1
|
Srinivasan B, Kantae V, Robinson J. Resurrecting the phoenix: When an assay fails. Med Res Rev 2020; 40:1776-1793. [DOI: 10.1002/med.21670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Vasudev Kantae
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - James Robinson
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| |
Collapse
|
2
|
Ahamed F, Song HS, Ooi CW, Ho YK. Modelling heterogeneity in cellulose properties predicts the slowdown phenomenon during enzymatic hydrolysis. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Kari J, Christensen SJ, Andersen M, Baiget SS, Borch K, Westh P. A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate. Anal Biochem 2019; 586:113411. [PMID: 31520594 DOI: 10.1016/j.ab.2019.113411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Measurement of steady-state rates (vSS) is straightforward in standard enzymology with soluble substrate, and it has been instrumental for comparative biochemical analyses within this area. For insoluble substrate, however, experimental values of vss remain controversial, and this has strongly limited the amount and quality of comparative analyses for cellulases and other enzymes that act on the surface of an insoluble substrate. In the current work, we have measured progress curves over a wide range of conditions for two cellulases, TrCel6A and TrCel7A from Trichoderma reesei, acting on their natural, insoluble substrate, cellulose. Based on this, we consider practical compromises for the determination of experimental vSS values, and propose a basic protocol that provides representative reaction rates and is experimentally simple so that larger groups of enzymes and conditions can be readily assayed with standard laboratory equipment. We surmise that the suggested experimental approach can be useful in comparative biochemical studies of cellulases; an area that remains poorly developed.
Collapse
Affiliation(s)
- Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | - Stefan Jarl Christensen
- Department of Science and Environment, Roskilde University, Universitetsvej, Build. 28.C, DK-4000, Roskilde, Denmark
| | - Morten Andersen
- Department of Science and Environment, Roskilde University, Universitetsvej, Build. 28.C, DK-4000, Roskilde, Denmark
| | | | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Jestel T, Roth S, Heesel D, Kress A, Fischer R, Spiess AC. Laccase-induced HBT-grafting to milled beech wood reduces unspecific protein adsorption. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1518436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tim Jestel
- AVT – Enzyme Process Technology, RWTH Aachen University, Aachen, Germany
| | - Simon Roth
- AVT – Enzyme Process Technology, RWTH Aachen University, Aachen, Germany
| | - Dirk Heesel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Anna Kress
- AVT – Enzyme Process Technology, RWTH Aachen University, Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Antje C. Spiess
- AVT – Enzyme Process Technology, RWTH Aachen University, Aachen, Germany
- IBVT – Institute of Biochemical Engineering, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Gama R, Van Dyk JS, Burton MH, Pletschke BI. Using an artificial neural network to predict the optimal conditions for enzymatic hydrolysis of apple pomace. 3 Biotech 2017; 7:138. [PMID: 28593522 DOI: 10.1007/s13205-017-0754-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/23/2017] [Indexed: 10/19/2022] Open
Abstract
The enzymatic degradation of lignocellulosic biomass such as apple pomace is a complex process influenced by a number of hydrolysis conditions. Predicting optimal conditions, including enzyme and substrate concentration, temperature and pH can improve conversion efficiency. In this study, the production of sugar monomers from apple pomace using commercial enzyme preparations, Celluclast 1.5L, Viscozyme L and Novozyme 188 was investigated. A limited number of experiments were carried out and then analysed using an artificial neural network (ANN) to model the enzymatic hydrolysis process. The ANN was used to simulate the enzymatic hydrolysis process for a range of input variables and the optimal conditions were successfully selected as was indicated by the R 2 value of 0.99 and a small MSE value. The inputs for the ANN were substrate loading, enzyme loading, temperature, initial pH and a combination of these parameters, while release profiles of glucose and reducing sugars were the outputs. Enzyme loadings of 0.5 and 0.2 mg/g substrate and a substrate loading of 30% were optimal for glucose and reducing sugar release from apple pomace, respectively, resulting in concentrations of 6.5 g/L glucose and 28.9 g/L reducing sugars. Apple pomace hydrolysis can be successfully carried out based on the predicted optimal conditions from the ANN.
Collapse
|
6
|
Olsen JP, Borch K, Westh P. Endo/exo-synergism of cellulases increases with substrate conversion. Biotechnol Bioeng 2016; 114:696-700. [PMID: 27617666 DOI: 10.1002/bit.26179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023]
Abstract
Synergy between cellulolytic enzymes is important for their industrial utilization, and numerous studies have addressed the problem of how to optimize the composition of enzyme cocktails with respect to this. The degree of synergy (DS) may change with substrate conversion, and some studies have suggested a maximum in DS early in the process. Here, we systematically investigated interrelationships of DS and conversion in a model system covering a wide range of experimental conditions. The results did not reveal any correlation between DS and contact time, but when plotted against the degree of substrate conversion we saw a systematic increase in DS. We suggest that this is linked to a decreasing reactivity of the substrate. Hence, synergy became increasingly important as the recalcitrance of the remaining substrate grew. Such conversion dependent changes in DS appear to be important both in mechanistic studies and attempts to find industrial enzymes blends with optimal synergy. Biotechnol. Bioeng. 2017;114: 696-700. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Johan Pelck Olsen
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, INM, 1 Universitetsvej, Build. 28, DK-4000, Roskilde, Denmark
| | | | - Peter Westh
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, INM, 1 Universitetsvej, Build. 28, DK-4000, Roskilde, Denmark
| |
Collapse
|
7
|
Shi J, Wu D, Zhang L, Simmons BA, Singh S, Yang B, Wyman CE. Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Biotechnol Bioeng 2016; 114:503-515. [PMID: 27617791 DOI: 10.1002/bit.26180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/29/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Abstract
The enzymatic hydrolysis of cellulose is a thermodynamically challenging catalytic process that is influenced by both substrate-related and enzyme-related factors. In this study, a proteolysis approach was applied to recover and clean the partially converted cellulose at the different stages of enzymatic hydrolysis to monitor the hydrolysis rate as a function of substrate reactivity/accessibility and investigate surface characteristics of the partially converted cellulose. Enzyme-substrate interactions between individual key cellulase components from wild-type Trichoderma reesei and partially converted cellulose were followed and correlated to the enzyme adsorption capacity and dynamic sugar release. Results suggest that cellobiohydrolase CBH1 (Cel7A) and endoglucanases EG2 (Cel5A) adsorption capacities decreased as cellulose was progressively hydrolyzed, likely due to the "depletion" of binding sites. Furthermore, the degree of synergism between CBH1 and EG2 varied depending on the enzyme loading and the substrates. The results provide a better understanding of the relationship between dynamic change of substrate features and the functionality of various cellulase components during enzymatic hydrolysis. Biotechnol. Bioeng. 2017;114: 503-515. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jian Shi
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky
| | - Dong Wu
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Biological and Materials Science Center, Sandia National Laboratories, Livermore, California
| | - Libing Zhang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California.,Biological and Materials Science Center, Sandia National Laboratories, Livermore, California
| | - Bin Yang
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Charles E Wyman
- Center for Environmental Research and Technology, University of California, 1084 Columbia Avenue, Riverside, CA 92507.,Department of Chemical and Environmental Engineering, Bourns College of Engineering, Riverside, California.,BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
8
|
Mallek-Fakhfakh H, Fakhfakh J, Masmoudi N, Rezgui F, Gargouri A, Belghith H. Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: Role of these enzymes in enhancing waste paper saccharification. Prep Biochem Biotechnol 2016; 47:414-423. [PMID: 27824279 DOI: 10.1080/10826068.2016.1252928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the present study, we investigated a potent extracellular β-glucosidases secreted by the thermophilic fungal strain AX4 of Talaromyces thermophilus, isolated from Tunisian soil samples. This strain was selected referring to the highest thermostability of its β-glucosidases compared to the other fungal isolates. The β-glucosidase production was investigated by submerged fermentation. The optimal temperature and initial pH for maximum β-glucosidase production were 50°C and 7.0, respectively. Several carbon sources were assayed for their effects on β-glucosidase production, significant yields were obtained in media containing lactose 1% (3.0 ± 0.36 U/ml) and wheat bran 2% (4.0 ± 0.4 U/ml). The combination of wheat bran at 2% and lactose at 0.8% as carbon source enhanced β-glucosidase production, which reached 8.5 ± 0.28 U/ml. Furthermore, the β-glucosidase-rich enzymatic juice of T. thermophilus exhibited significant synergism with Trichoderma reesei (Rut C30) cellulases for pretreated waste paper (PWP) hydrolysis. Interestingly, the use of this optimal enzymatic cocktail increased 4.23 fold the glucose yield after saccharification of waste paper. A maximum sugar yield (94%) was reached when using low substrate (2%) and enzyme loading (EC1).
Collapse
Affiliation(s)
- Hanen Mallek-Fakhfakh
- a Laboratory of Eukaryotes Molecular Biotechnology, Center of Biotechnology of Sfax , University of Sfax , Sfax , Tunisia
| | - Jawhar Fakhfakh
- b Laboratory of Chemistry of Natural Substances, Faculty of Sciences of Sfax , University of Sfax , Sfax , Tunisia
| | - Najla Masmoudi
- a Laboratory of Eukaryotes Molecular Biotechnology, Center of Biotechnology of Sfax , University of Sfax , Sfax , Tunisia
| | - Fatma Rezgui
- a Laboratory of Eukaryotes Molecular Biotechnology, Center of Biotechnology of Sfax , University of Sfax , Sfax , Tunisia
| | - Ali Gargouri
- a Laboratory of Eukaryotes Molecular Biotechnology, Center of Biotechnology of Sfax , University of Sfax , Sfax , Tunisia
| | - Hafedh Belghith
- a Laboratory of Eukaryotes Molecular Biotechnology, Center of Biotechnology of Sfax , University of Sfax , Sfax , Tunisia
| |
Collapse
|
9
|
Song X, Zhang S, Wang Y, Li J, He C, Yao L. A kinetic study of Trichoderma reesei Cel7B catalyzed cellulose hydrolysis. Enzyme Microb Technol 2016; 87-88:9-16. [PMID: 27178789 DOI: 10.1016/j.enzmictec.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/28/2016] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
Abstract
One prominent feature of Trichoderma reesei (Tr) endoglucanases catalyzed cellulose hydrolysis is that the reaction slows down quickly after it starts (within minutes). But the mechanism of the slowdown is not well understood. A structural model of Tr- Cel7B catalytic domain bound to cellulose was built computationally and the potentially important binding residues were identified and tested experimentally. The 13 tested mutants show different binding properties in the adsorption to phosphoric acid swollen cellulose and filter paper. Though the partitioning parameter to filter paper is about 10 times smaller than that to phosphoric acid swollen cellulose, a positive correlation is shown for two substrates. The kinetic studies show that the reactions slow down quickly for both substrates. This slowdown is not correlated to the binding constant but anticorrelated to the enzyme initial activity. The amount of reducing sugars released after 24h by Cel7B in phosphoric acid swollen cellulose, Avicel and filter paper cellulose hydrolysis is correlated with the enzyme activity against a soluble substrate p-nitrophenyl lactoside. Six of the 13 tested mutants, including N47A, N52D, S99A, N323D, S324A, and S346A, yield ∼15-35% more reducing sugars than the wild type (WT) Cel7B in phosphoric acid swollen cellulose and filter paper hydrolysis. This study reveals that the slowdown of the reaction is not due to the binding of the enzyme to cellulose. The activity of Tr- Cel7B against the insoluble substrate cellulose is determined by the enzyme's capability in hydrolyzing the soluble substrate.
Collapse
Affiliation(s)
- Xiangfei Song
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Shujun Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Yefei Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Jingwen Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Chunyan He
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Lishan Yao
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China.
| |
Collapse
|
10
|
Mathew AK, Parameshwaran B, Sukumaran RK, Pandey A. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. BIORESOURCE TECHNOLOGY 2016; 199:13-20. [PMID: 26358144 DOI: 10.1016/j.biortech.2015.08.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
The challenge associated with cellulosic ethanol production is maximizing sugar yield at low cost. Current research is being focused to develop a pretreatment method to overcome biomass recalcitrance in an efficient way. This review is focused on two major pretreatments: dilute acid (DA) and ammonia fiber explosion (AFEX) pretreatment of corn stover and how these pretreatment cause morphological and chemical changes to corn stover in order to overcome the biomass recalcitrance. This review highlights the key differences of these two pretreatments based on compositional analysis, cellulose and its crystallinity, morphological changes, structural changes to lignin, enzymatic reactivity and enzyme adsorption onto pretreated solids and finally cellulosic ethanol production from the hydrolysate of DA and AFEX treated corn stover. Each stage of the process, AFEX pretreated corn stover was superior to DA treated corn stover.
Collapse
Affiliation(s)
- Anil Kuruvilla Mathew
- Centre for Biofuels, Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
| | - Binod Parameshwaran
- Centre for Biofuels, Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
| | - Rajeev Kumar Sukumaran
- Centre for Biofuels, Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
| | - Ashok Pandey
- Centre for Biofuels, Biotechnology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
| |
Collapse
|
11
|
Sørensen TH, Cruys-Bagger N, Windahl MS, Badino SF, Borch K, Westh P. Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases. J Biol Chem 2015; 290:22193-202. [PMID: 26183777 DOI: 10.1074/jbc.m115.658930] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
We measured hydrolytic rates of four purified cellulases in small increments of temperature (10-50 °C) and substrate loads (0-100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases.
Collapse
Affiliation(s)
- Trine Holst Sørensen
- From Roskilde University, Nature, Systems, and Models, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark and
| | - Nicolaj Cruys-Bagger
- From Roskilde University, Nature, Systems, and Models, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark and
| | - Michael Skovbo Windahl
- From Roskilde University, Nature, Systems, and Models, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark and Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Silke Flindt Badino
- From Roskilde University, Nature, Systems, and Models, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark and Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Peter Westh
- From Roskilde University, Nature, Systems, and Models, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark and
| |
Collapse
|
12
|
Nag A, Sprague MA, Griggs AJ, Lischeske JJ, Stickel JJ, Mittal A, Wang W, Johnson DK. Parameter determination and validation for a mechanistic model of the enzymatic saccharification of cellulose-Iβ. Biotechnol Prog 2015; 31:1237-48. [PMID: 26081044 DOI: 10.1002/btpr.2122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Ambarish Nag
- Computational Science Center; National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401
| | - Michael A. Sprague
- Computational Science Center; National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401
| | - Andrew J. Griggs
- National Bioenergy Center; National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401
| | - James J. Lischeske
- National Bioenergy Center; National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401
| | - Jonathan J. Stickel
- National Bioenergy Center; National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401
| | - Ashutosh Mittal
- Biosciences Center; National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401
| | - Wei Wang
- Biosciences Center; National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401
| | - David K. Johnson
- Biosciences Center; National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401
| |
Collapse
|
13
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
14
|
Subhedar PB, Babu NR, Gogate PR. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production. ULTRASONICS SONOCHEMISTRY 2015; 22:326-332. [PMID: 25060116 DOI: 10.1016/j.ultsonch.2014.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/15/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
An effective conversion of lignocellulose into fermentable sugars is a key step in producing bioethanol in an eco-friendly and cost effective manner. In this study, the effect of ultrasound on enzymatic hydrolysis of newspaper, a potential feedstock for bioethanol production due to its high cellulosic content, was investigated. The effect of substrate loading, enzyme loading, temperature, ultrasonic power and duty cycle on the hydrolysis has been studied. Optimum conditions for conventional enzymatic hydrolysis were substrate loading of 5% (w/v), enzyme loading of 0.14% (w/v), temperature of 323K, and under these conditions and 72h of hydrolysis, reducing sugar yield of 11.569g/L was obtained. In case of ultrasound-assisted enzymatic hydrolysis approach, optimum conditions obtained were substrate loading of 3% (w/v), enzyme loading of 0.8% (w/v), sonication power of 60W, duty cycle of 70%, hydrolysis time of 6.5h and the reducing sugar yield obtained under these conditions was 27.6g/L. Approximately 2.4 times increase in the release of reducing sugar concentration was obtained by the ultrasound-assisted enzymatic hydrolysis approach. Results indicate that there is a synergistic effect obtained from the combination of ultrasound and enzymes which lowers the diffusion-limiting barrier to enzyme/substrate binding and results in an increase in reaction rate. The experimental data were also fitted in a simple three parameter kinetic model.
Collapse
Affiliation(s)
- Preeti B Subhedar
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Narmadha R Babu
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
15
|
Shu Z, Wang Y, An L, Yao L. The Slowdown of the Endoglucanase Trichoderma reesei Cel5A-Catalyzed Cellulose Hydrolysis Is Related to Its Initial Activity. Biochemistry 2014; 53:7650-8. [DOI: 10.1021/bi501059n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhiyu Shu
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Yefei Wang
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Liaoyuan An
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Lishan Yao
- Laboratory
of Biofuels, Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| |
Collapse
|
16
|
Alasepp K, Borch K, Cruys-Bagger N, Badino S, Jensen K, Sørensen TH, Windahl MS, Westh P. In situ stability of substrate-associated cellulases studied by DSC. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7134-7142. [PMID: 24856176 DOI: 10.1021/la500161e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work shows that differential scanning calorimetry (DSC) can be used to monitor the stability of substrate-adsorbed cellulases during long-term hydrolysis of insoluble cellulose. Thermal transitions of adsorbed enzyme were measured regularly in subsets of a progressing hydrolysis, and the size of the transition peak was used as a gauge of the population of native enzyme. Analogous measurements were made for enzymes in pure buffer. Investigations of two cellobiohydrolases, Cel6A and Cel7A, from Trichoderma reesei, which is an anamorph of the fungus Hypocrea jerorina, showed that these enzymes were essentially stable at 25 °C. Thus, over a 53 h experiment, Cel6A lost less than 15% of the native population and Cel7A showed no detectable loss for either the free or substrate-adsorbed state. At higher temperatures we found significant losses in the native populations, and at the highest tested temperature (49 °C) about 80% Cel6A and 35% of Cel7A was lost after 53 h of hydrolysis. The data consistently showed that Cel7A was more long-term stable than Cel6A and that substrate-associated enzyme was less long-term stable than enzyme in pure buffer stored under otherwise equal conditions. There was no correlation between the intrinsic stability, specified by the transition temperature in the DSC, and the long-term stability derived from the peak area. The results are discussed with respect to the role of enzyme denaturation for the ubiquitous slowdown observed in the enzymatic hydrolysis of cellulose.
Collapse
Affiliation(s)
- Kadri Alasepp
- Research Unit for Functional Biomaterials, NSM, Roskilde University. 1 Universitetsvej , Build. 18.1, DK-4000 Roskilde Denmark
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gao X, Kumar R, Singh S, Simmons BA, Balan V, Dale BE, Wyman CE. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:71. [PMID: 24910713 PMCID: PMC4029885 DOI: 10.1186/1754-6834-7-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/20/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Pretreatment is essential to realize high product yields from biological conversion of naturally recalcitrant cellulosic biomass, with thermochemical pretreatments often favored for cost and performance. In this study, enzymatic digestion of solids from dilute sulfuric acid (DA), ammonia fiber expansion (AFEX™), and ionic liquid (IL) thermochemical pretreatments of corn stover were followed over time for the same range of total enzyme protein loadings to provide comparative data on glucose and xylose yields of monomers and oligomers from the pretreated solids. The composition of pretreated solids and enzyme adsorption on each substrate were also measured to determine. The extent glucose release could be related to these features. RESULTS Corn stover solids from pretreatment by DA, AFEX, and IL were enzymatically digested over a range of low to moderate loadings of commercial cellulase, xylanase, and pectinase enzyme mixtures, the proportions of which had been previously optimized for each pretreatment. Avicel® cellulose, regenerated amorphous cellulose (RAC), and beechwood xylan were also subjected to enzymatic hydrolysis as controls. Yields of glucose and xylose and their oligomers were followed for times up to 120 hours, and enzyme adsorption was measured. IL pretreated corn stover displayed the highest initial glucose yields at all enzyme loadings and the highest final yield for a low enzyme loading of 3 mg protein/g glucan in the raw material. However, increasing the enzyme loading to 12 mg/g glucan or more resulted in DA pretreated corn stover attaining the highest longer-term glucose yields. Hydrolyzate from AFEX pretreated corn stover had the highest proportion of xylooligomers, while IL produced the most glucooligomers. However, the amounts of both oligomers dropped with increasing enzyme loadings and hydrolysis times. IL pretreated corn stover had the highest enzyme adsorption capacity. CONCLUSIONS Initial hydrolysis yields were highest for substrates with greater lignin removal, a greater degree of change in cellulose crystallinity, and high enzyme accessibility. Final glucose yields could not be clearly related to concentrations of xylooligomers released from xylan during hydrolysis. Overall, none of these factors could completely account for differences in enzymatic digestion performance of solids produced by AFEX, DA, and IL pretreatments.
Collapse
Affiliation(s)
- Xiadi Gao
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California (UCR), Riverside, CA 92521, USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Rajeev Kumar
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute (JBEI), Emeryville, CA 94608, USA
- Sandia National Laboratories, Livermore, CA 94551, USA
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute (JBEI), Emeryville, CA 94608, USA
- Sandia National Laboratories, Livermore, CA 94551, USA
| | - Venkatesh Balan
- DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, MBI Building, Lansing, MI 48910, USA
| | - Bruce E Dale
- DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, MBI Building, Lansing, MI 48910, USA
| | - Charles E Wyman
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California (UCR), Riverside, CA 92521, USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| |
Collapse
|
18
|
Kostylev M, Wilson D. Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Biochemistry 2013; 52:5656-64. [PMID: 23837567 DOI: 10.1021/bi400358v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lignocellulosic biomass is a potential source of renewable, low-carbon-footprint liquid fuels. Biomass recalcitrance and enzyme cost are key challenges associated with the large-scale production of cellulosic fuel. Kinetic modeling of enzymatic cellulose digestion has been complicated by the heterogeneous nature of the substrate and by the fact that a true steady state cannot be attained. We present a two-parameter kinetic model based on the Michaelis-Menten scheme ( Michaelis, L., and Menten, M. L. ( 1913 ) Biochem. Z. , 49 , 333 - 369 ) with a time-dependent activity coefficient analogous to fractal-like kinetics formulated by Kopelman ( Kopelman, R. ( 1988 ) Science 241 , 1620 - 1626 ). We provide a mathematical derivation and experimental support to show that one of the parameters is a total activity coefficient and the other is an intrinsic constant that reflects the ability of the cellulases to overcome substrate recalcitrance. The model is applicable to individual cellulases and their mixtures at low-to-medium enzyme loads. Using biomass degrading enzymes from cellulolytic bacterium Thermobifida fusca , we show that the model can be used for mechanistic studies of enzymatic cellulose digestion. We also demonstrate that it applies to the crude supernatant of the widely studied cellulolytic fungus Trichoderma reesei ; thus it can be used to compare cellulases from different organisms. The two parameters may serve a similar role to Vmax, KM, and kcat in classical kinetics. A similar approach may be applicable to other enzymes with heterogeneous substrates and where a steady state is not achievable.
Collapse
Affiliation(s)
- Maxim Kostylev
- Department of Molecular Biology and Genetics, 460 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
19
|
Jeoh T, Santa-Maria MC, O'Dell PJ. Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohydr Polym 2013; 97:581-6. [PMID: 23911488 DOI: 10.1016/j.carbpol.2013.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/16/2022]
Abstract
There is a need to understand how cellulose structural properties impact productive cellulase-cellulose interactions toward solving the mechanisms of the heterogeneous reaction. We coupled biochemical studies of cellulose hydrolysis by a purified Trichoderma reesei Cel7A (TrCel7A) cellobiohydrolase with atomic force microscopy (AFM) to study the impact of the cellulolytic activity on the fibrillar structure of cellulose. Bacterial cellulose (BC) fibrils were hydrolyzed by TrCel7A then immobilized by hydrophobic interactions on glass for AFM imaging. Commonly used methods to culture and isolate cellulose fibrils resulted in significant oxidation of the reducing-ends but minimal oxidation along the fibrils. We observed extensive fibrillation of BC fibrils to ∼3 nm microfibrils during the course of hydrolysis by TrCel7A, leaving thinned un-fibrillated recalcitrant fibrils at >80% hydrolysis extents. Additionally, this remaining fraction appeared to be segmented along the fibril length.
Collapse
Affiliation(s)
- Tina Jeoh
- Department of Biological and Agricultural Engineering, University of California at Davis, Davis, CA 95616, United States.
| | | | | |
Collapse
|
20
|
Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sørensen TH, Anderson L, Borch K, Westh P. Product inhibition of five Hypocrea jecorina cellulases. Enzyme Microb Technol 2013; 52:163-9. [DOI: 10.1016/j.enzmictec.2013.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
|
21
|
Fischer R, Ostafe R, Twyman RM. Cellulases from insects. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:51-64. [PMID: 23728162 DOI: 10.1007/10_2013_206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bioethanol is currently produced by the fermentation of sugary and starchy crops, but waste plant biomass is a more abundant source because sugars can be derived directly from cellulose. One of the limiting steps in the biomass-to-ethanol process is the degradation of cellulose to fermentable sugars (saccharification). This currently relies on the use of bacterial and/or fungal cellulases, which tend to have low activity under biorefinery conditions and are easily inhibited. Some insect species feed on plant biomass and can efficiently degrade cellulose to produce glucose as an energy source. Although insects were initially thought to require symbiotic relationships with bacteria and fungi to break down cellulose, several species in the orders Dictyoptera, Orthoptera, and Coleoptera have now been shown to produce their own cellulases in the midgut or salivary glands, and putative cellulase genes have been identified in other orders. Insect cellulases often work in concert with cellulases provided by symbiotic microbiota in the gut to achieve efficient cellulolysis. We discuss the current status of insect cellulases and potential strategies that could be used to find novel enzymes and improve their efficiency.
Collapse
|
22
|
Chauve M, Barre L, Tapin-Lingua S, Silva Perez DD, Decottignies D, Perez S, Ferreira NL. Evolution and impact of cellulose architecture during enzymatic hydrolysis by fungal cellulases. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.412146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Jäger G, Büchs J. Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J 2012; 7:1122-36. [DOI: 10.1002/biot.201200033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/17/2012] [Accepted: 06/08/2012] [Indexed: 01/12/2023]
|
24
|
Murphy L, Cruys-Bagger N, Damgaard HD, Baumann MJ, Olsen SN, Borch K, Lassen SF, Sweeney M, Tatsumi H, Westh P. Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose. J Biol Chem 2012; 287:1252-60. [PMID: 22110134 PMCID: PMC3256860 DOI: 10.1074/jbc.m111.276485] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/10/2011] [Indexed: 11/06/2022] Open
Abstract
The kinetics of cellulose hydrolysis have long been described by an initial fast hydrolysis rate, tapering rapidly off, leading to a process that takes days rather than hours to complete. This behavior has been mainly attributed to the action of cellobiohydrolases and often linked to the processive mechanism of this exo-acting group of enzymes. The initial kinetics of endo-glucanases (EGs) is far less investigated, partly due to a limited availability of quantitative assay technologies. We have used isothermal calorimetry to monitor the early time course of the hydrolysis of insoluble cellulose by the three main EGs from Trichoderma reesei (Tr): TrCel7B (formerly EG I), TrCel5A (EG II), and TrCel12A (EG III). These endo-glucanases show a distinctive initial burst with a maximal rate that is about 5-fold higher than the rate after 5 min of hydrolysis. The burst is particularly conspicuous for TrCel7B, which reaches a maximal turnover of about 20 s(-1) at 30 °C and conducts about 1200 catalytic cycles per enzyme molecule in the initial fast phase. For TrCel5A and TrCel12A the extent of the burst is 2-300 cycles per enzyme molecule. The availability of continuous data on EG activity allows an analysis of the mechanisms underlying the initial kinetics, and it is suggested that the slowdown is linked to transient inactivation of enzyme on the cellulose surface. We propose, therefore, that the frequency of structures on the substrate surface that cause transient inactivation determine the extent of the burst phase.
Collapse
Affiliation(s)
- Leigh Murphy
- From Roskilde University, NSM, Biomaterials, 1 Universitetsvej, DK-4000 Roskilde, Denmark
- Novozymes A/S, Krogshøjvej 36, DK-2880 Denmark
| | - Nicolaj Cruys-Bagger
- From Roskilde University, NSM, Biomaterials, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | | | | | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Denmark
| | | | | | - Hirosuke Tatsumi
- International Young Researchers Empowerment Center, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Peter Westh
- From Roskilde University, NSM, Biomaterials, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| |
Collapse
|
25
|
Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 2012; 510:429-52. [PMID: 22608740 DOI: 10.1016/b978-0-12-415931-0.00023-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During the past several years, major progress has been accomplished in the production of "designer cellulosomes," artificial enzymatic complexes that were demonstrated to efficiently degrade crystalline cellulose. This progress is part of a global attempt to promote biomass waste solutions and biofuel production. In designer cellulosomes, each enzyme is equipped with a dockerin module that interacts specifically with one of the cohesin modules of the chimeric scaffoldin. Artificial scaffoldins serve as docking backbones and contain a cellulose-specific carbohydrate-binding module that directs the enzymatic complex to the cellulosic substrate, and one or more cohesin modules from different natural cellulosomal species, each exhibiting a different specificity, that allows the specific incorporation of the desired matching dockerin-bearing enzymes. With natural cellulosomal components, the insertion of the enzymes in the scaffold would presumably be random, and we would not be able to control the contents of the resulting artificial cellulosome. There are an increasing number of papers describing the production of designer cellulosomes either in vitro, ex vivo, or in vivo. These types of studies are particularly intricate, and a number of such publications are less meaningful in the final analysis, as important controls are frequently excluded. In this chapter, we hope to give a complete overview of the methodologies essential for designing and examining cellulosome complexes.
Collapse
Affiliation(s)
- Yael Vazana
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
26
|
Yu Z, Jameel H, Chang HM, Philips R, Park S. Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnol Bioeng 2011; 109:1131-9. [DOI: 10.1002/bit.24386] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/05/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
|
27
|
Jäger G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, Fischer R, Spiess AC, Büchs J. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:33. [PMID: 21943248 PMCID: PMC3203333 DOI: 10.1186/1754-6834-4-33] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/23/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. RESULTS After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates. CONCLUSIONS Recombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis.
Collapse
Affiliation(s)
- Gernot Jäger
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Michele Girfoglio
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
| | - Florian Dollo
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Roberto Rinaldi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470
Mülheim an der Ruhr, Germany
| | - Hans Bongard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470
Mülheim an der Ruhr, Germany
| | - Ulrich Commandeur
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,
D-52074 Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME),
Forckenbeckstrasse 6, D-52074 Aachen, Germany
| | - Antje C Spiess
- AVT-Aachener Verfahrenstechnik, Enzyme Process Technology, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| | - Jochen Büchs
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University,
Worringerweg 1, D-52074 Aachen, Germany
| |
Collapse
|
28
|
Olsen S, Bohlin C, Murphy L, Borch K, McFarland K, Sweeny M, Westh P. Effects of non-ionic surfactants on the interactions between cellulases and tannic acid: A model system for cellulase–poly-phenol interactions. Enzyme Microb Technol 2011; 49:353-9. [DOI: 10.1016/j.enzmictec.2011.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/10/2011] [Accepted: 06/18/2011] [Indexed: 11/26/2022]
|
29
|
Liao H, Zhang XZ, Rollin JA, Zhang YHP. A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnol J 2011; 6:1409-18. [PMID: 21751395 DOI: 10.1002/biot.201100157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/04/2011] [Accepted: 06/06/2011] [Indexed: 11/06/2022]
Abstract
Cost-effective release of fermentable sugars from non-food biomass through biomass pretreatment/enzymatic hydrolysis is still the largest obstacle to second-generation biorefineries. Therefore, the hydrolysis performance of 21 bacterial cellulase mixtures containing the glycoside hydrolase family 5 Bacillus subtilis endoglucanase (BsCel5), family 9 Clostridium phytofermentans processive endoglucanase (CpCel9), and family 48 C. phytofermentans cellobiohydrolase (CpCel48) was studied on partially ordered low-accessibility microcrystalline cellulose (Avicel) and disordered high-accessibility regenerated amorphous cellulose (RAC). Faster hydrolysis rates and higher digestibilities were obtained on RAC than on Avicel. The optimal ratios for maximum cellulose digestibility were dynamic for Avicel but nearly fixed for RAC. Processive endoglucanase CpCel9 was the most important for high cellulose digestibility regardless of substrate type. This study provides important information for the construction of a minimal set of bacterial cellulases for the consolidated bioprocessing bacteria, such as Bacillus subtilis, for converting lignocellulose to biocommodities in a single step.
Collapse
Affiliation(s)
- Hehuan Liao
- Biological Systems Engineering Department, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
30
|
Wilson DB. Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 2011; 14:259-63. [PMID: 21531609 DOI: 10.1016/j.mib.2011.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 01/10/2023]
Abstract
Enzymatic hydrolysis of cellulose by microorganisms is a key step in the global carbon cycle. Despite its abundance only a small percentage of microorganisms can degrade cellulose, probably because it is present in recalcitrant cell walls. There are at least five distinct mechanisms used by different microorganisms to degrade cellulose all of which involve cellulases. Cellulolytic organisms and cellulases are extremely diverse possibly because their natural substrates, plant cell walls, are very diverse. At this time the microbial ecology of cellulose degradation in any environment is still not clearly understood even though there is a great deal of information available about the bovine rumen. Two major problems that limit our understanding of this area are the vast diversity of organisms present in most cellulose degrading environments and the inability to culture most of them.
Collapse
Affiliation(s)
- David B Wilson
- Department of Molecular Biology & Genetics, 458 Biotechnology Building, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
31
|
Praestgaard E, Elmerdahl J, Murphy L, Nymand S, McFarland KC, Borch K, Westh P. A kinetic model for the burst phase of processive cellulases. FEBS J 2011; 278:1547-60. [DOI: 10.1111/j.1742-4658.2011.08078.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Podkaminer KK, Shao X, Hogsett DA, Lynd LR. Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 °C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnol Bioeng 2011; 108:1268-78. [PMID: 21192004 DOI: 10.1002/bit.23050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/16/2010] [Accepted: 12/14/2010] [Indexed: 11/10/2022]
Abstract
Studies were undertaken to understand phenomena operative during simultaneous saccharification and fermentation (SSF) of a model cellulosic substrate (Avicel) at 50°C with enzymatic hydrolysis mediated by a commercial cellulase preparation (Spezyme CP) and fermentation by a thermophilic bacterium engineered to produce ethanol at high yield, Thermoanaerobacterium saccharolyticum ALK2. Thermal inactivation at 50 °C, as shown by the loss of 50% of enzyme activity over 4 days in the absence of ethanol, was more severe than at 37 °C, where only 25% of enzyme activity was lost. In addition, at 50 °C ethanol more strongly influenced enzyme stability. Enzyme activity was moderately stabilized between ethanol concentrations of 0 and 40 g/L, but ethanol concentrations above 40 g/L accelerated enzyme inactivation, leading to 75% loss of enzymatic activity in 80 g/L ethanol after 4 days. At 37 °C, ethanol did not show a strong effect on the rate of enzyme inactivation. Inhibition of cellulase activity by ethanol, measured at both temperatures, was relatively similar, with the relative rate of hydrolysis inhibited 50% at ethanol concentrations of 56.4 and 58.7 g/L at 50 and 37 °C, respectively. A mathematical model was developed to test whether the measured phenomena were sufficient to quantitatively describe system behavior and was found to have good predictive capability at initial Avicel concentrations of 20 and 50 g/L.
Collapse
Affiliation(s)
- Kara K Podkaminer
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
33
|
Dingee JW, Anton AB. The kinetics of p-nitrophenyl-β-D-cellobioside hydrolysis and transglycosylation by Thermobifida fusca Cel5Acd. Carbohydr Res 2010; 345:2507-15. [PMID: 20951981 DOI: 10.1016/j.carres.2010.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
The hydrolysis of p-nitrophenyl-β-1,4-cellobioside (pNP-G2) by the catalytic domain of the retaining-family 5-2 endocellulase Cel5A from Thermobifida fusca (Cel5Acd) was studied. The dominant reaction pathway involves hydrolysis of the aglyconic bond, producing cellobiose (G2) and a 'reporter' species p-nitrophenol (pNP), which was monitored spectrophotometrically to track the reaction. We also detected the production of cellotriose (G3) and p-nitrophenyl-glucoside (pNP-G1), confirming the presence of a competing transglycosylation pathway. We use a mechanistic model of hydrolysis and transglycosylation to derive an expression for the rate of pNP-formation as a function of enzyme concentration, substrate concentration, and several lumped kinetics parameters. The derivation assumes that the quasi-steady-state assumption (QSSA) applies for three intermediate species in the mechanism; we determine conditions under which this assumption is rigorously justified. We integrate the rate expression and compare its integral form to pNP-versus-time data collected for a range of enzyme and substrate concentrations. The integral comparison gives a stringent test of the mechanistic model, and it serves to quantify the lumped kinetics parameters with good statistical precision, particularly a previously unidentified parameter that determines the selectivity of hydrolysis versus transglycosylation. The integrated rate expression accounts well for pNP-versus-time data under all circumstances we have investigated.
Collapse
Affiliation(s)
- John W Dingee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, United States
| | | |
Collapse
|
34
|
Xu C, Ma F, Zhang X, Chen S. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10893-8. [PMID: 20882980 DOI: 10.1021/jf1021187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The feasibility of biological pretreatment for subsequent saccharification largely depends upon an effective pretreatment system. A significant enhancement of saccharification was discovered with corn stover pretreated by white rot fungus Irpex lacteus CD2. The highest saccharification ratio reached 66.4%, which was significantly higher than what was reported. Hemicellulose was first destroyed in the process and then lignin. Lignin and hemicellulose were selectively degraded over cellulose, respectively, resulting in increased crystallinity. Enhanced saccharification and the fluctuation in crystallinity together indicated the destruction of the cellulose crystalline structure. Additionally, further studies revealed the disruption of the cell wall and the vital increase of large pores in the pretreated samples, which might be caused by the selective degradation of amorphous components and fungal penetration. Results suggest that I. lacteus has a more efficient degradation system than other reported white rot fungi and can be further explored as an alternative to the existing thermochemical processes.
Collapse
Affiliation(s)
- Chunyan Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education (MOE), College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Olsen SN, Lumby E, McFarland K, Borch K, Westh P. Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry. Appl Biochem Biotechnol 2010; 163:626-35. [DOI: 10.1007/s12010-010-9068-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|
36
|
Zhou W, Xu Y, Schüttler HB. Cellulose hydrolysis in evolving substrate morphologies III: Time-scale analysis. Biotechnol Bioeng 2010; 107:224-34. [DOI: 10.1002/bit.22814] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Levine SE, Fox JM, Blanch HW, Clark DS. A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 2010; 107:37-51. [DOI: 10.1002/bit.22789] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Murphy L, Borch K, McFarland K, Bohlin C, Westh P. A calorimetric assay for enzymatic saccharification of biomass. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 2009; 27:833-848. [DOI: 10.1016/j.biotechadv.2009.06.005] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/19/2009] [Accepted: 06/20/2009] [Indexed: 11/15/2022]
|
40
|
Zhou W, Hao Z, Xu Y, Schüttler HB. Cellulose hydrolysis in evolving substrate morphologies II: Numerical results and analysis. Biotechnol Bioeng 2009; 104:275-89. [DOI: 10.1002/bit.22388] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Kumar R, Wyman CE. Does change in accessibility with conversion depend on both the substrate and pretreatment technology? BIORESOURCE TECHNOLOGY 2009; 100:4193-202. [PMID: 19398329 DOI: 10.1016/j.biortech.2008.11.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/11/2008] [Accepted: 11/20/2008] [Indexed: 05/17/2023]
Abstract
The accessibility of cellulase and xylanase enzymes to glucan and xylan, respectively, and its change with conversion were measured for pure Avicel glucan and poplar solids that had been pretreated by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), dilute acid, and lime. Avicel and pretreated solids were digested to various degrees by cellulase together with beta-glucosidase enzymes and then cleaned of residual protein via a biological method using Protease. Glucan accessibility was determined by purified CBHI (Cel7A) adsorption at 4 degrees C, and 4 and 24 h hydrolysis yields were determined for solids loading containing equal amounts of glucan (1.0% w/v) and lignin (1.0% w/v), in two separate sets of experiments. Consistent with our previous study and in contrast to some in the literature, little change in glucan accessibility was observed with conversion for Avicel, but glucan and xylan accessibility for real biomass varied with the type of pretreatment. For example, AFEX pretreated solids showed a negligible change in glucan accessibility for conversion up to 90%, although xylan accessibility seemed to decline first and then remained constant. On the other hand, a substantial decline in glucan and xylan accessibility with conversion was observed for lime pretreated poplar solids, as shown by initial hydrolysis rates. Yet, an increase in CBHI adsorption with conversion for lime pretreated poplar solids suggested the opposite trend, possibly due to increased lignin exposure and/or reduced effectiveness of adsorbed enzyme.
Collapse
Affiliation(s)
- Rajeev Kumar
- Thayer School of Engineering, Dartmouth College, New Hampshire 03755, USA
| | | |
Collapse
|
42
|
Kristensen JB, Felby C, Jørgensen H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:11. [PMID: 19505292 PMCID: PMC2699335 DOI: 10.1186/1754-6834-2-11] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 06/08/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND Working at high solids (substrate) concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown. RESULTS The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, describing a linear correlation from 5 to 30% initial total solids content (w/w). Insufficient mixing has previously been shown not to be involved in the effect. Hydrolysis experiments with filter paper showed that neither lignin content nor hemicellulose-derived inhibitors appear to be responsible for the decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in simultaneous saccharification and fermentation) at the increased concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose is causing the decrease in yield. CONCLUSION Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing yields at increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high conversions at high solids concentrations, understanding of the mechanisms involved in high-solids product inhibition and adsorption inhibition must be improved.
Collapse
Affiliation(s)
- Jan B Kristensen
- Forest and Landscape Denmark, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Claus Felby
- Forest and Landscape Denmark, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark
| | - Henning Jørgensen
- Forest and Landscape Denmark, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark
| |
Collapse
|
43
|
Kumar R, Wyman CE. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 2009; 103:252-67. [PMID: 19195015 DOI: 10.1002/bit.22258] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorption of cellulase on Avicel, and of cellulase and xylanase on corn stover solids resulting from ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO(2)) pretreatments were measured at 4 degrees C. Langmuir adsorption parameters were then estimated by non-linear regression using Polymath software, and cellulase accessibility to cellulose was estimated based on adsorption data for pretreated solids and lignin left after carbohydrate digestion. To determine the impact of delignification and deacetylation on cellulose accessibility, purified CBHI (Cel7A) adsorption at 4 degrees C and hydrolysis with whole cellulase were followed for untreated (UT) corn stover. In all cases, cellulase attained equilibrium in less than 2 h, and upon dilution, solids pretreated by controlled pH technology showed the greatest desorption followed by solids from dilute acid and SO(2) pretreatments. Surprisingly, the lowest desorption was measured for Avicel glucan followed by solids from AFEX pretreatment. The higher cellulose accessibility for AFEX and lime pretreated solids could account for the good digestion reported in the literature for these approaches. Lime pretreated solids had the greatest xylanase capacity and AFEX solids the least, showing pretreatment pH did not seem to be controlling. The 24 h glucan hydrolysis rate data had a strong relationship to cellulase adsorption capacities, while 24 h xylan hydrolysis rate data showed no relationship to xylanase adsorption capacities. Furthermore, delignification greatly enhanced enzyme effectiveness but had a limited effect on cellulose accessibility. And because delignification enhanced release of xylose more than glucose, it appears that lignin did not directly control cellulose accessibility but restricted xylan accessibility which in turn controlled access to cellulose. Reducing the acetyl content in corn stover solids significantly improved both cellulose accessibility and enzyme effectiveness.
Collapse
Affiliation(s)
- Rajeev Kumar
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
44
|
Peri S, Karra S, Lee YY, Karim MN. Modeling Intrinsic Kinetics of Enzymatic Cellulose Hydrolysis. Biotechnol Prog 2008; 23:626-37. [PMID: 17465526 DOI: 10.1021/bp060322s] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multistep approach was taken to investigate the intrinsic kinetics of the cellulase enzyme complex as observed with hydrolysis of noncrystalline cellulose (NCC). In the first stage, published initial rate mechanistic models were built and critically evaluated for their performance in predicting time-course kinetics, using the data obtained from enzymatic hydrolysis experiments performed on two substrates: NCC and alpha-cellulose. In the second stage, assessment of the effect of reaction intermediates and products on intrinsic kinetics of enzymatic hydrolysis was performed using NCC hydrolysis experiments, isolating external factors such as mass transfer effects, physical properties of substrate, etc. In the final stage, a comprehensive intrinsic kinetics mechanism was proposed. From batch experiments using NCC, the time-course data on cellulose, cello-oligosaccharides (COS), cellobiose, and glucose were taken and used to estimate the parameters in the kinetic model. The model predictions of NCC, COS, cellobiose, and glucose profiles show a good agreement with experimental data generated from hydrolysis of different initial compositions of substrate (NCC supplemented with COS, cellobiose, and glucose). Finally, sensitivity analysis was performed on each model parameter; this analysis provides some insights into the yield of glucose in the enzymatic hydrolysis. The proposed intrinsic kinetic model parametrized for dilute cellulose systems forms a basis for modeling the complex enzymatic kinetics of cellulose hydrolysis in the presence of limiting factors offered by substrate and enzyme characteristics.
Collapse
Affiliation(s)
- Suma Peri
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Cellulolytic bacteria and fungi have been shown to use two different approaches to degrade cellulose. Most aerobic microbes secrete sets of individual cellulases, many of which contain a carbohydrate binding molecule (CBM), which act synergistically on native cellulose. Most anaerobic microorganisms produce large multienzyme complexes called cellulosomes, which are usually attached to the outer surface of the microorganism. Most of the cellulosomal enzymes lack a CBM, but the cohesin subunit, to which they are bound, does contain a CBM. The cellulases present in each class show considerable overlap in their catalytic domains, and processive cellulases (exocellulases and processive endocellulases) are the most abundant components of both the sets of free enzymes and of the cellulosomal cellulases. Analysis of the genomic sequences of two cellulolytic bacteria, Cytophaga hutchinsonii, an aerobe, and Fibrobacter succinogenes, an anaerobe, suggest that these organisms must use a third mechanism. This is because neither of these organisms, encodes processive cellulases and most of their many endocellulase genes do not encode CBMs. Furthermore, neither organism appears to encode the dockerin and cohesin domains that are key components of cellulosomes.
Collapse
Affiliation(s)
- David B Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
46
|
Olofsson K, Bertilsson M, Lidén G. A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:7. [PMID: 18471273 PMCID: PMC2397418 DOI: 10.1186/1754-6834-1-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/01/2008] [Indexed: 05/02/2023]
Abstract
Simultaneous saccharification and fermentation (SSF) is one process option for production of ethanol from lignocellulose. The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis, are the reduced end-product inhibition of the enzymatic hydrolysis, and the reduced investment costs. The principal drawbacks, on the other hand, are the need to find favorable conditions (e.g. temperature and pH) for both the enzymatic hydrolysis and the fermentation and the difficulty to recycle the fermenting organism and the enzymes. To satisfy the first requirement, the temperature is normally kept below 37 degrees C, whereas the difficulty to recycle the yeast makes it beneficial to operate with a low yeast concentration and at a high solid loading. In this review, we make a brief overview of recent experimental work and development of SSF using lignocellulosic feedstocks. Significant progress has been made with respect to increasing the substrate loading, decreasing the yeast concentration and co-fermentation of both hexoses and pentoses during SSF. Presently, an SSF process for e.g. wheat straw hydrolyzate can be expected to give final ethanol concentrations close to 40 g L-1 with a yield based on total hexoses and pentoses higher than 70%.
Collapse
Affiliation(s)
- Kim Olofsson
- Department of Chemical Engineering, Lund University, Box 124, 221 00 Lund, Sweden
| | - Magnus Bertilsson
- Department of Chemical Engineering, Lund University, Box 124, 221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
47
|
Hong J, Ye X, Zhang YHP. Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:12535-40. [PMID: 17988165 DOI: 10.1021/la7025686] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heterogeneous cellulose accessibility is an important substrate characteristic, but all methods for determining cellulose accessibility to the large-size cellulase molecule have some limitations. Characterization of cellulose accessibility to cellulase (CAC) is vital for better understanding of the enzymatic cellulose hydrolysis mechanism (Zhang and Lynd, Biotechnol. Bioeng. 2004, 88, 797-824; 2006, 94, 888-898). Quantitative determination of cellulose accessibility to cellulase (m2/g of cellulose) was established based on the Langmuir adsorption of the fusion protein containing a cellulose-binding module (CBM) and a green fluorescent protein (GFP). One molecule of the recombinant fusion protein occupied 21.2 cellobiose lattices on the 110 face of bacterial cellulose nanofibers. The CAC values of several cellulosic materials -- regenerated amorphous cellulose (RAC), bacterial microcrystalline cellulose (BMCC), Whatman No. 1 filter paper, fibrous cellulose powder (CF1), and microcrystalline cellulose (Avicel) -- were 41.9, 33.5, 9.76, 4.53, and 2.38 m2/g, respectively. The CAC value of amorphous cellulose made from Avicel was 17.6-fold larger than that of crystalline cellulose - Avicel. Avicel enzymatic hydrolysis proceeded with a transition from substrate excess to substrate limited. The declining hydrolysis rates over conversion are mainly attributed to a combination of substrate consumption and a decrease in substrate reactivity. Declining heterogeneous cellulose reactivity is significantly attributed to a loss of CAC where the easily hydrolyzed cellulose fraction is digested first.
Collapse
Affiliation(s)
- Jiong Hong
- Biological Systems Engineering Department, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
48
|
O'Dwyer JP, Zhu L, Granda CB, Holtzapple MT. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model. BIORESOURCE TECHNOLOGY 2007; 98:2969-77. [PMID: 17140790 DOI: 10.1016/j.biortech.2006.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 05/05/2023]
Abstract
The inhibition pattern was identified for a reaction system composed of Trichoderma reesei cellulase enzyme complex and lime-pretreated corn stover. Also, the glucose inhibition effect was quantified for the aforementioned reaction system over a range of enzyme loadings and substrate concentrations. Lastly, the range of substrate concentrations and enzyme loadings were identified in which the linear form of the simplified HCH-1 Model is valid. The HCH-1 Model is a modified Michaelis-Menton Model with non-competitive inhibition and the fraction of insoluble substrate available to bind with enzyme. With a high enzyme loading, the HCH-1 Model can be integrated and simplified in such a way that sugar conversion is linearly proportional to the logarithm of enzyme loading. A wide range of enzyme loadings (0.25-50 FPU/g dry biomass) and substrate concentrations (10-100g/L) were investigated. All experiments were conducted with an excess cellobiase loading to ensure the experimental results were not influenced by cellobiose inhibition. A non-competitive inhibition pattern was identified for the corn stover-cellulase reaction system, thereby validating the assumptions of the HCH-1 Model. At a substrate concentration of 10 g/L, glucose inhibition parameters of 0.986 and 0.979 were measured for enzyme loadings of 2 FPU/g dry biomass and 50 FPU/g dry biomass, respectively. At 5 FPU/g dry biomass, glucose inhibition parameters of 0.985 and 0.853 were measured for substrate concentrations of 10 and 100g/L, respectively. The linear form of the HCH-1 Model predicted biomass digestibility for lime-pretreated corn stover over an enzyme loading range of 0.25-50 FPU/g dry biomass and substrate concentration range of 10-100g/L.
Collapse
Affiliation(s)
- Jonathan P O'Dwyer
- Albemarle Corporation, Process Development Center, Gulf States Road, Baton Rouge, LA 70805, USA
| | | | | | | |
Collapse
|
49
|
Percival Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006; 24:452-81. [PMID: 16690241 DOI: 10.1016/j.biotechadv.2006.03.003] [Citation(s) in RCA: 665] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/06/2006] [Accepted: 03/11/2006] [Indexed: 10/24/2022]
Abstract
Cellulose is the most abundant renewable natural biological resource, and the production of biobased products and bioenergy from less costly renewable lignocellulosic materials is important for the sustainable development of human beings. A reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. Here, we review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations. Because there are no clear relationships between cellulase activities on soluble substrates and those on insoluble substrates, soluble substrates should not be used to screen or select improved cellulases for processing relevant solid substrates, such as plant cell walls. Cellulase improvement strategies based on directed evolution using screening on soluble substrates have been only moderately successful, and have primarily targeted improvement in thermal tolerance. Heterogeneity of insoluble cellulose, unclear dynamic interactions between insoluble substrate and cellulase components, and the complex competitive and/or synergic relationship among cellulase components limit rational design and/or strategies, depending on activity screening approaches. Herein, we hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
50
|
Wang L, Zhang Y, Gao P, Shi D, Liu H, Gao H. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 2006; 93:443-56. [PMID: 16196052 DOI: 10.1002/bit.20730] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An extended enzymatic hydrolysis of cotton fibers by crude cellulase from Trichoderma pseudokoningii S-38 is described with characterization of both the enzyme changes of activities and cellulose structure. The hydrolysis rates declined drastically during the early stage and then slowly and steadily throughout the whole hydrolysis process the same trend could be seen during the following re-hydrolysis process. Morphological and structural changes to the fibers, such as swelling, frequent surface erosion, and variation in the packing and orientation of microfibrils, were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Observation of X-ray diffraction and IR spectra suggests that the hydrolysis process results in a gradual increase in the relative intensity of the hydrogen bond network, and a gradual decrease in the apparent crystal size of cellulose. The I(alpha) crystal phase was hydrolyzed more easily than was the I(beta) crystal phase. Apart from the inactivation of CBHs activity, changes in the packing and arrangement of microfibrils and the structural heterogeneity of cellulose during hydrolysis could be responsible for the reduction in the rate of reaction, especially in its later stages. The results indicate that the enzymatic hydrolysis of cellulose occurs on the outer layer of the fiber surface and that, following this, the process continues in a sub-layer manner.
Collapse
Affiliation(s)
- Lushan Wang
- Key Laboratory of Microbiology, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|