1
|
Wu J, Lv Y, Hao P, Zhang Z, Zheng Y, Chen E, Fan Y. Immunological profile of lactylation-related genes in Crohn's disease: a comprehensive analysis based on bulk and single-cell RNA sequencing data. J Transl Med 2024; 22:300. [PMID: 38521905 PMCID: PMC10960451 DOI: 10.1186/s12967-024-05092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Crohn's disease (CD) is a disease characterized by intestinal immune dysfunction, often accompanied by metabolic abnormalities. Disturbances in lactate metabolism have been found in the intestine of patients with CD, but studies on the role of lactate and related Lactylation in the pathogenesis of CD are still unknown. METHODS We identified the core genes associated with Lactylation by downloading and merging three CD-related datasets (GSE16879, GSE75214, and GSE112366) from the GEO database, and analyzed the functions associated with the hub genes and the correlation between their expression levels and immune infiltration through comprehensive analysis. We explored the Lactylation levels of different immune cells using single-cell data and further analyzed the differences in Lactylation levels between inflammatory and non-inflammatory sites. RESULTS We identified six Lactylation-related hub genes that are highly associated with CD. Further analysis revealed that these six hub genes were highly correlated with the level of immune cell infiltration. To further clarify the effect of Lactylation on immune cells, we analyzed single-cell sequencing data of immune cells from inflammatory and non-inflammatory sites in CD patients and found that there were significant differences in the levels of Lactylation between different types of immune cells, and that the levels of Lactylation were significantly higher in immune cells from inflammatory sites. CONCLUSIONS These results suggest that Lactylation-related genes and their functions are closely associated with changes in inflammatory cells in CD patients.
Collapse
Affiliation(s)
- Jingtong Wu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yinyin Lv
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Pei Hao
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ziyi Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yongtian Zheng
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ermei Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| |
Collapse
|
2
|
Rüegg AB, van der Weijden VA, de Sousa JA, von Meyenn F, Pausch H, Ulbrich SE. Developmental progression continues during embryonic diapause in the roe deer. Commun Biol 2024; 7:270. [PMID: 38443549 PMCID: PMC10914810 DOI: 10.1038/s42003-024-05944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Embryonic diapause in mammals is a temporary developmental delay occurring at the blastocyst stage. In contrast to other diapausing species displaying a full arrest, the blastocyst of the European roe deer (Capreolus capreolus) proliferates continuously and displays considerable morphological changes in the inner cell mass. We hypothesised that developmental progression also continues during this period. Here we evaluate the mRNA abundance of developmental marker genes in embryos during diapause and elongation. Our results show that morphological rearrangements of the epiblast during diapause correlate with gene expression patterns and changes in cell polarity. Immunohistochemical staining further supports these findings. Primitive endoderm formation occurs during diapause in embryos composed of around 3,000 cells. Gastrulation coincides with elongation and thus takes place after embryo reactivation. The slow developmental progression makes the roe deer an interesting model for unravelling the link between proliferation and differentiation and requirements for embryo survival.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - João Agostinho de Sousa
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Ferdinand von Meyenn
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Hubert Pausch
- ETH Zurich, Animal Genomics, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| |
Collapse
|
3
|
Yang H, Iwanaga N, Katz AR, Ridley AR, Miller HD, Allen MJ, Pociask D, Kolls JK. Embigin Is Highly Expressed on CD4+ and CD8+ T Cells but Is Dispensable for Several T Cell Effector Responses. Immunohorizons 2024; 8:242-253. [PMID: 38446446 PMCID: PMC10985056 DOI: 10.4049/immunohorizons.2300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
T cell immunity, including CD4+ and CD8+ T cell immunity, is critical to host immune responses to infection. Transcriptomic analyses of both CD4+ and CD8+ T cells of C57BL/6 mice show high expression the gene encoding embigin, Emb, which encodes a transmembrane glycoprotein. Moreover, we found that lung CD4+ Th17 tissue-resident memory T cells of C57BL/6 mice also express high levels of Emb. However, deletion of Emb in αβ T cells of C57BL/6 mice revealed that Emb is dispensable for thymic T cell development, generation of lung Th17 tissue-resident memory T cells, tissue-resident memory T cell homing to the lung, experimental autoimmune encephalitis, as well as clearance of pulmonary viral or fungal infection. Thus, based on this study, embigin appears to play a minor role if any in αβ T cell development or αβ T cell effector functions in C57BL/6 mice.
Collapse
Affiliation(s)
- Haoran Yang
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Naoki Iwanaga
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Alexis R. Katz
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Andy R. Ridley
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Haiyan D. Miller
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Michaela J. Allen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Dereck Pociask
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Jay K. Kolls
- Department of Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
- Department of Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
4
|
Talvi S, Jokinen J, Sipilä K, Rappu P, Zhang FP, Poutanen M, Rantakari P, Heino J. Embigin deficiency leads to delayed embryonic lung development and high neonatal mortality in mice. iScience 2024; 27:108914. [PMID: 38318368 PMCID: PMC10839689 DOI: 10.1016/j.isci.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Embigin (Gp70), a receptor for fibronectin and an ancillary protein for monocarboxylate transporters, is known to regulate stem cell niches in sebaceous gland and bone marrow. Here, we show that embigin expression is at high level during early mouse embryogenesis and that embigin is essential for lung development. Markedly increased neonatal mortality of Emb-/- mice can be explained by the compromised lung maturation: in Emb-/- mice (E17.5) the number and the size of the small airways and distal airspace are significantly smaller, there are fewer ATI and ATII cells, and the alkaline phosphatase activity in amniotic fluid is lower. Emb-/- lungs show less peripheral branching already at E12.5, and embigin is highly expressed in lung primordium. Thus, embigin function is essential at early pseudoglandular stage or even earlier. Furthermore, our RNA-seq analysis and Ki67 staining results support the idea that the development of Emb-/- lungs is rather delayed than defected.
Collapse
Affiliation(s)
- Salli Talvi
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Johanna Jokinen
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Kalle Sipilä
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London WC2R2LS, UK
| | - Pekka Rappu
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Poutanen
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
| | - Pia Rantakari
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, University of Turku, 20014 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Jyrki Heino
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
5
|
Asselstine V, Medrano JF, Muniz MMM, Mallard BA, Karrow NA, Cánovas A. Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Commun Biol 2024; 7:98. [PMID: 38225372 PMCID: PMC10789785 DOI: 10.1038/s42003-024-05764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Juan F Medrano
- Department of Animal Science, University of California-Davis, 95616, Davis, CA, USA
| | - Malane M M Muniz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
6
|
Sipilä K, Rognoni E, Jokinen J, Tewary M, Vietri Rudan M, Talvi S, Jokinen V, Dahlström KM, Liakath-Ali K, Mobasseri A, Du-Harpur X, Käpylä J, Nutt SL, Salminen TA, Heino J, Watt FM. Embigin is a fibronectin receptor that affects sebaceous gland differentiation and metabolism. Dev Cell 2022; 57:1453-1465.e7. [PMID: 35671757 PMCID: PMC9616737 DOI: 10.1016/j.devcel.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
Stem cell renewal and differentiation are regulated by interactions with the niche. Although multiple cell populations have been identified in distinct anatomical compartments, little is known about niche-specific molecular factors. Using skin as a model system and combining single-cell RNA-seq data analysis, immunofluorescence, and transgenic mouse models, we show that the transmembrane protein embigin is specifically expressed in the sebaceous gland and that the number of embigin-expressing cells is negatively regulated by Wnt. The loss of embigin promotes exit from the progenitor compartment and progression toward differentiation, and also compromises lipid metabolism. Embigin modulates sebaceous niche architecture by affecting extracellular matrix organization and basolateral targeting of monocarboxylate transport. We discover through ligand screening that embigin is a direct fibronectin receptor, binding to the N-terminal fibronectin domain without impairing integrin function. Our results solve the long-standing question of how embigin regulates cell adhesion and demonstrate a mechanism that couples adhesion and metabolism.
Collapse
Affiliation(s)
- Kalle Sipilä
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Emanuel Rognoni
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Johanna Jokinen
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Mukul Tewary
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Matteo Vietri Rudan
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Salli Talvi
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Ville Jokinen
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Käthe M Dahlström
- Structural Bioinformatics Laboratory, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Atefeh Mobasseri
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Xinyi Du-Harpur
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Jarmo Käpylä
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Jyrki Heino
- Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Fiona M Watt
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK; European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
7
|
The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci 2021; 22:ijms22115518. [PMID: 34073734 PMCID: PMC8197239 DOI: 10.3390/ijms22115518] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma.
Collapse
|
8
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
9
|
Santini MP, Malide D, Hoffman G, Pandey G, D'Escamard V, Nomura-Kitabayashi A, Rovira I, Kataoka H, Ochando J, Harvey RP, Finkel T, Kovacic JC. Tissue-Resident PDGFRα + Progenitor Cells Contribute to Fibrosis versus Healing in a Context- and Spatiotemporally Dependent Manner. Cell Rep 2021; 30:555-570.e7. [PMID: 31940496 DOI: 10.1016/j.celrep.2019.12.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/11/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| | - Daniela Malide
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Gabriel Hoffman
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Gaurav Pandey
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Valentina D'Escamard
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Aya Nomura-Kitabayashi
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Ilsa Rovira
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Jordi Ochando
- Department of Medicine and Oncological Sciences, ISMMS, New York, NY 10029, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia; Stem Cells Australia, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Jason C Kovacic
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| |
Collapse
|
10
|
Zhou J, Ma C, Wang K, Li X, Zhang H, Chen J, Li Z, Shi Y. Rare and common variants analysis of the EMB gene in patients with schizophrenia. BMC Psychiatry 2020; 20:135. [PMID: 32213169 PMCID: PMC7093976 DOI: 10.1186/s12888-020-02513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent genome-wide association study showed rs10940346 locus near EMB gene was significantly associated with schizophrenia and suggested that EMB gene is one of the potentially causal genes for schizophrenia, but no causal variant has been identified. Our study aims to further verify EMB gene is a susceptibility gene for schizophrenia and to identify potentially causal variants in EMB gene that lead to schizophrenia. METHODS Targeted sequencing for the un-translated region and all exons of EMB gene was performed among 1803 patients with schizophrenia and 997 healthy controls recruited from Chinese Han population. RESULTS A total of 58 high-quality variants were identified in case and control groups. Seven of them are nonsynonymous rare variations, EMB: p.(Ala52Thr), p.(Glu66Gly), p.(Ser93Cys), p.(Ala118Val), p.(Ile131Met), p.(Gly163Arg) and p.(Arg238Tyr), but none of them reached statistical significance. Among them, p.(Ile131Met), p.(Gly163Arg) and p.(Arg238Tyr), were predicted to be deleterious variants. In addition, a common variant, rs3933097 located in 3'-UTR of EMB gene, achieved allelic and genotypic significance with schizophrenia (Pallele = 3.82 × 10- 6, Pgenotype = 3.18 × 10- 5). CONCLUSIONS Our research first presented a comprehensive mutation spectrum of exons and un-translated region in EMB gene for schizophrenia and provided additional evidence of EMB gene being a susceptibility gene for schizophrenia. However, further functional validations are necessary to reveal its role in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Juan Zhou
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanchuan Ma
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Li
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Han Zhang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 People’s Republic of China
| | - Zhiqiang Li
- grid.410645.20000 0001 0455 0905The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute, Qingdao University, Qingdao, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China. .,The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Forero-Quintero LS, Ames S, Schneider HP, Thyssen A, Boone CD, Andring JT, McKenna R, Casey JR, Deitmer JW, Becker HM. Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70. J Biol Chem 2018; 294:593-607. [PMID: 30446621 DOI: 10.1074/jbc.ra118.005536] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Monocarboxylate transporters (MCTs) mediate the proton-coupled exchange of high-energy metabolites, including lactate and pyruvate, between cells and tissues. The transport activity of MCT1, MCT2, and MCT4 can be facilitated by the extracellular carbonic anhydrase IV (CAIV) via a noncatalytic mechanism. Combining physiological measurements in HEK-293 cells and Xenopus oocytes with pulldown experiments, we analyzed the direct interaction between CAIV and the two MCT chaperones basigin (CD147) and embigin (GP70). Our results show that facilitation of MCT transport activity requires direct binding of CAIV to the transporters chaperones. We found that this binding is mediated by the highly conserved His-88 residue in CAIV, which is also the central residue of the enzyme's intramolecular proton shuttle, and a charged amino acid residue in the Ig1 domain of the chaperone. Although the position of the CAIV-binding site in the chaperone was conserved, the amino acid residue itself varied among different species. In human CD147, binding of CAIV was mediated by the negatively charged Glu-73 and in rat CD147 by the positively charged Lys-73. In rat GP70, we identified the positively charged Arg-130 as the binding site. Further analysis of the CAIV-binding site revealed that the His-88 in CAIV can either act as H donor or H acceptor for the hydrogen bond, depending on the charge of the binding residue in the chaperone. Our results suggest that the CAIV-mediated increase in MCT transport activity requires direct binding between CAIV-His-88 and a charged amino acid in the extracellular domain of the transporter's chaperone.
Collapse
Affiliation(s)
- Linda S Forero-Quintero
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Samantha Ames
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Hans-Peter Schneider
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Anne Thyssen
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Christopher D Boone
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Jacob T Andring
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Robert McKenna
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Joseph R Casey
- the Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2E1, Canada, and
| | - Joachim W Deitmer
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Holger M Becker
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany, .,the Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| |
Collapse
|
12
|
Ruma IMW, Kinoshita R, Tomonobu N, Inoue Y, Kondo E, Yamauchi A, Sato H, Sumardika IW, Chen Y, Yamamoto KI, Murata H, Toyooka S, Nishibori M, Sakaguchi M. Embigin Promotes Prostate Cancer Progression by S100A4-Dependent and-Independent Mechanisms. Cancers (Basel) 2018; 10:cancers10070239. [PMID: 30041429 PMCID: PMC6071117 DOI: 10.3390/cancers10070239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Embigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is involved in prostate and mammary gland development. As embigin’s roles in cancer remain elusive, we studied its biological functions and interaction with extracellular S100A4 in prostate cancer progression. We found by a pull-down assay that embigin is a novel receptor for S100A4, which is one of the vital cancer microenvironment milleu. Binding of extracellular S100A4 to embigin mediates prostate cancer progression by inhibition of AMPK activity, activation of NF-κB, MMP9 and mTORC1 signaling, and inhibition of autophagy, which increase prostate cancer cell motility. We also found that embigin promotes prostate cancer growth, spheroid- and colony-forming ability, and survival upon chemotherapy independently of S100A4. An in vivo growth mouse model confirmed the importance of embigin and its cytoplasmic tail in mediating prostate tumor growth. Moreover, embigin and p21WAF1 can be used to predict survival of prostate cancer patients. Our results demonstrated for the first time that the S100A4-embigin/AMPK/mTORC1/p21WAF1 and NF-κB/MMP9 axis is a vital oncogenic molecular cascade for prostate cancer progression. We proposed that embigin and p21WAF1 could be used as prognostic biomarkers and a strategy to inhibit S100A4-embigin binding could be a therapeutic approach for prostate cancer patients.
Collapse
Affiliation(s)
- I Made Winarsa Ruma
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
- Department of Biochemistry, Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia.
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Gunma 376-8515, Japan.
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata 951-8510, Japan.
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama 701-0192, Japan.
| | - Hiroki Sato
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
- Department of Pharmacology, Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia.
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Shinichi Toyooka
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
13
|
Butty AM, Frischknecht M, Gredler B, Neuenschwander S, Moll J, Bieber A, Baes CF, Seefried FR. Genetic and genomic analysis of hyperthelia in Brown Swiss cattle. J Dairy Sci 2017; 100:402-411. [DOI: 10.3168/jds.2016-11420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
|
14
|
Chao F, Zhang J, Zhang Y, Liu H, Yang C, Wang J, Guo Y, Wen X, Zhang K, Huang B, Liu D, Li Y. Embigin, regulated by HOXC8, plays a suppressive role in breast tumorigenesis. Oncotarget 2016; 6:23496-509. [PMID: 26090721 PMCID: PMC4695132 DOI: 10.18632/oncotarget.4360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/30/2015] [Indexed: 11/25/2022] Open
Abstract
The transmembrane glycoprotein embigin (EMB) belongs to the immunoglobulin superfamily (IgSF) and a number of IgSF members have been identified as biomarkers for cancer progression. In this study, we show that embigin is transcriptionally regulated by Homeobox C8 (HOXC8) in breast cancer cells and embigin expression suppresses breast tumorigenesis. With aid of Western blot, luciferase reporter gene assay and chromatin immunoprecipitation, we reveal that HOXC8 binds to the EMB promoter at the region of nucleotides -2303 to -2315 and acts as a transcription inhibitor to suppress embigin expression. Depletion of embigin leads to increase in proliferation, anchorage-independent growth and migration of breast cancer cells, and the inhibitory effects mediated by HOXC8 knockdown on breast tumorigenesis can be largely rescued by depletion of embigin expression in breast cancer cells, suggesting that HOXC8 regulates breast tumorigenesis, at least partly, through regulating embigin expression. Moreover, we show that loss of embigin promotes proliferation, anchorage-independent growth, and migration ability of normal mammary epithelial MCF10A cells. The analyses of publically available human breast tumor microarray gene expression database show that low embigin levels correlate with short survival of breast tumor patients, particularly with basal-like tumor patients, and embigin expression is low specifically in patients with basal-like, ER-/HER2- tumors. Taken together, our study demonstrates that low/loss of embigin plays an important role in the progression of breast tumors.
Collapse
Affiliation(s)
- Fengmei Chao
- Anhui University, School of Life Sciences, Center for Stem Cell and Translational Medicine, Hefei, Anhui Province, P. R. China
| | - Jun Zhang
- Anhui University, School of Life Sciences, Hefei, Anhui Province, P. R. China.,The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, P. R. China
| | - Yang Zhang
- Anhui University, School of Life Sciences, Center for Stem Cell and Translational Medicine, Hefei, Anhui Province, P. R. China
| | - Houli Liu
- Anhui University, School of Life Sciences, Center for Stem Cell and Translational Medicine, Hefei, Anhui Province, P. R. China
| | - Chenchen Yang
- Anhui University, School of Life Sciences, Center for Stem Cell and Translational Medicine, Hefei, Anhui Province, P. R. China
| | - Juan Wang
- Anhui University, School of Life Sciences, Hefei, Anhui Province, P. R. China
| | - Yanjun Guo
- Anhui University, School of Life Sciences, Hefei, Anhui Province, P. R. China
| | - Xiaohong Wen
- Anhui University, School of Life Sciences, Hefei, Anhui Province, P. R. China
| | - Kaiye Zhang
- Anhui University, School of Life Sciences, Hefei, Anhui Province, P. R. China
| | - Bei Huang
- Anhui University, School of Life Sciences, Center for Stem Cell and Translational Medicine, Hefei, Anhui Province, P. R. China
| | - Daihai Liu
- Anhui University, School of Life Sciences, Center for Stem Cell and Translational Medicine, Hefei, Anhui Province, P. R. China
| | - Yong Li
- Anhui University, School of Life Sciences, Center for Stem Cell and Translational Medicine, Hefei, Anhui Province, P. R. China
| |
Collapse
|
15
|
Zhou HM, Fang YY, Weinberger PM, Ding LL, Cowell JK, Hudson FZ, Ren M, Lee JR, Chen QK, Su H, Dynan WS, Lin Y. Transgelin increases metastatic potential of colorectal cancer cells in vivo and alters expression of genes involved in cell motility. BMC Cancer 2016; 16:55. [PMID: 26847345 PMCID: PMC4741053 DOI: 10.1186/s12885-016-2105-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/31/2016] [Indexed: 01/22/2023] Open
Abstract
Background Transgelin is an actin-binding protein that promotes motility in normal cells. Although the role of transgelin in cancer is controversial, a number of studies have shown that elevated levels correlate with aggressive tumor behavior, advanced stage, and poor prognosis. Here we sought to determine the role of transgelin more directly by determining whether experimental manipulation of transgelin levels in colorectal cancer (CRC) cells led to changes in metastatic potential in vivo. Methods Isogenic CRC cell lines that differ in transgelin expression were characterized using in vitro assays of growth and invasiveness and a mouse tail vein assay of experimental metastasis. Downstream effects of transgelin overexpression were investigated by gene expression profiling and quantitative PCR. Results Stable overexpression of transgelin in RKO cells, which have low endogenous levels, led to increased invasiveness, growth at low density, and growth in soft agar. Overexpression also led to an increase in the number and size of lung metastases in the mouse tail vein injection model. Similarly, attenuation of transgelin expression in HCT116 cells, which have high endogenous levels, decreased metastases in the same model. Investigation of mRNA expression patterns showed that transgelin overexpression altered the levels of approximately 250 other transcripts, with over-representation of genes that affect function of actin or other cytoskeletal proteins. Changes included increases in HOOK1, SDCCAG8, ENAH/Mena, and TNS1 and decreases in EMB, BCL11B, and PTPRD. Conclusions Increases or decreases in transgelin levels have reciprocal effects on tumor cell behavior, with higher expression promoting metastasis. Chronic overexpression influences steady-state levels of mRNAs for metastasis-related genes. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2105-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Min Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Yuan-Yuan Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Paul M Weinberger
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA, 30912, USA.,GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | | | - John K Cowell
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Farlyn Z Hudson
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA
| | - Mingqiang Ren
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jeffrey R Lee
- Department of Pathology, Georgia Regents University, and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Qi-Kui Chen
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hong Su
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - William S Dynan
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA. .,Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, GA, USA.
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
16
|
Jung DE, Kim JM, Kim C, Song SY. Embigin is overexpressed in pancreatic ductal adenocarcinoma and regulates cell motility through epithelial to mesenchymal transition via the TGF-β pathway. Mol Carcinog 2015; 55:633-45. [PMID: 25773908 DOI: 10.1002/mc.22309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 11/10/2014] [Accepted: 02/04/2015] [Indexed: 12/29/2022]
Abstract
Embigin is a member of the immunoglobulin superfamily and encodes a transmembrane glycoprotein. There have been reports of Embigin involvement in neuromuscular junction formation and plasticity; however, the molecular functions of Embigin in other organs are unknown. Our aim was to investigate the possible role of Embigin in pancreatic cancer. In pancreatic ductal adenocarcinoma tissues, Embigin expression was higher than that in normal pancreatic tissues. Immunohistochemical analysis revealed expression of Embigin in pancreatic cancer cells, as well as expression of monocarboxylate transporter 2 (MCT2) in cancer tissues. To gain further insight, we transfected BxPC-3 and HPAC pancreatic cancer cells with siRNA or shRNA targeting Embigin and observed reductions in cell proliferation, migration, invasion, wound healing, and reduced levels of matrix metalloproteinases-2 and -9. Silencing of Embigin increased intracellular L-lactate concentration by 1.5-fold and decreased MCT2 levels at the plasma membrane. Furthermore, Embigin silencing led to a reduced expression of PI3K, GSK3-β, and Snail/Slug. Upon treating BxPC-3 cells with transforming growth factor-β (TGF-β), we observed elevated expression of Snail/Slug, Embigin, and Vimentin; meanwhile, when treating cells with SB-216763, a GSK3-β inhibitor, we noted decreases in GSK3-β, Snail/Slug, and Embigin expression, suggesting that the TGF-β signaling cascade, comprising PI3K, GSK3-β, Snail/Slug, and Embigin signals, mediates epithelial to mesenchymal transition (EMT) in pancreatic cancer cells. These findings indicate the involvement of Embigin in EMT in pancreatic cancer progression and suggest Embigin as a putative target for the detection and/or treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Mi Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Chanyang Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Si Young Song
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
|
18
|
Glait-Santar C, Pasmanik-Chor M, Oron-Karni V, Benayahu D. Molecular profiling of functional interactions between pre-osteoblastic and breast carcinoma cells. Genes Cells 2012; 17:302-15. [DOI: 10.1111/j.1365-2443.2012.01590.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Willems A, Batlouni SR, Esnal A, Swinnen JV, Saunders PTK, Sharpe RM, França LR, De Gendt K, Verhoeven G. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development. PLoS One 2010; 5:e14168. [PMID: 21152390 PMCID: PMC2994754 DOI: 10.1371/journal.pone.0014168] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 11/10/2010] [Indexed: 11/19/2022] Open
Abstract
The observation that mice with a selective ablation of the androgen receptor (AR) in Sertoli cells (SC) (SCARKO mice) display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli) and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin). Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2). It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.
Collapse
Affiliation(s)
- Ariane Willems
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sergio R. Batlouni
- Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Arantza Esnal
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Edinburgh, Scotland, United Kingdom
| | - Johannes V. Swinnen
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philippa T. K. Saunders
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Edinburgh, Scotland, United Kingdom
| | - Richard M. Sharpe
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Edinburgh, Scotland, United Kingdom
| | - Luiz R. França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karel De Gendt
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Guido Verhoeven
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
20
|
The inhibition of monocarboxylate transporter 2 (MCT2) by AR-C155858 is modulated by the associated ancillary protein. Biochem J 2010; 431:217-25. [PMID: 20695846 PMCID: PMC2947196 DOI: 10.1042/bj20100890] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mammalian cells, MCTs (monocarboxylate transporters) require association with an ancillary protein to enable plasma membrane expression of the active transporter. Basigin is the preferred binding partner for MCT1, MCT3 and MCT4, and embigin for MCT2. In rat and rabbit erythrocytes, MCT1 is associated with embigin and basigin respectively, but its sensitivity to inhibition by AR-C155858 was found to be identical. Using RT (reverse transcription)–PCR, we have shown that Xenopus laevis oocytes contain endogenous basigin, but not embigin. Co-expression of exogenous embigin was without effect on either the expression of MCT1 or its inhibition by AR-C155858. In contrast, expression of active MCT2 at the plasma membrane of oocytes was significantly enhanced by co-expression of exogenous embigin. This additional transport activity was insensitive to inhibition by AR-C155858 unlike that by MCT2 expressed with endogenous basigin that was potently inhibited by AR-C155858. Chimaeras and C-terminal truncations of MCT1 and MCT2 were also expressed in oocytes in the presence and absence of exogenous embigin. L-Lactate Km values for these constructs were determined and revealed that the TM (transmembrane) domains of an MCT, most probably TM7–TM12, but not the C-terminus, are the major determinants of L-lactate affinity, whereas the associated ancillary protein has little or no effect. Inhibitor titrations of lactate transport by these constructs indicated that embigin modulates MCT2 sensitivity to AR-C155858 through interactions with both the intracellular C-terminus and TMs 3 and 6 of MCT2. The C-terminus of MCT2 was found to be essential for its expression with endogenous basigin.
Collapse
|
21
|
Wilson MC, Meredith D, Bunnun C, Sessions RB, Halestrap AP. Studies on the DIDS-binding site of monocarboxylate transporter 1 suggest a homology model of the open conformation and a plausible translocation cycle. J Biol Chem 2009; 284:20011-21. [PMID: 19473976 PMCID: PMC2740427 DOI: 10.1074/jbc.m109.014217] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-directed mutagenesis of MCT1 was performed on exofacial lysines Lys38, Lys45, Lys282, and Lys413. K38Q-MCT1 and K38R-MCT1 were inactive when expressed at the plasma membrane of Xenopus laevis oocytes, whereas K45R/K282R/K413R-MCT1 and K45Q/K282Q/K413Q-MCT1 were active. The former exhibited normal reversible and irreversible inhibition by DIDS, whereas the latter showed less reversible and no irreversible inhibition. K45Q/K413Q-MCT1 retained some irreversible inhibition, whereas K45Q/K282Q-MCT1 and K282Q/K413Q-MCT1 did not. These data suggest that the two DIDS SO3− groups interact with positively charged Lys282 together with Lys45 and/or Lys413. This positions one DIDS isothiocyanate group close to Lys38, leading to its covalent modification and irreversible inhibition. Additional mutagenesis revealed that DIDS cross-links MCT1 to its ancillary protein embigin using either Lys38 or Lys290 of MCT1 and Lys160 or Lys164 of embigin. We have modeled a possible structure for the outward facing (open) conformation of MCT1 by employing modest rotations of the C-terminal domain of the inner facing conformation modeled previously. The resulting model structure has a DIDS-binding site consistent with experimental data and locates Lys38 in a hydrophobic environment at the bottom of a substrate-binding channel. Our model suggests a translocation cycle in which Lys38 accepts a proton before binding lactate. Both the lactate and proton are then passed through the channel via Asp302− and Asp306+, an ion pair already identified as important for transport and located adjacent to Phe360, which controls channel selectivity. The cross-linking data have also been used to model a structure of MCT1 bound to embigin that is consistent with published data.
Collapse
Affiliation(s)
- Marieangela C Wilson
- Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Wilson MC, Meredith D, Fox JEM, Manoharan C, Davies AJ, Halestrap AP. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem 2005; 280:27213-21. [PMID: 15917240 DOI: 10.1074/jbc.m411950200] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translocation of monocarboxylate transporters MCT1 and MCT4 to the plasma membrane requires CD147 (basigin) with which they remain tightly associated. However, the importance of CD147 for MCT activity is unclear. MCT1 and MCT4 are both inhibited by the cell-impermeant organomercurial reagent p-chloromercuribenzene sulfonate (pCMBS). Here we demonstrate by site-directed mutagenesis that removal of all accessible cysteine residues on MCT4 does not prevent this inhibition. pCMBS treatment of cells abolished co-immunoprecipitation of MCT1 and MCT4 with CD147 and enhanced labeling of CD147 with a biotinylated-thiol reagent. This suggested that CD147 might be the target of pCMBS, and further evidence for this was obtained by treatment of cells with the bifunctional organomercurial reagent fluorescein dimercury acetate that caused oligomerization of CD147. Site-directed mutagenesis of CD147 implicated the disulfide bridge in the Ig-like C2 domain of CD147 as the target of pCMBS attack. MCT2, which is pCMBS-insensitive, was found to co-immunoprecipitate with gp70 rather than CD147. The interaction between gp70 and MCT2 was confirmed using fluorescence resonance energy transfer between the cyan fluorescent protein- and yellow fluorescent protein-tagged MCT2 and gp70. pCMBS strongly inhibited lactate transport into rabbit erythrocytes, where MCT1 interacts with CD147, but not into rat erythrocytes where it interacts with gp70. These data imply that inhibition of MCT1 and MCT4 activity by pCMBS is mediated through its binding to CD147, whereas MCT2, which associates with gp70, is insensitive to pCMBS. We conclude that ancillary proteins are required to maintain the catalytic activity of MCTs as well as for their translocation to the plasma membrane.
Collapse
Affiliation(s)
- Marieangela C Wilson
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Clamp MF, Ochrietor JD, Moroz TP, Linser PJ. Developmental analyses of 5A11/Basigin, 5A11/Basigin-2 and their putative binding partner MCT1 in the mouse eye. Exp Eye Res 2004; 78:777-89. [PMID: 15037112 DOI: 10.1016/j.exer.2003.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Recent reports by this laboratory and others have demonstrated an association between 5A11/Basigin, a member of the immunoglobulin gene superfamily, and monocarboxylate transporter-1 (MCT1), a lactose transporter. Indeed, it was determined in the 5A11/Basigin null mouse retina that MCT1 does not properly integrate into the cell membranes of Müller cells (MCs) or the retinal-pigmented epithelium, where the two are colocalized. The purpose of this study was to elucidate the association of 5A11/Basigin and MCT1 in the developing mouse retina. Immunocytochemical localization and real-time RT-PCR were used to evaluate the expression and localization of 5A11/Basigin and MCT1 at embryonic days 12, 15, and 18, as well as post-natal days 1, 7, 14, and 21. Expression of both proteins progressed from a more generalized distribution throughout the undifferentiated neural retina to specific staining of retina-pigmented epithilia, the MCs, photoreceptor cells and the ciliary apparatus. Although these two membrane glycoproteins were often colocalized, distinct differences in the location and magnitude of their expression over time was observed. These findings suggest that although 5A11/Basigin and MCT1 can associate within the cell membrane, their expression is not always associated and colocalized.
Collapse
Affiliation(s)
- Michael F Clamp
- The Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
24
|
Stuart RO, Bush KT, Nigam SK. Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Kidney Int 2003; 64:1997-2008. [PMID: 14633122 DOI: 10.1046/j.1523-1755.2003.00383.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In a recent study, the pattern of gene expression during development of the rat kidney was analyzed using high-density DNA array technology (Stuart RO, Bush KT, Nigam SK, Proc Natl Acad Sci USA 98:5649-5654, 2001). This approach, while shedding light on global patterns of gene expression in the developing kidney, does not provide insight into the contributions of genes that might be part of the morphogenetic program of the ureteric bud (UB) and metanephric mesenchyme (MM), the two tissues that interact closely during nephron formation. METHODS We have now used high-density DNA arrays together with a double in vitro transcription (dIVT) approach to examine gene expression patterns in in vitro models for morphogenesis of the rat UB (isolated UB culture) and MM (coculture with embryonic spinal cord) and compared this data with patterns of gene expression in the whole embryonic kidney at different stages of development. RESULTS The results indicate that different sets of genes are expressed in the UB and MM as morphogenesis occurs. The dIVT data from the in vitro UB and MM culture models was clustered hierarchically with single IVT data from the whole embryonic kidney obtained at different stages of development, and the global patterns of gene expression were remarkably compatible, supporting the validity of the approach. The potential roles of genes whose expression was associated with the individual tissues were examined, and several pathways were identified that could have roles in kidney development. For example, hepatocyte nuclear factor-6 (HNF-6), a transcription factor potentially upstream in a pathway leading to the expression of KSP-cadherin was highly expressed in the UB. Embigin, a cell adhesion molecule important in cell/extracellular matrix (ECM) interactions, was also found in the UB and may serve as a Dolichos biflorus binding protein in the kidney. ADAM10, a disintegrin-metalloprotease involved in Delta-Notch signaling and perhaps Slit-Robo signaling, was also highly expressed in late UB. Celsr-3, a protein, which along with members of the Wnt-frizzled transduction cascade, might be involved in the polarization of the forming nephron, was found to be highly expressed in differentiating MM. DDR2, a member of the discoidin domain receptor family, which is thought to function in the activation of matrix metalloproteinase-2 (MMP-2), was also found to be highly expressed in differentiating MM. It is also interesting to note that almost 10% of the highly expressed genes in both tissues were associated with neuronal growth and/or differentiation. CONCLUSION The data presented in this study point to the power of combining in vitro models of kidney development with high-density DNA arrays to identify the genes involved in the morphogenetic process. Clear differences were found between patterns of genes expressed by the UB and MM at different stages of morphogenesis, and many of these were associated with neuronal growth and/or differentiation. Together, the high-density microarray data not only begin to suggest how separate genetic programs in the UB and MM orchestrate the formation of the whole kidney, but also suggest the involvement of heretofore largely unexplored developmental pathways (involving HNF-6, ADAM-10, Celsr-3, DDR2, and other genes) in nephrogenesis.
Collapse
Affiliation(s)
- Robert O Stuart
- Department of Medicine, University of California, San Diego, California, USA.
| | | | | |
Collapse
|
25
|
Enerson BE, Drewes LR. Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 2003; 92:1531-44. [PMID: 12884241 DOI: 10.1002/jps.10389] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The diffusion of monocarboxylates such as lactate and pyruvate across the plasma membrane of mammalian cells is facilitated by a family of integral membrane transport proteins, the monocarboxylate transporters (MCTs). Currently, at least eight unique members of the MCT family have been discovered and orthologs to each have been identified in a variety of species. Four MCTs (MCT1-MCT4) have been functionally characterized. Each isoform possesses unique biochemical properties such as kinetic constants and sensitivity to known MCT inhibitors. Several fold changes in the expression of MCTs may be evoked by altered physiological conditions, yet the molecular mechanisms underlying the regulation of MCTs are poorly understood. Post-translational regulation of MCT1 and MCT4 occurs, in part, by interaction with CD147, an accessory protein that is necessary for trafficking, localization, and functional expression of these transporters. Because of the physiological importance of monocarboxylates to the overall maintenance of metabolic homeostasis, the function of MCTs is significant to several pathologies that occur with disease, such as ischemic stroke and cancer. Finally, the expression of MCT1 in the epithelium of the small intestine and colon and in the blood-brain barrier may provide routes for the intestinal and blood to brain transfer of carboxylated pharmaceutical agents and other exogenous monocarboxylates.
Collapse
Affiliation(s)
- Bradley E Enerson
- School of Medicine Duluth, Biochemistry and Molecular Biology, 10 University Drive, Duluth, Minnesota 55812, USA
| | | |
Collapse
|
26
|
Grumolato L, Elkahloun AG, Ghzili H, Alexandre D, Coulouarn C, Yon L, Salier JP, Eiden LE, Fournier A, Vaudry H, Anouar Y. Microarray and suppression subtractive hybridization analyses of gene expression in pheochromocytoma cells reveal pleiotropic effects of pituitary adenylate cyclase-activating polypeptide on cell proliferation, survival, and adhesion. Endocrinology 2003; 144:2368-79. [PMID: 12746297 DOI: 10.1210/en.2002-0106] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts trophic effects on several neuronal, neuroendocrine, and endocrine cells. To gain insight into the pattern of the transcriptional modifications induced by PACAP during cell differentiation, we studied the effects of this neuropeptide on rat pheochromocytoma PC12 cells. We first analyzed the transcriptome of PC12 cells in comparison to that of terminally differentiated rat adrenomedullary chromaffin cells, using a high-density microarray, to identify genes associated with the proliferative phenotype that are possible targets of PACAP during differentiation of sympathoadrenal normal and tumoral cells. We then studied global gene expression in PC12 cells after 48 h of exposure to PACAP, using both cDNA microarray and suppression subtractive hybridization technologies. These complementary approaches resulted in the identification of 75 up-regulated and 70 down-regulated genes in PACAP-treated PC12 cells. Among the genes whose expression is modified in differentiated cells, a vast majority are involved in cell proliferation, survival, and adhesion/motility. Expression changes of most of these genes have been associated with progression of several neoplasms. A kinetic study of the effects of PACAP on some of the identified genes showed that the neuropeptide likely exerts early as well as late actions to achieve the gene expression program necessary for cell differentiation. In conclusion, the results of the present study underscore the pleiotropic role of PACAP in cell differentiation and provide important information on novel targets that could mediate the effects of this neuropeptide in normal and tumoral neuroendocrine cells.
Collapse
Affiliation(s)
- Luca Grumolato
- Institut Fédératif de Recherches Multidisciplinaires sur les Peptides (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, Institut National de la Santé et de la Recherche Médicale U413, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- M O Hengartner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
28
|
Tachikui H, Kurosawa N, Kadomatsu K, Muramatsu T. Genomic organization and promoter activity of embigin, a member of the immunoglobulin superfamily. Gene 1999; 240:325-32. [PMID: 10580152 DOI: 10.1016/s0378-1119(99)00445-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Embigin is a transmembrane glycoprotein belonging to the immunoglobulin superfamily, which is preferentially expressed in early stages of mouse embryogenesis and enhances integrin-mediated cell-substratum adhesion. The mouse embigin gene, which we cloned, spanned more than 50kb, in which nine exons were present. All exons contained protein-coding sequences. Each of the two immunoglobulin domains was encoded by two exons, and the C-proximal half of the second immunoglobulin domain and the transmembrane domain were in the same exon. These features are shared by the basigin gene; together with protein sequence homology, our results defined a family in the immunoglobulin superfamily, to which embigin and basigin both belong. The major transcriptional initiation site of embigin gene was 103 bases upstream from the translation initiation site, as determined by 5' rapid amplification of cDNA ends. A 3kb DNA fragment upstream from the transcriptional initiation site contained three Sp1 binding sites and had a promoter sequence capable of expressing the downstream gene not only in F9 embryonal carcinoma cells which express the gene, but also in L and G401 cells which do not, indicating the presence of a regulatory region outside the 3kb DNA region. Deletion analysis of the 3.5kb DNA fragment revealed that the region between -125 to +1, containing a single Sp1 binding site, is essential for transcription of the embigin gene.
Collapse
Affiliation(s)
- H Tachikui
- Department of Biochemistry, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
29
|
Herley MT, Yu Y, Whitney RG, Sato JD. Characterization of the VEGF binding site on the Flt-1 receptor. Biochem Biophys Res Commun 1999; 262:731-8. [PMID: 10471394 DOI: 10.1006/bbrc.1999.1282] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The angiogenic growth factor VEGF binds to the receptor tyrosine kinases Flt-1 and KDR/Flk-1. Immunoglobulin (Ig)-like loop-2 of Flt-1 is involved in binding VEGF, but the contribution of other Flt-1 Ig-loops to VEGF binding remains unclear. We tested the ability of membrane-bound chimeras between the extracellular domain of Flt-1 and the cell adhesion molecule embigin to bind VEGF. VEGF bound as well to receptors containing Flt-1 loops 1-2 or 2-3 as it did to the entire Flt-1 extracellular domain. Chimeras containing only loop-2 of Flt-1 bound VEGF with 22-fold lower affinity. We conclude that high-affinity VEGF binding requires Ig-like loop-2 plus either loop-1 or loop-3. In addition, Flt-1 amino acid residues Arg-224 and Asp-231 were not essential for high-affinity binding of VEGF to membrane-bound Flt-1.
Collapse
Affiliation(s)
- M T Herley
- Biochemistry Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|