1
|
Pampush JD, Morse PE, Kay RF. Dental sculpting and compensatory shearing crests demonstrated in a WEAR series of Presbytis rubicunda (Cercopithecoidea, Colobidae) with dental topography analysis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24953. [PMID: 38751320 DOI: 10.1002/ajpa.24953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES Maintaining effective and efficient occlusal morphology presents adaptive challenges for mammals, particularly because mastication produces interactions with foods and other materials that alters the geometry of occlusal surfaces through macrowear and/or catastrophic failure (i.e. "chipping"). Altered occlusal morphologies are often less effective for masticating materials of given diet-but not always-some species exhibit dental sculpting, meaning their dentitions are set up to harness macrowear to hone their occlusal surfaces into more effective morphologies (i.e. secondary morphologies). Here we show that dental sculpting is present in the folivorous Presbytis rubicunda of Borneo. METHODS Thirty-one undamaged lower second molars of P. rubicunda exhibiting various stages of macroscopic wear were micro-CT scanned and processed into digital surfaces. The surfaces were measured for convex Dirichlet normal energy (vDNE, a measure of surface sharpness), and degree of surface wear. Regression analyses compared surface sharpness with several measures of wear to test for the presence and magnitude of dental sculpting. RESULTS Positive correlations between the wear proxies and vDNE reveal that P. rubicunda wear in such a way as to become sharper, and therefore more effective chewing surfaces by exposing enamel-dentine junctions on their occlusal surfaces and then honing these junctions into sharpened edges. Compared to another primate folivore in which increasing surface sharpness with macrowear has been demonstrated (i.e., Alouatta palliata), the worn surfaces are similarly sharp, but the dental sculpting process appears to be different. DISCUSSION The results presented here suggest that not only do some primates exhibit dental sculpting and the attendant secondary morphology, but that there appear to be multiple different morphological configurations that can achieve this result. P. rubicunda has thicker enamel and a more stereotyped wear pattern than A. palliata, although both show positive correlations of occlusal surface sharpness (vDNE) with various wear proxies. These findings shed light on the varied approaches for the maintenance of effective and efficient occlusal surfaces in primates.
Collapse
Affiliation(s)
- James D Pampush
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
- Department of Physician Assistant Studies, High Point University, High Point, North Carolina, USA
| | - Paul E Morse
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Richard F Kay
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Division of Earth and Climate Sciences, Nicholas School, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Maier E, Ruben J, Palin WM, Bronkhorst E, Olmos M, Matta RE, Loomans B. Developing an optimised method for accurate wear testing of dental materials using the 'Rub&Roll' device. Sci Rep 2024; 14:17885. [PMID: 39095406 PMCID: PMC11297336 DOI: 10.1038/s41598-024-68873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Dental materials are challenged by wear processes in the oral environment and should be evaluated in laboratory tests prior to clinical use. Many laboratory wear-testing devices are high-cost investments and not available for cross-centre comparisons. The 'Rub&Roll' wear machine enables controlled application of force, chemical and mechanical loading, but the initial design was not able to test against rigid antagonist materials. The current study aimed to probe the sensitivity of a new 'Rub&Roll' set-up by evaluating the effect of force and test solution parameters (deionized water; water + abrasive medium; acid + abrasive medium) on the wear behaviour of direct and indirect dental resin-based composites (RBCs) compared with human molars against 3D-printed rod antagonists. Molars exhibited greater height loss than RBCs in all test groups, with the largest differences recorded with acidic solutions. Direct RBCs showed significantly greater wear than indirect RBCs in the groups containing abrasive media. The acidic + abrasive medium did not result in increased wear of RBC materials. The developed method using the 'Rub&Roll' wear machine in the current investigation has provided a sensitive wear test method to allow initial screening of resin-based composite materials compared with extracted human molars under the influence of different mechanical and erosive challenges.
Collapse
Affiliation(s)
- Eva Maier
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Glueckstrasse 11, 91054, Erlangen, Germany.
- Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Jan Ruben
- Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William M Palin
- Dental and Biomaterials Science, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ewald Bronkhorst
- Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manuel Olmos
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ragai Edward Matta
- Department of Prosthodontics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bas Loomans
- Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Shirley B, Leonhard I, Murdock DJE, Repetski J, Świś P, Bestmann M, Trimby P, Ohl M, Plümper O, King HE, Jarochowska E. Increasing control over biomineralization in conodont evolution. Nat Commun 2024; 15:5273. [PMID: 38902270 PMCID: PMC11190287 DOI: 10.1038/s41467-024-49526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Vertebrates use the phosphate mineral apatite in their skeletons, which allowed them to develop tissues such as enamel, characterized by an outstanding combination of hardness and elasticity. It has been hypothesized that the evolution of the earliest vertebrate skeletal tissues, found in the teeth of the extinct group of conodonts, was driven by adaptation to dental function. We test this hypothesis quantitatively and demonstrate that the crystallographic order increased throughout the early evolution of conodont teeth in parallel with morphological adaptation to food processing. With the c-axes of apatite crystals oriented perpendicular to the functional feeding surfaces, the strongest resistance to uniaxial compressional stress is conferred along the long axes of denticles. Our results support increasing control over biomineralization in the first skeletonized vertebrates and allow us to test models of functional morphology and material properties across conodont dental diversity.
Collapse
Affiliation(s)
- Bryan Shirley
- Fachgruppe Paläoumwelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Isabella Leonhard
- Department of Palaeontology, University of Vienna, Vienna, Austria
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - John Repetski
- US Geological Survey-Emeritus, MS 926 A National Center, Reston, USA
| | - Przemysław Świś
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michel Bestmann
- Department of Geology, University of Vienna, Vienna, Austria
| | - Pat Trimby
- Oxford Instruments, High Wycombe, UK
- Carl Zeiss Ltd., Cambridge, UK
| | - Markus Ohl
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Oliver Plümper
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Helen E King
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
4
|
Towle I, Loch C. Variation in enamel prism size in primate molars. Arch Oral Biol 2024; 160:105895. [PMID: 38266424 DOI: 10.1016/j.archoralbio.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVE This study examines whether larger enamel prism diameters accommodate a greater enamel volume from the enamel-dentine junction (EDJ) to the outer-enamel surface (OES) in primate molars, and how prism size relates to enamel thickness and crown location. DESIGN We assessed variation in enamel prism diameter in relation to crown location and enamel thickness in catarrhine lower molars (n = 14 species) and one platyrrhine. Prism diameter and enamel thickness were recorded in four locations (lingual lateral; lingual cuspal; buccal cuspal; buccal lateral), using a buccal-lingual section through the centre of the mesial cusps. Ten prism diameter readings were collected at inner (near the EDJ), outer (near the OES) and middle (between the two locations) enamel for each location. RESULTS Mean prism diameter values for each species were similar (range: 4.06 µm to 5.81 µm). Prism diameter enlarged from inner to outer enamel, suggesting larger prisms help accommodate the increase in enamel volume from the EDJ to the OES. Average prism diameter does not associate with enamel thickness. Instead, cuspal positions had significantly smaller prism diameter at the EDJ than lateral positions, and larger prism sizes at the OES, leading to an overall similar prism diameter mean for all positions (Lingual lateral: 5.11 µm; Lingual cuspal: 5.04 µm; Buccal cuspal: 4.78 µm; Buccal lateral: 4.99 µm). CONCLUSIONS Our study revealed consistent average enamel prism diameters in various crown locations of lower primate molars, potentially contributing to the mechanical integrity and functional optimization of enamel in primates.
Collapse
Affiliation(s)
- Ian Towle
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Towle I, Borths MR, Loch C. Tooth chipping patterns and dental caries suggest a soft fruit diet in early anthropoids. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24884. [PMID: 38093580 DOI: 10.1002/ajpa.24884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVES Fossils from the Fayum Depression, Egypt, are crucial for understanding anthropoid evolution due to the abundance of taxa and the time interval they represent (late Eocene to early Oligocene). Dietary and foraging behavioral interpretations suggest fruits were their dominant food source, although hard foods (e.g., seeds and nuts) and leaves could have been important dietary components for particular groups. In this study, we compare dental chipping patterns in five Fayum primate genera with chipping data for extant primates, to assess potential hard object feeding in early anthropoids. MATERIALS AND METHODS Original specimens were studied (Aegyptopithecus: n = 100 teeth; Parapithecus: n = 72, Propliopithecus: n = 99, Apidium: n = 82; Catopithecus: n = 68); with the number, severity, and position of chips recorded. Dental caries was also recorded, due to its association with soft fruit consumption in extant primates. RESULTS Tooth chipping was low across all five genera studied, with a pooled chipping prevalence of 5% (21/421). When split into the three anthropoid families represented, chipping prevalence ranged from 2.6% (4/154) in Parapithecidae, 6% (12/199) in Propliopithecidae, and 7.4% (5/68) in Oligopithecidae. Three carious lesions were identified in Propliopithecidae. DISCUSSION The chipping prevalence is low when compared to extant anthropoids (range from 4% to 40%) and is consistent with a predominantly soft fruit diet, but not with habitual hard food mastication. The presence of caries supports consumption of soft, sugary fruits, at least in Propliopithecidae. Our results add support for low dietary diversity in early anthropoids, with soft fruits as likely dominant food sources.
Collapse
Affiliation(s)
- Ian Towle
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Matthew R Borths
- Duke Lemur Center Museum of Natural History, Duke University, Durham, North Carolina, USA
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Towle I, Loho T, Salem AS, Berthaume MA, Loch C. Variation in enamel mechanical properties throughout the crown in catarrhine primates. J Hum Evol 2023; 182:103413. [PMID: 37562101 DOI: 10.1016/j.jhevol.2023.103413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
Enamel mechanical properties vary across molar crowns, but the relationship among mechanical properties, tooth function, and phylogeny are not well understood. Fifteen primate lower molars representing fourteen taxa (catarrhine, n = 13; platyrrhine, n = 1) were sectioned in the lingual-buccal plane through the mesial cusps. Gradients of enamel mechanical properties, specifically hardness and elastic modulus, were quantified using nanoindentation from inner (near the enamel-dentine junction), through middle, to outer enamel (near the outer enamel surface) at five positions (buccal lateral, buccal cuspal, occlusal middle, lingual cuspal, lingual lateral). Cuspal positions had higher mechanical property values than lateral positions. Middle enamel had higher mean hardness and elastic modulus values than inner and outer locations in all five crown positions. Functionally, the thicker-enameled buccal cusps of lower molars did not show evidence of increased resistance to failure; instead, lingual cusps-which show higher rates of fracture-had higher average mechanical property values, with no significant differences observed between sides. Preliminary phylogenetic results suggest there is relatively little phylogenetic signal in gradients of mechanical properties through the enamel or across the crown. There appears to be common mechanical property patterns across molar crowns in Catarrhini and potentially among primates more broadly. These results may allow more precise interpretations of dental biomechanics and processes resulting in mechanical failure of enamel in primates, such as wear and fracture.
Collapse
Affiliation(s)
- Ian Towle
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand.
| | - Thomas Loho
- Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Amira Samir Salem
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Michael A Berthaume
- Division of Mechanical Engineering and Design, London South Bank University, London SE1 0AA, UK
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
7
|
Dumont M, Milgram J, Herrel A, Shahar R, Shacham B, Houssin C, Delapré A, Cornette R, Segall M. Show Me Your Teeth And I Will Tell You What You Eat: Differences in Tooth Enamel in Snakes with Different Diets. Integr Comp Biol 2023; 63:265-275. [PMID: 37156518 DOI: 10.1093/icb/icad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Teeth are composed of the hardest tissues in the vertebrate body and have been studied extensively to infer diet in vertebrates. The morphology and structure of enamel is thought to reflect feeding ecology. Snakes have a diversified diet, some species feed on armored lizards, others on soft invertebrates. Yet, little is known about how tooth enamel, and specifically its thickness, is impacted by diet. In this study, we first describe the different patterns of enamel distribution and thickness in snakes. Then, we investigate the link between prey hardness and enamel thickness and morphology by comparing the dentary teeth of 63 species of snakes. We observed that the enamel is deposited asymmetrically at the antero-labial side of the tooth. Both enamel coverage and thickness vary a lot in snakes, from species with thin enamel, only at the tip of the tooth to a full facet covered with enamel. There variations are related with prey hardness: snakes feeding on hard prey have a thicker enamel and a lager enamel coverage while species. Snakes feeding on softer prey have a thin enamel layer confined to the tip of the tooth.
Collapse
Affiliation(s)
- Maïtena Dumont
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, HUJI, Rehovot, Israel
| | - Joshua Milgram
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, HUJI, Rehovot, Israel
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7179, Muséum National d'Histoire Naturelle CNRS, Paris, France
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, HUJI, Rehovot, Israel
| | - Boaz Shacham
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Céline Houssin
- Institut de Systématique Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d'Histoire naturelle CNRS, SU, EPHE, UA, CP 50, Paris, France
| | - Arnaud Delapré
- Institut de Systématique Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d'Histoire naturelle CNRS, SU, EPHE, UA, CP 50, Paris, France
| | - Raphaël Cornette
- Institut de Systématique Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d'Histoire naturelle CNRS, SU, EPHE, UA, CP 50, Paris, France
| | - Marion Segall
- Institut de Systématique Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d'Histoire naturelle CNRS, SU, EPHE, UA, CP 50, Paris, France
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
8
|
Coste A, Fordyce RE, Loch C. A new dolphin with tusk-like teeth from the late Oligocene of New Zealand indicates evolution of novel feeding strategies. Proc Biol Sci 2023; 290:20230873. [PMID: 37312551 PMCID: PMC10265015 DOI: 10.1098/rspb.2023.0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
All extant toothed whales (Cetacea, Odontoceti) are aquatic mammals with homodont dentitions. Fossil evidence from the late Oligocene suggests a greater diversity of tooth forms among odontocetes, including heterodont species with a variety of tooth shapes and orientations. A new fossil dolphin from the late Oligocene of New Zealand, Nihohae matakoi gen. et sp. nov., consisting of a near complete skull, earbones, dentition and some postcranial material, represents this diverse dentition. Several preserved teeth are horizontally procumbent, including all incisors and canines. These tusk-like teeth suggest adaptive advantages for horizontally procumbent teeth in basal dolphins. Phylogenetic analysis places Nihohae among the poorly constrained basal waipatiid group, many with similarly procumbent teeth. Features of N. matakoi such as its dorsoventrally flattened and long rostrum, long mandibular symphysis, unfused cervical vertebrae, lack of attritional or occlusal wear on the teeth and thin enamel cover suggest the rostrum and horizontally procumbent teeth were used to injure and stun prey though swift lateral head movements, a feeding mode that did not persist in extant odontocetes.
Collapse
Affiliation(s)
- Ambre Coste
- Department of Geology, University of Otago, Dunedin, New Zealand
| | - R. Ewan Fordyce
- Department of Geology, University of Otago, Dunedin, New Zealand
| | - Carolina Loch
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Morse PE, Pampush JD, Kay RF. Dental topography of the Oligocene anthropoids Aegyptopithecus zeuxis and Apidium phiomense: Paleodietary insights from analysis of wear series. J Hum Evol 2023; 180:103387. [PMID: 37245335 DOI: 10.1016/j.jhevol.2023.103387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023]
Abstract
Fossil primate dietary inference is enhanced when ascertained through multiple, distinct proxies. Dental topography can be used to assess changes in occlusal morphology with macrowear, providing insight on tooth use and function across the lifespans of individuals. We measured convex Dirichlet normal energy-a dental topography metric reflecting occlusal sharpness of features such as cusps and crests-in macrowear series of the second mandibular molars of two African anthropoid taxa from ∼30 Ma (Aegyptopithecus zeuxis and Apidium phiomense). Wear was quantified via three proxies: occlusal dentine exposure, inverse relief index, and inverse occlusal relief. The same measurements were calculated on macrowear series of four extant platyrrhine taxa (Alouatta, Ateles, Plecturocebus, and Sapajus apella) to provide an analogical framework for dietary inference in the fossil taxa. We predicted that Ae. zeuxis and Ap. phiomense would show similar patterns in topographic change with wear to one another and to extant platyrrhine frugivores like Ateles and Plecturocebus. The fossil taxa have similar distributions of convex Dirichlet normal energy to one another, and high amounts of concave Dirichlet normal energy 'noise' in unworn molars-a pattern shared with extant hominids that may distort dietary interpretations. Inverse relief index was the most useful wear proxy for comparison among the taxa in this study which possess disparate enamel thicknesses. Contrary to expectations, Ae. zeuxis and Ap. phiomense both resemble S. apella in exhibiting an initial decline in convex Dirichlet normal energy followed by an increase at the latest stages of wear as measured by inverse relief index, lending support to previous suggestions that hard-object feeding played a role in their dietary ecology. Based on these results and previous analyses of molar shearing quotients, microwear, and enamel microstructure, we suggest that Ae. zeuxis had a pitheciine-like strategy of seed predation, whereas Ap. phiomense potentially consumed berry-like compound fruits with hard seeds.
Collapse
Affiliation(s)
- Paul E Morse
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| | - James D Pampush
- Department of Exercise Science, High Point University, High Point, NC 27260, USA; Department of Physician Assistant Studies, High Point University, High Point, NC 27260, USA
| | - Richard F Kay
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; Division of Earth and Climate Sciences, Nicholas School, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Towle I, Constantino PJ, Borths MR, Loch C. Tooth chipping patterns in Archaeolemur provide insight into diet and behavior. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:401-408. [PMID: 36790760 PMCID: PMC10107942 DOI: 10.1002/ajpa.24674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Archaeolemur is a recently extinct genus of lemur that is often compared to some Cercopithecidae, especially baboons. This is due in part to their derived dentition, with large anterior teeth and reduced bilophodont molars. Research involving comparative morphology, analysis of coprolites, isotopes, and enamel structure, have suggested Archaeolemur had an omnivorous diet involving mechanically challenging items. Yet, microwear analysis of posterior teeth does not necessarily support this conclusion. MATERIALS AND METHODS In this macroscopic study, dental chipping was recorded on permanent teeth of Archaeolemur from different localities (53 individuals; 447 permanent teeth; including both A. edwardsi and A. majori specimens). This study aimed to compare chipping patterns across the dentition of Archaeolemur with chipping in other primates. RESULTS The results show enamel chipping was prevalent on the anterior teeth of Archaeolemur (38.9% of anterior teeth showed at least one fracture) yet rare in posterior teeth (9%). There was a decrease in chipping frequency across the dentition, moving distally from incisors (50%; 20/40), through caniniform teeth (30%; 15/50), premolars (9.5%; 16/169), and molars (8.5%; 16/188). DISCUSSION The results support previous research suggesting Archaeolemur had a varied omnivorous diet in which the anterior dentition was used for extensive food processing. This likely included mechanically challenging items such as tough/hard large fruits, small vertebrates, and crustaceans. Such a high rate of chipping in the anterior dentition is uncommon in other primates, with exception of hominins.
Collapse
Affiliation(s)
- Ian Towle
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, Vermont, USA
| | - Matthew R Borths
- Duke Lemur Center Museum of Natural History, Duke University, Durham, North Carolina, USA
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Wang D, Han S, Yang M. Tooth Diversity Underpins Future Biomimetic Replications. Biomimetics (Basel) 2023; 8:biomimetics8010042. [PMID: 36810373 PMCID: PMC9944091 DOI: 10.3390/biomimetics8010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Although the evolution of tooth structure seems highly conserved, remarkable diversity exists among species due to different living environments and survival requirements. Along with the conservation, this diversity of evolution allows for the optimized structures and functions of teeth under various service conditions, providing valuable resources for the rational design of biomimetic materials. In this review, we survey the current knowledge about teeth from representative mammals and aquatic animals, including human teeth, herbivore and carnivore teeth, shark teeth, calcite teeth in sea urchins, magnetite teeth in chitons, and transparent teeth in dragonfish, to name a few. The highlight of tooth diversity in terms of compositions, structures, properties, and functions may stimulate further efforts in the synthesis of tooth-inspired materials with enhanced mechanical performance and broader property sets. The state-of-the-art syntheses of enamel mimetics and their properties are briefly covered. We envision that future development in this field will need to take the advantage of both conservation and diversity of teeth. Our own view on the opportunities and key challenges in this pathway is presented with a focus on the hierarchical and gradient structures, multifunctional design, and precise and scalable synthesis.
Collapse
|
12
|
Lancaster PE, Carmichael FA, Clerehugh V, Brettle DS. Emissivity evaluation of human enamel and dentin. Front Physiol 2022; 13:993674. [DOI: 10.3389/fphys.2022.993674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Human enamel and dentin temperatures have been assessed with non-contact infrared imaging devices for safety and diagnostic capacity and require an emissivity parameter to enable absolute temperature measurements. Emissivity is a ratio of thermal energy emitted from an object of interest, compared to a perfect emitter at a given temperature and wavelength, being dependent on tissue composition, structure, and surface texture. Evaluating the emissivity of human enamel and dentin is varied in the literature and warrants review. The primary aim of this study was to evaluate the emissivity of the external and internal surface of human enamel and dentin, free from acquired or developmental defects, against a known reference point. The secondary aim was to assess the emissivity value of natural caries in enamel and dentin.Method: Fourteen whole human molar teeth were paired within a thermally stable chamber at 30°C. Two additional teeth (one sound and one with natural occlusal caries–ICDAS caries score 4 and radiographic score RB4) were sliced and prepared as 1-mm-thick slices and placed on a hot plate at 30°C within the chamber. A 3M Scotch Super 33 + Black Vinyl Electrical Tape was used for the known emissivity reference-point of 0.96. All samples were allowed to reach thermal equilibrium, and a FLIR SC305 infrared camera recorded the warming sequence. Emissivity values were calculated using the Tape reference point and thermal camera software.Results: The external enamel surface mean emissivity value was 0.96 (SD 0.01, 95% CI 0.96–0.97), whereas the internal enamel surface value was 0.97 (SD 0.01, 95% CI 0.96–0.98). The internal crown-dentin mean emissivity value was 0.94 (SD 0.02, 95% CI 0.92–0.95), whereas the internal root-dentin value was 0.93 (SD 0.02, 95% CI 0.91–0.94) and the surface root-dentin had a value of 0.84 (SD 0.04, 95% CI 0.77–0.91). The mean emissivity value of the internal enamel surface with caries was 0.82 (SD 0.05, 95% CI 0.38–1.25), and the value of the internal crown-dentin with caries was 0.73 (SD 0.08, 95% CI 0.54–0.92).Conclusion: The emissivity values of sound enamel, both internal and external, were similar and higher than those of all sound dentin types in this study. Sound dentin emissivity values diminished from the crown to the root and root surface. The lowest emissivity values were recorded in caries lesions of both tissues. This methodology can improve emissivity acquisition for comparison of absolute temperatures between studies which evaluate thermal safety concerns during dental procedures and may offer a caries diagnostic aid.
Collapse
|
13
|
Hunter-Schreger Band configuration in human molars reveals more decussation in the lateral enamel of 'functional' cusps than 'guiding' cusps. Arch Oral Biol 2022; 142:105524. [PMID: 36029738 DOI: 10.1016/j.archoralbio.2022.105524] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Enamel prism decussation, which manifests as Hunter-Schreger Bands (HSB), is considered a mechanism to mitigate crack propagation. During the chewing cycle, the 'functional' cusps that are involved in Phase II crushing and grinding experience more complex patterns of stress than do those that 'guide' the molars into occlusion (Phase I). This study examines HSB configuration in the lateral enamel of human molars to identify potential differences between these cusps as predicted from their functional distinctions. DESIGN Measurements were recorded from scanning electron micrographs of sections through the mesial cusps of unworn permanent molars. For each section, HSB packing density and the relative thickness of decussated enamel were quantified in the cuspal and middle segments of lateral enamel over the guiding and functional cusps. RESULTS No clear trend from first to third molars in HSB configuration was found in either jaw. In maxillary molars, the functional cusp displays higher HSB packing density in the cuspal and middle segments, and relatively thicker decussated enamel in the cuspal segment than does the guiding cusp. In mandibular molars, the functional cusp displays higher HSB packing density in the middle segment than does the guiding cusp, but no difference in relative thickness was found between them. Enamel of mandibular molars shows weaker decussation than maxillary molars. CONCLUSIONS The results suggest that guiding cusps are intrinsically more susceptible to crack propagation than functional cusps in human permanent molars. Structural factors such as enamel decussation should be considered when interpreting enamel chipping patterns in dietary contexts.
Collapse
|
14
|
Ilie N. Comparison of modern light-curing hybrid resin-based composites to the tooth structure: Static and dynamic mechanical parameters. J Biomed Mater Res B Appl Biomater 2022; 110:2121-2132. [PMID: 35373907 DOI: 10.1002/jbm.b.35066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
The study aims to compare the way modern resin-based composites (RBCs) respond to mechanical stress related to the tooth structure they are designed to replace. Eight representative light-cured RBCs, including ormocers, giomers, RBCs with nano and agglomerated nanoparticles, prepolymerized, or compact fillers, were selected. Flexural strength, FS and modulus/E, were measured in a three-point bending test. A fractographic analysis determined the origin of fracture. The quasi-static (indentation hardness/HIT , indentation modulus/EIT ) and viscoelastic (storage modulus/E', loss modulus/E″, loss factor/tan δ) behavior was assessed by a depth-sensing indentation test equipped with a dynamic-mechanical analysis module. One and multiple-way analysis of variance (ANOVA), Tukey honestly significant difference (HSD) post-hoc tests (α = 0.05), and Weibull statistics were applied. Parameter material exhibited the highest effect on E (p < .001, ηP 2 = .857), followed by FS (ηP 2 = .729), and the strain (ηP 2 = .553). Highest material reliability was identified in the RBCs with nano and agglomerated nanoparticles. The most frequent type of failure originated from volume (81.3%), followed by edge (10.6%), and corner (8.1%) flaws. Enamel evidenced three times higher HIT , EIT , and E' values as RBCs and dentin, and the smallest deviation from ideal elasticity. Ormocers exhibited the highest damping capacity, followed by the RBCs with prepolymerized fillers. Damping capacity and static mechanical properties are mutually exclusive. Analyzed RBCs and the tooth structure are better adapted to the relevant frequency for chewing than for higher frequencies. RBCs are comparable to dentin in terms of their mechanical performance, but apart from the damping behavior, they are far inferior to enamel. Damping ability of analyzed material could be exploited for correlation with the clinical behavior.
Collapse
Affiliation(s)
- Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Chai H. On the morphology and failure of worn human molar cusps. J Mech Behav Biomed Mater 2022; 130:105212. [DOI: 10.1016/j.jmbbm.2022.105212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 11/26/2022]
|
16
|
Loss of biological control of enamel mineralization in amelogenin-phosphorylation-deficient mice. J Struct Biol 2022; 214:107844. [DOI: 10.1016/j.jsb.2022.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
|
17
|
Qi H, Gao G, Wang H, Ma Y, Wang H, Wu S, Yu J, Wang Q. Mechanical properties, microstructure and chemical composition of naked mole rat incisors. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which make it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterised the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found out that (i) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (ii) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (iii) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increase in distance from enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guide for the design of bionic machinery and materials.
Collapse
Affiliation(s)
- Hongyan Qi
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Guixiong Gao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Ministry of Education, Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Huixin Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Yunhai Ma
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Jilin University, Changchun, China
| | - Hubiao Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Siyang Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Jiangtao Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Qinghua Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Borrero-Lopez O, Rodriguez-Rojas F, Constantino PJ, Lawn BR. Fundamental mechanics of tooth fracture and wear: implications for humans and other primates. Interface Focus 2021; 11:20200070. [PMID: 34938431 DOI: 10.1098/rsfs.2020.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, there had been little attempt in the literature to identify and quantify the underlying mechanics of tooth durability in terms of materials engineering concepts. In humans and most mammals, teeth must endure a lifetime of sustained occlusal mastication-they have to resist fracture and wear. It is well documented that teeth are resilient, but what are the unique features that make this possible? The present article surveys recent materials engineering research aimed at addressing this fundamental question. Elements that determine the mechanics and micromechanics of tooth fracture and wear are analysed: at the macrostructural level, the geometry of the enamel shell and cuspal configuration; and at the microstructural level, interfacial weakness and property gradients. Inferences concerning dietary history in relation to evolutionary pressures are discussed.
Collapse
Affiliation(s)
- Oscar Borrero-Lopez
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Fernando Rodriguez-Rojas
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, VT 05439, USA
| | - Brian R Lawn
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
19
|
Emken S, Witzel C, Kierdorf U, Frölich K, Kierdorf H. Characterization of short-period and long-period incremental markings in porcine enamel and dentine-Results of a fluorochrome labelling study in wild boar and domestic pigs. J Anat 2021; 239:1207-1220. [PMID: 34240412 PMCID: PMC8546513 DOI: 10.1111/joa.13502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Mammalian dental hard tissues exhibit incremental markings that reflect the periodic variation of appositional growth rates. In order to use these markings to characterize dental growth processes and to infer life‐history traits, an unequivocal identification of their periodicities is required. We performed a fluorochrome labelling study on forming enamel and dentine in molar teeth of wild boar and domestic pigs to establish the periodicity and temporal correspondence of incremental markings in enamel and dentine. The dominant incremental markings in enamel (laminations) and dentine (von Ebner lines) recorded in the pig teeth are of a daily nature. In addition, long‐period incremental markings with a periodicity of 2 days were recorded in enamel (striae of Retzius) and dentine (Andresen lines). The 2‐day growth rhythm was also expressed at the lateral crown surface, as evidenced by the pattern of perikymata. In enamel, also markings with a sub‐daily periodicity, representing an ultradian growth rhythm, were observed. Our study provides experimental evidence for the periodicity of incremental markings in porcine enamel and dentine. The findings correct previous misconceptions on incremental markings in dental hard tissues of pigs and other ungulates that had led to erroneous conclusions regarding crown formation parameters.
Collapse
Affiliation(s)
- Simon Emken
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Carsten Witzel
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Kai Frölich
- Department of Biology, University of Hildesheim, Hildesheim, Germany.,Tierpark Arche Warder e.V, Warder, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
20
|
Wang C, Fang Y, Zhang L, Su Z, Xu J, Fu B. Enamel microstructural features of bovine and human incisors: A comparative study. Ann Anat 2021; 235:151700. [DOI: 10.1016/j.aanat.2021.151700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
|
21
|
Hogg RT, Elokda A. Quantification of enamel decussation in gracile and robust capuchins (Cebus, Sapajus, Cebidae, Platyrrhini). Am J Primatol 2021; 83:e23246. [PMID: 33638563 DOI: 10.1002/ajp.23246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/14/2021] [Accepted: 02/13/2021] [Indexed: 11/06/2022]
Abstract
Multiple behavioral and biomechanical analyses have demonstrated that capuchin monkeys (Cebus and Sapajus) are specialized for breaking down hard-object foods as compared to other cebid monkeys. In addition to a complex suite of craniodental adaptations, it has specifically been demonstrated that capuchins possess highly complex dental enamel, with extensive Hunter-Schreger banding and other decussation, that likely serve as an adaptation to resist crack propagation during hard-object feeding. Furthermore, it has been demonstrated that robust capuchins (Sapajus spp., formerly Cebus apella) demonstrate further adaptation for hard-object feeding than other capuchins, routinely breaking down extremely mechanically challenging foods. However, there has been no comparison of dental enamel complexity in robust versus gracile capuchins, to assess whether the dental enamel in Sapajus follows this same pattern of further specialization. Therefore, this study compares dental enamel complexity in images of dental thin sections from a sample of robust versus gracile capuchins using image compression ratio (ICR) analysis. ICR is a variable that correlates with enamel complexity, such that higher ICR values are indicative of increased complexity in the form of enamel decussation. We found no significant difference between robust and gracile capuchins when assessing all teeth in our sample together, however, we did find that robust capuchins have significantly higher ICR values than gracile capuchins for canine teeth, specifically. Our results support prior studies suggesting that robust capuchins are specialized to generate increased masticatory loads with their anterior dentition, specifically, as compared to gracile species.
Collapse
Affiliation(s)
- Russell T Hogg
- Department of Rehabilitation Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Abdallah Elokda
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
22
|
Li P, Oh C, Kim H, Chen-Glasser M, Park G, Jetybayeva A, Yeom J, Kim H, Ryu J, Hong S. Nanoscale effects of beverages on enamel surface of human teeth: An atomic force microscopy study. J Mech Behav Biomed Mater 2020; 110:103930. [PMID: 32957225 DOI: 10.1016/j.jmbbm.2020.103930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/17/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022]
Abstract
Dental erosion has become a prevalence disease and attracted increasing attention worldwide. In this research, we quantitatively evaluate the mechanical and morphological changes in the very early stages of softening and weakening of human enamel surfaces induced by soft drinks using atomic force microscopy (AFM). With an increase of the immersion time in soft drinks, we found a significant increase of surface roughness (Rq) of the enamel surface. The prismatic structure of enamel was clearly observed after a 1-h immersion in Coca-Cola®, which shows its strong erosion effect. According to the elastic modulus mapping images obtained by AFM, a considerable decrease of elastic modulus (E) of enamel surface has been found as the enamel surface structures are etched away by soft drinks. A high surface roughness of enamel will result in a high chance of cavities due to easier bacterial adhesion on rougher surface, while a drastic deterioration of the mechanical properties of the enamel will weaken its protection property. Our findings show the serious influence of acidic drinks on enamel surface at the very beginning stage of etching process, which is quite meaningful for people to prevent dental erosion and keep dental health.
Collapse
Affiliation(s)
- Panpan Li
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Chungik Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hongjun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Melodie Chen-Glasser
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Gun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Albina Jetybayeva
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jiwon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jeongjae Ryu
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; KAIST Institute for NanoCentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Sadyrin E, Swain M, Mitrin B, Rzhepakovsky I, Nikolaev A, Irkha V, Yogina D, Lyanguzov N, Maksyukov S, Aizikovich S. Characterization of Enamel and Dentine about a White Spot Lesion: Mechanical Properties, Mineral Density, Microstructure and Molecular Composition. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1889. [PMID: 32967152 PMCID: PMC7560001 DOI: 10.3390/nano10091889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022]
Abstract
The study focuses on in vitro tracing of some fundamental changes that emerge in teeth at the initial stage of caries development using multiple approaches. The research was conducted on a mostly sound maxillary molar tooth but with a clearly visible natural proximal white spot lesion (WSL). Values of mineral density, reduced Young's modulus, indentation hardness and creep as well as the molecular composition and surface microstructure of the WSL and bordering dentine area were studied. The results obtained were compared to those of sound enamel and dentine on the same tooth. A decrease of mechanical properties and mineral density both for the WSL and bordering dentine was detected in comparison to the sound counterparts, as well as increase of creep for the enamel WSL. Differences in molecular composition and surface microstructure (including the indenter impressions) were found and described. WSL induces a serious change in the state of not only the visually affected enamel but also surrounding visually intact enamel and dentine in its vicinity. The results provide the basis for future studies of efficacy of minimal invasive treatments of caries.
Collapse
Affiliation(s)
- Evgeniy Sadyrin
- Research and Education Center “Materials”, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (M.S.); (B.M.); (A.N.); (V.I.); (S.A.)
| | - Michael Swain
- Research and Education Center “Materials”, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (M.S.); (B.M.); (A.N.); (V.I.); (S.A.)
- Biomaterials and Bioengineering department, Faculty of Dentistry, The University of Sydney, Camperdown, Sydney NSW 2006, Australia
| | - Boris Mitrin
- Research and Education Center “Materials”, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (M.S.); (B.M.); (A.N.); (V.I.); (S.A.)
| | - Igor Rzhepakovsky
- Institute of Life Sciences, North Caucasus Federal University, Pushkin Street 1, 355009 Stavropol, Russia;
| | - Andrey Nikolaev
- Research and Education Center “Materials”, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (M.S.); (B.M.); (A.N.); (V.I.); (S.A.)
| | - Vladimir Irkha
- Research and Education Center “Materials”, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (M.S.); (B.M.); (A.N.); (V.I.); (S.A.)
- Federal Research Centre The Southern Scientific Centre of the Russian Academy of The Sciences, Chehova Street 41, 344006 Rostov-on-Don, Russia
| | - Diana Yogina
- Department of dentistry, Rostov State Medical University, Nakhichevansky Lane 29, 344022 Rostov-on-Don, Russia; (D.Y.); (S.M.)
| | - Nikolay Lyanguzov
- Faculty of Physics, Southern Federal University, Bolshaya Sadovaya Street 105/42, 344090 Rostov-on-Don, Russia;
| | - Stanislav Maksyukov
- Department of dentistry, Rostov State Medical University, Nakhichevansky Lane 29, 344022 Rostov-on-Don, Russia; (D.Y.); (S.M.)
| | - Sergei Aizikovich
- Research and Education Center “Materials”, Don State Technical University, Gagarin Square 1, 344000 Rostov-on-Don, Russia; (M.S.); (B.M.); (A.N.); (V.I.); (S.A.)
| |
Collapse
|
24
|
Berthaume MA, Lazzari V, Guy F. The landscape of tooth shape: Over 20 years of dental topography in primates. Evol Anthropol 2020; 29:245-262. [PMID: 32687672 PMCID: PMC7689778 DOI: 10.1002/evan.21856] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/14/2019] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Diet plays an incontrovertible role in primate evolution, affecting anatomy, growth and development, behavior, and social structure. It should come as no surprise that a myriad of methods for reconstructing diet have developed, mostly utilizing the element that is not only most common in the fossil record but also most pertinent to diet: teeth. Twenty years ago, the union of traditional, anatomical analyses with emerging scanning and imaging technologies led to the development of a new method for quantifying tooth shape and reconstructing the diets of extinct primates. This method became known as dental topography.
Collapse
Affiliation(s)
- Michael A. Berthaume
- Division of Mechanical Engineering and DesignLondon South Bank UniversityLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Vincent Lazzari
- PALEVOPRIM—UMR 7262 CNRS INEE Laboratoire Paléontologie Evolution Paléoécosystèmes PaléoprimatologieUniversité de PoitiersPoitiersFrance
| | - Franck Guy
- PALEVOPRIM—UMR 7262 CNRS INEE Laboratoire Paléontologie Evolution Paléoécosystèmes PaléoprimatologieUniversité de PoitiersPoitiersFrance
| |
Collapse
|
25
|
Borrero-Lopez O, Constantino PJ, Bush MB, Lawn BR. On the vital role of enamel prism interfaces and graded properties in human tooth survival. Biol Lett 2020; 16:20200498. [PMID: 32842897 DOI: 10.1098/rsbl.2020.0498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Teeth of omnivores face a formidable evolutionary challenge: how to protect against fracture and abrasive wear caused by the wide variety of foods they process. It is hypothesized that this challenge is met in part by adaptations in enamel microstructure. The low-crowned teeth of humans and some other omnivorous mammals exhibit multiple fissures running longitudinally along the outer enamel walls, yet remain intact. It is proposed that inter-prism weakness and enamel property gradation act together to avert entry of these fissures into vulnerable inner tooth regions and, at the same time, confer wear resistance at the occlusal surface. A simple indentation experiment is employed to quantify crack paths and energetics in human enamel, and an extended-finite-element model to evaluate longitudinal crack growth histories. Consideration is given as to how tooth microstructure may have played a vital role in human evolution, and by extension to other omnivorous mammals.
Collapse
Affiliation(s)
- Oscar Borrero-Lopez
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, VT 05439, USA
| | - Mark B Bush
- Department of Mechanical Engineering, University of Western Australia, Crawley, WA 6009, Australia
| | - Brian R Lawn
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
26
|
Demesko J, Kurek M, Podlaszczuk P, Markowski J. Enamel Thickness Differs between Field and Forest European Roe Deer Capreolus capreolus. POLISH JOURNAL OF ECOLOGY 2020. [DOI: 10.3161/15052249pje2020.68.1.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jan Demesko
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 93-237 Łódź
| | - Marta Kurek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 93-237 Łódź
| | - Patrycja Podlaszczuk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 93-237 Łódź
| | - Janusz Markowski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 93-237 Łódź
| |
Collapse
|
27
|
Wilmers J, Bargmann S. Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomater 2020; 107:1-24. [PMID: 32087326 DOI: 10.1016/j.actbio.2020.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The most important demand of today's high-performance materials is to unite high strength with extreme fracture toughness. The combination of withstanding large forces (strength) and resistance to fracture (toughness), especially preventing catastrophic material failure by cracking, is of utmost importance when it comes to structural applications of these materials. However, these two properties are commonly found to be mutually exclusive: strong materials are brittle and tough materials are soft. In dental enamel, nature has combined both properties with outstanding success - despite a limited number of available constituents. Made up of brittle mineral crystals arranged in a sophisticated hierarchical microstructure, enamel exhibits high stiffness and excellent toughness. Different species exhibit a variety of structural adaptations on varying scales in their dental enamel which optimise not only fracture toughness, but also hardness and abrasion behaviour. Nature's materials still outperform their synthetic counterparts due to these complex structure-property relationships that are not yet fully understood. By analysing structure variations and the underlying mechanical mechanisms systematically, design principles which are the key for the development of advanced synthetic materials uniting high strength and toughness can be formulated. STATEMENT OF SIGNIFICANCE: Dental enamel is a hard protective tissue that combines high strength with an exceptional resistance to catastrophic fracture, properties that in classical materials are commonly found to be mutually exclusive. The biological material is able to outperform its synthetic counterparts due to a sophisticated hierarchical microstructure. Between different species, microstructural adaptations can vary significantly. In this contribution, the different types of dental enamel present in different species are reviewed and connections between microstructure and (mechanical) properties are drawn. By consolidating available information for various species and reviewing it from a materials science point of view, design principles for the development of advanced biomimetic materials uniting high strength and toughness can be formulated.
Collapse
|
28
|
Borrero-Lopez O, Guiberteau F, Zhang Y, Lawn BR. Inverse correlations between wear and mechanical properties in biphasic dental materials with ceramic constituents. J Mech Behav Biomed Mater 2020; 105:103722. [PMID: 32279844 DOI: 10.1016/j.jmbbm.2020.103722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 11/17/2022]
Abstract
The objective of this study is to elucidate the interdependence of competing mechanical degradation processes in biphasic dental materials with ceramic constituents in the region of high-pressure occlusal loading. It is hypothesized that wear resistance in this region correlates inversely with basic material parameters (modulus, hardness, toughness, strength) evaluated from 'standardized' test specimens. Ball-on-flat wear tests in simulation of oral function are used to quantify susceptibility to protracted sliding contact damage. Wear rates for this class of dental material tend to increase with quasistatic parameter values, so the latter do not provide a reliable guide to longevity. The generation of severe-wear facets involves cumulative quasiplastic deformation and microcrack coalescence at the grain level. It is implied that interplay between wear and fracture mechanisms should be an important consideration in future microstructural design of dental ceramics, especially in the quest to balance durability against esthetics.
Collapse
Affiliation(s)
- Oscar Borrero-Lopez
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006, Badajoz, Spain.
| | - Fernando Guiberteau
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Yu Zhang
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, 10010, USA
| | - Brian R Lawn
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
29
|
Fannin LD, Guatelli-Steinberg D, Geissler E, Morse PE, Constantino PJ, McGraw WS. Enamel chipping in Taï Forest cercopithecids: Implications for diet reconstruction in paleoanthropological contexts. J Hum Evol 2020; 141:102742. [PMID: 32179368 DOI: 10.1016/j.jhevol.2020.102742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/23/2022]
Abstract
Antemortem enamel chipping in living and fossil primates is often interpreted as evidence of hard-object feeding (i.e., 'durophagy'). Laboratory analyses of tooth fracture have modeled the theoretical diets and loading conditions that may produce such chips. Previous chipping studies of nonhuman primates tend to combine populations into species samples, despite the fact that species can vary significantly in diet across their ranges. Chipping is yet to be analyzed across population-specific species samples for which long-term dietary data are available. Here, we test the association between enamel chipping and diet in a community of cercopithecid primates inhabiting the Taï Forest, Ivory Coast. We examined fourth premolars and first molars (n = 867) from naturally deceased specimens of Cercocebus atys, Colobus polykomos, Piliocolobus badius,Procolobus verus, and three species of Cercopithecus. We found little support for a predictive relationship between enamel chipping and diet across the entire Taï monkey community. Cercocebus atys, a dedicated hard-object feeder, exhibited the highest frequencies of (1) chipped teeth and (2) chips of large size; however, the other monkey with a significant degree of granivory, Co. polykomos, exhibited the lowest chip frequency. In addition, primates with little evidence of mechanically challenging or hard-food diets-such as Cercopithecus spp., Pi. badius, and Pr. verus-evinced higher chipping frequencies than expected. The equivocal and stochastic nature of enamel chipping in the Taï monkeys suggests nondietary factors contribute significantly to chipping. A negative association between canopy preference and chipping suggests a role of exogenous particles in chip formation, whereby taxa foraging closer to the forest floor encounter more errant particulates during feeding than species foraging in higher strata. We conclude that current enamel chipping models may provide insight into the diets of fossil primates, but only in cases of extreme durophagy. Given the role of nondietary factors in chip formation, our ability to reliably reconstruct a range of diets from a gradient of chipping in fossil taxa is likely weak.
Collapse
Affiliation(s)
- Luke D Fannin
- Department of Anthropology, 4064 Smith Laboratory, The Ohio State University, 174 West 18th Avenue, Columbus, OH, 43210-1106, USA.
| | - Debbie Guatelli-Steinberg
- Department of Anthropology, 4064 Smith Laboratory, The Ohio State University, 174 West 18th Avenue, Columbus, OH, 43210-1106, USA
| | - Elise Geissler
- Department of Anthropology, University of Florida, Gainesville, FL, 32611-7305, USA
| | - Paul E Morse
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708-9976, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA
| | - Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, VT, 05439, USA
| | - W Scott McGraw
- Department of Anthropology, 4064 Smith Laboratory, The Ohio State University, 174 West 18th Avenue, Columbus, OH, 43210-1106, USA
| |
Collapse
|
30
|
Koldehoff J, Swain MV, Schneider GA. The geometrical structure of interfaces in dental enamel: A FIB-STEM investigation. Acta Biomater 2020; 104:17-27. [PMID: 31917293 DOI: 10.1016/j.actbio.2019.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022]
Abstract
In this study a high resolution structural analysis revealed that enamel prisms are surrounded by an interface that is discontinuous with frequent mineral to mineral contact separated by gaps. This contact manifests either by crystallites bridging the boundary between prismatic and interprismatic enamel or continuous crystallites curving and bridging the interprismatic enamel to the prisms. The geometrical resolution of this TEM investigation of the interfaces is ≤2 nm as a basis for micromechanical models. Within this resolution, contrary to existing structural descriptions of dental enamel structure in materials science literature, here the crystallites themselves are shown to be either in direct contact with each other, sometimes even fusing together, or are separated by gaps. Image analysis revealed that on average only 57 ± 15% of the interface consists of points of no contact between crystallites. This work reveals structural features of dental enamel that contribute important understanding to both the architecture and mechanical properties of this biological material. A new structural model is proposed and the implications for the mechanical properties of dental enamel are discussed. STATEMENT OF SIGNIFICANCE: In this study a high resolution structural analysis, employing focused ion beam and transmission electron microscopy revealed that enamel prisms are surrounded by interfaces that are discontinuous with frequent mineral to mineral contact separated by gaps. Although the interfaces in enamel have been investigated previously, existing studies are lacking in detail considering the geometry and morphology of the interfaces. We think that this result is of great importance when it comes to the understanding of the mechanical properties. In our opinion the concept of soft sheaths is no longer feasible. The resulting observations are included in a new structural model which provides new qualitative insights into the mechanical behavior. Existing analytical models were applied to simulate the new geometrical structure.
Collapse
|
31
|
Chai H. Determining primates bite force from histological tooth sections. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:683-703. [PMID: 31912901 DOI: 10.1002/ajpa.24003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/06/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The ability to accurately estimate bite force (BF) in extant and fossil primates is valuable to biological anthropologists. BF is generally evaluated using complex jaw musculature and lever arm analyses employing numerous assumptions and requiring complete cranial morphology. Here, a simple method to determine BF from data measured on histological sections of fossil teeth is proposed. METHODS Published sections of molar teeth encompassing 27 different extinct and extant primates dating back to as early as 17 million years ago were examined. Focusing on the cusp region, the extracted data include characteristic enamel thickness dc and dentin horn angle φ. The occlusal force needed to fracture a cusp, PF , was determined from these variables with the aid of a finite element stress analysis similarly to a previous study on postcanine human teeth. The bite force was obtained by linking BF to PF using a universal constant. RESULTS The measured variables dc and φ are conclusively linked. This link produces a virtually constant fracture force PF and in turn bite force BF for all cusps in the molar row. An explicit formula tying BF to dc and φ was derived. For nonhominin taxa the bite force, molar crown area, and body mass are found to be intimately related. The case of hominins is more involved. The so determined BF is gender-averaged, with the bite force of males estimated to be ≈12% greater than that of females. CONCLUSIONS The use of "fracture mechanics" concepts from mechanics of materials facilitates determination of critical bite force in primates based on characteristic enamel thickness dc and dentin horn angle φ as extracted from histological sections of molar teeth. This novel approach enables quantitative insight into the role played by crown area, body mass and bite force on evolutionary trends. The conclusive link between cuspal enamel thickness and dentin horn angle facilitates optimal food processing without hindering cusp resilience. The proposed approach may be extended to mammals having asymmetric cusp structures.
Collapse
Affiliation(s)
- Herzl Chai
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
32
|
Hogg RT, Richardson C. Application of Image Compression Ratio Analysis as a Method for Quantifying Complexity of Dental Enamel Microstructure. Anat Rec (Hoboken) 2019; 302:2279-2286. [DOI: 10.1002/ar.24261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Russell T. Hogg
- Department of Rehabilitation SciencesFlorida Gulf Coast University Fort Myers Florida
| | - Carol Richardson
- Department of Biological SciencesFlorida Gulf Coast University Fort Myers Florida
| |
Collapse
|
33
|
Pro JW, Barthelat F. Discrete element models of tooth enamel, a complex three-dimensional biological composite. Acta Biomater 2019; 94:536-552. [PMID: 31055119 DOI: 10.1016/j.actbio.2019.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022]
Abstract
Enamel, the hard surface layer of teeth, is a three-dimensional biological composite made of crisscrossing mineral rods bonded by softer proteins. Structure-property relationships in this complex material have been difficult to capture and usually require computationally expensive models. Here we present more efficient discrete element models (DEM) of tooth enamel that can capture the effects of rod decussation and rod-to-interface stiffness contrast on modulus, hardness, and fracture resistance. Enamel-like microstructures were generated using an idealized biological growth model that captures rod decussation. The orthotropic elastic moduli were modeled with a unit cell, and surface hardness was captured with virtual indentation test. Macroscopic crack growth was also modeled directly through rupture of interfaces and rods in a virtual fracture specimen with an initial notch. We show that the resistance curves increase indefinitely when rod fracture is avoided, with the inelastic region, crack branching, and 3D tortuosity being the main sources of toughness. Increasing the decussation angle simultaneously increases the size of the inelastic region and the crack resistance while decreasing the enamel axial modulus, hardness, and rod stress. In addition, larger contrasts of stiffness between the rods and their interfaces promote high overall stiffness, hardness, and crack resistance. These insights provide better guidelines for reconstructive dental materials, and for development of bioinspired hard materials with unique combinations of mechanical properties. STATEMENT OF SIGNIFICANCE: Enamel is the hardest, most mineralized material in the human body with a complex 3D micro-architecture consisting of crisscrossing mineral rods bonded by softer proteins. Like many hard biological composites, enamel displays an attractive combination of toughness, hardness, and stiffness, owing to its unique microstructure. However few numerical models explore the enamel structure-property relations, as modeling large volumes of this complex microstructure presents computational bottlenecks. In this study, we present a computationally efficient Discrete-element method (DEM) based approach that captures the effect of rod crisscrossing and stiffness mismatch on the enamel hardness, stiffness, and toughness. The models offer new insight into the micromechanics of enamel that could improve design guidelines for reconstructive dental materials and bioinspired composites.
Collapse
Affiliation(s)
- J William Pro
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada
| | - Francois Barthelat
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada.
| |
Collapse
|
34
|
van Casteren A, Crofts SB. The Materials of Mastication: Material Science of the Humble Tooth. Integr Comp Biol 2019; 59:1681-1689. [DOI: 10.1093/icb/icz129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Dental functional morphology, as a field, represents a confluence of materials science and biology. Modern methods in materials testing have been influential in driving the understanding of dental tissues and tooth functionality. Here we present a review of dental enamel, the outermost tissue of teeth. Enamel is the hardest biological tissue and exhibits remarkable resilience even when faced with a variety of mechanical threats. In the light of recent work, we progress the argument that the risk of mechanical degradation across multiple scales exhibits a strong and continued selection pressure on structural organization of enamel. The hierarchical nature of enamel structure presents a range of scale-dependent toughening mechanisms and provides a means by which natural selection can drive the specialization of this tissue from nanoscale reorganization to whole tooth morphology. There has been much learnt about the biomechanics of enamel recently, yet our understanding of the taxonomic diversity of this tissue is still lacking and may form an interesting avenue for future research.
Collapse
Affiliation(s)
- Adam van Casteren
- Department of Anthropology, Washington University in St Louis, Campus Box 1114, One Brookings Drive, St Louis, MO 63130, USA
| | - Stephanie B Crofts
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Sellers KC, Schmiegelow AB, Holliday CM. The significance of enamel thickness in the teeth of
Alligator mississippiensis
and its diversity among crocodyliforms. J Zool (1987) 2019. [DOI: 10.1111/jzo.12707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. C. Sellers
- Department of Pathology and Anatomical Sciences University of Missouri Columbia MO USA
| | - A. B. Schmiegelow
- School of Dentistry University of Missouri, Kansas City Kansas City MO USA
| | - C. M. Holliday
- Department of Pathology and Anatomical Sciences University of Missouri Columbia MO USA
| |
Collapse
|
36
|
Hua L, Wang W, Swain M, Zhu C, Huang H, Du J, Zhou Z. The dehydration effect on mechanical properties of tooth enamel. J Mech Behav Biomed Mater 2019; 95:210-214. [DOI: 10.1016/j.jmbbm.2019.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/07/2019] [Accepted: 04/11/2019] [Indexed: 11/29/2022]
|
37
|
Wang X, Zhang N, Zhong Y, Yan F, Jiang B. Wild boar's tusk enamel: Structure and mechanical behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:354-362. [DOI: 10.1016/j.msec.2019.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 11/28/2022]
|
38
|
Alloing-Séguier L, Marivaux L, Barczi JF, Lihoreau F, Martinand-Mari C. Relationships Between Enamel Prism Decussation and Organization of the Ameloblast Layer in Rodent Incisors. Anat Rec (Hoboken) 2018; 302:1195-1209. [PMID: 30365252 DOI: 10.1002/ar.24000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/21/2018] [Accepted: 07/05/2018] [Indexed: 11/07/2022]
Abstract
Rodent enamel microstructure has been extensively investigated, primarily on the basis of 2D electronic microscopy data. The nature and dynamics of the ameloblasts (the enamel-secreting cells) have also been well studied. However, critical issues still remain surrounding exactly how the ameloblasts produce the astonishing microstructural complexity of enamel, and how this subtle architecture evolved through time. In this article, we used a new methodology based on confocal laser microscopy to reconstruct the enamel microstructure of rodent incisors in three dimensions (3D) with the ameloblasts in situ. We proposed interpretations regarding the possible relationships between the workings of the ameloblasts and the resulting enamel prisms, especially how the phenomenon of decussation is generated. Finally, we were able to represent the two main types of modern rodent incisor microstructures (uniserial and multiserial decussations), as a set of parameters that have been entered into the 3D enamel simulation software Simulenam to generate 3D models that can be digitally manipulated. Associating 2D data of incisor enamel microstructure of fossil rodents and Simulenam, it was then possible to better understand how the various decussation parameters evolved through time and gave rise to the two modern microstructure types from the same ancestral type (pauciserial). This study also confirmed that rodent and artiodactyl enamel do not share the same mechanism of decussation formation. Anat Rec, 302:1195-1209, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Laurent Marivaux
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | - Fabrice Lihoreau
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | |
Collapse
|
39
|
Yilmaz ED, Koldehoff J, Schneider GA. On the systematic documentation of the structural characteristics of bovine enamel: A critic to the protein sheath concept. Dent Mater 2018; 34:1518-1530. [DOI: 10.1016/j.dental.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 11/28/2022]
|
40
|
Scott JE, Campbell RM, Baj LM, Burns MC, Price MS, Sykes JD, Vinyard CJ. Dietary signals in the premolar dentition of primates. J Hum Evol 2018; 121:221-234. [DOI: 10.1016/j.jhevol.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 10/16/2022]
|
41
|
Wang C, Ou Y, Zhang L, Zhou Z, Li M, Xu J, Fan J, Fu B, Hannig M. Effects of regional enamel and prism orientations on bovine enamel bond strength and cohesive strength. Eur J Oral Sci 2018; 126:334-342. [PMID: 29939426 DOI: 10.1111/eos.12530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated the regional microtensile bond strength (MTBS) and cohesive strength of bovine enamel. The crowns of bovine incisors were sectioned, either horizontally along incisal and cervical thirds to produce horizontal and tangential segments, or longitudinally along the midline to produce longitudinal segments. Half of the horizontal and longitudinal segments were prepared using a 45° bevel. Then, the differently sectioned enamel surfaces were treated with one- or two-step self-etch adhesives (Clearfil SE Bond or Clearfil S3 Bond) and a composite resin (Clearfil Majesty) was placed. Resin-bonded enamel samples were cut into beams for use in the MTBS tests. Labial horizontal and longitudinal segments of pure enamel beams were prepared for cohesive strength tests. Enamel microstructures were analyzed by scanning electron microscopy. Three-way anova followed by Tukey's post-hoc HSD multiple comparisons procedure showed that a 45° bevel cut did not statistically significantly improve enamel MTBS, which varied with the different regions. The longitudinally sectioned resin-bonded enamel samples had the lowest MTBS, and the horizontal enamel cohesive strength was weaker than that of the longitudinal enamel. The scanning electron microscopy fractographs indicated that rows of parallel prisms were detached from the fractured surfaces. In conclusion, the regional enamel MTBS and the cohesive strength are strongly related to the enamel microstructures and prism orientations.
Collapse
Affiliation(s)
- Chaoyang Wang
- Hospital of Stomatology affiliated to Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Yangyan Ou
- Hospital of Stomatology affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhang
- Hospital of Stomatology affiliated to Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Zihuai Zhou
- Hospital of Stomatology affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Mingxing Li
- Hospital of Stomatology affiliated to Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jingqiu Xu
- Hospital of Stomatology affiliated to Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jiayan Fan
- Hospital of Stomatology affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Baiping Fu
- Hospital of Stomatology affiliated to Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University of Saarland, Homburg, Saarland, Germany
| |
Collapse
|
42
|
Percher AM, Romero A, Galbany J, Nsi Akoue G, Pérez-Pérez A, Charpentier MJE. Buccal dental-microwear and dietary ecology in a free-ranging population of mandrills (Mandrillus sphinx) from southern Gabon. PLoS One 2017; 12:e0186870. [PMID: 29073184 PMCID: PMC5658090 DOI: 10.1371/journal.pone.0186870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/09/2017] [Indexed: 11/19/2022] Open
Abstract
Analyses of dental micro- and macro-wear offer valuable information about dietary adaptations. The buccal surface of the teeth does not undergo attrition, indicating that dental microwear may directly inform about food properties. Only a few studies have, however, investigated the environmental and individual factors involved in the formation of such microwear in wild animals. Here, we examine variation of buccal microwear patterns of mandibular molars in a large free-ranging population of mandrills (Mandrillus sphinx). We first explore the influence of seasonality and individual's sex, age and tooth macrowear-expressed as the percent of dentine exposure (PDE)-on six microwear variables. Second, we analyze the interplay between individual's diet and PDE. In a last analysis, we revisit our results on mandrills in the light of other primate's microwear studies. We show that the average buccal scratch length and the frequency of vertical buccal scratches are both higher during the long dry season compared to the long rainy season, while we observe the inverse relationship for disto-mesial scratches. In addition, females present more disto-mesial scratches than males and older individuals present higher scratch density, a greater proportion of horizontal scratches but a lower proportion of vertical scratches than young animals. PDE yields similar results than individual's age confirming earlier results in this population on the relationship between age and tooth macrowear. Because seasonality and individual characteristics are both known to impact mandrills' diet in the study population, our results suggest that buccal microwear patterns may inform about individual feeding strategies. Furthermore, PDE increases with the consumption of potentially abrasive monocotyledonous plants, independently of the individuals' age, although it is not affected by food mechanical properties. Finally, buccal scratch densities by orientation appear as relevant proxies for discriminating between different primate taxa.
Collapse
Affiliation(s)
- Alice M. Percher
- Institut des Sciences de l’Évolution de Montpellier (ISE-M) UMR5554, Univ. Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Alejandro Romero
- Departamento de Biotecnología, Universidad de Alicante, Alicante, Spain
| | - Jordi Galbany
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, United States of America
| | | | - Alejandro Pérez-Pérez
- Secció de Zoologia i Antropologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marie J. E. Charpentier
- Institut des Sciences de l’Évolution de Montpellier (ISE-M) UMR5554, Univ. Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
43
|
Constantino PJ, Bush MB, Barani A, Lawn BR. On the evolutionary advantage of multi-cusped teeth. J R Soc Interface 2017; 13:rsif.2016.0374. [PMID: 27558851 DOI: 10.1098/rsif.2016.0374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/28/2016] [Indexed: 11/12/2022] Open
Abstract
A hallmark of mammalian evolution is a progressive complexity in postcanine tooth morphology. However, the driving force for this complexity remains unclear: whether to expand the versatility in diet source, or to bolster tooth structural integrity. In this study, we take a quantitative approach to this question by examining the roles of number, position and height of multiple cusps in determining sustainable bite forces. Our approach is to use an extended finite-element methodology with due provision for step-by-step growth of an embedded crack to determine how fracture progresses with increasing occlusal load. We argue that multi-cusp postcanine teeth are well configured to withstand high bite forces provided that multiple cusps are contacted simultaneously to share the load. However, contact on a single near-wall cusp diminishes the strength. Location of the load points and cusp height, rather than cusp number or radius, are principal governing factors. Given these findings, we conclude that while complex tooth structures can enhance durability, increases in cusp number are more likely to be driven by the demands of food manipulation. Structural integrity of complex teeth is maintained when individual cusps remain sufficiently distant from the side walls and do not become excessively tall relative to tooth width.
Collapse
Affiliation(s)
- Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, VT 05439, USA
| | - Mark B Bush
- School of Mechanical and Chemical Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Amir Barani
- School of Mechanical and Chemical Engineering, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Brian R Lawn
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
44
|
Ding C, Chen Z, Li J. From molecules to macrostructures: recent development of bioinspired hard tissue repair. Biomater Sci 2017; 5:1435-1449. [DOI: 10.1039/c7bm00247e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the bioinspired strategies for hard tissue repair, ranging from molecule-induced mineralization, to microscale assembly to macroscaffold fabrication.
Collapse
Affiliation(s)
- Chunmei Ding
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Zhuoxin Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
45
|
Weng Z, Liu Z, Ritchie R, Jiao D, Li D, Wu H, Deng L, Zhang Z. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation. J Mech Behav Biomed Mater 2016; 64:125-38. [DOI: 10.1016/j.jmbbm.2016.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/12/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
|
46
|
Segarra MS, Shimada Y, Sadr A, Sumi Y, Tagami J. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography. J Dent Res 2016; 96:308-314. [PMID: 27872333 DOI: 10.1177/0022034516680156] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.
Collapse
Affiliation(s)
- M S Segarra
- 1 Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Japan.,2 Section of Operative Dentistry, College of Dentistry, University of the Philippines, Manila, Philippines
| | - Y Shimada
- 1 Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Japan
| | - A Sadr
- 1 Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Japan.,3 Restorative Dentistry, University of Washington, Seattle, WA, USA
| | - Y Sumi
- 4 Advanced Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - J Tagami
- 1 Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Japan
| |
Collapse
|
47
|
Pampush JD, Spradley JP, Morse PE, Harrington AR, Allen KL, Boyer DM, Kay RF. Wear and its effects on dental topography measures in howling monkeys (Alouatta palliata). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:705-721. [PMID: 27634058 DOI: 10.1002/ajpa.23077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Three dental topography measurements: Dirichlet Normal Energy (DNE), Relief Index (RFI), and Orientation Patch Count Rotated (OPCR) are examined for their interaction with measures of wear, within and between upper and lower molars in Alouatta palliata. Potential inferences of the "dental sculpting" phenomenon are explored. MATERIALS AND METHODS Fifteen occluding pairs of howling monkey first molars (15 upper, 15 lower) opportunistically collected from La Pacifica, Costa Rica, were selected to sample wear stages ranging from unworn to heavily worn as measured by the Dentine Exposure Ratio (DER). DNE, RFI, and OPCR were measured from three-dimensional surface reconstructions (PLY files) derived from high-resolution CT scans. Relationships among the variables were tested with regression analyses. RESULTS Upper molars have more cutting edges, exhibiting significantly higher DNE, but have significantly lower RFI values. However, the relationships among the measures are concordant across both sets of molars. DER and EDJL are curvilinearly related. DER is positively correlated with DNE, negatively correlated with RFI, and uncorrelated with OPCR. EDJL is not correlated with DNE, or RFI, but is positively correlated with OPCR among lower molars only. DISCUSSION The relationships among these metrics suggest that howling monkey teeth adaptively engage macrowear. DNE increases with wear in this sample presumably improving food breakdown. RFI is initially high but declines with wear, suggesting that the initially high RFI safeguards against dental senescence. OPCR values in howling monkey teeth do not show a clear relationship with wear changes.
Collapse
Affiliation(s)
- James D Pampush
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jackson P Spradley
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Paul E Morse
- Department of Anthropology, University of Florida, Gainesville, FL, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Kari L Allen
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Richard F Kay
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.,Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
48
|
Glowacka H, McFarlin SC, Catlett KK, Mudakikwa A, Bromage TG, Cranfield MR, Stoinski TS, Schwartz GT. Age-related changes in molar topography and shearing crest length in a wild population of mountain Gorillas from Volcanoes National Park, Rwanda. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:3-15. [PMID: 26853974 DOI: 10.1002/ajpa.22943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/26/2015] [Accepted: 01/01/2016] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Great ape teeth must remain functional over long lifespans. The molars of the most folivorous apes, the mountain gorillas, must maintain shearing function for 40+ years while the animals consume large quantities of mechanically challenging foods. While other folivorous primates experience dental senescence, which compromises their occlusal surfaces and affects their reproductive success as they age, it is unknown whether dental senescence also occurs in mountain gorillas. In this article, we quantified and evaluated how mountain gorilla molars change throughout their long lifespans. MATERIALS AND METHODS We collected high-resolution replicas of M(1)s (n = 15), M(2)s (n = 13), and M(3)s (n = 11) from a cross-sectional sample of wild mountain gorilla skeletons from the Virunga Volcanoes, ranging in age from 4 to 43 years. We employed dental topographic analyses to track how aspects of occlusal slope, angularity, relief index, and orientation patch count rotated change with age. In addition, we measured the relative length of shearing crests in two- and three-dimensions. RESULTS Occlusal topography was found to decrease, while 2D relative shearing crest length increased, and 3D relative crest lengths were maintained with age. DISCUSSION Our findings indicate that shearing function is maintained throughout the long lifetimes of mountain gorillas. Unlike the dental senescence experienced by other folivorous primates, mountain gorillas do not appear to possess senesced molars despite their long lifetimes, mechanically challenging diets, and decreases in occlusal topography with age.
Collapse
Affiliation(s)
- Halszka Glowacka
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ
| | - Shannon C McFarlin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, the George Washington University, DC.,Division of Mammals, National Museum of Natural History, Smithsonian Institution, DC
| | - Kierstin K Catlett
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ
| | | | - Timothy G Bromage
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, NY.,Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, NY
| | | | | | - Gary T Schwartz
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ
| |
Collapse
|
49
|
Tabuce R, Seiffert ER, Gheerbrant E, Alloing-Séguier L, von Koenigswald W. Tooth Enamel Microstructure of Living and Extinct Hyracoids Reveals Unique Enamel Types Among Mammals. J MAMM EVOL 2016. [DOI: 10.1007/s10914-015-9317-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Constantino PJ, Borrero‐Lopez O, Pajares A, Lawn BR. Simulation of enamel wear for reconstruction of diet and feeding behavior in fossil animals: A micromechanics approach. Bioessays 2015; 38:89-99. [DOI: 10.1002/bies.201500094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Oscar Borrero‐Lopez
- Departamento de Ingeniería MecánicaEnergética y de los MaterialesUniversidad de ExtremaduraBadajozSpain
| | - Antonia Pajares
- Departamento de Ingeniería MecánicaEnergética y de los MaterialesUniversidad de ExtremaduraBadajozSpain
| | - Brian R. Lawn
- Materials Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgMDUSA
| |
Collapse
|