1
|
Atsoniou K, Giannopoulou E, Georganta EM, Skoulakis EMC. Drosophila Contributions towards Understanding Neurofibromatosis 1. Cells 2024; 13:721. [PMID: 38667335 PMCID: PMC11048932 DOI: 10.3390/cells13080721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Neurofibromatosis 1 (NF1) is a multisymptomatic disorder with highly variable presentations, which include short stature, susceptibility to formation of the characteristic benign tumors known as neurofibromas, intense freckling and skin discoloration, and cognitive deficits, which characterize most children with the condition. Attention deficits and Autism Spectrum manifestations augment the compromised learning presented by most patients, leading to behavioral problems and school failure, while fragmented sleep contributes to chronic fatigue and poor quality of life. Neurofibromin (Nf1) is present ubiquitously during human development and postnatally in most neuronal, oligodendrocyte, and Schwann cells. Evidence largely from animal models including Drosophila suggests that the symptomatic variability may reflect distinct cell-type-specific functions of the protein, which emerge upon its loss, or mutations affecting the different functional domains of the protein. This review summarizes the contributions of Drosophila in modeling multiple NF1 manifestations, addressing hypotheses regarding the cell-type-specific functions of the protein and exploring the molecular pathways affected upon loss of the highly conserved fly homolog dNf1. Collectively, work in this model not only has efficiently and expediently modelled multiple aspects of the condition and increased understanding of its behavioral manifestations, but also has led to pharmaceutical strategies towards their amelioration.
Collapse
Affiliation(s)
- Kalliopi Atsoniou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Giannopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| |
Collapse
|
2
|
LRIG1 is a conserved EGFR regulator involved in melanoma development, survival and treatment resistance. Oncogene 2021; 40:3707-3718. [PMID: 33947959 PMCID: PMC8154585 DOI: 10.1038/s41388-021-01808-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-negative regulator of receptor tyrosine kinase (RTK) signaling and a tumor suppressor in several cancers, but its involvement in melanoma is largely unexplored. Here, we aim to determine the role of LRIG1 in melanoma tumorigenesis, RTK signaling, and BRAF inhibitor resistance. We find that LRIG1 is downregulated during early tumorigenesis and that LRIG1 affects activation of the epidermal growth factor receptor (EGFR) in melanoma cells. LRIG1-dependent regulation of EGFR signaling is evolutionary conserved to the roundworm C. elegans, where negative regulation of the EGFR-Ras-Raf pathway by sma-10/LRIG completely depends on presence of the receptor let-23/EGFR. In a cohort of metastatic melanoma patients, we observe an association between LRIG1 and survival in the triple wild-type subtype and in tumors with high EGFR expression. During in vitro development of BRAF inhibitor resistance, LRIG1 expression decreases; and mimics LRIG1 knockout cells for increased EGFR expression. Treating resistant cells with recombinant LRIG1 suppresses AKT activation and proliferation. Together, our results show that sma-10/LRIG is a conserved regulator of RTK signaling, add to our understanding of LRIG1 in melanoma and identifies recombinant LRIG1 as a potential therapeutic against BRAF inhibitor-resistant melanoma.
Collapse
|
3
|
Sawyer JK, Kabiri Z, Montague RA, Allen SR, Stewart R, Paramore SV, Cohen E, Zaribafzadeh H, Counter CM, Fox DT. Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo. PLoS Genet 2020; 16:e1009228. [PMID: 33296356 PMCID: PMC7752094 DOI: 10.1371/journal.pgen.1009228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/21/2020] [Accepted: 10/27/2020] [Indexed: 01/05/2023] Open
Abstract
Signal transduction pathways are intricately fine-tuned to accomplish diverse biological processes. An example is the conserved Ras/mitogen-activated-protein-kinase (MAPK) pathway, which exhibits context-dependent signaling output dynamics and regulation. Here, by altering codon usage as a novel platform to control signaling output, we screened the Drosophila genome for modifiers specific to either weak or strong Ras-driven eye phenotypes. Our screen enriched for regions of the genome not previously connected with Ras phenotypic modification. We mapped the underlying gene from one modifier to the ribosomal gene RpS21. In multiple contexts, we show that RpS21 preferentially influences weak Ras/MAPK signaling outputs. These data show that codon usage manipulation can identify new, output-specific signaling regulators, and identify RpS21 as an in vivo Ras/MAPK phenotypic regulator. Cellular communication is critical in controlling the growth of organs and must be carefully regulated to prevent disease. The Ras signaling pathway is frequently used for cellular communication of tissue growth regulation but can operate at different signaling strengths. Here, we used a novel strategy to identify genes that specifically tune weak or strong Ras signaling states. We find that the gene RpS21 preferentially tunes weak Ras signaling states.
Collapse
Affiliation(s)
- Jessica K. Sawyer
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Zahra Kabiri
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruth A. Montague
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Scott R. Allen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rebeccah Stewart
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarah V. Paramore
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Erez Cohen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hamed Zaribafzadeh
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Christopher M. Counter
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (CMC); (DTF)
| | - Donald T. Fox
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (CMC); (DTF)
| |
Collapse
|
4
|
Genome-Wide Screen for New Components of the Drosophila melanogaster Torso Receptor Tyrosine Kinase Pathway. G3-GENES GENOMES GENETICS 2018; 8:761-769. [PMID: 29363515 PMCID: PMC5844297 DOI: 10.1534/g3.117.300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Patterning of the Drosophila embryonic termini by the Torso (Tor) receptor pathway has long served as a valuable paradigm for understanding how receptor tyrosine kinase signaling is controlled. However, the mechanisms that underpin the control of Tor signaling remain to be fully understood. In particular, it is unclear how the Perforin-like protein Torso-like (Tsl) localizes Tor activity to the embryonic termini. To shed light on this, together with other aspects of Tor pathway function, we conducted a genome-wide screen to identify new pathway components that operate downstream of Tsl. Using a set of molecularly defined chromosomal deficiencies, we screened for suppressors of ligand-dependent Tor signaling induced by unrestricted Tsl expression. This approach yielded 59 genomic suppressor regions, 11 of which we mapped to the causative gene, and a further 29 that were mapped to <15 genes. Of the identified genes, six represent previously unknown regulators of embryonic Tor signaling. These include twins (tws), which encodes an integral subunit of the protein phosphatase 2A complex, and α-tubulin at 84B (αTub84B), a major constituent of the microtubule network, suggesting that these may play an important part in terminal patterning. Together, these data comprise a valuable resource for the discovery of new Tor pathway components. Many of these may also be required for other roles of Tor in development, such as in the larval prothoracic gland where Tor signaling controls the initiation of metamorphosis.
Collapse
|
5
|
Epidermal Growth Factor Pathway Signaling in Drosophila Embryogenesis: Tools for Understanding Cancer. Cancers (Basel) 2017; 9:cancers9020016. [PMID: 28178204 PMCID: PMC5332939 DOI: 10.3390/cancers9020016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
EGF signaling is a well-known oncogenic pathway in animals. It is also a key developmental pathway regulating terminal and dorsal-ventral patterning along with many other aspects of embryogenesis. In this review, we focus on the diverse roles for the EGF pathway in Drosophila embryogenesis. We review the existing body of evidence concerning EGF signaling in Drosophila embryogenesis focusing on current uncertainties in the field and areas for future study. This review provides a foundation for utilizing the Drosophila model system for research into EGF effects on cancer.
Collapse
|
6
|
Ray M, Lakhotia SC. The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster are expressed in tissues other than eyes also. J Genet 2016; 94:407-16. [PMID: 26440079 DOI: 10.1007/s12041-015-0535-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The binary GAL4-UAS system of conditional gene expression is widely used by Drosophila geneticists to target expression of the desired transgene in tissue of interest. In many studies, a preferred target tissue is the Drosophila eye, for which the sev-GAL4 and GMR-GAL4 drivers are most widely used since they are believed to be expressed exclusively in the developing eye cells. However, several reports have noted lethality following expression of certain transgenes under these GAL4 drivers notwithstanding the fact that eye is not essential for survival of the fly. Therefore, to explore the possibility that these drivers may also be active in tissues other than eye, we examined the expression of UAS-GFP reporter driven by the sev-GAL4 or GMR-GAL4 drivers. We found that both these drivers are indeed expressed in additional tissues, including a common set of specific neuronal cells in larval and pupal ventral and cerebral ganglia. Neither sev nor glass gene has so far been reported to be expressed in these neuronal cells. Expression pattern of sev-GAL4 driver parallels that of the endogenous Sevenless protein. In addition to cells in which sev-GAL4 is expressed, the GMR-GAL4 is expressed in several other larval cell types also. Further, two different GMR-GAL4 lines also show some specific differences in their expression domains outside the eye discs. These findings emphasize the need for a careful confirmation of the expression domains of a GAL4 driver being used in a given study, rather than relying only on the empirically claimed expression domains.
Collapse
Affiliation(s)
- Mukulika Ray
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|
7
|
Genetic and functional studies implicate synaptic overgrowth and ring gland cAMP/PKA signaling defects in the Drosophila melanogaster neurofibromatosis-1 growth deficiency. PLoS Genet 2013; 9:e1003958. [PMID: 24278035 PMCID: PMC3836801 DOI: 10.1371/journal.pgen.1003958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man. Neurofibromatosis type 1 (NF1) is a genetic disease that affects 1 in 3,000 and that is caused by loss of a protein that inactivates Ras oncoproteins. NF1 is a characteristically variable disease that predisposes patients to several symptoms, the most common of which include benign and malignant tumors, reduced growth and learning problems. We and others previously found that fruit fly mutants that lack a highly conserved dNf1 gene are reduced in size and exhibit impaired learning and memory, and that both defects appear due to abnormal Ras and cyclic-AMP (cAMP) signaling. The former was unremarkable, but how loss of dNf1 affects cAMP signaling remains poorly understood. Here we report results of a genetic screen for dominant modifiers of the dNf1 growth defect. This screen and follow-up functional studies support a model in which synaptic defects and reduced cAMP signaling in specific parts of the neuroendocrine ring gland contribute to the dNf1 growth defect. Beyond these results, we show that human ALK is expressed in cells that give rise to NF1 tumors, and that NF1 regulated ALK/RAS/ERK signaling is evolutionary conserved.
Collapse
|
8
|
Mitrofanov VG, Chekunova AI, Proshakov PA, Barsukov MI. Universal intracellular transducer ras and its role in the development of drosophila. Russ J Dev Biol 2013. [DOI: 10.1134/s1062360413040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Jennings BH. Pausing for thought: disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis. Bioessays 2013; 35:553-60. [PMID: 23575664 PMCID: PMC3698693 DOI: 10.1002/bies.201200179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/04/2013] [Indexed: 12/30/2022]
Abstract
Factors affecting transcriptional elongation have been characterized extensively in in vitro, single cell (yeast) and cell culture systems; however, data from the context of multicellular organisms has been relatively scarce. While studies in homogeneous cell populations have been highly informative about the underlying molecular mechanisms and prevalence of polymerase pausing, they do not reveal the biological impact of perturbing this regulation in an animal. The core components regulating pausing are expressed in all animal cells and are recruited to the majority of genes, however, disrupting their function often results in discrete phenotypic effects. Mutations in genes encoding key regulators of transcriptional pausing have been recovered from several genetic screens for specific phenotypes or interactions with specific factors in mice, zebrafish and flies. Analysis of these mutations has revealed that control of transcriptional pausing is critical for a diverse range of biological pathways essential for animal development and survival.
Collapse
|
10
|
Ko JH, Son W, Bae GY, Kang JH, Oh W, Yoo OJ. A new hepatocytic isoform of PLZF lacking the BTB domain interacts with ATP7B, the Wilson disease protein, and positively regulates ERK signal transduction. J Cell Biochem 2007; 99:719-34. [PMID: 16676348 DOI: 10.1002/jcb.20980] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The promyelocytic leukemia zinc finger (PLZF) protein has been described as a transcriptional repressor of the BTB-domain/zinc-finger family, and shown to regulate the expression of Hox genes during embryogenesis and the expression of cyclin A in the cell cycle progression. Here, a 45-kDa isoform of PLZF without a BTB domain was identified via yeast two-hybrid screening using the C-terminal region of ATP7B as bait in our determination of the biological roles of the Wilson disease protein outside of its copper-binding domain. Our immunoprecipitation experiments showed that the hepatocytic isoform of PLZF could specifically interact with the C-terminal region of ATP7B. The immunostaining of HepG2 cells revealed that the ATP7B and PLZF proteins were apparently colocalized into the trans-Golgi complexes. It was also determined that disruption of PLZF expression in the HepG2 cells affected an attenuation of ERK activity in a dose-dependent manner. The hepatocytic activities of ERK kinase were found to be enhanced as the result of PLZF or ATP7B expression, but this enhancement was abrogated by the deletion of the C-terminal region of ATP7B. Furthermore, a transgenic Drosophila strain that ectopically expressed the hepatocytic deltaBTB-PLZF exhibited phenotypic changes in eye and wing development, and these alterations were fully recovered as the result of ATP7B expression, indicating the obvious in vivo interaction between the two proteins. Those PLZF-induced abnormalities were attributed to the enhancement of ERK signaling, as was shown by phenotypic reversions with loss-of-function mutations in ERK signal transduction in Drosophila. These data suggest the existence of a mechanism that regulates ERK signaling via the C-terminus of ATP7B and the ATP7B-interacting hepatocytic PLZF.
Collapse
Affiliation(s)
- Jung Ho Ko
- Biomedical Research Center, Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Gerber MA, Shilatifard A, Eissenberg JC. Mutational analysis of an RNA polymerase II elongation factor in Drosophila melanogaster. Mol Cell Biol 2005; 25:7803-11. [PMID: 16107725 PMCID: PMC1190276 DOI: 10.1128/mcb.25.17.7803-7811.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ELL family of proteins function in vitro as elongation factors for RNA polymerase II. Deletion studies have defined domains in mammalian ELL required for transcription elongation activity and RNA polymerase binding in vitro, for transformation of cultured cells when overexpressed, and for leukemogenesis and cell proliferation as part of a leukemic fusion protein. The goal of this study was to identify domains required for chromosome targeting and viability in the unique Drosophila ELL (dELL) protein. Here, we show that an N-terminal domain of dELL is necessary and sufficient for targeting to transcriptionally active puff sites in chromatin, supporting a role for this domain in recruiting dELL to elongating RNA polymerase II. We demonstrate that a central domain of dELL is required for rapid mobilization of ELL during the heat shock response, suggesting a regulatory function for this domain. Unexpectedly, transgenic dELL in which the N-terminal chromosome binding domain is deleted can complement the recessive lethality of mutations in ELL, suggesting that Drosophila ELL has an essential activity in development distinct from its role as an RNA polymerase II elongation factor.
Collapse
Affiliation(s)
- Mark A Gerber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
12
|
Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, Cagan RL. A Drosophila model of multiple endocrine neoplasia type 2. Genetics 2005; 171:1057-81. [PMID: 15965261 PMCID: PMC1456812 DOI: 10.1534/genetics.104.038018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dominant mutations in the Ret receptor tyrosine kinase lead to the familial cancer syndrome multiple endocrine neoplasia type 2 (MEN2). Mammalian tissue culture studies suggest that RetMEN2 mutations significantly alter Ret-signaling properties, but the precise mechanisms by which RetMEN2 promotes tumorigenesis remain poorly understood. To determine the signal transduction pathways required for RetMEN2 activity, we analyzed analogous mutations in the Drosophila Ret ortholog dRet. Overexpressed dRetMEN2 isoforms targeted to the developing retina led to aberrant cell proliferation, inappropriate cell fate specification, and excessive Ras pathway activation. Genetic analysis indicated that dRetMEN2 acts through the Ras-ERK, Src, and Jun kinase pathways. A genetic screen for mutations that dominantly suppress or enhance dRetMEN2 phenotypes identified new genes that are required for the phenotypic outcomes of dRetMEN2 activity. Finally, we identified human orthologs for many of these genes and examined their status in human tumors. Two of these loci showed loss of heterozygosity (LOH) within both sporadic and MEN2-associated pheochromocytomas, suggesting that they may contribute to Ret-dependent oncogenesis.
Collapse
Affiliation(s)
- Renee D Read
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Chao AT, Dierick HA, Addy TM, Bejsovec A. Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila. Genetics 2004; 165:601-12. [PMID: 14573473 PMCID: PMC1462801 DOI: 10.1093/genetics/165.2.601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens.
Collapse
Affiliation(s)
- Anna T Chao
- Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | |
Collapse
|
14
|
Kao G, Tuck S, Baillie D, Sundaram MV. C. elegansSUR-6/PR55 cooperates with LET-92/protein phosphatase 2A and promotes Raf activity independently of inhibitory Akt phosphorylation sites. Development 2004; 131:755-65. [PMID: 14724126 DOI: 10.1242/dev.00987] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatase 2A (PP2A) can both positively and negatively influence the Ras/Raf/MEK/ERK signaling pathway, but its relevant substrates are largely unknown. In C. elegans, the PR55/B regulatory subunit of PP2A, which is encoded by sur-6, positively regulates Ras-mediated vulval induction and acts at a step between Ras and Raf. We show that the catalytic subunit (C) of PP2A, which is encoded by let-92, also positively regulates vulval induction. Therefore SUR-6/PR55 and LET-92/PP2A-C probably act together to dephosphorylate a Ras pathway substrate. PP2A has been proposed to activate the Raf kinase by removing inhibitory phosphates from Ser259 from Raf-1 or from equivalent Akt phosphorylation sites in other Raf family members. However, we find that mutant forms of C. elegansLIN-45 RAF that lack these sites still require sur-6. Therefore,SUR-6 must influence Raf activity via a different mechanism. SUR-6 and KSR(kinase suppressor of Ras) function at a similar step in Raf activation but our genetic analysis suggests that KSR activity is intact in sur-6mutants. We identify the kinase PAR-1 as a negative regulator of vulval induction and show that it acts in opposition to SUR-6 and KSR-1. In addition to their roles in Ras signaling, SUR-6/PR55 and LET-92/PP2A-C cooperate to control mitotic progression during early embryogenesis.
Collapse
Affiliation(s)
- Gautam Kao
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
15
|
Douziech M, Roy F, Laberge G, Lefrançois M, Armengod AV, Therrien M. Bimodal regulation of RAF by CNK in Drosophila. EMBO J 2003; 22:5068-78. [PMID: 14517245 PMCID: PMC204489 DOI: 10.1093/emboj/cdg506] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Connector enhancer of KSR (CNK) is a multidomain-containing protein previously identified as a positive regulator of the RAS/MAPK pathway in Drosophila. Using transfection experiments and an RNAi-based rescue assay in Drosophila S2 cells, we demonstrate that CNK has antagonistic properties with respect to RAF activity. We show that CNK's N-terminal region contains two domains (SAM and CRIC) that are essential for RAF function. Unexpectedly, we also report that the C-terminal region of CNK contains a short bipartite element that strongly inhibits RAF catalytic function. Interestingly, CNK's opposite properties appear to prevent signaling leakage from RAF to MEK in the absence of upstream signals, but then transforms into a potent RAF activator upon signal activation. Together, these findings suggest that CNK not only participates in the elusive RAF activation process, but might also contribute to the switch-like behavior of the MAPK module.
Collapse
Affiliation(s)
- Mélanie Douziech
- Clinical Research Institute of Montreal, Laboratory of Intracellular Signaling, 110 Pine Avenue, West Montreal, PQ H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Settle M, Gordon MD, Nadella M, Dankort D, Muller W, Jacobs JR. Genetic identification of effectors downstream of Neu (ErbB-2) autophosphorylation sites in a Drosophila model. Oncogene 2003; 22:1916-26. [PMID: 12673197 DOI: 10.1038/sj.onc.1206240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ErbB-2/Neu receptor tyrosine kinase plays a causal role in tumorigenesis in mammals. Neu's carboxyl terminus contains five phosphorylated tyrosines that mediate transformation through interaction with cytoplasmic SH2 or PTB containing adaptor proteins. We show that Drosophila adaptors signal from individual phosphotyrosine sites of rat Neu. Activated Neu expression in the midline glia suppressed apoptosis, similar to that seen with activated Drosophila EGF-R expression. Expression in eye and wing tissues generated graded phenotypes suitable for dosage-sensitive modifier genetics. Suppression of ErbB-2/Neu-induced phenotypes in tissues haplosufficient for genes encoding adaptor protein or second messengers suggests that pTyr 1227(YD) signals require Shc, and that pTyr 1253 (YE) signalling does not employ Ras, but does require Raf function. Signalling from pTyr (YB) was affected by a haplosufficiency in drk (Grb-2), and in genes thought to function downstream of Grb-2: dab, sos, csw (Shp-2), and dos (Gab-1). These data demonstrate the power of Drosophila genetics to unmask the molecules that signal from oncogenic ErbB-2/Neu.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Animals
- Animals, Genetically Modified
- Apoptosis/genetics
- Apoptosis/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- ErbB Receptors/physiology
- Eye/growth & development
- Eye Proteins/genetics
- Eye Proteins/physiology
- Gene Dosage
- Gene Expression Regulation, Developmental
- Morphogenesis/genetics
- Morphogenesis/physiology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Phenotype
- Phosphorylation
- Phosphotyrosine/chemistry
- Protein Kinases
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- Protein Tyrosine Phosphatases, Non-Receptor
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/physiology
- Rats
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/physiology
- Receptors, Invertebrate Peptide/physiology
- Recombinant Fusion Proteins/physiology
- Shc Signaling Adaptor Proteins
- Signal Transduction/genetics
- Signal Transduction/physiology
- Son of Sevenless Protein, Drosophila/genetics
- Son of Sevenless Protein, Drosophila/physiology
- Structure-Activity Relationship
- Wings, Animal/growth & development
Collapse
Affiliation(s)
- Mark Settle
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Howard RM, Sundaram MV. C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component. Genes Dev 2002; 16:1815-27. [PMID: 12130541 PMCID: PMC186391 DOI: 10.1101/gad.998402] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In Caenorhabditis elegans, Ras/ERK and Wnt/beta-catenin signaling pathways cooperate to induce P12 and vulval cell fates in a Hox-dependent manner. Here we describe eor-1 and eor-2, two new positively acting nuclear components of the Ras and Wnt pathways. eor-1 and eor-2 act downstream or in parallel to ERK and function redundantly with the Mediator complex gene sur-2 and the functionally related gene lin-25, such that removal of both eor-1/eor-2 and sur-2/lin-25 mimics the removal of a main Ras pathway component. Furthermore, the eor-1 and eor-2 mutant backgrounds reveal an essential role for the Elk1-related gene lin-1. eor-1 and eor-2 also act downstream or in parallel to pry-1 Axin and therefore act at the convergence of the Ras and Wnt pathways. eor-1 encodes the ortholog of human PLZF, a BTB/zinc-finger transcription factor that is fused to RARalpha in acute promyelocytic leukemia. eor-2 encodes a novel protein. EOR-1/PLZF and EOR-2 appear to function closely together and cooperate with Hox genes to promote the expression of Ras- and Wnt-responsive genes. Further studies of eor-1 and eor-2 may provide insight into the roles of PLZF in normal development and leukemogenesis.
Collapse
Affiliation(s)
- Robyn M Howard
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
18
|
Aoyagi N, Wassarman DA. Developmental and transcriptional consequences of mutations in Drosophila TAF(II)60. Mol Cell Biol 2001; 21:6808-19. [PMID: 11564865 PMCID: PMC99858 DOI: 10.1128/mcb.21.20.6808-6819.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2001] [Accepted: 07/12/2001] [Indexed: 11/20/2022] Open
Abstract
In vitro, the TAF(II)60 component of the TFIID complex contributes to RNA polymerase II transcription initiation by serving as a coactivator that interacts with specific activator proteins and possibly as a promoter selectivity factor that interacts with the downstream promoter element. In vivo roles for TAF(II)60 in metazoan transcription are not as clear. Here we have investigated the developmental and transcriptional requirements for TAF(II)60 by analyzing four independent Drosophila melanogaster TAF(II)60 mutants. Loss-of-function mutations in Drosophila TAF(II)60 result in lethality, indicating that TAF(II)60 provides a nonredundant function in vivo. Molecular analysis of TAF(II)60 alleles revealed that essential TAF(II)60 functions are provided by two evolutionarily conserved regions located in the N-terminal half of the protein. TAF(II)60 is required at all stages of Drosophila development, in both germ cells and somatic cells. Expression of TAF(II)60 from a transgene rescued the lethality of TAF(II)60 mutants and exposed requirements for TAF(II)60 during imaginal development, spermatogenesis, and oogenesis. Phenotypes of rescued TAF(II)60 mutant flies implicate TAF(II)60 in transcriptional mechanisms that regulate cell growth and cell fate specification and suggest that TAF(II)60 is a limiting component of the machinery that regulates the transcription of dosage-sensitive genes. Finally, TAF(II)60 plays roles in developmental regulation of gene expression that are distinct from those of other TAF(II) proteins.
Collapse
Affiliation(s)
- N Aoyagi
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
19
|
Huang AM, Rubin GM. A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster. Genetics 2000; 156:1219-30. [PMID: 11063696 PMCID: PMC1461302 DOI: 10.1093/genetics/156.3.1219] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Differentiation of the R7 photoreceptor cell is dependent on the Sevenless receptor tyrosine kinase, which activates the RAS1/mitogen-activated protein kinase signaling cascade. Kinase suppressor of Ras (KSR) functions genetically downstream of RAS1 in this signal transduction cascade. Expression of dominant-negative KSR (KDN) in the developing eye blocks RAS pathway signaling, prevents R7 cell differentiation, and causes a rough eye phenotype. To identify genes that modulate RAS signaling, we screened for genes that alter RAS1/KSR signaling efficiency when misexpressed. In this screen, we recovered three known genes, Lk6, misshapen, and Akap200. We also identified seven previously undescribed genes; one encodes a novel rel domain member of the NFAT family, and six encode novel proteins. These genes may represent new components of the RAS pathway or components of other signaling pathways that can modulate signaling by RAS. We discuss the utility of gain-of-function screens in identifying new components of signaling pathways in Drosophila.
Collapse
Affiliation(s)
- A M Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
20
|
Therrien M, Morrison DK, Wong AM, Rubin GM. A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila. Genetics 2000; 156:1231-42. [PMID: 11063697 PMCID: PMC1461306 DOI: 10.1093/genetics/156.3.1231] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
kinase suppressor of Ras (ksr) encodes a putative protein kinase that by genetic criteria appears to function downstream of RAS in multiple receptor tyrosine kinase (RTK) pathways. While biochemical evidence suggests that the role of KSR is closely linked to the signal transduction mechanism of the MAPK cascade, the precise molecular function of KSR remains unresolved. To further elucidate the role of KSR and to identify proteins that may be required for KSR function, we conducted a dominant modifier screen in Drosophila based on a KSR-dependent phenotype. Overexpression of the KSR kinase domain in a subset of cells during Drosophila eye development blocks photoreceptor cell differentiation and results in the external roughening of the adult eye. Therefore, mutations in genes functioning with KSR might modify the KSR-dependent phenotype. We screened approximately 185,000 mutagenized progeny for dominant modifiers of the KSR-dependent rough eye phenotype. A total of 15 complementation groups of Enhancers and four complementation groups of Suppressors were derived. Ten of these complementation groups correspond to mutations in known components of the Ras1 pathway, demonstrating the ability of the screen to specifically identify loci critical for Ras1 signaling and further confirming a role for KSR in Ras1 signaling. In addition, we have identified 4 additional complementation groups. One of them corresponds to the kismet locus, which encodes a putative chromatin remodeling factor. The relevance of these loci with respect to the function of KSR and the Ras1 pathway in general is discussed.
Collapse
Affiliation(s)
- M Therrien
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | |
Collapse
|
21
|
Burmester T, Mink M, Pál M, Lászlóffy Z, Lepesant J, Maróy P. Genetic and molecular analysis in the 70CD region of the third chromosome of Drosophila melanogaster. Gene 2000; 246:157-67. [PMID: 10767537 DOI: 10.1016/s0378-1119(00)00066-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A collection of lethal and semi-lethal P-element insertions in the 70CD region of chromosome 3 of Drosophila melanogaster was used to investigate genes and gene arrangements by a combination of genetic, cytological, functional and molecular methods. The 12 lethal insertions studied fall into seven complementation groups of six genes. Lethal phases, expression patterns and other phenotypic aspects of these genes were determined. The genes and additional available sequences were placed on cloned genomic DNA fragments and arranged in an EcoRI map of 150kb that covers approximately the bands 70C7-8 to 70D1. Determination of deficiency breakpoints links the genetic, physical and molecular data. The sequences adjacent to seven independent P-element insertions were established after plasmid rescue or polymerase chain reaction. Similarity searches allowed the assignment of the P-element insertions to known mutations, expressed sequence tags, sequence tagged sites, or homologous genes of other species. Among these were identified a putative transacylase, a putative cell cycle gene, and the gene responsible for the dominant Polycomb-suppressor phenotype of devenir. The genomic sequence of the l(3)70Ca/b gene reveals a novel heat shock protein (hsc70Cb). l(3)70Da was identified as a member of the CDC48/PEX1 ATPase family and its coding sequence was determined.
Collapse
Affiliation(s)
- T Burmester
- Department of Genetics, Attila Jozsef University, H-6726, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
22
|
Wassarman DA, Aoyagi N, Pile LA, Schlag EM. TAF250 is required for multiple developmental events in Drosophila. Proc Natl Acad Sci U S A 2000; 97:1154-9. [PMID: 10655500 PMCID: PMC15553 DOI: 10.1073/pnas.97.3.1154] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TFIID transcription initiation complex is composed of TBP and multiple TAFs. Studies in unicellular systems indicate that TAF250 is required for progression through G(1)/S of the cell cycle and repression of apoptosis. Here we extend these in vivo studies by determining the developmental requirements for TAF250 in a multicellular organism, Drosophila. TAF250 mutants were isolated in a genetic screen that also yielded TAF60 and TAF110 mutants, indicating that TAFs function coordinately to regulate transcription. Null alleles of TAF250 are recessive larval lethal. However, combinations of weak loss-of-function TAF250 alleles survive to adulthood and reveal requirements for TAF250 during ovary, eye, ocelli, wing, bristle, and terminalia development as well as overall growth of the fly. These phenotypes suggest roles for TAF250 in regulating the cell cycle, cell differentiation, cell proliferation, and cell survival. Finally, molecular analysis of TAF250 mutants reveals that the observed phenotypes are caused by mutations in a central region of TAF250 that is conserved among metazoan organisms. This region is contained within the TAF250 histone acetyltransferase domain, but the mutations do not alter the histone acetyltransferase activity of TAF250 in vitro, indicating that some other aspect of TAF250 function is affected. Because this region is not conserved in the yeast TAF250 homologue, TAF145, it may define an activity for TAF250 that is unique to higher eukaryotes.
Collapse
Affiliation(s)
- D A Wassarman
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
23
|
Greaves S, Sanson B, White P, Vincent JP. A screen for identifying genes interacting with armadillo, the Drosophila homolog of beta-catenin. Genetics 1999; 153:1753-66. [PMID: 10581282 PMCID: PMC1460857 DOI: 10.1093/genetics/153.4.1753] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Drosophila Armadillo is a multifunctional protein implicated in both cell adhesion, as a catenin, and cell signaling, as part of the Wingless signal transduction pathway. We have generated viable fly stocks with alterations in the level of Armadillo available for signaling. Flies from one stock overexpress Armadillo and, as a result, have increased vein material and bristles in the wings. Flies from the other stock have reduced cytoplasmic Armadillo following overexpression of the intracellular domain of DE-cadherin. These flies display a wing-notching phenotype typical of wingless mutations. Both misexpression phenotypes can be dominantly modified by removing one copy of genes known to encode members of the wingless pathway. Here we describe the identification of further mutations that dominantly modify the Armadillo misexpression phenotypes. These mutations are in genes encoding three different functions: establishment and maintenance of adherens junctions, cell cycle control, and Egfr signaling.
Collapse
Affiliation(s)
- S Greaves
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
24
|
Chen G, Fernandez J, Mische S, Courey AJ. A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 1999; 13:2218-30. [PMID: 10485845 PMCID: PMC316998 DOI: 10.1101/gad.13.17.2218] [Citation(s) in RCA: 360] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1999] [Accepted: 07/19/1999] [Indexed: 12/27/2022]
Abstract
The Drosophila gene groucho (gro) encodes a transcriptional corepressor that has critical roles in many development processes. In an effort to illuminate the mechanism of Gro-mediated repression, we have employed Gro as an affinity reagent to purify Gro-binding proteins from embryonic nuclear extracts. One of these proteins was found to be the histone deacetylase Rpd3. Protein-protein interaction assays suggest that Gro and Rpd3 form a complex in vivo and that they interact directly via the glycine/proline rich (GP) domain in Gro. Cell culture assays demonstrate that Rpd3 potentiates repression by the GP domain. Furthermore, experiments employing a histone deacetylase inhibitor, as well as a catalytically inactive form of Rpd3, imply that histone deacetylase activity is required for efficient Gro-mediated repression. Finally, mutations in gro and rpd3 have synergistic effects on embryonic lethality and pattern formation. These findings support the view that Gro mediates repression, at least in part, by the direct recruitment of the histone deacetylase Rpd3 to the template, where it can modulate local chromatin structure. They also provide evidence for a specific role of Rpd3 in early development.
Collapse
Affiliation(s)
- G Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 USA
| | | | | | | |
Collapse
|