1
|
Abdelaziz MA, Chen WH, Chang YW, Mindaye SA, Chen CC. Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain. PNAS NEXUS 2024; 3:pgae362. [PMID: 39228816 PMCID: PMC11370897 DOI: 10.1093/pnasnexus/pgae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2+) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2+ neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Mohamed Abbas Abdelaziz
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Zoology Department, Faculty of Science, Al-Azhar University Assiut Branch, Assiut 71524, Egypt
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Selomon Assefa Mindaye
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Fu YW, Jin SY, Li JT, Li XW, Gao TM, Yang JM. Mature astrocytes as source for astrocyte repopulation after deletion in the medial prefrontal cortex: Implications for depression. Glia 2024; 72:1646-1662. [PMID: 38801194 DOI: 10.1002/glia.24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.
Collapse
Affiliation(s)
- Yi-Wen Fu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Ting Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Chen Y, Luan P, Liu J, Wei Y, Wang C, Wu R, Wu Z, Jing M. Spatiotemporally selective astrocytic ATP dynamics encode injury information sensed by microglia following brain injury in mice. Nat Neurosci 2024; 27:1522-1533. [PMID: 38862791 DOI: 10.1038/s41593-024-01680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Injuries to the brain result in tunable cell responses paired with stimulus properties, suggesting the existence of intrinsic processes that encode and transmit injury information; however, the molecular mechanism of injury information encoding is unclear. Here, using ATP fluorescent indicators, we identify injury-evoked spatiotemporally selective ATP dynamics, Inflares, in adult mice of both sexes. Inflares are actively released from astrocytes and act as the internal representations of injury. Inflares encode injury intensity and position at their population level through frequency changes and are further decoded by microglia, driving changes in their activation state. Mismatches between Inflares and injury severity lead to microglia dysfunction and worsening of injury outcome. Blocking Inflares in ischemic stroke in mice reduces secondary damage and improves recovery of function. Our results suggest that astrocytic ATP dynamics encode injury information and are sensed by microglia.
Collapse
Affiliation(s)
- Yue Chen
- Chinese Institute for Brain Research, Beijing, China
| | - Pengwei Luan
- Chinese Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Liu
- Chinese Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yelan Wei
- Chinese Institute for Brain Research, Beijing, China
- Department of College of Physical Education and Sport, Beijing Normal University, Beijing, China
| | - Chenyu Wang
- Chinese Institute for Brain Research, Beijing, China
- Capital Medical University, Basic Medical Sciences, Beijing, China
| | - Rui Wu
- Chinese Institute for Brain Research, Beijing, China
- China Agricultural University, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
4
|
Tichauer JE, Lira M, Cerpa W, Orellana JA, Sáez JC, Rovegno M. Inhibition of astroglial hemichannels prevents synaptic transmission decline during spreading depression. Biol Res 2024; 57:39. [PMID: 38867288 PMCID: PMC11167948 DOI: 10.1186/s40659-024-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.
Collapse
Affiliation(s)
- Juan E Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Nguyen YND, Jeong JH, Sharma N, Tran NKC, Tran HYP, Dang DK, Park JH, Byun JK, Ko SK, Nah SY, Kim HC, Shin EJ. Ginsenoside Re protects against kainate-induced neurotoxicity in mice by attenuating mitochondrial dysfunction through activation of the signal transducers and activators of transcription 3 signaling. Free Radic Res 2024; 58:276-292. [PMID: 38613520 DOI: 10.1080/10715762.2024.2341885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice. KA-induced redox changes were more evident in mitochondrial fraction than in cytosolic fraction in the hippocampus of mice. GRe significantly attenuated KA-induced mitochondrial oxidative stress (i.e. increases in reactive oxygen species, 4-hydroxynonenal, and protein carbonyl) and mitochondrial dysfunction (i.e. the increase in intra-mitochondrial Ca2+ and the decrease in mitochondrial membrane potential). GRe or mitochondrial protectant cyclosporin A restored phospho-signal transducers and activators of transcription 3 (STAT3) and IL-6 levels reduced by KA, and the effects of GRe were reversed by the JAK2 inhibitor AG490 and the mitochondrial toxin 3-nitropropionic acid (3-NP). Thus, we used IL-6 knockout (KO) mice to investigate whether the interaction between STAT3 and IL-6 is involved in the GRe effects. Importantly, KA-induced reduction of manganese superoxide dismutase (SOD-2) levels and neurodegeneration (i.e. astroglial inhibition, microglial activation, and neuronal loss) were more prominent in IL-6 KO than in wild-type (WT) mice. These KA-induced detrimental effects were attenuated by GRe in WT and, unexpectedly, IL-6 KO mice, which were counteracted by AG490 and 3-NP. Our results suggest that GRe attenuates KA-induced neurodegeneration via modulating mitochondrial oxidative burden, mitochondrial dysfunction, and STAT3 signaling in mice.
Collapse
Affiliation(s)
- Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hoang-Yen Phi Tran
- Department of Physical Chemistry, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam, Ho Chi Minh City
| | - Duy-Khanh Dang
- Department of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho City, Viet Nam, Ho Chi Minh City
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyangju, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
6
|
Kim E, Kim H, Jedrychowski MP, Bakiasi G, Park J, Kruskop J, Choi Y, Kwak SS, Quinti L, Kim DY, Wrann CD, Spiegelman BM, Tanzi RE, Choi SH. Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling. Neuron 2023; 111:3619-3633.e8. [PMID: 37689059 PMCID: PMC10840702 DOI: 10.1016/j.neuron.2023.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) protein in the brain. Physical exercise has been shown to reduce Aβ burden in various AD mouse models, but the underlying mechanisms have not been elucidated. Irisin, an exercise-induced hormone, is the secreted form of fibronectin type-III-domain-containing 5 (FNDC5). Here, using a three-dimensional (3D) cell culture model of AD, we show that irisin significantly reduces Aβ pathology by increasing astrocytic release of the Aβ-degrading enzyme neprilysin (NEP). This is mediated by downregulation of ERK-STAT3 signaling. Finally, we show that integrin αV/β5 acts as the irisin receptor on astrocytes required for irisin-induced release of astrocytic NEP, leading to clearance of Aβ. Our findings reveal for the first time a cellular and molecular mechanism by which exercise-induced irisin attenuates Aβ pathology, suggesting a new target pathway for therapies aimed at the prevention and treatment of AD.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyeonwoo Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA; Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Grisilda Bakiasi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph Park
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jane Kruskop
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Younjung Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sang Su Kwak
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luisa Quinti
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christiane D Wrann
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Perez-Gianmarco L, Kukley M. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury. Cells 2023; 12:1842. [PMID: 37508505 PMCID: PMC10377788 DOI: 10.3390/cells12141842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one of the most important goals for the neurological recovery of patients after SCI, but it is also one of the most challenging goals. A key event after SCI is the formation of a glial scar around the lesion core, mainly comprised of astrocytes, NG2+-glia, and microglia. Traditionally, the glial scar has been regarded as detrimental to recovery because it may act as a physical barrier to axon regrowth and release various inhibitory factors. However, more and more evidence now suggests that the glial scar is beneficial for the surrounding spared tissue after SCI. Here, we review experimental studies that used genetic and pharmacological approaches to ablate specific populations of glial cells in rodent models of SCI in order to understand their functional role. The studies showed that ablation of either astrocytes, NG2+-glia, or microglia might result in disorganization of the glial scar, increased inflammation, extended tissue degeneration, and impaired recovery after SCI. Hence, glial cells and glial scars appear as important beneficial players after SCI.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, PC, Spain
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- IKERBASQUE Basque Foundation for Science, 48009 Bilbao, PC, Spain
| |
Collapse
|
9
|
Combination Therapy of Mesenchymal Stem Cell Transplantation and Astrocyte Ablation Improve Remyelination in a Cuprizone-Induced Demyelination Mouse Model. Mol Neurobiol 2022; 59:7278-7292. [PMID: 36175823 DOI: 10.1007/s12035-022-03036-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes display an active, dual, and controversial role in multiple sclerosis (MS), a chronic inflammatory demyelination disorder. However, mesenchymal stem cells (MSCs) can affect myelination in demyelinating disorders. This study aimed to investigate the effect of single and combination therapies of astrocyte ablation and MSC transplantation on remyelination in the cuprizone (CPZ) model of MS. C57BL/6 mice were fed 0.2% CPZ diet for 12 weeks. Astrocytes were ablated twice by L-a-aminoadipate (L-AAA) at the beginning of weeks 13 and 14 whereas MSCs were injected in the corpus callosum at the beginning of week 13. Motor coordination and balance were assessed through rotarod test whereas myelin content was evaluated by Luxol-fast blue (LFB) staining and transmission electron microscopy (TEM). Glial cells were assessed by immunofluorescence staining while mRNA expression was evaluated by quantitative real-time PCR. Combination treatment of ablation of astrocytes and MSC transplantation (CPZ + MSC + L-AAA) significantly decreased motor coordination deficits better than single treatments (CPZ + MSCs or CPZ + L-AAA), in comparison to CPZ mice. In addition, L-AAA and MSCs treatment significantly enhanced remyelination compared to CPZ group. Moreover, combination therapy caused a significant decrease in the number of GFAP+ and Iba-1+ cells, whereas oligodendrocytes were significantly increased in comparison to CPZ mice. Finally, MSC administration resulted in a significant upregulation of BDNF and NGF mRNA expression levels. Our data indicate that transient ablation of astrocytes along with MSCs treatment improve remyelination through enhancing oligodendrocytes and attenuating gliosis in a chronic demyelinating mouse model of MS.
Collapse
|
10
|
Hirata RYS, Oliveira RN, Silva MSCF, Armada-Moreira A, Vaz SH, Ribeiro FF, Sebastião AM, Lemes JA, de Andrade JS, Rosário BA, Céspedes IC, Viana MB. Platinum nanoparticle-based microreactors protect against the behavioral and neurobiological consequences of chronic stress exposure. Brain Res Bull 2022; 190:1-11. [PMID: 36089164 DOI: 10.1016/j.brainresbull.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022]
Abstract
Excitotoxicity is described as the exacerbated activation of glutamate AMPA and NMDA receptors that leads to neuronal damage, and ultimately to cell death. Astrocytes are responsible for the clearance of 80-90% of synaptically released glutamate, preventing excitotoxicity. Chronic stress renders neurons vulnerable to excitotoxicity and has been associated to neuropsychiatric disorders, i.e., anxiety. Microreactors containing platinum nanoparticles (Pt-NP) and glutamate dehydrogenase have shown in vitro activity against excitotoxicity. The purpose of the present study was to investigate the in vivo effects of these microreactors on the behavioral and neurobiological effects of chronic stress exposure. Rats were either unstressed or exposed for 2 weeks to an unpredictable chronic mild stress paradigm (UCMS), administered intra-ventral hippocampus with the microreactors (with or without the blockage of astrocyte functioning), and seven days later tested in the elevated T-maze (ETM; Experiment 1). The ETM allows the measurement of two defensive responses, avoidance and escape, in terms of psychopathology respectively related to generalized anxiety and panic disorder. Locomotor activity in an open field was also measured. Since previous evidence shows that stress inhibits adult neurogenesis, we evaluated the effects of the different treatments on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the dorsal and ventral hippocampus (Experiment 2). Results showed that UCMS induces anxiogenic effects, increases locomotion, and decreases the number of DCX cells in the dorsal and ventral hippocampus, effects that were counteracted by microreactor administration. This is the first study to demonstrate the in vivo efficacy of Pt-NP against the behavioral and neurobiological effects of chronic stress exposure.
Collapse
Affiliation(s)
- Rafael Y S Hirata
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Roberto N Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Mariana S C F Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Adam Armada-Moreira
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, 602 21 Norrköping, Sweden
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jéssica A Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - José S de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Bárbara A Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Isabel C Céspedes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, 04023-900 São Paulo, SP, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil.
| |
Collapse
|
11
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
12
|
Lopes CR, Amaral IM, Pereira MF, Lopes JP, Madeira D, Canas PM, Cunha RA, Agostinho P. Impact of blunting astrocyte activity on hippocampal synaptic plasticity in a mouse model of early Alzheimer's disease based on amyloid-β peptide exposure. J Neurochem 2022; 160:556-567. [PMID: 35043392 DOI: 10.1111/jnc.15575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
Abstract
Amyloid-β peptides (Aβ) accumulate in the brain since early Alzheimer's disease (AD) and dysregulate hippocampal synaptic plasticity, the neurophysiological basis of memory. Although the relationship between long-term potentiation (LTP) and memory processes is well established, there is also evidence that long-term depression (LTD) may be crucial for learning and memory. Alterations in synaptic plasticity, namely in LTP, can be due to communication failures between astrocytes and neurons; however, little is known about astrocytes´ ability to control hippocampal LTD, particularly in AD-like conditions. We now aimed to test the involvement of astrocytes in changes of hippocampal LTP and LTD triggered by Aβ1-42 , taking advantage of L-α-aminoadipate (L-AA), a gliotoxin that blunts astrocytic function. The effects of Aβ1-42 exposure was tested in two different experimental paradigms: ex vivo (hippocampal slices superfusion) and in vivo (intracerebroventricular injection), which were previously validated to impair memory and hippocampal synaptic plasticity, two features of early AD. Blunting astrocytic function with L-AA reduced LTP and LTD amplitude in hippocampal slices from control mice but the effect on LTD was less evident, suggesting that astrocytes have a greater influence on LTP than on LTD under non-pathological conditions. However, under AD conditions, blunting astrocytes did not consistently alter the reduction of LTP magnitude and reverted the LTD-to-LTP shift caused by both ex vivo and in vivo Aβ1-42 exposure. This shows that astrocytes were responsible for the hippocampal LTD-to-LTP shift observed in early AD conditions, reinforcing the interest of strategies targeting astrocytes to restore memory and synaptic plasticity deficits present in early AD.
Collapse
Affiliation(s)
- Cátia R Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Inês M Amaral
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | | | - João P Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Daniela Madeira
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Portugal
| |
Collapse
|
13
|
Xu Q, Ford NC, He S, Huang Q, Anderson M, Chen Z, Yang F, Crawford LK, Caterina MJ, Guan Y, Dong X. Astrocytes contribute to pain gating in the spinal cord. SCIENCE ADVANCES 2021; 7:eabi6287. [PMID: 34730998 PMCID: PMC8565904 DOI: 10.1126/sciadv.abi6287] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Various pain therapies have been developed on the basis of the gate control theory of pain, which postulates that nonpainful sensory inputs mediated by large-diameter afferent fibers (Aβ-fibers) can attenuate noxious signals relayed to the brain. To date, this theory has focused only on neuronal mechanisms. Here, we identified an unprecedented function of astrocytes in the gating of nociceptive signals transmitted by neurokinin 1 receptor–positive (NK1R+) projection neurons in the spinal cord. Electrical stimulation of peripheral Aβ-fibers in naïve mice activated spinal astrocytes, which in turn induced long-term depression (LTD) in NK1R+ neurons and antinociception through activation of endogenous adenosinergic mechanisms. Suppression of astrocyte activation by pharmacologic, chemogenetic, and optogenetic manipulations blocked the induction of LTD in NK1R+ neurons and pain inhibition by Aβ-fiber stimulation. Collectively, our study introduces astrocytes as an important component of pain gating by activation of Aβ-fibers, which thus exert nonneuronal control of pain.
Collapse
Affiliation(s)
- Qian Xu
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Anderson
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - LaTasha K. Crawford
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J. Caterina
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Zhao J, Blaeser AS, Levy D. Astrocytes mediate migraine-related intracranial meningeal mechanical hypersensitivity. Pain 2021; 162:2386-2396. [PMID: 34448752 PMCID: PMC8406410 DOI: 10.1097/j.pain.0000000000002229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The genesis of the headache phase in migraine with aura is thought to be mediated by cortical spreading depression (CSD) and the subsequent activation and sensitization of primary afferent neurons that innervate the intracranial meninges and their related large vessels. Yet, the exact mechanisms underlying this peripheral meningeal nociceptive response remain poorly understood. We investigated the relative contribution of cortical astrocytes to CSD-evoked meningeal nociception using extracellular single-unit recording of meningeal afferent activity and 2-photon imaging of cortical astrocyte calcium activity, in combination with 2 pharmacological approaches to inhibit astrocytic function. We found that fluoroacetate and l-α-aminoadipate, which inhibit astrocytes through distinct mechanisms, suppressed CSD-evoked afferent mechanical sensitization, but did not affect afferent activation. Pharmacological inhibition of astrocytic function, which ameliorated meningeal afferents' sensitization, reduced basal astrocyte calcium activity but had a minimal effect on the astrocytic calcium wave during CSD. We propose that calcium-independent signaling in cortical astrocytes plays an important role in driving the sensitization of meningeal afferents and the ensuing intracranial mechanical hypersensitivity in migraine with aura.
Collapse
Affiliation(s)
- Jun Zhao
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Andrew S. Blaeser
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dan Levy
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Al-Shekaili HH, Petkau TL, Pena I, Lengyell TC, Verhoeven-Duif NM, Ciapaite J, Bosma M, van Faassen M, Kema IP, Horvath G, Ross C, Simpson EM, Friedman JM, van Karnebeek C, Leavitt BR. A novel mouse model for pyridoxine-dependent epilepsy due to antiquitin deficiency. Hum Mol Genet 2021; 29:3266-3284. [PMID: 32969477 DOI: 10.1093/hmg/ddaa202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN. To investigate potential pathophysiological mechanisms associated with ALDH7A1 deficiency, we generated a transgenic mouse strain with constitutive genetic ablation of Aldh7a1. We undertook extensive biochemical characterization of Aldh7a1-KO mice consuming a low lysine/high PN diet. Results showed that KO mice accumulated high concentrations of upstream lysine metabolites including ∆1-piperideine-6-carboxylic acid (P6C), α-aminoadipic semialdehyde (α-AASA) and pipecolic acid both in brain and liver tissues, similar to the biochemical picture in ALDH7A1-deficient patients. We also observed preliminary evidence of a widely deranged amino acid profile and increased levels of methionine sulfoxide, an oxidative stress biomarker, in the brains of KO mice, suggesting that increased oxidative stress may be a novel pathobiochemical mechanism in ALDH7A1 deficiency. KO mice lacked epileptic seizures when fed a low lysine/high PN diet. Switching mice to a high lysine/low PN diet led to vigorous seizures and a quick death in KO mice. Treatment with PN controlled seizures and improved survival of high-lysine/low PN fed KO mice. This study expands the spectrum of biochemical abnormalities that may be associated with ALDH7A1 deficiency and provides a proof-of-concept for the utility of the model to study PDE pathophysiology and to test new therapeutics.
Collapse
Affiliation(s)
- Hilal H Al-Shekaili
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Izabella Pena
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Jolita Ciapaite
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriella Horvath
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Colin Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jan M Friedman
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Pereira MF, Amaral IM, Lopes C, Leitão C, Madeira D, Lopes JP, Gonçalves FQ, Canas PM, Cunha RA, Agostinho P. l-α-aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory. FASEB J 2021; 35:e21726. [PMID: 34196433 DOI: 10.1096/fj.202100336r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.
Collapse
Affiliation(s)
| | - Inês M Amaral
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Cátia Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Catarina Leitão
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Daniela Madeira
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - João P Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | | | - Paula M Canas
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| |
Collapse
|
17
|
Broadhead MJ, Miles GB. A common role for astrocytes in rhythmic behaviours? Prog Neurobiol 2021; 202:102052. [PMID: 33894330 DOI: 10.1016/j.pneurobio.2021.102052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023]
Abstract
Astrocytes are a functionally diverse form of glial cell involved in various aspects of nervous system infrastructure, from the metabolic and structural support of neurons to direct neuromodulation of synaptic activity. Investigating how astrocytes behave in functionally related circuits may help us understand whether there is any conserved logic to the role of astrocytes within neuronal networks. Astrocytes are implicated as key neuromodulatory cells within neural circuits that control a number of rhythmic behaviours such as breathing, locomotion and circadian sleep-wake cycles. In this review, we examine the evidence that astrocytes are directly involved in the regulation of the neural circuits underlying six different rhythmic behaviours: locomotion, breathing, chewing, gastrointestinal motility, circadian sleep-wake cycles and oscillatory feeding behaviour. We discuss how astrocytes are integrated into the neuronal networks that regulate these behaviours, and identify the potential gliotransmission signalling mechanisms involved. From reviewing the evidence of astrocytic involvement in a range of rhythmic behaviours, we reveal a heterogenous array of gliotransmission mechanisms, which help to regulate neuronal networks. However, we also observe an intriguing thread of commonality, in the form of purinergic gliotransmission, which is frequently utilised to facilitate feedback inhibition within rhythmic networks to constrain a given behaviour within its operational range.
Collapse
Affiliation(s)
- Matthew J Broadhead
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
18
|
Davis N, Mota BC, Stead L, Palmer EOC, Lombardero L, Rodríguez-Puertas R, de Paola V, Barnes SJ, Sastre M. Pharmacological ablation of astrocytes reduces Aβ degradation and synaptic connectivity in an ex vivo model of Alzheimer's disease. J Neuroinflammation 2021; 18:73. [PMID: 33731156 PMCID: PMC7972219 DOI: 10.1186/s12974-021-02117-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer's disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear. METHODS To explore the role of astrocytes on Aβ pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aβ42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h. RESULTS Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aβ levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aβ due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aβ in culture media compared to sections treated with Aβ alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aβ clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aβ compared to vehicle control. CONCLUSIONS Astrocytes play a protective role in AD by aiding Aβ clearance and supporting synaptic plasticity.
Collapse
Affiliation(s)
- Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Bibiana C Mota
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Larissa Stead
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Emily O C Palmer
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Laura Lombardero
- Department of Pharmacology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | | | - Vincenzo de Paola
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
| | - Samuel J Barnes
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
- Imperial College UK-Dementia Research Institute, Hammersmith Hospital, London, W12 0NN, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.
| |
Collapse
|
19
|
Tetragonia tetragonioides Relieves Depressive-Like Behavior through the Restoration of Glial Loss in the Prefrontal Cortex. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8888841. [PMID: 33628324 PMCID: PMC7895589 DOI: 10.1155/2021/8888841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 11/18/2022]
Abstract
Tetragonia tetragonioides, which is a halophyte and grows widely in Asian-Pacific regions, has been used for the treatment of digestive disorders in traditional oriental medicine. This study examined the potential antidepressant effect of Tetragonia tetragonioides in an astroglial degeneration model of depression, which was established based on the postmortem study of depressive patients' brain presenting diminished astrocytes in the prefrontal cortex. C57BL/6 male mice were exposed to glial ablation in the prefrontal cortex by the administration of the gliotoxin, L-alpha-aminoadipic acid (L-AAA) to induce depression. Tetragonia tetragonioides at doses of 100 mg/kg and 300 mg/kg, imipramine at a dose of 15 mg/kg, and distilled water were orally administrated to mice for 18 days. Behavioral tests including the open field test (OFT), sucrose preference test (SPT), forced swimming test (FST), and tail suspension test (TST) were carried out after 2 days of L-AAA injection. The expression levels of GFAP and NeuN in the prefrontal cortex were determined by immunohistochemistry. Mice subjected to glial ablation in the prefrontal cortex displayed decreased sucrose consumption in SPT and increased immobility time in FST and TST. Treatment with imipramine and Tetragonia tetragonioides remarkably ameliorated the behavioral despair induced by L-AAA. In addition, immunohistochemistry analysis showed that treatment with Tetragonia tetragonioides significantly restored the glial loss as indicated by the elevated GFAP expression level. These findings suggest that Tetragonia tetragonioides exerts an antidepressant effect through the restoration of glial loss under conditions of depression and can be a candidate for an antidepressant agent.
Collapse
|
20
|
Madadi S, Pasbakhsh P, Tahmasebi F, Mortezaee K, Khanehzad M, Boroujeni FB, Noorzehi G, Kashani IR. Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metab Brain Dis 2019; 34:593-603. [PMID: 30652255 DOI: 10.1007/s11011-019-0385-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Chronic demyelination in the central nervous system (CNS) is accompanied by an increase in the number of reactive astrocytes and astrogliosis. There are controversial issues regarding astrocytes and their roles in demyelinating diseases in particular for multiple sclerosis (MS). We aimed to evaluate possible roles for pharmacologic astrocyte ablation strategy using La-aminoadipate (L-AAA) on remyelination in a cuprizone model of demyelination. Male C57BL/6 mice were fed with 0.2% cuprizone for 12 weeks followed by 2-week administration of L-AAA through a cannula inserted 1 mm above the corpus callosum. Rotarod test showed a significant decrease in the range of motor coordination deficits after ablation of astrocytes in mice receiving cuprizone. Results of Luxol fast blue (LFB) and transmission electron microscopy (TEM) for evaluation of myelin content within the corpus callosum revealed a noticeable rise in the percentage of myelinated areas and in the number of myelinated fibers after L-AAA administration in the animals. Astrocyte ablation reduced protein expressions for GFAP (an astrocyte marker) and Iba-1 (a microglial marker), but increased expression of Olig2 (an oligodendrocyte marker) assessed by immunofluorescence. Finally, expression of genes related to recruitment of microglia (astrocyte chemokines CXCL10 and CXCL12) and suppression of oligodendrocyte progenitor cell (OPC) differentiation (astrocyte peptides ET-1 and EDNRB) showed a considerable decrease after administration of L-AAA (for all p < 0.05). These results are indicative of improved remyelination after ablation of astrocytes possibly through hampering microgliosis and astrogliosis and a further rise in the number of matured Olig2+ cells.
Collapse
Affiliation(s)
- Soheila Madadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Fatemeh Beigi Boroujeni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran
| | - Golaleh Noorzehi
- Laboratory Technology Faculty, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, Iran.
| |
Collapse
|
21
|
David J, Gormley S, McIntosh A, Kebede V, Thuery G, Varidaki A, Coffey E, Harkin A. L-alpha-amino adipic acid provokes depression-like behaviour and a stress related increase in dendritic spine density in the pre-limbic cortex and hippocampus in rodents. Behav Brain Res 2019; 362:90-102. [DOI: 10.1016/j.bbr.2019.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
|
22
|
O'Neill E, Chiara Goisis R, Haverty R, Harkin A. L-alpha-aminoadipic acid restricts dopaminergic neurodegeneration and motor deficits in an inflammatory model of Parkinson's disease in male rats. J Neurosci Res 2019; 97:804-816. [PMID: 30924171 DOI: 10.1002/jnr.24420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is a contributory factor underlying the progressive nature of dopaminergic neuronal loss within the substantia nigra (SN) of Parkinson's disease (PD) patients, albeit the role of astrocytes in this process has been relatively unexplored to date. Here, we aimed to investigate the impact of midbrain astrocytic dysfunction in the pathophysiology of intra-nigral lipopolysaccharide (LPS)-induced experimental Parkinsonism in male Wistar rats via simultaneous co-injection of the astrocytic toxin L-alpha-aminoadipic acid (L-AAA). Simultaneous intra-nigral injection of L-AAA attenuated the LPS-induced loss of tyrosine hydroxylase-positive (TH+ ) dopamine neurons in the SNpc and suppressed the affiliated degeneration of TH+ dopaminergic nerve terminals in the striatum. L-AAA also repressed LPS-induced nigrostriatal dopamine depletion and provided partial protection against ensuing motor dysfunction. L-AAA abrogated intra-nigral LPS-induced glial fibrillary acidic protein-positive (GFAP+ ) reactive astrogliosis and attenuated the LPS-mediated increases in nigral S100β expression levels in a time-dependent manner, findings which were associated with reduced ionized calcium binding adaptor molecule 1-positive (Iba1+ ) microgliosis, thus indicating a role for reactive astrocytes in sustaining microglial activation at the interface of dopaminergic neuronal loss in response to an immune stimulus. These results indicate that midbrain astrocytic dysfunction restricts the development of dopaminergic neuropathology and motor impairments in rats, highlighting reactive astrocytes as key contributors in inflammatory associated degeneration of the nigrostriatal tract.
Collapse
Affiliation(s)
- Eoin O'Neill
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Rosa Chiara Goisis
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Ruth Haverty
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
23
|
Mai HN, Nguyen LTT, Shin EJ, Kim DJ, Jeong JH, Chung YH, Lei XG, Sharma N, Jang CG, Nabeshima T, Kim HC. Astrocytic mobilization of glutathione peroxidase-1 contributes to the protective potential against cocaine kindling behaviors in mice via activation of JAK2/STAT3 signaling. Free Radic Biol Med 2019; 131:408-431. [PMID: 30592974 DOI: 10.1016/j.freeradbiomed.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Compelling evidence indicates that oxidative stress contributes to cocaine neurotoxicity. The present study was performed to elucidate the role of the glutathione peroxidase-1 (GPx-1) in cocaine-induced kindling (convulsive) behaviors in mice. Cocaine-induced convulsive behaviors significantly increased GPx-1, p-IkB, and p-JAK2/STAT3 expression, and oxidative burdens in the hippocampus of mice. There was no significant difference in cocaine-induced p-IkB expression between non-transgenic (non-TG) and GPx-1 overexpressing transgenic (GPx-1 TG) mice, but significant differences were observed in cocaine-induced p-JAK2/STAT3 expression and oxidative stress between non-TG and GPx-1 TG mice. Cocaine-induced glial fibrillary acidic protein (GFAP)-labeled astrocytic level was significantly higher in the hippocampus of GPx-1 TG mice. Triple-labeling immunocytochemistry indicated that GPx-1-, p-STAT3-, and GFAP-immunoreactivities were co-localized in the same cells. AG490, a JAK2/STAT3 inhibitor, but not pyrrolidone dithiocarbamate, an NFκB inhibitor, significantly counteracted GPx-1-mediated protective potentials (i.e., anticonvulsant-, antioxidant-, antiapoptotic-effects). Genetic overexpression of GPx-1 significantly attenuated proliferation of Iba-1-labeled microglia induced by cocaine in mice. However, AG490 or astrocytic inhibition (by GFAP antisense oligonucleotide and α-aminoadipate) significantly increased Iba-1-labeled microglial activity and M1 phenotype microglial mRNA levels, reflecting that proinflammatory potentials were mediated by AG490 or astrocytic inhibition. This microglial activation was less pronounced in GPx-1 TG than in non-TG mice. Furthermore, either AG490 or astrocytic inhibition significantly counteracted GPx-1-mediated protective potentials. Therefore, our results suggest that astrocytic modulation between GPx-1 and JAK2/STAT3 might be one of the underlying mechanisms for protecting against convulsive neurotoxicity induced by cocaine.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Lan Thuy Ty Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi 470-1192, Japan; Aino University, Ibaraki 576-0012, Japan; Japanese Drug Organization of Appropriate and Research, Nagoya 468-0069, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
24
|
Sun C, Fukushi Y, Wang Y, Yamamoto S. Astrocytes Protect Neurons in the Hippocampal CA3 Against Ischemia by Suppressing the Intracellular Ca 2+ Overload. Front Cell Neurosci 2018; 12:280. [PMID: 30197589 PMCID: PMC6118169 DOI: 10.3389/fncel.2018.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023] Open
Abstract
In the hippocampus, delayed neuronal death is normally seen in neurons of the CA1 region but not in those of the CA3 region. Astrocytes have been reported to play multiple supporting or pathological roles in neuronal functioning. While evidence indicates that astrocytes could exert neuroprotective effects following ischemia, the possible underlying mechanisms remain unclear. We aimed to investigate the roles of astrocytes in the process of delayed neuronal death following transient forebrain ischemia. L-α-aminoadipic acid (L-α-AAA), an astrocyte-selective gliotoxin, was injected into the hippocampal CA3 region of rats through a cranial window to selectively damage astrocytes. Immunofluorescence staining of glial fibrillary acidic protein (GFAP) was used to evaluate the effect of L-α-AAA on astrocyte numbers. Three days after the L-α-AAA injection, transient forebrain ischemia was induced by a modification of the four-vessel occlusion procedure. Seven days after transient forebrain ischemia, hematoxylin-eosin staining was performed to reveal the morphology of hippocampal pyramidal neurons. In rats with ischemia and reperfusion, regional cerebral blood flow (rCBF) and change in intracellular Ca2+ concentration ([Ca2+]i) were separately measured in CA1 and CA3 regions. L-α-AAA injection significantly decreased the number of astrocytes in CA3, but did not affect the pattern of rCBF changes upon ischemia/reperfusion. Seven days after transient forebrain ischemia, in rats receiving L-α-AAA, delayed neuronal death comparable with that in CA1 was observed in the CA3 region. In addition, the pattern of increase in [Ca2+]i due to transient forebrain ischemia was completely changed in the hippocampal CA3. The loss of astrocytes induced a persistent increase in [Ca2+]i in the CA3 region following transient ischemia, similar to what is observed in the CA1 region. Our study indicates that astrocytes in the hippocampal CA3 region exert neuroprotective effects following transient forebrain ischemia and act by suppressing the intracellular Ca2+ overload. Furthermore, our study will most likely provide a new therapeutic strategy for brain ischemic diseases, targeted to astrocytes.
Collapse
Affiliation(s)
- Chuanqi Sun
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fukushi
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yong Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Seiji Yamamoto
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
25
|
Brockett AT, Kane GA, Monari PK, Briones BA, Vigneron PA, Barber GA, Bermudez A, Dieffenbach U, Kloth AD, Buschman TJ, Gould E. Evidence supporting a role for astrocytes in the regulation of cognitive flexibility and neuronal oscillations through the Ca2+ binding protein S100β. PLoS One 2018; 13:e0195726. [PMID: 29664924 PMCID: PMC5903631 DOI: 10.1371/journal.pone.0195726] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is important for cognitive flexibility, the ability to switch between two task-relevant dimensions. Changes in neuronal oscillations and alterations in the coupling across frequency ranges have been correlated with attention and cognitive flexibility. Here we show that astrocytes in the mPFC of adult male Sprague Dawley rats, participate in cognitive flexibility through the astrocyte-specific Ca2+ binding protein S100β, which improves cognitive flexibility and increases phase amplitude coupling between theta and gamma oscillations. We further show that reduction of astrocyte number in the mPFC impairs cognitive flexibility and diminishes delta, alpha and gamma power. Conversely, chemogenetic activation of astrocytic intracellular Ca2+ signaling in the mPFC enhances cognitive flexibility, while inactivation of endogenous S100β among chemogenetically activated astrocytes in the mPFC prevents this improvement. Collectively, our work suggests that astrocytes make important contributions to cognitive flexibility and that they do so by releasing a Ca2+ binding protein which in turn enhances coordinated neuronal oscillations.
Collapse
Affiliation(s)
- Adam T Brockett
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Gary A Kane
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Patrick K Monari
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Brandy A Briones
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Pierre-Antoine Vigneron
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Gabriela A Barber
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Andres Bermudez
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Uma Dieffenbach
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Alexander D Kloth
- Department of Cell Biology and Physiology and Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Timothy J Buschman
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
26
|
Liu F, Wu J, Gong Y, Wang P, Zhu L, Tong L, Chen X, Ling Y, Huang C. Harmine produces antidepressant-like effects via restoration of astrocytic functions. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28625859 DOI: 10.1016/j.pnpbp.2017.06.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Depression is a world-wide disease with no effective therapeutic methods. Increasing evidence indicates that astrocytic pathology contributes to the formation of depression. In this study, we investigated the effects of harmine, a natural β-carboline alkaloid and potent hallucinogen, known to modulate astrocytic glutamate transporters, on chronic unpredictable stress (CUS)-induced depressive-like behaviors and astrocytic dysfunctions. Results showed that harmine treatment (10, 20mg/kg) protected the mice against the CUS-induced increases in the immobile time in the tail suspension test (TST) and forced swimming test (FST), and also reversed the reduction in sucrose intake in the sucrose preference experiment. Harmine treatment (20mg/kg) prevented the reductions in brain-derived neurotrophic factor (BDNF) protein levels and hippocampal neurogenesis induced by CUS. In addition, harmine treatment (20mg/kg) increased the protein expression levels of glutamate transporter 1 (GLT-1) and prevented the CUS-induced decreases in glial fibrillary acidic protein (GFAP) protein expressions in the prefrontal cortex and hippocampus, suggesting that restoration of astrocytic functions may be a potential mechanism underlying the antidepressant-like effects of harmine. This opinion was proved by the results that administration of mice with l-Alpha-Aminoadipic Acid (L-AAA), a gliotoxin specific for astrocytes, attenuated the antidepressant-like effects of harmine, and prevented the improvement effects of harmine on BDNF protein levels and hippocampal neurogenesis. These results provide further evidence to confirm that astrocytic dysfunction contributes critically to the development of depression and that harmine exerts antidepressant-like effects likely through restoration of astrocytic functions.
Collapse
Affiliation(s)
- Fengguo Liu
- Department of Neurology, Danyang People's Hospital, #2 Xinmin Western Road, Danyang 212300, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Yu Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Peng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Lei Zhu
- Department of Pharmacy, First People's Hospital of Yancheng, Yulong Western Road, Yancheng 224006, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xiangfan Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yong Ling
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
27
|
Jäkel S, Dimou L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Front Cell Neurosci 2017; 11:24. [PMID: 28243193 PMCID: PMC5303749 DOI: 10.3389/fncel.2017.00024] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 01/06/2023] Open
Abstract
Glial cells, consisting of microglia, astrocytes, and oligodendrocyte lineage cells as their major components, constitute a large fraction of the mammalian brain. Originally considered as purely non-functional glue for neurons, decades of research have highlighted the importance as well as further functions of glial cells. Although many aspects of these cells are well characterized nowadays, the functions of the different glial populations in the brain under both physiological and pathological conditions remain, at least to a certain extent, unresolved. To tackle these important questions, a broad range of depletion approaches have been developed in which microglia, astrocytes, or oligodendrocyte lineage cells (i.e., NG2-glia and oligodendrocytes) are specifically ablated from the adult brain network with a subsequent analysis of the consequences. As the different glial populations are very heterogeneous, it is imperative to specifically ablate single cell populations instead of inducing cell death in all glial cells in general. Thanks to modern genetic manipulation methods, the approaches can now directly be targeted to the cell type of interest making the ablation more specific compared to general cell ablation approaches that have been used earlier on. In this review, we will give a detailed summary on different glial ablation studies, focusing on the adult mouse central nervous system and the functional readouts. We will also provide an outlook on how these approaches could be further exploited in the future.
Collapse
Affiliation(s)
- Sarah Jäkel
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians UniversityMunich, Germany; MRC Centre for Regenerative Medicine, University of EdinburghEdinburgh, UK
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians UniversityMunich, Germany; Munich Cluster for Systems NeurologyMunich, Germany; Molecular and Translational Neuroscience, Department of Neurology, University of UlmUlm, Germany
| |
Collapse
|
28
|
Liu B, Su M, Tang S, Zhou X, Zhan H, Yang F, Li W, Li T, Xie J. Spinal astrocytic activation contributes to mechanical allodynia in a rat model of cyclophosphamide-induced cystitis. Mol Pain 2016; 12:12/0/1744806916674479. [PMID: 27852964 PMCID: PMC5117243 DOI: 10.1177/1744806916674479] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that glial cells play an important role in the generation and maintenance of neuropathic pain. Activated glial cells produce numerous mediators such as proinflammatory cytokines that facilitate neuronal activity and synaptic plasticity. Similarly, bladder pain syndrome/interstitial cystitis shares many characteristics of neuropathic pain. However, related report on the involvement of spinal glia in bladder pain syndrome/interstitial cystitis-associated pathological pain and the underlying mechanisms are still lacking. The present study investigated spinal glial activation and underlying molecular mechanisms in a rat model of bladder pain syndrome/interstitial cystitis. RESULTS A rat model of bladder pain syndrome/interstitial cystitis was established via systemic injection with cyclophosphamide. Mechanical allodynia was tested with von Frey monofilaments and up-down method. Moreover, Western blots and double immunofluorescence were used to detect the expression and location of glial fibrillary acidic protein, OX42/Iba1, P-P38, NeuN, interleukin (IL)-1β, phosphorylation of N-methyl-D-aspartate receptor 1 (P-NR1), and IL-1 receptor I (IL-1RI) in the L6-S1 spinal cord. We found that glial fibrillary acidic protein rather than OX42/Iba1 or P-P38 was significantly increased in the spinal cord of cyclophosphamide-induced cystitis. L-alpha-aminoadipate but not minocycline markedly attenuated the allodynia. Furthermore, we found that spinal IL-1β was dramatically increased in cyclophosphamide-induced cystitis, and activated astrocytes were the only source of IL-1β release, which contributed to allodynia in cystitis rats. Besides, spinal P-NR1 was statistically increased in cyclophosphamide-induced cystitis and only localized in IL-1RI positive neurons in spinal dorsal horn. Additionally, NR antagonist significantly attenuated the cystitis-induced pain. Interestingly, the time course of the P-NR1 expression paralleled to that of IL-1β or glial fibrillary acidic protein. CONCLUSIONS Our results demonstrated that astrocytic activation but not microglial activation contributed to the allodynia in cyclophosphamide-induced cystitis and IL-1β released from astrocytes might bind to its endogenous receptor on the neurons inducing the phosphorylation of NR1 subunit, leading to sensory neuronal hyperexcitability and pathological pain.
Collapse
Affiliation(s)
- Bolong Liu
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital·and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - ShaoJun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Wenbiao Li
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Tengcheng Li
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Juncong Xie
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Sun H, Li R, Xu S, Liu Z, Ma X. Hypothalamic Astrocytes Respond to Gastric Mucosal Damage Induced by Restraint Water-Immersion Stress in Rat. Front Behav Neurosci 2016; 10:210. [PMID: 27847472 PMCID: PMC5088369 DOI: 10.3389/fnbeh.2016.00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Restraint water-immersion stress (RWIS), a compound stress model, includes both psychological and physical stimulation. Studies have shown that neurons in the hypothalamus are involved in RWIS, but the role of astrocytes and the interactions between astrocytes and neurons in RWIS are not clear. Here, we tested our hypothesis that hypothalamus astrocytes are involved in RWIS and interact with neurons to regulate gastric mucosal damage induced by RWIS. The expression of Glial fibrillary acidic protein (GFAP) and c-Fos in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) significantly increased following the RWIS. GFAP and c-Fos expression are similar in the temporal pattern, peaked at 1 h after the RWIS, then reduced gradually, and reached a maximal level again at 5 h which show “double-peak” characteristics. Intracerebroventricular administration of astroglial toxin L-a-aminoadipate (L-AA) and c-Fos antisense oligodeoxy nucleotides (ASO) both decreased RWIS-induced gastric mucosal damage. Results of immunohistochemistry assay revealed that both L-AA and ASO decreased the activation of astrocytes and neurons in the hypothalamus by RWIS. These results showed that hypothalamus neuron-astrocyte “network” involved in gastric mucosal damage induced by RWIS. This study may offer theoretical basis for some novel therapeutic strategies for RWIS-induced gastric ulcers.
Collapse
Affiliation(s)
- Haiji Sun
- College of Life Science, Shandong Normal University Jinan, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, 302 Hospital of PLA Beijing, China
| | - Shiguo Xu
- College of Life Science, Shandong Normal University Jinan, China
| | - Zhen Liu
- College of Life Science, Shandong Normal University Jinan, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University Jinan, China
| |
Collapse
|
30
|
Wang X, Su J, Ding J, Han S, Ma W, Luo H, Hughes G, Meng Z, Yin Y, Wang Y, Li J. α-Aminoadipic acid protects against retinal disruption through attenuating Müller cell gliosis in a rat model of acute ocular hypertension. Drug Des Devel Ther 2016; 10:3449-3457. [PMID: 27799744 PMCID: PMC5076852 DOI: 10.2147/dddt.s105362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Ocular hypertension is an important risk factor for glaucoma. The purpose of this study was to investigate the gliotoxic effects of α-aminoadipic acid (AAA) in a rat model of AOH and its underlying mechanisms. MATERIALS AND METHODS In the rat model of acute ocular hypertension (AOH), intraocular pressure was increased to 110 mmHg for 60 minutes. Animals were divided into four groups: sham operation (Ctrl), AOH, AOH + phosphate-buffered saline (PBS), and AOH + AAA. Cell apoptosis in the ganglion cell layer was detected with the terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL) assay, and retinal ganglion cells (RGCs) immunostained with Thy-1 were counted. Müller cell activation was detected using immunostaining with glutamine synthetase and glial fibrillary acidic protein. Tumor necrosis factor-α (TNF-α) was examined using Western blot. RESULTS In the rat model of AOH, cell apoptosis was induced in the ganglion cell layer and the number of RGCs was decreased. Müller cell gliosis in the retinas of rats was induced, and retinal protein levels of TNF-α were increased. Intravitreal treatment of AAA versus PBS control attenuated these retinal abnormalities to show protective effects in the rat model of AOH. CONCLUSION In the retinas of the rat model of AOH, AAA treatment attenuated retinal apoptosis in the ganglion cell layer and preserved the number of RGCs, likely through the attenuation of Müller cell gliosis and suppression of TNF-α induction. Our observations suggest that AAA might be a potential therapeutic target in glaucoma.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Ophthalmology, Beijing Friendship Hospital; Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Jier Su
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing; Ningbo College of Health Sciences, Ningbo
| | - Jingwen Ding
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing
| | - Song Han
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Wei Ma
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing; Beijing Stomatological Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hong Luo
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| | - Guy Hughes
- University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Zhaoyang Meng
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Yi Yin
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital
| | - Junfa Li
- Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, Beijing
| |
Collapse
|
31
|
Johnson K, Barragan J, Bashiruddin S, Smith CJ, Tyrrell C, Parsons MJ, Doris R, Kucenas S, Downes GB, Velez CM, Schneider C, Sakai C, Pathak N, Anderson K, Stein R, Devoto SH, Mumm JS, Barresi MJF. Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia 2016; 64:1170-89. [PMID: 27100776 PMCID: PMC4918407 DOI: 10.1002/glia.22990] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 11/12/2022]
Abstract
Radial glial cells are presumptive neural stem cells (NSCs) in the developing nervous system. The direct requirement of radial glia for the generation of a diverse array of neuronal and glial subtypes, however, has not been tested. We employed two novel transgenic zebrafish lines and endogenous markers of NSCs and radial glia to show for the first time that radial glia are essential for neurogenesis during development. By using the gfap promoter to drive expression of nuclear localized mCherry we discerned two distinct radial glial-derived cell types: a major nestin+/Sox2+ subtype with strong gfap promoter activity and a minor Sox2+ subtype lacking this activity. Fate mapping studies in this line indicate that gfap+ radial glia generate later-born CoSA interneurons, secondary motorneurons, and oligodendroglia. In another transgenic line using the gfap promoter-driven expression of the nitroreductase enzyme, we induced cell autonomous ablation of gfap+ radial glia and observed a reduction in their specific derived lineages, but not Blbp+ and Sox2+/gfap-negative NSCs, which were retained and expanded at later larval stages. Moreover, we provide evidence supporting classical roles of radial glial in axon patterning, blood-brain barrier formation, and locomotion. Our results suggest that gfap+ radial glia represent the major NSC during late neurogenesis for specific lineages, and possess diverse roles to sustain the structure and function of the spinal cord. These new tools will both corroborate the predicted roles of astroglia and reveal novel roles related to development, physiology, and regeneration in the vertebrate nervous system. GLIA 2016;64:1170-1189.
Collapse
Affiliation(s)
- Kimberly Johnson
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Jessica Barragan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Sarah Bashiruddin
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Cody J Smith
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Chelsea Tyrrell
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Michael J Parsons
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Rosemarie Doris
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Gerald B Downes
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Carla M Velez
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Caitlin Schneider
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Catalina Sakai
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Narendra Pathak
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Katrina Anderson
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Rachael Stein
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Jeff S Mumm
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Michael J F Barresi
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
32
|
Yokai M, Kurihara T, Miyata A. Spinal astrocytic activation contributes to both induction and maintenance of pituitary adenylate cyclase-activating polypeptide type 1 receptor-induced long-lasting mechanical allodynia in mice. Mol Pain 2016; 12:12/0/1744806916646383. [PMID: 27175011 PMCID: PMC4956379 DOI: 10.1177/1744806916646383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/29/2016] [Indexed: 12/05/2022] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are present in the spinal dorsal horn and dorsal root ganglia, suggesting an important role of PACAP–PACAP receptors signaling system in the modulation of spinal nociceptive transmission. We have previously reported that a single intrathecal injection of PACAP or a PACAP specific (PAC1) receptor selective agonist, maxadilan, in mice induced dose-dependent aversive behaviors, which lasted more than 30 min, and suggested that the maintenance of the nociceptive behaviors was associated with the spinal astrocytic activation. Results We found that a single intrathecal administration of PACAP or maxadilan also produced long-lasting hind paw mechanical allodynia, which persisted at least 84 days without affecting thermal nociceptive threshold. In contrast, intrathecal application of vasoactive intestinal polypeptide did not change mechanical threshold, and substance P, calcitonin gene-related peptide, or N-methyl-D-aspartate induced only transient mechanical allodynia, which disappeared within 21 days. Western blot and immunohistochemical analyses with an astrocytic marker, glial fibrillary acidic protein, revealed that the spinal PAC1 receptor stimulation caused sustained astrocytic activation, which also lasted more than 84 days. Intrathecal co-administration of L-α-aminoadipate, an astroglial toxin, with PACAP or maxadilan almost completely prevented the induction of the mechanical allodynia. Furthermore, intrathecal treatment of L-α-aminoadipate at 84 days after the PAC1 stimulation transiently reversed the mechanical allodynia accompanied by the reduction of glial fibrillary acidic protein expression level. Conclusion Our data suggest that spinal astrocytic activation triggered by the PAC1 receptor stimulation contributes to both induction and maintenance of the long-term mechanical allodynia.
Collapse
Affiliation(s)
- Masafumi Yokai
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| |
Collapse
|
33
|
Ohnou T, Yokai M, Kurihara T, Hasegawa-Moriyama M, Shimizu T, Inoue K, Kambe Y, Kanmura Y, Miyata A. Pituitary adenylate cyclase-activating polypeptide type 1 receptor signaling evokes long-lasting nociceptive behaviors through the activation of spinal astrocytes in mice. J Pharmacol Sci 2016; 130:194-203. [PMID: 26948958 DOI: 10.1016/j.jphs.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
Intrathecal (i.t.) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) induces long-lasting nociceptive behaviors for more than 60 min in mice, while the involvement of PACAP type1 receptor (PAC1-R) has not been clarified yet. The present study investigated signaling mechanisms of the PACAP-induced prolonged nociceptive behaviors. Single i.t. injection of a selective PAC1-R agonist, maxadilan (Max), mimicked nociceptive behaviors in a dose-dependent manner similar to PACAP. Pre- or post-treatment of a selective PAC1-R antagonist, max.d.4, significantly inhibited the nociceptive behaviors by PACAP or Max. Coadministration of a protein kinase A inhibitor, Rp-8-Br-cAMPS, a mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase inhibitor, PD98059 or a c-Jun N-terminal kinase (JNK) inhibitor, SP600125, significantly inhibited the nociceptive behaviors by Max. Immunohistochemistry and immunoblotting analysis revealed that spinal administration of Max-induced ERK phosphorylation and JNK phosphorylation, and also augmented an astrocyte marker, glial fibrillary acidic protein in mouse spinal cord. Furthermore, an astroglial toxin, l-α-aminoadipate, significantly attenuated the development of the nociceptive behaviors and ERK phosphorylation by Max. These results suggest that the activation of spinal PAC1-R induces long-lasting nociception through the interaction of neurons and astrocytes.
Collapse
Affiliation(s)
- Tetsuya Ohnou
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan; Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Masafumi Yokai
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Maiko Hasegawa-Moriyama
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Takao Shimizu
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Kazuhiko Inoue
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Yuichi Kanmura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan.
| |
Collapse
|
34
|
Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro. J Neurosci 2015; 35:11105-17. [PMID: 26245971 DOI: 10.1523/jneurosci.1289-15.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Neuron-astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (-astrocyte) within the same culture dish. -Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. SIGNIFICANCE STATEMENT Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal action potentials to synaptic terminals. GABA transmission was not disrupted. The disruption did not involve detectable morphological changes to axons of glutamate neurons. Our work identifies a developmental role for astrocytes in the temporal precision of excitatory signals.
Collapse
|
35
|
Li WW, Guo TZ, Shi X, Sun Y, Wei T, Clark DJ, Kingery WS. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture. Neuroscience 2015; 310:73-90. [PMID: 26386297 DOI: 10.1016/j.neuroscience.2015.09.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glial activation and central sensitization. At 4 weeks after tibia fracture and casting in rats, the cast was removed and hind paw allodynia, unweighting, warmth, and edema were measured, then the antinociceptive effects of microglia (minocycline) or astrocyte (L-2-aminoadipic acid (LAA)) inhibitors or an SP receptor antagonist (LY303870) were tested. Immunohistochemistry and PCR were used to evaluate microglial and astrocyte activation in the dorsal horn. Similar experiments were performed in intact rats after brief sciatic nerve electric stimulation at C-fiber intensity. Microglia and astrocytes were chronically activated at 4 weeks after fracture and contributed to the maintenance of hind paw allodynia and unweighting. Furthermore, LY303870 treatment initiated at 4 weeks after fracture partially reversed both spinal glial activation and nociceptive sensitization. Similarly, persistent spinal microglial activation and hind paw nociceptive sensitization were observed at 48 h after sciatic nerve C-fiber stimulation and this effect was inhibited by treatment with minocycline, LAA, or LY303870. These data support the hypothesis that C-fiber afferent SP signaling chronically supports spinal neuroglial activation after limb fracture and that glial activation contributes to the maintenance of central nociceptive sensitization in CRPS. Treatments inhibiting glial activation and spinal inflammation may be therapeutic for CRPS.
Collapse
Affiliation(s)
- W-W Li
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - T-Z Guo
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - X Shi
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Y Sun
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - T Wei
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - D J Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - W S Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.
| |
Collapse
|
36
|
Omoto H, Matsumura S, Kitano M, Miyazaki S, Minami T, Ito S. Comparison of mechanisms of allodynia induced by acromelic acid A between early and late phases. Eur J Pharmacol 2015; 760:42-8. [DOI: 10.1016/j.ejphar.2015.03.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 03/07/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
|
37
|
Sun H, Ma X. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells. ACTA ACUST UNITED AC 2015. [PMID: 26205096 DOI: 10.1016/j.etp.2015.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cigarette smoking is the most important risk factor in the development of human lung cancer. Nicotine, the major component in tobacco, not only contributes to carcinogenesis but also promotes tumor metastasis. By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and migration of non-small cell lung cancer. Recently studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. Nevertheless, it is unclear whether nicotine promotes the migration and invasion through activation of α5-nAChR in lung cancer. In the present study, A549 cell was exposed to 1μN nicotine for 8, 24 or 48h. Wound-healing assay and transwell assay were used to evaluate the capability of A549 cell migration and cell invasion, respectively. Silencing of α5-nAChR was done by siRNA. Western blotting and PCR were used to detect α5-nAChR expression. Nicotine can induce activation of α5-nAChR in association with increased migration and invasion of human lung cancer A549 cell. Treatment of cells with α5-nAChR specific siRNA blocks nicotine-stimulated activation of α5-nAChR and suppresses A549 cell migration and invasion. Reduction of α5-nAChR resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. These findings suggest that nicotine-induced migration and invasion may occur in a mechanism through activation of α5-nAChR, which can contribute to metastasis or development of human lung cancer.
Collapse
Affiliation(s)
- Haiji Sun
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, China.
| |
Collapse
|
38
|
Etiévant A, Oosterhof C, Bétry C, Abrial E, Novo-Perez M, Rovera R, Scarna H, Devader C, Mazella J, Wegener G, Sánchez C, Dkhissi-Benyahya O, Gronfier C, Coizet V, Beaulieu J, Blier P, Lucas G, Haddjeri N. Astroglial Control of the Antidepressant-Like Effects of Prefrontal Cortex Deep Brain Stimulation. EBioMedicine 2015; 2:898-908. [PMID: 26425697 PMCID: PMC4563138 DOI: 10.1016/j.ebiom.2015.06.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 11/20/2022] Open
Abstract
Although deep brain stimulation (DBS) shows promising efficacy as a therapy for intractable depression, the neurobiological bases underlying its therapeutic action remain largely unknown. The present study was aimed at characterizing the effects of infralimbic prefrontal cortex (IL-PFC) DBS on several pre-clinical markers of the antidepressant-like response and at investigating putative non-neuronal mechanism underlying DBS action. We found that DBS induced an antidepressant-like response that was prevented by IL-PFC neuronal lesion and by adenosine A1 receptor antagonists including caffeine. Moreover, high frequency DBS induced a rapid increase of hippocampal mitosis and reversed the effects of stress on hippocampal synaptic metaplasticity. In addition, DBS increased spontaneous IL-PFC low-frequency oscillations and both raphe 5-HT firing activity and synaptogenesis. Unambiguously, a local glial lesion counteracted all these neurobiological effects of DBS. Further in vivo electrophysiological results revealed that this astrocytic modulation of DBS involved adenosine A1 receptors and K+ buffering system. Finally, a glial lesion within the site of stimulation failed to counteract the beneficial effects of low frequency (30 Hz) DBS. It is proposed that an unaltered neuronal–glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency could heighten antidepressant response of partial responders. The antidepressant effect of prefrontal cortex DBS was prevented by neuronal lesion and adenosine A1 receptor antagonists. DBS rapidly increased hippocampal mitosis, cortical oscillations, raphe 5-HT firing activity and synaptogenesis. Local glial lesions prevented the neurobiological effects of DBS in a frequency-dependent manner. Although deep brain stimulation (DBS) is a promising therapy for patients with treatment-resistant depression, the neurobiological bases underlying its therapeutic action remain largely unknown. Here, we demonstrated that DBS produced a robust antidepressant-like effect that was associated with a fast induction of markers of the antidepressant-like response. Unambiguously, the effects of high-frequency, but not low-frequency, DBS were counteracted by a glial lesion within the site of stimulation. Thus, it is proposed that an unaltered neuronal–glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency of DBS could heighten antidepressant response of partial responders.
Collapse
Affiliation(s)
- A. Etiévant
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University–IUSMQ, Québec City, Québec, Canada
| | - C. Oosterhof
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - C. Bétry
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
| | - E. Abrial
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
| | - M. Novo-Perez
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
| | - R. Rovera
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
| | - H. Scarna
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
| | - C. Devader
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR6097, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - J. Mazella
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR6097, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - G. Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, DK-8240 Risskov, Denmark
| | - C. Sánchez
- Neuropharmacology, Lundbeck Research USA, Paramus, NJ, USA
| | - O. Dkhissi-Benyahya
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
| | - C. Gronfier
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
| | - V. Coizet
- INSERM U836, GIN, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - J.M. Beaulieu
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University–IUSMQ, Québec City, Québec, Canada
| | - P. Blier
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - G. Lucas
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
- Institut François Magendie, INSERM U862, Université de Bordeaux, 33077 Bordeaux, France
| | - N. Haddjeri
- Stem Cell and Brain Research Institute, INSERM U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, 69373 Lyon, France
- Corresponding author at: Institut Cellule Souche et Cerveau, INSERM U846, Université Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France.
| |
Collapse
|
39
|
Zuo ZF, Liao YH, Ding T, Dong YL, Qu J, Wang J, Wei YY, Lu YC, Liu XZ, Li YQ. Astrocytic NDRG2 is involved in glucocorticoid-mediated diabetic mechanical allodynia. Diabetes Res Clin Pract 2015; 108:128-36. [PMID: 25656762 DOI: 10.1016/j.diabres.2015.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/14/2014] [Accepted: 01/03/2015] [Indexed: 12/29/2022]
Abstract
AIMS The present study aims to test whether astrocytes contribute to glucocorticoid-mediated diabetic mechanical allodynia. METHODS Streptozotocin (STZ)-induced diabetic rats were used in our study. The intrathecal operation was performed 21 days after the onset of diabetes. Diabetic mechanical allodynia was present 28 d after the onset of diabetes, and the mechanical threshold was tested using von Frey filaments. Immunohistochemistry, including immunofluorescent histochemical staining, was performed to observe the morphology of the spinal dorsal horn (SDH). Western blot analysis was employed as a semi-quantitative assay of the expression levels of GFAP and NDRG2 associated with diabetic mechanical allodynia. RESULTS Diabetic rats displayed mechanical allodynia and activated astrocytes in the SDH 28 days after the onset of diabetes. This allodynia was attenuated by intrathecal administration of the astrocyte-specific inhibitor l-α-aminoadipate. In parallel, intrathecal injection of RU486, a glucocorticoid receptor antagonist, inhibited the activation of astrocytes in the SDH, alleviating the diabetes-induced mechanical allodynia. Furthermore, we found that dorsal horn astrocytes express abundant N-myc downstream-regulated gene 2 (NDRG2), which contributes to astrocyte reactivity. NDRG2 was over-expressed in activated astrocytes in diabetic rats with mechanical allodynia. Intrathecal injection of RU486 prevented the over-expression of NDRG2, which reversed the astrocyte reactivity and diabetic tactile allodynia. CONCLUSIONS These results suggest that glucocorticoid-mediated over-expression of NDRG2 may contribute to the activation of dorsal horn astrocytes, which play a crucial role in diabetic mechanical allodynia. Thus, inhibiting glucocorticoid receptors and/or astrocyte reactivity in the SDH may be a therapeutic strategy for treating diabetic tactile allodynia.
Collapse
Affiliation(s)
- Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Department of Anatomy, Histology and Embryology, Liaoning Medical University, No. 3-40 Songpo Road, Jinzhou, Liaoning 121000, PR China
| | - Yong-Hui Liao
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Tan Ding
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Juan Qu
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Jian Wang
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yan-Yan Wei
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Ya-Cheng Lu
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Liaoning Medical University, No. 3-40 Songpo Road, Jinzhou, Liaoning 121000, PR China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
40
|
Rosi A, Ricci-Vitiani L, Biffoni M, Grande S, Luciani AM, Palma A, Runci D, Cappellari M, De Maria R, Guidoni L, Pallini R, Viti V. (1) H NMR spectroscopy of glioblastoma stem-like cells identifies alpha-aminoadipate as a marker of tumor aggressiveness. NMR IN BIOMEDICINE 2015; 28:317-26. [PMID: 25581615 DOI: 10.1002/nbm.3254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/12/2014] [Accepted: 12/03/2014] [Indexed: 05/24/2023]
Abstract
Patients suffering from glioblastoma multiforme (GBM) face a poor prognosis with median survival of about 14 months. High recurrence rate and failure of conventional treatments are attributed to the presence of GBM cells with stem-like properties (GSCs). Metabolite profiles of 42 GSC lines established from the tumor tissue of adult GBM patients were screened with (1) H NMR spectroscopy and compared with human neural progenitor cells from human adult olfactory bulb (OB-NPCs) and from the developing human brain (HNPCs). A first subset (n=12) of GSCs exhibited a dramatic accumulation of the metabolite α-aminoadipate (αAAD), product of the oxidation of α-aminoadipic semialdehyde catalyzed by the ALDH7A1 aldehyde dehydrogenase (ALDH) family in lysine catabolism. αAAD was low/not detectable in a second GSC subset (n=13) with the same neural metabolic profile as well as in a third GSC subset (n=17) characterized by intense lipid signals. Likewise, αAAD was not detected in the spectra of OB-NPCs or HNPCs. Inhibition of mitochondrial ATP synthase by oligomycin treatment revealed that the lysine degradative pathway leading to αAAD formation proceeds through saccharopine, as usually observed in developing brain. Survival curves indicated that high αAAD levels in GSCs significantly correlated with poor patient survival, similarly to prostate and non-small-cell-lung cancers, where activity of ALDH7A1 correlates with tumor aggressiveness.
Collapse
Affiliation(s)
- Antonella Rosi
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy; INFN Sezione di Roma, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Domin H, Szewczyk B, Woźniak M, Wawrzak-Wleciał A, Śmiałowska M. Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression. Behav Brain Res 2014; 273:23-33. [PMID: 25043733 DOI: 10.1016/j.bbr.2014.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
The glutamatergic predominance in the excitatory-inhibitory balance is postulated to be involved in the pathogenesis of depression. Such imbalance may be induced by astrocyte ablation which reduces glutamate uptake and increases glutamate level in the synaptic cleft. In the present study, we tried to ascertain whether astroglial degeneration in the prefrontal cortex could serve as an animal model of depression and whether inhibition of glutamatergic transmission by the mGluR5 antagonist MTEP could have antidepressant potential. Astrocytic toxins l-or dl-alpha-aminoadipic acid (AAA), 100μg/2μl, were microinjected, bilaterally into the rat medial prefrontal cortex (PFC) on the first and second day of experiment. MTEP (10mg/kg) or imipramine (30mg/kg) were administered on the fifth day. Following administration of MTEP or imipramine the forced swim test (FST) was performed for assessment of depressive-like behavior. The brains were taken out for analysis on day eight. The astrocytic marker, glial fibrillary acidic protein (GFAP) was quantified in PFC by Western blot method and by stereological counting of immunohistochemically stained sections. Both l-AAA and dl-AAA induced a significant increase in immobility time in the FST. This effect was reversed by imipramine, which indicates depressive-like effects of these toxins. A significant decrease in GFAP (about 50%) was found after l-AAA. Both the behavioral and GFAP level changes were prevented by MTEP injection. The obtained results indicate that the degeneration of astrocytes in the PFC by l-AAA may be a useful animal model of depression and suggest antidepressant potential of MTEP.
Collapse
Affiliation(s)
- Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Monika Woźniak
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anika Wawrzak-Wleciał
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Maria Śmiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
42
|
Lima A, Sardinha VM, Oliveira AF, Reis M, Mota C, Silva MA, Marques F, Cerqueira JJ, Pinto L, Sousa N, Oliveira JF. Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry 2014; 19:834-41. [PMID: 24419043 DOI: 10.1038/mp.2013.182] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 11/09/2022]
Abstract
Interest in astroglial cells is rising due to recent findings supporting dynamic neuron-astrocyte interactions. There is increasing evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model astrocyte pathology, we injected animals with the astrocyte specific toxin L-α-aminoadipate (L-AA) in the medial prefrontal cortex (mPFC); a behavioral and structural characterization two and six days after the injection was performed. Behavioral data shows that the astrocyte pathology in the mPFC affects the attentional set-shifting, the working memory and the reversal learning functions. Histological analysis of brain sections of the L-AA-injected animals revealed a pronounced loss of astrocytes in the targeted region. Interestingly, analysis of neurons in the lesion sites showed a progressive neuronal loss that was accompanied with dendritic atrophy in the surviving neurons. These results suggest that the L-AA-induced astrocytic loss in the mPFC triggers subsequent neuronal damage leading to cognitive impairment in tasks depending on the integrity of this brain region. These findings are of relevance to better understand the pathophysiological mechanisms underlying disorders that involve astrocytic loss/dysfunction in the PFC.
Collapse
Affiliation(s)
- A Lima
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - V M Sardinha
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A F Oliveira
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M Reis
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C Mota
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M A Silva
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - F Marques
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J J Cerqueira
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - L Pinto
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N Sousa
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J F Oliveira
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
43
|
Scar-modulating treatments for central nervous system injury. Neurosci Bull 2014; 30:967-984. [PMID: 24957881 DOI: 10.1007/s12264-013-1456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/09/2014] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.
Collapse
|
44
|
Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nat Commun 2013; 4:1760. [PMID: 23612301 PMCID: PMC3641574 DOI: 10.1038/ncomms2779] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/21/2013] [Indexed: 11/08/2022] Open
Abstract
Mechanisms of N-methyl-D-aspartate receptor-dependent synaptic plasticity contribute to the acquisition and retention of conditioned fear memory. However, synaptic rules which may determine the extent of N-methyl-D-aspartate receptor activation in the amygdala, a key structure implicated in fear learning, remain unknown. Here we show that the identity of the N-methyl-D-aspartate receptor glycine site agonist at synapses in the lateral nucleus of the amygdala may depend on the level of synaptic activation. Tonic activation of N-methyl-D-aspartate receptors at synapses in the amygdala under low activity conditions is supported by ambient D-serine, whereas glycine may be released from astrocytes in response to afferent impulses. The release of glycine may decode the increases in afferent activity levels into enhanced N-methyl-D-aspartate receptor-mediated synaptic events, serving an essential function in the induction of N-methyl-D-aspartate receptor-dependent long-term potentiation in fear conditioning pathways.
Collapse
|
45
|
Glial degeneration as a model of depression. Pharmacol Rep 2013; 65:1572-9. [DOI: 10.1016/s1734-1140(13)71518-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/24/2013] [Indexed: 11/18/2022]
|
46
|
Engrafted human induced pluripotent stem cell-derived anterior specified neural progenitors protect the rat crushed optic nerve. PLoS One 2013; 8:e71855. [PMID: 23977164 PMCID: PMC3747054 DOI: 10.1371/journal.pone.0071855] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/05/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Degeneration of retinal ganglion cells (RGCs) is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs) following intravitreal transplantation. METHODOLOGY/PRINCIPAL FINDINGS NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs) and transplanted into rats whose optic nerves have been crushed (ONC). hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1' -dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM). The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers. CONCLUSIONS/SIGNIFICANCE The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases.
Collapse
|
47
|
Lee Y, Son H, Kim G, Kim S, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ. Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice. J Psychiatry Neurosci 2013; 38:183-91. [PMID: 23031251 PMCID: PMC3633711 DOI: 10.1503/jpn.120024] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The brain levels of glutamate (Glu) and glutamine (Gln) are partially regulated through the Glu-Gln cycle. Astrocytes play a role in regulating the Glu-Gln cycle, and loss of astrocytes has been associated with depressive disorders. We hypothesized that levels of Glu and Gln would be affected by astrocyte loss and dysregulation of the Glu-Gln cycle and that depressive-like behaviours would be closely related to the level of changes in Glu and Gln. METHODS We used liquid chromatography to measure Glu and Gln concentrations in the prefrontal cortex of male mice infused with L-α aminoadipic acid (L-AAA), a specific astrocyte toxin, in the prelimbic cortex. Methionine sulfoximine, a Gln synthetase inhibitor, and α-methyl-amino-isobutyric acid, a blocker of neuronal Gln transporters, were used to disturb the Glu-Gln cycle. We assessed the behavioural change by drug infusion using the forced swim test (FST) and sucrose preference test. RESULTS The Glu and Gln levels were decreased on the fifth day after L-AAA infusion, and the infused mice showed longer durations of immobility in the FST and lower sucrose preference, indicative of depressive-like behaviour. Mice in which Gln synthetase or Gln transport were inhibited also exhibited increased immobility in the FST. Direct infusion of L-Gln reversed the increased immobility induced by astrocyte ablation and Glu-Gln cycle impairments. LIMITATIONS Genetically modified animal models and diverse behavioural assessments would have been helpful to solidify our conclusions. CONCLUSION Neuronal Gln deficiency in the prefrontal cortex may cause depressive behaviours.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hyun Joon Kim
- Correspondence to: Hyun Joon Kim, Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University, 816 Beongil 15, Jinju-daero, Jinju, 660-290, Republic of Korea;
| |
Collapse
|
48
|
Ji XT, Qian NS, Zhang T, Li JM, Li XK, Wang P, Zhao DS, Huang G, Zhang L, Fei Z, Jia D, Niu L. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model. PLoS One 2013; 8:e60733. [PMID: 23585846 PMCID: PMC3621957 DOI: 10.1371/journal.pone.0060733] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/01/2013] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CNP) is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor); whereas minocycline (microglial specific inhibitor) had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and “Astrocyte-Cytokine-NMDAR-neuron” pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.
Collapse
Affiliation(s)
- Xi-Tuan Ji
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Nian-Song Qian
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, People’s Republic of China
| | - Tao Zhang
- Department of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, People’s Republic of China
| | - Jin-Mao Li
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xin-Kui Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dong-Sheng Zhao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Gang Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (LN); (DJ); (ZF)
| | - Dong Jia
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (LN); (DJ); (ZF)
| | - Le Niu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (LN); (DJ); (ZF)
| |
Collapse
|
49
|
Astrocytes--multitaskers in chronic pain. Eur J Pharmacol 2013; 716:120-8. [PMID: 23528354 DOI: 10.1016/j.ejphar.2013.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 12/31/2022]
Abstract
Treatment of chronic pain remains a clinical challenge and sufficient pharmacological management is difficult to achieve without concurrent adverse drug effects. Recently the concept of chronic pain as a solely neuron-mediated phenomenon has evolved and it is now appreciated that also glial cells are of critical importance in pain generation and modulation. Astrocytes are macroglial cells that have close structural relationships with neurons; they contact neuronal somata and dendrites and enwrap synapses, where small astrocytic processes have been shown to be highly motile. This organization allows astrocytes to directly influence and coordinate neurons located within their structural domains. Moreover, astrocytes form astroglial networks and calcium wave propagations can spread through neighbouring astrocytes. ATP, which is released from astrocytes in response to elevated intracellular calcium concentrations, can contribute to the central mechanisms in chronic pain via purinergic receptors. In this review we highlight the structural organization and the functionalities of astrocytes that allow them to undertake critical roles in pain processing and we stress the possibility that astrocytes contribute to chronic pain not via a single pathway, but by undertaking various roles depending on the pain condition.
Collapse
|
50
|
Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd I. Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. ACTA ACUST UNITED AC 2012; 2:259-69. [PMID: 17710215 PMCID: PMC1949390 DOI: 10.1017/s1740925x07000403] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although pain is regarded traditionally as neuronally mediated, recent progress shows an important role of spinal glial cells in persistent pain sensitization. Mounting evidence has implicated spinal microglia in the development of chronic pain (e.g. neuropathic pain after peripheral nerve injury). Less is known about the role of astrocytes in pain regulation. However, astrocytes have very close contact with synapses and maintain homeostasis in the extracellular environment. In this review, we provide evidence to support a role of spinal astrocytes in maintaining chronic pain. In particular, c-Jun N-terminal kinase (JNK) is activated persistently in spinal astrocytes in a neuropathic pain condition produced by spinal nerve ligation. This activation is required for the maintenance of neuropathic pain because spinal infusion of JNK inhibitors can reverse mechanical allodynia, a major symptom of neuropathic pain. Further study reveals that JNK is activated strongly in astrocytes by basic fibroblast growth factor (bFGF), an astroglial activator. Intrathecal infusion of bFGF also produces persistent mechanical allodynia. After peripheral nerve injury, bFGF might be produced by primary sensory neurons and spinal astrocytes because nerve injury produces robust bFGF upregulation in both cell types. Therefore, the bFGF/JNK pathway is an important signalling pathway in spinal astrocytes for chronic pain sensitization. Investigation of signaling mechanisms in spinal astrocytes will identify new molecular targets for the management of chronic pain.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
| | | | | | | | | |
Collapse
|