells. Biotechnol Bioeng 2021; 119:550-565. [PMID: 34821376 DOI: 10.1002/bit.28000] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Environmental growth-inhibition conditions (GICs) have been used extensively for increasing cell-specific productivity (qP ) of Chinese hamster ovary (CHO) cells, with the most common being temperature downshift and sodium butyrate (NaBu) treatment. B lymphocyte-induced maturation protein-1 (BLIMP1) overexpression in CHO cells can also inhibit cell growth and increase product titers and qP . Given the similar responses, this study evaluated the individual and combined effects of BLIMP1 expression, low temperature, and NaBu treatment on culture performance, cell metabolism, and recombinant protein production of CHO cells. As expected, all three interventions decreased cell growth, arrested cells in G1/G0 cell cycle phase, and increased qP . However, CHO cells presented different responses when considering cell viability, recombinant gene expression, and cell metabolism that indicated differences in the molecular loci by which BLIMP1 and GICs generated higher productivities. Combinations of BLIMP1 expression and GICs acted synergistically to inhibit cell growth and maximize r-protein production, with the BLIMP1/NaBu condition leading to the most significant improvements in product titers and qP . This latter condition also proved to substantially increase product yields (up to 9.8 g immunoglobulin G1 [IgG1]/L and 2.2 g erythropoietin-Fc [EPO-Fc]/L) and qP (up to 179 pg/cell/day [pcd] for IgG1 and 30 pcd for EPO-Fc) in high-density perfusion cultures. These findings offered mechanistic insights about the productivity-enhancing effects of BLIMP1 and GICs, as well as their complementarity for generating highly productive processes.
Collapse
Affiliation(s)
- Mauro Torres
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Donaldson JS, Dale MP, Rosser SJ. Decoupling Growth and Protein Production in CHO Cells: A Targeted Approach. Front Bioeng Biotechnol 2021; 9:658325. [PMID: 34150726 PMCID: PMC8207133 DOI: 10.3389/fbioe.2021.658325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Fed-batch cultures of Chinese Hamster Ovary cells have been used to produce high quantities of biotherapeutics, particularly monoclonal antibodies. However, a growing number of next-generation biotherapeutics, such as bi-specific antibodies and fusion proteins, are difficult to express using standard fed-batch processes. Decoupling cell growth and biotherapeutic production is becoming an increasingly desired strategy for the biomanufacturing industry, especially for difficult-to-express products. Cells are grown to a high cell density in the absence of recombinant protein production (the growth phase), then expression of the recombinant protein is induced and cell proliferation halted (the production phase), usually by combining an inducible gene expression system with a proliferation control strategy. Separating the growth and production phases allows cell resources to be more efficiently directed toward either growth or production, improving growth characteristics and enhancing the production of difficult to express proteins. However, current mammalian cell proliferation control methods rely on temperature shifts and chemical agents, which interact with many non-proliferation pathways, leading to variable impacts on product quality and culture viability. Synthetic biology offers an alternative approach by strategically targeting proliferation pathways to arrest cell growth but have largely remained unused in industrial bioproduction. Due to recent developments in microbial decoupling systems and advances in available mammalian cell engineering tools, we propose that the synthetic biology approach to decoupling growth and production needs revisiting.
Collapse
Affiliation(s)
- James S Donaldson
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew P Dale
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Kundu AM, Hiller GW. Hydrocyclones as cell retention devices for an N-1 perfusion bioreactor linked to a continuous-flow stirred tank production bioreactor. Biotechnol Bioeng 2021; 118:1973-1986. [PMID: 33559888 DOI: 10.1002/bit.27711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 11/07/2022]
Abstract
A continuous Chinese hamster ovary (CHO) cell culture process comprised of a highly proliferative N-1 perfusion bioreactor utilizing a hydrocyclone as a cell retention device linked to a production continuous-flow stirred tank reactor (CSTR) is presented. The overflow stream from the hydrocyclone, which is only partially depleted of cells, provides a continuous source of high viability cells from the N-1 perfusion bioreactor to the 5-20 times larger CSTR. Under steady-state conditions, this linked-bioreactor system achieved a peak volumetric productivity of 0.96 g/L/day, twofold higher than the optimized fed-batch process. The linked bioreactor system using a hydrocyclone was also shown to be 1.8-3.1 times more productive than a dual, cascading CSTR system without cell retention.
Collapse
Affiliation(s)
- Anita M Kundu
- Upstream Process Development, Bioprocess Research and Development, Pfizer, Inc., Andover, Massachusetts, USA
| | - Gregory W Hiller
- Upstream Process Development, Bioprocess Research and Development, Pfizer, Inc., Andover, Massachusetts, USA
| |
Collapse
|
11
|
Verhagen N, Zieringer J, Takors R. Methylthioadenosine (MTA) boosts cell-specific productivities of Chinese hamster ovary cultures: dosage effects on proliferation, cell cycle and gene expression. FEBS Open Bio 2020; 10:2791-2804. [PMID: 33128321 PMCID: PMC7714083 DOI: 10.1002/2211-5463.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022] Open
Abstract
A major goal for process and cell engineering in the biopharmaceutical industry is enhancing production through increasing volumetric and cell‐specific productivities (CSP). Here, we present 5′‐deoxy‐5′‐(methylthio)adenosine (MTA), the degradation product of S‐(5′‐adenosyl)‐L‐methionine (SAM), as a highly attractive native additive which can boost CSP by 79% when added to exponentially growing cells at a concentration of 250–300 μm. Notably, cell viability and cell size remain higher than in non‐treated cultures. In addition, cell cycle arrests first in S‐, then in G2‐phase before levelling out compared to non‐treated cultivations. Intensive differential gene analysis reveals that expression of genes for cytoskeleton mediated proteins and vesicle transport is amplified by treatment. Furthermore, the interaction of MTA with cell proliferation additionally stimulated recombinant protein formation. The results may serve as a promising starting point for further developments in process and cell engineering to boost productivity.
Collapse
Affiliation(s)
- Natascha Verhagen
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Julia Zieringer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Abaandou L, Sharma AK, Shiloach J. Knockout of the caspase 8-associated protein 2 gene improves recombinant protein expression in HEK293 cells through up-regulation of the cyclin-dependent kinase inhibitor 2A gene. Biotechnol Bioeng 2020; 118:186-198. [PMID: 32910455 DOI: 10.1002/bit.27561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Cell lines used in bioproduction are routinely engineered to improve their production efficiency. Numerous strategies, such as random mutagenesis, RNA interference screens, and transcriptome analyses have been employed to identify effective engineering targets. A genome-wide small interfering RNA screen previously identified the CASP8AP2 gene as a potential engineering target for improved expression of recombinant protein in the HEK293 cell line. Here, we validate the CASP8AP2 gene as an engineering target in HEK293 cells by knocking it out using CRISPR/Cas9 genome editing and assessing the effect of its knockout on recombinant protein expression, cell growth, cell viability, and overall gene expression. HEK293 cells lacking CASP8AP2 showed a seven-fold increase in specific expression of recombinant luciferase and a 2.5-fold increase in specific expression of recombinant SEAP, without significantly affecting cell growth and viability. Transcriptome analysis revealed that the deregulation of the cell cycle, specifically the upregulation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene, contributed to the improvement in recombinant protein expression in CASP8AP2 deficient cells. The results validate the CASP8AP2 gene is a viable engineering target for improved recombinant protein expression in the HEK293 cell line.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA.,Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA, USA
| | - Ashish K Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Lee Y, Kwak JM, Lee JS. Endogenous p21-Dependent Transgene Control for CHO Cell Engineering. ACS Synth Biol 2020; 9:1572-1580. [PMID: 32539343 DOI: 10.1021/acssynbio.9b00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous engineering efforts have been made in Chinese hamster ovary (CHO) cells for high level production of therapeutic proteins. However, the dynamic regulation of transgene expression is limited in current systems. Here, we investigated the effective regulation of transgene expression in CHO cells via targeted integration-based endogenous gene tagging with engineering target genes. Targeted integration of EGFP-human Bcl-2 into the p21 locus effectively reduced the apoptosis, compared with random populations in which Bcl-2 expression was driven by cytomegalovirus (CMV) promoter. Endogenous p21 and EGFP-human Bcl-2 displayed similar expression dynamics in batch cultures, and the antiapoptotic effect altered the expression pattern of endogenous p21 showing the mutual influences between expression of p21 and Bcl-2. We further demonstrated the inducible transgene expression by adding low concentrations of hydroxyurea. The present engineering strategy will provide a valuable CHO cell engineering tool that can be used to control dynamic transgene expression in accordance with cellular states.
Collapse
Affiliation(s)
- Youngsik Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jin Myeong Kwak
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
14
|
Verhagen N, Teleki A, Heinrich C, Schilling M, Unsöld A, Takors R. S-adenosylmethionine and methylthioadenosine boost cellular productivities of antibody forming Chinese hamster ovary cells. Biotechnol Bioeng 2020; 117:3239-3247. [PMID: 32644191 DOI: 10.1002/bit.27484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 01/28/2023]
Abstract
The improvement of cell specific productivities for the formation of therapeutic proteins is an important step towards intensified production processes. Among others, the induction of the desired production phenotype via proper media additives is a feasible solution provided that said compounds adequately trigger metabolic and regulatory programs inside the cells. In this study, S-(5'-adenosyl)- l-methionine (SAM) and 5'-deoxy-5'-(methylthio)adenosine (MTA) were found to stimulate cell specific productivities up to approx. 50% while keeping viable cell densities transiently high and partially arresting the cell cycle in an anti-IL-8-producing CHO-DP12 cell line. Noteworthy, MTA turned out to be the chemical degradation product of the methyl group donor SAM and is consumed by the cells.
Collapse
Affiliation(s)
- Natascha Verhagen
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring, Stuttgart, Germany
| | | | | | - Andreas Unsöld
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring, Stuttgart, Germany
| |
Collapse
|
15
|
Gagnon M, Nagre S, Wang W, Coffman J, Hiller GW. Novel, linked bioreactor system for continuous production of biologics. Biotechnol Bioeng 2019; 116:1946-1958. [DOI: 10.1002/bit.26985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/20/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Matthew Gagnon
- Culture Process DevelopmentPfizer IncAndover Massachusetts
| | - Shashikant Nagre
- Upstream Process DevelopmentAkston BiosciencesBeverly Massachusetts
| | - Wenge Wang
- Culture Process DevelopmentPfizer IncAndover Massachusetts
| | - Jon Coffman
- Department of Process ScienceBoehringer IngelheimFremont California
| | | |
Collapse
|
16
|
Gagnon M, Nagre S, Wang W, Hiller GW. Shift to high‐intensity, low‐volume perfusion cell culture enabling a continuous, integrated bioprocess. Biotechnol Prog 2018; 34:1472-1481. [DOI: 10.1002/btpr.2723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew Gagnon
- Culture Process Development, Pfizer Inc. Andover Massachusetts 01810
| | - Shashikant Nagre
- Upstream Process Development, Akston Biosciences Beverly Massachusetts 01915
| | - Wenge Wang
- Culture Process Development, Pfizer Inc. Andover Massachusetts 01810
| | - Gregory W. Hiller
- Culture Process Development, Pfizer Inc. Andover Massachusetts 01810
| |
Collapse
|
17
|
Bojar D, Fussenegger M. Programming mammalian gene expression with the antibiotic simocyclinone D8 and the flavonoid luteolin. AIChE J 2018. [DOI: 10.1002/aic.16365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Bojar
- Dept. of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
| | - Martin Fussenegger
- Dept. of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
- Faculty of Science; University of Basel; Basel Switzerland
| |
Collapse
|
18
|
Vito D, Smales CM. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions. Biotechnol J 2018; 13:e1800122. [PMID: 29781203 DOI: 10.1002/biot.201800122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The role of non-coding RNAs in determining growth, productivity, and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). The authors have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. The authors report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. The authors demonstrate that the mouse microarray is suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. The authors then further analyzed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. The authors discuss the implications for the publication of this rich dataset and how this may be used by the community.
Collapse
Affiliation(s)
- Davide Vito
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| |
Collapse
|
19
|
Wolf MKF, Closet A, Bzowska M, Bielser J, Souquet J, Broly H, Morbidelli M. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition. Biotechnol J 2018; 14:e1700722. [DOI: 10.1002/biot.201700722] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Moritz K. F Wolf
- Department of Chemistry and Applied BiosciencesInstitute of Chemical and BioengineeringETH ZurichZurich8093Switzerland
| | - Aurélie Closet
- Department of Chemistry and Applied BiosciencesInstitute of Chemical and BioengineeringETH ZurichZurich8093Switzerland
| | - Monika Bzowska
- Faculty of Biochemistry, Biophysics and BiotechnologyDepartment of Cell BiochemistryJagiellonian UniversityKrakow31‐007Poland
| | - Jean‐Marc Bielser
- Biotech Process SciencesMerck BiopharmaCorsier‐sur‐Vevey1804Switzerland
| | - Jonathan Souquet
- Biotech Process SciencesMerck BiopharmaCorsier‐sur‐Vevey1804Switzerland
| | - Hervé Broly
- Biotech Process SciencesMerck BiopharmaCorsier‐sur‐Vevey1804Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied BiosciencesInstitute of Chemical and BioengineeringETH ZurichZurich8093Switzerland
| |
Collapse
|
20
|
Meyer HJ, Turincio R, Ng S, Li J, Wilson B, Chan P, Zak M, Reilly D, Beresini MH, Wong AW. High throughput screening identifies novel, cell cycle-arresting small molecule enhancers of transient protein expression. Biotechnol Prog 2017. [DOI: 10.1002/btpr.2517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hermann-Josef Meyer
- Dept. of Early Stage Cell Culture; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Rebecca Turincio
- Dept. of Biochemical & Cellular Pharmacology; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Shirley Ng
- Dept. of Biochemical & Cellular Pharmacology; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Juan Li
- Dept. of Biochemical & Cellular Pharmacology; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Blair Wilson
- Dept. of Biochemical & Cellular Pharmacology; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Pamela Chan
- Dept. of Biochemical & Cellular Pharmacology; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Mark Zak
- Dept. of; Discovery Chemistry, Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Dorothea Reilly
- Dept. of Early Stage Cell Culture; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Maureen H. Beresini
- Dept. of Biochemical & Cellular Pharmacology; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| | - Athena W. Wong
- Dept. of Early Stage Cell Culture; Genentech Inc; 1 DNA Way, South San Francisco CA 94080
| |
Collapse
|
21
|
Meyer HJ, Reilly D, Martin SE, Wong AW. Identification of a novel miRNA that increases transient protein expression in combination with valproic acid. Biotechnol Prog 2017; 33:1139-1145. [DOI: 10.1002/btpr.2488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/18/2017] [Indexed: 12/29/2022]
Affiliation(s)
| | - Dorothea Reilly
- Dept. of Early Stage Cell Culture; 1 DNA Way South San Francisco CA 94080
| | - Scott E. Martin
- Department of Discovery Oncology; Genentech; 1 DNA Way South San Francisco CA 94080
| | - Athena W. Wong
- Dept. of Early Stage Cell Culture; 1 DNA Way South San Francisco CA 94080
| |
Collapse
|
22
|
Bai P, Ye H, Xie M, Saxena P, Zulewski H, Charpin-El Hamri G, Djonov V, Fussenegger M. A synthetic biology-based device prevents liver injury in mice. J Hepatol 2016; 65:84-94. [PMID: 27067456 PMCID: PMC4914822 DOI: 10.1016/j.jhep.2016.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.
Collapse
Affiliation(s)
- Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Medicine, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland; Division of Endocrinology and Diabetes, Stadtspital Triemli, Birmensdorferstrasse 497, CH-8063 Zurich, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Université Claude Bernard 1, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Valentin Djonov
- Institute of Anatomy, University of Berne, Baltzerstrasse 2, CH-3000 Berne, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
23
|
Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves' disease. Proc Natl Acad Sci U S A 2016; 113:1244-9. [PMID: 26787873 DOI: 10.1073/pnas.1514383113] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Graves' disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus-pituitary-thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus-pituitary-thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies.
Collapse
|
24
|
Park JH, Noh SM, Woo JR, Kim JW, Lee GM. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnol J 2015; 11:487-96. [PMID: 26663903 DOI: 10.1002/biot.201500327] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/22/2015] [Accepted: 12/10/2015] [Indexed: 01/18/2023]
Abstract
To find a more effective chemical reagent for improved monoclonal antibody (mAb) production, eight chemical reagents (curcumin, quercein, DL-sulforaphane, thymidine, valeric acid, phenyl butyrate, valproic acid, and lithium chloride) known to induce cell cycle arrest were examined individually as chemical additives to recombinant CHO (rCHO) cell cultures producing mAb. Among these chemical additives, valeric acid showed the best production performance. Valeric acid decreased specific growth rate (μ), but increased culture longevity and specific mAb productivity (qmAb ) in a dose-dependent manner. The beneficial effect of valeric acid on culture longevity and qmAb outweighed its detrimental effect on μ, resulting in 2.9-fold increase in the maximum mAb concentration when 1.5 mM valeric acid was added to the cultures. Furthermore, valeric acid did not negatively affect the mAb quality attributes with regard to aggregation, charge variation, and galactosylation. Unexpectedly, galactosylation of the mAb increased by the 1.5 mM valeric acid addition. Taken together, the results obtained here demonstrate that valeric acid is an effective chemical reagent to increase mAb production in rCHO cells.
Collapse
Affiliation(s)
- Jin Hyoung Park
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Soo Min Noh
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Ju Rang Woo
- New Drug Development Center, Cheongju, Republic of Korea
| | - Jong Won Kim
- New Drug Development Center, Cheongju, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
25
|
Wilkens CA, Gerdtzen ZP. Comparative metabolic analysis of CHO cell clones obtained through cell engineering, for IgG productivity, growth and cell longevity. PLoS One 2015; 10:e0119053. [PMID: 25768021 PMCID: PMC4358941 DOI: 10.1371/journal.pone.0119053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 01/09/2015] [Indexed: 11/22/2022] Open
Abstract
Cell engineering has been used to improve animal cells’ central carbon metabolism. Due to the central carbon metabolism’s inefficiency and limiting input of carbons into the TCA cycle, key reactions belonging to these pathways have been targeted to improve cultures’ performance. Previous works have shown the positive effects of overexpressing PYC2, MDH II and fructose transporter. Since each of these modifications was performed in different cell lines and culture conditions, no comparisons between these modifications can be made. In this work we aim at contrasting the effect of each of the modifications by comparing pools of transfected IgG producing CHO cells cultivated in batch cultures. Results of the culture performance of engineered clones indicate that even though all studied clones had a more efficient metabolism, not all of them showed the expected improvement on cell proliferation and/or specific productivity. CHO cells overexpressing PYC2 were able to improve their exponential growth rate but IgG synthesis was decreased, MDH II overexpression lead to a reduction in cell growth and protein production, and cells transfected with the fructose transporter gene were able to increase cell density and reach the same volumetric protein production as parental CHO cells in glucose. We propose that a redox unbalance caused by the new metabolic flux distribution could affect IgG assembly and protein secretion. In addition to reaction dynamics, thermodynamic aspects of metabolism are also discussed to further understand the effect of these modifications over central carbon metabolism.
Collapse
Affiliation(s)
- Camila A. Wilkens
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, University of Chile, Beauchef 850, Santiago, Chile, 8370448
| | - Ziomara P. Gerdtzen
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, University of Chile, Beauchef 850, Santiago, Chile, 8370448
- * E-mail:
| |
Collapse
|
26
|
Wieland M, Müller M, Kyburz A, Heissig P, Wekenmann S, Stolz F, Ausländer S, Fussenegger M. Engineered UV-A light-responsive gene expression system for measuring sun cream efficacy in mammalian cell culture. J Biotechnol 2014; 189:150-3. [PMID: 25234574 DOI: 10.1016/j.jbiotec.2014.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/12/2014] [Accepted: 09/06/2014] [Indexed: 01/20/2023]
Abstract
Light-dependent gene regulation systems are advantageous as they allow for precise spatio-temporal control of target gene expression. In this paper, we present a novel UV-A and blue-light-inducible gene control system that is based on the light-dependent heterodimerization of the CRY2 and C1BN domains. Upon their interaction, a transcription factor is released from the cell membrane and initiates target gene expression. Capitalizing on that, sun cream UV-A protection properties were measured intracellularly.
Collapse
Affiliation(s)
- Markus Wieland
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marius Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Andreas Kyburz
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Phillip Heissig
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Sebastian Wekenmann
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Franziska Stolz
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
27
|
Du Z, Treiber D, McCarter JD, Fomina-Yadlin D, Saleem RA, McCoy RE, Zhang Y, Tharmalingam T, Leith M, Follstad BD, Dell B, Grisim B, Zupke C, Heath C, Morris AE, Reddy P. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures. Biotechnol Bioeng 2014; 112:141-55. [PMID: 25042542 PMCID: PMC4282109 DOI: 10.1002/bit.25332] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022]
Abstract
The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures.
Collapse
Affiliation(s)
- Zhimei Du
- Cell Sciences and Technology, Amgen Inc., 1201 Amgen Court West, Seattle, Washington.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Effect of lithium chloride on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Appl Microbiol Biotechnol 2014; 98:9239-48. [DOI: 10.1007/s00253-014-6012-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
|
29
|
Xie M, Ye H, Hamri GCE, Fussenegger M. Antagonistic control of a dual-input mammalian gene switch by food additives. Nucleic Acids Res 2014; 42:e116. [PMID: 25030908 PMCID: PMC4132709 DOI: 10.1093/nar/gku545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies.
Collapse
Affiliation(s)
- Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
30
|
Nishimiya D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 2013; 98:1031-42. [PMID: 24327213 DOI: 10.1007/s00253-013-5427-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.
Collapse
Affiliation(s)
- Daisuke Nishimiya
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan,
| |
Collapse
|
31
|
Folcher M, Xie M, Spinnler A, Fussenegger M. Synthetic mammalian trigger-controlled bipartite transcription factors. Nucleic Acids Res 2013; 41:e134. [PMID: 23685433 PMCID: PMC3711444 DOI: 10.1093/nar/gkt405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Synthetic biology has significantly advanced the design of synthetic control devices, gene circuits and networks that can reprogram mammalian cells in a trigger-inducible manner. Prokaryotic helix-turn-helix motifs have become the standard resource to design synthetic mammalian transcription factors that tune chimeric promoters in a small molecule-responsive manner. We have identified a family of Actinomycetes transcriptional repressor proteins showing a tandem TetR-family signature and have used a synthetic biology-inspired approach to reveal the potential control dynamics of these bi-partite regulators. Daisy-chain assembly of well-characterized prokaryotic repressor proteins such as TetR, ScbR, TtgR or VanR and fusion to either the Herpes simplex transactivation domain VP16 or the Krueppel-associated box domain (KRAB) of the human kox-1 gene resulted in synthetic bi- and even tri-partite mammalian transcription factors that could reversibly program their individual chimeric or hybrid promoters for trigger-adjustable transgene expression using tetracycline (TET), γ-butyrolactones, phloretin and vanillic acid. Detailed characterization of the bi-partite ScbR-TetR-VP16 (ST-TA) transcription factor revealed independent control of TET- and γ-butyrolactone-responsive promoters at high and double-pole double-throw (DPDT) relay switch qualities at low intracellular concentrations. Similar to electromagnetically operated mechanical DPDT relay switches that control two electric circuits by a fully isolated low-power signal, TET programs ST-TA to progressively switch from TetR-specific promoter-driven expression of transgene one to ScbR-specific promoter-driven transcription of transgene two while ST-TA flips back to exclusive transgene 1 expression in the absence of the trigger antibiotic. We suggest that natural repressors and activators with tandem TetR-family signatures may also provide independent as well as DPDT-mediated control of two sets of transgenes in bacteria, and that their synthetic transcription-factor analogs may enable the design of compact therapeutic gene circuits for gene and cell-based therapies.
Collapse
Affiliation(s)
- Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
32
|
Müller K, Engesser R, Schulz S, Steinberg T, Tomakidi P, Weber CC, Ulm R, Timmer J, Zurbriggen MD, Weber W. Multi-chromatic control of mammalian gene expression and signaling. Nucleic Acids Res 2013; 41:e124. [PMID: 23625964 PMCID: PMC3695509 DOI: 10.1093/nar/gkt340] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The emergence and future of mammalian synthetic biology depends on technologies for orchestrating and custom tailoring complementary gene expression and signaling processes in a predictable manner. Here, we demonstrate for the first time multi-chromatic expression control in mammalian cells by differentially inducing up to three genes in a single cell culture in response to light of different wavelengths. To this end, we developed an ultraviolet B (UVB)-inducible expression system by designing a UVB-responsive split transcription factor based on the Arabidopsis thaliana UVB receptor UVR8 and the WD40 domain of COP1. The system allowed high (up to 800-fold) UVB-induced gene expression in human, monkey, hamster and mouse cells. Based on a quantitative model, we determined critical system parameters. By combining this UVB-responsive system with blue and red light-inducible gene control technology, we demonstrate multi-chromatic multi-gene control by differentially expressing three genes in a single cell culture in mammalian cells, and we apply this system for the multi-chromatic control of angiogenic signaling processes. This portfolio of optogenetic tools enables the design and implementation of synthetic biological networks showing unmatched spatiotemporal precision for future research and biomedical applications.
Collapse
Affiliation(s)
- Konrad Müller
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Müller K, Engesser R, Metzger S, Schulz S, Kämpf MM, Busacker M, Steinberg T, Tomakidi P, Ehrbar M, Nagy F, Timmer J, Zubriggen MD, Weber W. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res 2013; 41:e77. [PMID: 23355611 PMCID: PMC3627562 DOI: 10.1093/nar/gkt002] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Growth and differentiation of multicellular systems is orchestrated by spatially restricted gene expression programs in specialized subpopulations. The targeted manipulation of such processes by synthetic tools with high-spatiotemporal resolution could, therefore, enable a deepened understanding of developmental processes and open new opportunities in tissue engineering. Here, we describe the first red/far-red light-triggered gene switch for mammalian cells for achieving gene expression control in time and space. We show that the system can reversibly be toggled between stable on- and off-states using short light pulses at 660 or 740 nm. Red light-induced gene expression was shown to correlate with the applied photon number and was compatible with different mammalian cell lines, including human primary cells. The light-induced expression kinetics were quantitatively analyzed by a mathematical model. We apply the system for the spatially controlled engineering of angiogenesis in chicken embryos. The system’s performance combined with cell- and tissue-compatible regulating red light will enable unprecedented spatiotemporally controlled molecular interventions in mammalian cells, tissues and organisms.
Collapse
Affiliation(s)
- Konrad Müller
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bacchus W, Weber W, Fussenegger M. Increasing the dynamic control space of mammalian transcription devices by combinatorial assembly of homologous regulatory elements from different bacterial species. Metab Eng 2013. [DOI: 10.1016/j.ymben.2012.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Effect of Cell Cycle Phase on Sf9 Cell Activity and Autographa Californica Multiple Nucleopolyhedrovirus Infection. ACTA ACUST UNITED AC 2012. [DOI: 10.4028/www.scientific.net/amr.610-613.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution and activity of cell receptors, which are key factors of baculovirus-insect cell interactions, may be attributed to cell cycle. In fact, the virtual difference in time of infection is the difference in cell cycle distribution. In this work, the effects of cell cycle on cell activity and baculovirus production were investigated. Sf9 cells were infected with baculovirus at the different cycle phases. It was found that G1 phase plays a substantial role in cell activity and competence for the baculovirus replication. Sf9 cells have the highest succinate dehydrogenase activity and are most sensitive for the baculovirus replication when the proportion of G1 phase in cell population reaches a maximum. On the hand, cell activity is at the lowest when G2/M percentage reaches its maximum. These results provide a guidance in developing the baculovirus infection dynamics model and controlling the expression of useful foreign genes when cell cycle is taken into account.
Collapse
|
36
|
Botezatu L, Sievers S, Gama-Norton L, Schucht R, Hauser H, Wirth D. Genetic aspects of cell line development from a synthetic biology perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:251-284. [PMID: 22068842 DOI: 10.1007/10_2011_117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Animal cells can be regarded as factories for the production of relevant proteins. The advances described in this chapter towards the development of cell lines with higher productivity capacities, certain metabolic and proliferation properties, reduced apoptosis and other features must be regarded in an integrative perspective. The systematic application of systems biology approaches in combination with a synthetic arsenal for targeted modification of endogenous networks are proposed to lead towards the achievement of a predictable and technologically advanced cell system with high biotechnological impact.
Collapse
Affiliation(s)
- L Botezatu
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
37
|
CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 2011; 93:917-30. [PMID: 22159888 DOI: 10.1007/s00253-011-3758-5] [Citation(s) in RCA: 509] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
|
38
|
Ausländer D, Wieland M, Ausländer S, Tigges M, Fussenegger M. Rational design of a small molecule-responsive intramer controlling transgene expression in mammalian cells. Nucleic Acids Res 2011; 39:e155. [PMID: 21984476 PMCID: PMC3239198 DOI: 10.1093/nar/gkr829] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aptamers binding proteins or small molecules have been shown to be versatile and powerful building blocks for the construction of artificial genetic switches. In this study, we present a novel aptamer-based construct regulating the Tet Off system in a tetracycline-independent manner thus achieving control of transgene expression. For this purpose, a TetR protein-inhibiting aptamer was engineered for use in mammalian cells, enabling the RNA-responsive control of the tetracycline-dependent transactivator (tTA). By rationally attaching the theophylline aptamer as a sensor, the inhibitory TetR aptamer and thus tTA activity became dependent on the ligand of the sensor aptamer. Addition of the small molecule theophylline resulted in enhanced binding to the corresponding protein in vitro and in inhibition of reporter gene expression in mammalian cell lines. By using aptamers as adaptors in order to control protein activity by a predetermined small molecule, we present a simple and straightforward approach for future applications in the field of Chemical Biology. Moreover, aptamer-based control of the widely used Tet system introduces a new layer of regulation thereby facilitating the construction of more complex gene networks.
Collapse
Affiliation(s)
- David Ausländer
- ETH Zurich, Department of Biosystems Science and Bioengineering (D-BSSE), Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Fussenegger M, Moser S, Bailey JE. pQuattro vectors allow one-step multigene metabolic engineering and auto-selection of quattrocistronic artificial mammalian operons. Cytotechnology 2011; 28:229-35. [PMID: 19003423 DOI: 10.1023/a:1008014706196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on internal ribosomal entry sites (IRES) of picornaviral origin we constructed a novel family of mammalian expression vectors. pQuattro vectors contain quattrocistronic artificial eukaryotic operons which link, in a single transcript, the simultaneous and coordinated as well as adjustable expression of up to three independent genes of interest to a terminal neomycin (neo) resistance marker. Due to the strict genetic linkage of the transgenes and the terminal selection marker, this genetic configuration enables, by the selection on neomycin, multigene metabolic engineering of mammalian cells in a single step (one-step metabolic engineering). Furthermore, selection on the terminal cistron of multicistronic expression units enforces cocistronic expression of all upstream encoded genes and maximises genetic integrity of the eukaryotic operon in stable mammalian cell lines, since clones harbouring damaged multicistronic expression units become neomycin-sensitive and are automatically counterselected (auto-selection). The modular set-up and the abundance of restriction sites in pQuattro vectors facilitate the movement of individual genes between multicistronic expression vectors and guarantees high compatibility with genetic elements of a wide variety of existing mammalian expression vectors.
Collapse
Affiliation(s)
- M Fussenegger
- Swiss Federal Institute of Technology, ETH Zurich, Institute of Biotechnology, CH-8093, Zurich, Switzerland
| | | | | |
Collapse
|
41
|
Franek F, Holý A, Votruba I, Eckschlager T. Modulation of cell cycle progression and of antibody production in mouse hybridomas by a nucleotide analogue. Cytotechnology 2011; 28:65-72. [PMID: 19003408 DOI: 10.1023/a:1008017328061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG) has been identified as a powerful antiproliferative substance when acting on hybridoma cells. In the range of 10 nM to 100 nM concentrations this agent reduces cell growth rate, while its apoptosis-inducing activity is marginal. Marked induction of apoptosis can be observed at micromolar and higher order concentrations. In PMEG-supplemented media the cell cycle progression is perturbed, the flow-cytometric DNA profile shows a higher proportion of cells in the S and G2/M phases of the cell cycle. Concomitantly with the reduction of the growth rate, the specific monoclonal antibody production rate may rise by 20-27%. Addition of PMEG at the end of the exponential phase of a batch culture results in an enhancement of the final monoclonal antibody concentration.
Collapse
Affiliation(s)
- F Franek
- Academy of Sciences, Institute of Molecular Genetics, Videnska 1083, CZ-14220, Praha 4, Czech Republic,
| | | | | | | |
Collapse
|
42
|
Fussenegger M, Moser S, Bailey JE. Regulated multicistronic expression technology for mammalian metabolic engineering. Cytotechnology 2011; 28:111-26. [PMID: 19003413 PMCID: PMC3449837 DOI: 10.1023/a:1008037916674] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Contemporary basic research is rapidly revealing increasingly complex molecular regulatory networks which are often interconnected via key signal integrators. These connections among regulatory and catalytic networks often frustrate bioengineers as promising metabolic engineering strategies are bypassed by compensatory metabolic responses or cause unexpected, undesired outcomes such as apoptosis, product protein degradation or inappropriate post- translational modification. Therefore, for metabolic engineering to achieve greater success in mammalian cell culture processes and to become important for future applications such as gene therapy and tissue engineering, this technology must be enhanced to allow simultaneous, in cases conditional, reshaping of metabolic pathways to access difficult-to-attain cell states. Recent advances in this new territory of multigene metabolic engineering are intimately linked to the development of multicistronic expression technology which allows the simultaneous, and in some cases, regulated expression of several genes in mammalian cells. Here we review recent achievements in multicistronic expression technology in view of multigene metabolic engineering.
Collapse
Affiliation(s)
- M Fussenegger
- Swiss Federal Institute of Technology, ETH Zurich, Institute of Biotechnology, CH-8093, Zurich, Switzerland
| | | | | |
Collapse
|
43
|
Lloyd DR, Holmes P, Jackson LP, Emery AN, Al-Rubeai M. Relationship between cell size, cell cycle and specific recombinant protein productivity. Cytotechnology 2011; 34:59-70. [PMID: 19003381 DOI: 10.1023/a:1008103730027] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Centrifugal elutriation was used to produce cell cycle enrichedfractions of four commercially relevant recombinant cell lines,chosen to allow for variation in properties due to construct,expression system and parent cell type, from normally growingheterogeneous batch cultures. As these fractions had identicalculture histories and had not been subjected to any insult orstress which was likely to have adversely affected cellularmetabolism, they were ideal for further study of cellularproperties. Specific productivity, cell size and cell cyclestate of replicate elutriated fractions were measured for eachcell line. Results showed that cell size was the major cellulardeterminant of productivity for all cell lines examined. Productformation was not restricted to any particular cell cycle phaseand in all cases, production occurred irrespective of cell cyclephase. Specific productivity was lowest when the majority ofcells in the fraction were G(1), intermediate when themajority of cells in the fraction were S phase and greater whenthe majority of cells in the fraction were in G(2)/M. However, the evidence suggests that size is the major cellulardeterminant of productivity; the apparent relationship betweencell cycle and productivity is secondary and can simply beascribed to the increasing size of cells as they progress thoughthe cell cycle. Thus, in addition to cell density and viabilitycell size is the cellular parameter which should be incorporatednot only into mathematical models of recombinant mammalian cellproduction processes but also into process monitoring andcontrol strategies.
Collapse
Affiliation(s)
- D R Lloyd
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | | | | | | | | |
Collapse
|
44
|
Franek F, Strnad M, Havlícek L, Siglerová V, Fismolová I, Eckschlager T. Diverse effects of the cyclin-dependent kinase inhibitor bohemine: Concentration- and time-dependent suppression or stimulation of hybridoma culture. Cytotechnology 2011; 36:117-23. [PMID: 19003322 DOI: 10.1023/a:1014020415912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An analog of aromatic cytokinins, the 2,6,9-trisubstituted purine derivative bohemine, was applied to cultures of mouse hybridoma cells in order to analyze its capacity of suppressing cell growth and maintaining or enhancing the production of monoclonal antibody. Addition of bohemine at concentrations in the range of1-10 muM resulted in a short-term arrest of growth and of monoclonal antibody production. The short-term suppression of cell functions was followed by a significant temporary increase of specific growth rate and of specific production rate. The steady-state viable cell density values, found in semicontinuous cultures, showed a certain stimulation of cell growth in the range of micromolar concentrations of bohemine, and inhibition of growth at 10 and 30 muM concentrations. The profiles of cell cycle phases indicated that hybridoma cells are retarded both at the G(1)/S boundary and at the G(2)/M boundary, depending on bohemine concentration. The existence of the sequence of events,from suppression to stimulation, suggests that bohemine probably modulates more than one regulatory pathway in the cell.
Collapse
Affiliation(s)
- F Franek
- Laboratory of Growth Regulators, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 10227, Praha 10, Czech Republic,
| | | | | | | | | | | |
Collapse
|
45
|
Carvalhal AV, Santos SS, Carrondo MJT. Extracellular purine and pyrimidine catabolism in cell culture. Biotechnol Prog 2011; 27:1373-82. [PMID: 21695809 DOI: 10.1002/btpr.656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/02/2011] [Indexed: 12/12/2022]
Abstract
The presence of purines and pyrimidines bases, nucleosides, and nucleotides in the culture medium has shown to differently affect the growth of a Chinese hamster ovary (CHO) cell line producing the secreted form of the human placental alkaline phosphatase enzyme (SEAP; Carvalhal et al., Biotech Prog. 2003;19:69-83). CHO, BHK, as well as Sf9 cell growth was clearly reduced in the presence of purines but was not affected by pyrimidines at the concentrations tested. The knowledge about the mechanisms by which nucleotides exert their effect when present outside the cells remains very incomplete. The catabolism of both extracellular purines and pyrimidines was followed during the culture of CHO cells. Purines/pyrimidines nucleotides added at a concentration of 1 mM to the culture medium decreased to negligible concentrations in the first 2 days. Purine and pyrimidine catabolism originated only purinic and pyrimidic end-products, respectively. The comparison between AMP catabolism in serum-free cultures (CHO cells expressing Factor VII and Sf9 cells) and in cultures containing serum (CHO cells expressing SEAP and BHK cells expressing Factor VII) showed that AMP extracellular catabolism is mediated by both cells and enzymes present in the serum. This work shows that the quantification of purines and pyrimidines in the culture medium is essential in animal cell culture optimization. When using AMP addition as a chemical cell growth strategy for recombinant protein production improvement, AMP extracellular concentration monitoring allows the optimization of the multiple AMP addition strategy for a prolonged cell culture duration with high specific productivity.
Collapse
Affiliation(s)
- Ana V Carvalhal
- Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica, Apartado 12, P-2781-901 Oeiras, Portugal.
| | | | | |
Collapse
|
46
|
Hwang SJ, Yoon SK, Koh GY, Lee GM. Effects of culture temperature and pH on flag-tagged COMP angiopoietin-1 (FCA1) production from recombinant CHO cells: FCA1 aggregation. Appl Microbiol Biotechnol 2011; 91:305-15. [PMID: 21509567 DOI: 10.1007/s00253-011-3266-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 12/20/2022]
Abstract
To maximize the production of flag-tagged cartilage oligomeric matrix protein angiopoietin-1 (FCA1) from Chinese hamster ovary (CHO) cells, the effects of culture pH and temperature on cell growth and FCA1 production were investigated. Cells were cultivated in a bioreactor at different culture pH (6.7, 6.9, 7.2, and 7.5) and temperatures (33 and 37 °C). Lowering the culture temperature suppressed cell growth while allowing maintenance of high cell viability for a longer culture period. The specific FCA1 productivity (q (FCA1)) was increased at low culture temperature. Accordingly, the highest FCA1 concentration was obtained at pH 7.2 and 33 °C, and was approximately 4.0-fold higher than that at pH 7.2 and 37 °C. However, aggregates and a monomeric form of FCA1, which are undesirable due to reduced biological activity or immunogenicity, were significant at pH 7.2 and 33 °C. It was also found that the expression pattern of FCA1 was affected more significantly by culture pH than by the culture temperature. FCA1 aggregation dramatically decreased at culture pH 7.5 regardless of the culture temperature. Furthermore, the monomeric form of FCA1 was not observed. Taken together, optimization of culture temperature and culture pH (33 °C and pH 7.5) significantly improves the production of biologically active FCA1 with tetrameric or pentameric forms from CHO cells.
Collapse
Affiliation(s)
- Su-Jeong Hwang
- Department of Biological Sciences and Graduate School of Nanoscience & Technology (WCU), KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejon 305-701, South Korea
| | | | | | | |
Collapse
|
47
|
Kou TC, Fan L, Zhou Y, Ye ZY, Zhao L, Tan WS. Increasing the productivity of TNFR-Fc in GS-CHO cells at reduced culture temperatures. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0157-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Liew JC, Tan WS, Alitheen NBM, Chan ES, Tey BT. Over-expression of the X-linked inhibitor of apoptosis protein (XIAP) delays serum deprivation-induced apoptosis in CHO-K1 cells. J Biosci Bioeng 2010; 110:338-44. [DOI: 10.1016/j.jbiosc.2010.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
|
49
|
Abstract
Gene expression circuitries, which enable cells to detect precise levels within a morphogen concentration gradient, have a pivotal impact on biological processes such as embryonic pattern formation, paracrine and autocrine signalling, and cellular migration. We present the rational synthesis of a synthetic genetic circuit exhibiting band-pass detection characteristics. The components, involving multiply linked mammalian trans-activator and -repressor control systems, were selected and fine-tuned to enable the detection of ‘low-threshold’ morphogen (tetracycline) concentrations, in which target gene expression was triggered, and a ‘high-threshold’ concentration, in which expression was muted. In silico predictions and supporting experimental findings indicated that the key criterion for functional band-pass detection was the matching of componentry that enabled sufficient separation of the low and high threshold points. Using the circuitry together with a fluorescence-encoded target gene, mammalian cells were genetically engineered to be capable of forming a band-like pattern of differentiation in response to a tetracycline chemical gradient. Synthetic gene networks designed to emulate naturally occurring gene behaviours provide not only insight into biological processes, but may also foster progress in future tissue engineering, gene therapy and biosensing applications.
Collapse
Affiliation(s)
- David Greber
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | |
Collapse
|
50
|
Sunley K, Butler M. Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol Adv 2010; 28:385-94. [DOI: 10.1016/j.biotechadv.2010.02.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 12/31/2022]
|