1
|
Hong L, Zang X, Hu Q, He Y, Xu Z, Xie Y, Gu T, Yang H, Yang J, Shi J, Zheng E, Huang S, Xu Z, Liu D, Cai G, Li Z, Wu Z. Uterine luminal-derived extracellular vesicles: potential nanomaterials to improve embryo implantation. J Nanobiotechnology 2023; 21:79. [PMID: 36882792 PMCID: PMC9990359 DOI: 10.1186/s12951-023-01834-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Most pregnancy losses worldwide are caused by implantation failure for which there is a lack of effective therapeutics. Extracellular vesicles are considered potential endogenous nanomedicines because of their unique biological functions. However, the limited supply of ULF-EVs prevents their development and application in infertility diseases such as implantation failure. In this study, pigs were used as a human biomedical model, and ULF-EVs were isolated from the uterine luminal. We comprehensively characterized the proteins enriched in ULF-EVs and revealed their biological functions in promoting embryo implantation. By exogenously supplying ULF-EVs, we demonstrated that ULF-EVs improve embryo implantation, suggesting that ULF-EVs are a potential nanomaterial to treat implantation failure. Furthermore, we identified that MEP1B is important in improving embryo implantation by promoting trophoblast cell proliferation and migration. These results indicated that ULF-EVs can be a potential nanomaterial to improve embryo implantation.
Collapse
Affiliation(s)
- Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Yanjuan He
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Junsong Shi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, People's Republic of China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China. .,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510642, People's Republic of China.
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China. .,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
2
|
García-Onrubia L, Valentín-Bravo FJ, Coco-Martin RM, González-Sarmiento R, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Matrix Metalloproteinases in Age-Related Macular Degeneration (AMD). Int J Mol Sci 2020; 21:ijms21165934. [PMID: 32824762 PMCID: PMC7460693 DOI: 10.3390/ijms21165934] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial and progressive retinal disease affecting millions of people worldwide. In developed countries, it is the leading cause of vision loss and legal blindness among the elderly. Although the pathogenesis of AMD is still barely understood, recent studies have reported that disorders in the regulation of the extracellular matrix (ECM) play an important role in its etiopathogenesis. The dynamic metabolism of the ECM is closely regulated by matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). The present review focuses on the crucial processes that occur at the level of the Bruch’s membrane, with special emphasis on MMPs, TIMPs, and the polymorphisms associated with increased susceptibility to AMD development. A systematic literature search was performed, covering the years 1990–2020, using the following keywords: AMD, extracellular matrix, Bruch’s membrane, MMPs, TIMPs, and MMPs polymorphisms in AMD. In both early and advanced AMD, the pathological dynamic changes of ECM structural components are caused by the dysfunction of specific regulators and by the influence of other regulatory systems connected with both genetic and environmental factors. Better insight into the pathological role of MMP/TIMP complexes may lead to the development of new strategies for AMD treatment and prevention.
Collapse
Affiliation(s)
- Luis García-Onrubia
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Fco. Javier Valentín-Bravo
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Rosa M. Coco-Martin
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca—CSIC, 37007 Salamanca, Spain
| | - J. Carlos Pastor
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Correspondence: (R.U.-M.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.)
| |
Collapse
|
3
|
The role of activated leukocyte cell adhesion molecule (ALCAM) in cancer progression, invasion, metastasis and recurrence: A novel cancer stem cell marker and tumor-specific prognostic marker. Exp Mol Pathol 2020; 115:104443. [PMID: 32380056 DOI: 10.1016/j.yexmp.2020.104443] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) or CD166 is a 100 to 105 KDa transmembrane immunoglobulin which is involved in activation of T-cells, hematopoiesis, neutrophils trans-endothelial migration, angiogenesis, inflammation and tumor propagation and invasiveness through formation of homophilic and heterophilic interactions. Recently, many studies have proposed that the expression pattern of ALCAM is highly associated with the grade, stage and invasiveness of tumors. Although ALCAM is a valuable prognostic marker in different carcinomas, similar expression patterns in different tumor types may be associated with completely different prognostic states, making it to be a tumor-type-dependent prognostic marker. In addition, ALCAM isoforms provide ways for primary detection of tumor cells with metastatic potential. More importantly, this prognostic marker has shown to be considerably dependent on the cytoplasmic and membranous expression, indirect and direct regulation of post-transcriptional molecules, pro-apoptotic proteins functionalities and several other oncogenic proteins or signalling pathways. This review mainly focuses on the pathways involved in expression of ALCAM and its prognostic value of in different types of cancers and the way in which it is regulated.
Collapse
|
4
|
Zhao X, Zhu W, Zhang R, Zhang M, Zhao J, Hou J, Zhang W. Targeted juglone blocks the invasion and metastasis of HPV-positive cervical cancer cells. J Pharmacol Sci 2019; 140:211-217. [PMID: 31445828 DOI: 10.1016/j.jphs.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
|
5
|
Chen LC, Shibu MA, Liu CJ, Han CK, Ju DT, Chen PY, Viswanadha VP, Lai CH, Kuo WW, Huang CY. ERK1/2 mediates the lipopolysaccharide-induced upregulation of FGF-2, uPA, MMP-2, MMP-9 and cellular migration in cardiac fibroblasts. Chem Biol Interact 2019; 306:62-69. [PMID: 30980805 DOI: 10.1016/j.cbi.2019.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 03/08/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
Abstract
Myocardial fibrosis is a critical event during septic shock. Upregulation in the fibrosis signaling cascade proteins such as fibroblast growth factor (FGF), urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA) and activation of matrix metalloproteinases (MMPs) are widely associated with the development of myocardial infarction, dilated cardiomyopathy, cardiac fibrosis and heart failure. However, evidences suggest that the common upstream mediators of fibrosis cascade play little role in cardiac fibrosis induced by LPS; further, it is unknown if LPS directly triggers the expressions and/or activity of FGF-2, uPA, tPA, MMP-2 and MMP-9 in cardiac fibroblasts. In the present study, we treated primary cultures of cardiac fibroblasts with LPS to explore whether LPS upregulates FGF-2, uPA, tPA, MMP-2, MMP-9 and enhance cellular migration. Further the precise molecular and cellular mechanisms behind these LPS induced responses were identified. Inhibition assays on MAPKs using U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), CsA (calcineurin inhibitor) and QNZ (NFκB inhibitor) show that LPS-induced upregulation of FGF-2, uPA, MMP-2 and MMP-9 in cardiac fibroblasts was mediated through ERK1/2 signaling. Collectively, our results provide a link between LPS-induced cardiac dysfunction and ERK1/2 signaling pathway and thereby implies ERK1/2 as a possible target to regulate LPS induced upregulation of FGF-2, uPA, MMP-2, MMP-9 and cellular migration in cardiac fibroblasts.
Collapse
Affiliation(s)
- Liang-Chi Chen
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University and Hospital, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery,Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yu Chen
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | | | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan; College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Praeruptorin A Inhibits Human Cervical Cancer Cell Growth and Invasion by Suppressing MMP-2 Expression and ERK1/2 Signaling. Int J Mol Sci 2017; 19:ijms19010010. [PMID: 29267213 PMCID: PMC5795962 DOI: 10.3390/ijms19010010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Praeruptorin A (PA) is a pyranocumarin present in the dried root of Peucedanumpraeruptorum Dunn that has anticancer effects against several types of cells. However, the effect of PA on human cervical cancer cells is unknown. Our results indicate that PA significantly inhibited cell proliferation, colony formation, migration, invasion, and wound closure of HeLa and SiHa cells, induced cell cycle arrest at G0/G1 phase, upregulated Rb, p16, p21 and p27 proteins and downregulated cyclin D1 and S-phase kinase-associated protein 2 (Skp2) proteins. PA also significantly reduced expression of matrix metalloproteinase-2 (MMP-2) and increased expression of tissue inhibitor of metalloproteinase-2 (TIMP-2). In addition, PA suppressed ERK1/2 activation and increased the effect of PD98059 (a specific MEK1/2 inhibitor) in downregulation of MMP-2 and upregulation of TIMP-2. PA treatment inhibited the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on upregulation of ERK1/2 activation, MMP-2 expression, cellular migration, and invasion of HeLa cells. Our findings are the first to demonstrate the activity of PA against cervical cancer cells, and suggest this agent has promise as a therapeutic agent in treatment of human cervical cancer.
Collapse
|
7
|
Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:1940-1951. [PMID: 28456643 PMCID: PMC5605394 DOI: 10.1016/j.bbamcr.2017.04.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
Abstract
The proteolytic processing of collagen (collagenolysis) is critical in development and homeostasis, but also contributes to numerous pathologies. Mammalian interstitial collagenolytic enzymes include members of the matrix metalloproteinase (MMP) family and cathepsin K. While MMPs have long been recognized for their ability to catalyze the hydrolysis of collagen, the roles of individual MMPs in physiological and pathological collagenolysis are less defined. The use of knockout and mutant animal models, which reflect human diseases, has revealed distinct collagenolytic roles for MT1-MMP and MMP-13. A better understanding of temporal and spatial collagen processing, along with the knowledge of the specific MMP involved, will ultimately lead to more effective treatments for cancer, arthritis, cardiovascular conditions, and infectious diseases. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Sabrina Amar
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
8
|
Ju A, Cho YC, Kim BR, Lee S, Le HTT, Vuong HL, Cho S. Anticancer effects of methanol extract of Myrmecodia platytyrea Becc. leaves against human hepatocellular carcinoma cells via inhibition of ERK and STAT3 signaling pathways. Int J Oncol 2017; 52:201-210. [PMID: 29075791 DOI: 10.3892/ijo.2017.4178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/07/2017] [Indexed: 11/06/2022] Open
Abstract
Myrmecodia platytyrea Becc., a member of the Rubiaceae family, is found throughout Southeast Asia and has been traditionally used to treat cancer. However, there is limited pharmacological information on this plant. We investigated the anticancer effects of the methanol extract of Myrmecodia platytyrea Becc. leaves (MMPL) and determined the molecular mechanisms underlying the effects of MMPL on metastasis in human hepatocellular carcinoma (HCC) cells. MMPL dose-dependently inhibited cell migration and invasion in SK‑Hep1 and Huh7 cells. In addition, MMPL strongly suppressed the enzymatic activity of matrix metalloproteinases (MMP‑2 and MMP‑9). Diminished telomerase activity by MMPL resulted in the suppression of both telomerase activity and telomerase-associated gene expression. The levels of urokinase-type plasminogen activator receptor (uPAR) expression as well as the phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) were also attenuated by MMPL. The above results collectively suggest that MMPL has anticancer effects in HCC and that MMPL can serve as an effective therapeutic agent for treating human liver cancer.
Collapse
Affiliation(s)
- Anna Ju
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Chang Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hien Thi Thu Le
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Huong Lan Vuong
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Li LH, Wu GY, Lu YZ, Chen XH, Liu BY, Zheng MH, Cai JC. p21-activated protein kinase 1 induces the invasion of gastric cancer cells through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinase-2. Oncol Rep 2017; 38:193-200. [PMID: 28534988 DOI: 10.3892/or.2017.5643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/13/2016] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The prognosis of GC is poor, mostly due to widespread metastasis. p21-activated kinase 1 (Pak1), the best characterized member of an evolutionarily conserved family of serine/threonine kinases, plays an important role in the regulation of cell morphogenesis, motility, mitosis and angiogenesis. By qRT-PCR and Gelatin zymograph assay, we demonstrated in the present study that stable overexpression of Pak1 induced matrix metalloproteinase (MMP)-2 mRNA expression and activity in the human MKN45 GC cell line. Conversely, knockdown of endogenous Pak1 expression by small interfering RNA (siRNA) decreased MMP-2 mRNA expression and activity in the MKN45 GC cells. Activation of c-Jun N-terminal kinase (JNK) was required for Pak1-induced upregulation of MMP-2 mRNA level and activity. Moreover, upregulation of MMP-2 by Pak1 via the JNK pathway notably promoted the invasion of MKN45 GC cells. Overexpression of MMP-2 mRNA was once again confirmed to be associated with GC metastasis. In conclusion, our results demonstrated for the first time that Pak1 stimulated MMP-2 mRNA expression and activity in MKN45 GC cells. The JNK signaling pathway was involved in Pak1 modulation of MMP-2, which was important for MKN45 GC cell invasiveness.
Collapse
Affiliation(s)
- Liang-Hui Li
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, P.R. China
| | - Guo-Yang Wu
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, P.R. China
| | - Yi-Zhuo Lu
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, P.R. China
| | - Xue-Hua Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Bing-Ya Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Min-Hua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jian-Chun Cai
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, P.R. China
| |
Collapse
|
10
|
Evaluation of Suppressive Effects of Tranilast on the Invasion/Metastasis Mechanism in a Murine Pancreatic Cancer Cell Line. Pancreas 2017; 46:567-574. [PMID: 28196028 DOI: 10.1097/mpa.0000000000000779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Numerous studies have investigated the mechanism of the antitumor effect of tranilast, well known as an antiallergic drug. Herein, we investigated the mechanism of the antitumor effects of tranilast using murine PAN 02 cell line. METHODS In an allograft mouse model, the number of metastatic sites in the liver was counted. Wound healing and chemoinvasion assay were performed to evaluate migration and invasive ability of PAN 02, respectively. Activities of matrix metalloproteinases (MMPs) were evaluated by gelatin zymography. The expression of cofactors in the activation of MMP-2 was assessed by immunohistochemical staining at the front of metastasis. RESULTS The number of metastatic sites was reduced in tranilast-treated groups. Migration ability and tumor invasiveness were significantly inhibited by tranilast in a dose-dependent manner. Gelatin zymography revealed inhibition of MMP-2 activity. Immunohistochemical staining showed remarkable attenuation of tissue inhibitor of metalloproteinase (TIMP-) 2 expression in tranilast-treated groups. CONCLUSIONS Tissue inhibitor of metalloproteinase 2 is necessary for MMP-2 activation with interaction between membrane type 1-MMP and proMMP-2. These results suggested that tranilast may inhibit MMP-2 activation through attenuating TIMP-2 expression, resulting in inhibition of tumor invasion and metastasis. Our results showed possibility of tranilast in clinical application for novel cancer therapy.
Collapse
|
11
|
Anti-leukemic, anti-lung, and anti-breast cancer potential of the microbial polyketide 2, 4-diacetylphloroglucinol (DAPG) and its interaction with the metastatic proteins than the antiapoptotic Bcl-2 proteins. Mol Cell Biochem 2016; 414:47-56. [DOI: 10.1007/s11010-016-2657-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/23/2016] [Indexed: 01/27/2023]
|
12
|
Valeta-Magara A, Hatami R, Axelrod D, Roses DF, Guth A, Formenti SC, Schneider RJ. Pro-oncogenic cytokines and growth factors are differentially expressed in the post-surgical wound fluid from malignant compared to benign breast lesions. SPRINGERPLUS 2015; 4:483. [PMID: 26361584 PMCID: PMC4560730 DOI: 10.1186/s40064-015-1260-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022]
Abstract
Purpose The accumulation of wound fluid known as seroma in the chest cavity following breast surgery is a common occurrence that can persist for many weeks. While the pro-inflammatory composition of seroma is well established, there has been remarkably little research to determine whether seroma contains pro-oncogenic factors, and whether this is influenced by previous malignant disease. Methods We developed a clinical trial in which we obtained post-surgical seroma fluids from women with benign or malignant disease 1 or 2 weeks following lumpectomy or mastectomy. We conducted an analysis of more than 80 different cytokines, chemokines and growth factors. Results We found that surgical cavity seroma from breast cancer patients has a higher expression of key tumor-promoting cytokines and lower expression of important tumor-inhibiting factors when compared to benign lesions from non-cancer patients. Patients with high body mass index also had higher levels of leptin regardless of malignancy. Conclusions We conclude that the breast post-surgical tumor cavity contains factors that are pro-inflammatory regardless of malignant or benign disease, but in malignant disease there is significant enrichment of additional pro-oncogenic chemokines, cytokines and growth factors, and reduction in tumor-inhibiting factors. These results are consistent with tumor conditioning of surrounding normal stromal tissue and creation of a pro-oncogenic environment that persists long after surgical removal of the tumor. Electronic supplementary material The online version of this article (doi:10.1186/s40064-015-1260-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Raheleh Hatami
- Department of Microbiology, NYU School of Medicine, New York, NY 10016 USA
| | - Deborah Axelrod
- Department of Surgery, NYU School of Medicine, New York, NY 10016 USA ; NYU Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016 USA
| | - Daniel F Roses
- Department of Surgery, NYU School of Medicine, New York, NY 10016 USA ; NYU Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016 USA
| | - Amber Guth
- Department of Surgery, NYU School of Medicine, New York, NY 10016 USA ; NYU Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016 USA
| | - Silvia C Formenti
- Department of Radiation Oncology, NYU School of Medicine, New York, NY 10016 USA ; Weill Cornell Medical College, New York, NY USA
| | - Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, NY 10016 USA ; Department of Surgery, NYU School of Medicine, New York, NY 10016 USA ; NYU Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016 USA ; Department of Radiation Oncology, NYU School of Medicine, New York, NY 10016 USA
| |
Collapse
|
13
|
Bottino J, Gelaleti GB, Maschio LB, Jardim-Perassi BV, de Campos Zuccari DAP. Immunoexpression of ROCK-1 and MMP-9 as prognostic markers in breast cancer. Acta Histochem 2014; 116:1367-73. [PMID: 25218053 DOI: 10.1016/j.acthis.2014.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common tumor in women and it has high mortality mainly due to the occurrence of tumor metastasis. Both the processes of cell migration and anchorage to the substrate are essential for the development of metastasis. These processes occur by rearrangements of the actin cytoskeleton, regulated by Rho-associated protein kinase 1 (ROCK-1). The degradation of the extracellular matrix, influenced by metalloproteinase 9 (MMP-9) also exerts greater cell invasiveness. The present study evaluated the ROCK-1 and MMP-9 proteins using an immunohistochemical method through the selection of invasive ductal breast carcinoma. The protein expression was correlated to clinicopathological parameters and overall survival of the patients. High expression of the ROCK-1 protein was correlated statistically to the status of lymph nodes (p=0.007) and showed variable expression in different clinical stages of the tumor. MMP-9 showed a strong immunostaining in patients with metastasis that had died, whereas there was no marker in normal breast tissues. In addition, 46.6% of patients classified as poor prognosis showed high expression of ROCK-1 and MMP-9 protein and another 40.0% just showed high expression of MMP-9. Thus, the differential expression of ROCK-1 and MMP-9 proteins suggests their potential use as prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Jenifer Bottino
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil
| | - Gabriela Bottaro Gelaleti
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Larissa Bazela Maschio
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Bruna Victorasso Jardim-Perassi
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Debora Aparecida Pires de Campos Zuccari
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), Sao Jose do Rio Preto, Sao Paulo 15090-000, Brazil; Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Program of Post-Graduate in Genetics, Sao Jose do Rio Preto, Sao Paulo 15054-000, Brazil.
| |
Collapse
|
14
|
Nita M, Strzałka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W. Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 2014; 20:1003-16. [PMID: 24938626 PMCID: PMC4072585 DOI: 10.12659/msm.889887] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of permanent, irreversible, central blindness (scotoma in the central visual field that makes reading and writing impossible, stereoscopic vision, recognition of colors and details) in patients over the age of 50 years in European and North America countries, and an important role is attributed to disorders in the regulation of the extracellular matrix (ECM). The main aim of this article is to present the crucial processes that occur on the level of Bruch’s membrane, with special consideration of the metalloproteinase substrates, metalloproteinase, and tissue inhibitor of metalloproteinase (TIMP). A comprehensive review of the literature was performed through MEDLINE and PubMed searches, covering the years 2005–2012, using the following keywords: AMD, extracellular matrix, metalloproteinases, tissue inhibitors of metalloproteinases, Bruch’s membrane, collagen, elastin. In the pathogenesis of AMD, a significant role is played by collagen type I and type IV; elastin; fibulin-3, -5, and -6; matrix metalloproteinase (MMP)-2, MMP-9, MMP-14, and MMP-1; and TIMP-3. Other important mechanisms include: ARMS2 and HTR1 proteins, the complement system, the urokinase plasminogen activator system, and pro-renin receptor activation. Continuous rebuilding of the extracellular matrix occurs in both early and advanced AMD, simultaneously with the dysfunction of retinal pigment epithelium (RPE) cells and endothelial cells. The pathological degradation or accumulation of ECM structural components are caused by impairment or hyperactivity of specific MMPs/TIMPs complexes, and is also endangered by the influence of other mechanisms connected with both genetic and environmental factors.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", Katowice, Poland
| | | | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Sosnowiec, Poland
| | - Wanda Romaniuk
- Department of Ophthalmology, Medical University of Silesia, Independent Public Clinical Hospital, Katowice, Poland
| |
Collapse
|
15
|
Pahwa S, Stawikowski MJ, Fields GB. Monitoring and Inhibiting MT1-MMP during Cancer Initiation and Progression. Cancers (Basel) 2014; 6:416-35. [PMID: 24549119 PMCID: PMC3980612 DOI: 10.3390/cancers6010416] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/14/2022] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion. Numerous substrates and binding partners have been identified for MT1-MMP, and its role in collagenolysis appears crucial for tumor invasion. However, development of MT1-MMP inhibitors must consider the substantial functions of MT1-MMP in normal physiology and disease prevention. The present review examines the plethora of MT1-MMP activities, how these activities relate to cancer initiation and progression, and how they can be monitored in real time. Examination of MT1-MMP activities and cell surface behaviors can set the stage for the development of unique, selective MT1-MMP inhibitors.
Collapse
Affiliation(s)
- Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | - Maciej J Stawikowski
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| | - Gregg B Fields
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|
16
|
Voura EB, English JL, Yu HYE, Ho AT, Subarsky P, Hill RP, Hojilla CV, Khokha R. Proteolysis during tumor cell extravasation in vitro: metalloproteinase involvement across tumor cell types. PLoS One 2013; 8:e78413. [PMID: 24194929 PMCID: PMC3806793 DOI: 10.1371/journal.pone.0078413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/20/2013] [Indexed: 12/22/2022] Open
Abstract
To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment.
Collapse
Affiliation(s)
- Evelyn B. Voura
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
- Department of Biology, Dominican College, Orangeburg, New York, United States of America
| | - Jane L. English
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Hoi-Ying E. Yu
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Andrew T. Ho
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Patrick Subarsky
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Richard P. Hill
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Carlo V. Hojilla
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Rama Khokha
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Identification of biomarkers for hepatocellular carcinoma using network-based bioinformatics methods. Eur J Med Res 2013; 18:35. [PMID: 24083576 PMCID: PMC4016278 DOI: 10.1186/2047-783x-18-35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/30/2013] [Indexed: 01/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide. Despite several efforts to elucidate molecular mechanisms involved in this cancer, they are still not fully understood. Methods To acquire further insights into the molecular mechanisms of HCC, and to identify biomarkers for early diagnosis of HCC, we downloaded the gene expression profile on HCC with non-cancerous liver controls from the Gene Expression Omnibus (GEO) and analyzed these data using a combined bioinformatics approach. Results The dysregulated pathways and protein-protein interaction (PPI) network, including hub nodes that distinguished HCCs from non-cancerous liver controls, were identified. In total, 29 phenotype-related differentially expressed genes were included in the PPI network. Hierarchical clustering showed that the gene expression profile of these 29 genes was able to differentiate HCC samples from non-cancerous liver samples. Among these genes, CDC2 (Cell division control protein 2 homolog), MMP2 (matrix metalloproteinase-2) and DCN (Decorin were the hub nodes in the PPI network. Conclusions This study provides a portfolio of targets useful for future investigation. However, experimental studies should be conducted to verify our findings.
Collapse
|
18
|
Pham DNT, Leclerc D, Lévesque N, Deng L, Rozen R. β,β-carotene 15,15'-monooxygenase and its substrate β-carotene modulate migration and invasion in colorectal carcinoma cells. Am J Clin Nutr 2013; 98:413-22. [PMID: 23803888 DOI: 10.3945/ajcn.113.060996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND β,β-Carotene 15,15'-monooxygenase (BCMO1) converts β-carotene to retinaldehyde. Increased β-carotene consumption is linked to antitumor effects. Retinoic acid reduces the invasiveness in cancer, through inhibition of matrix metalloproteinases (MMPs). In our studies of a mouse model that develops intestinal tumors after low dietary folate, we found reduced BCMO1 expression in normal preneoplastic intestine of folate-deficient tumor-prone mice. OBJECTIVE Our goal was to determine whether BCMO1 expression could influence transformation potential in human colorectal carcinoma cells, by examining the effect of BCMO1 modulation on cellular migration and invasion, and on expression of MMPs. DESIGN LoVo colon carcinoma cells were transfected with BCMO1 small interfering RNA (siRNA) or scrambled siRNA. Migration and invasion were measured, and the expression of BCMO1, MMP7, and MMP28 was assessed by quantitative reverse-transcriptase polymerase chain reaction. These variables were also measured after treatment of cells with retinoic acid, 5-aza-2'-deoxycytidine, folate-depleted/high-methionine medium, and β-carotene. RESULTS Retinoic acid decreased the migration, invasion, and expression of MMP28 mRNA. Transfection of cells with BCMO1 siRNA inhibited BCMO1 expression, enhanced migration and invasion, and increased expression of MMP7 and MMP28. 5-Aza-2'-deoxycytidine decreased, whereas folate-depleted/high-methionine medium increased invasiveness. β-Carotene increased BCMO1 expression and reduced invasiveness with a decrease in expression of MMP7 and MMP28. CONCLUSIONS Inhibition of BCMO1 expression is associated with increased invasiveness of colon cancer cells and increased expression of MMP7 and MMP28. β-Carotene can upregulate BCMO1 and reverse these effects. These novel associations suggest a critical role for BCMO1 in cancer and provide a mechanism for the proposed antitumor effects of β-carotene.
Collapse
Affiliation(s)
- Diep Ngoc Thi Pham
- Departments of Human Genetics and Pediatrics, McGill University, and the Montreal Children's Hospital site of the McGill University Health Centre Research Institute, Montreal, Canada
| | | | | | | | | |
Collapse
|
19
|
Hsu HH, Liu CJ, Shen CY, Chen YJ, Chen LM, Kuo WH, Lin YM, Chen RJ, Tsai CH, Tsai FJ, Huang CY. p38α MAPK mediates 17β-estradiol inhibition of MMP-2 and -9 expression and cell migration in human lovo colon cancer cells. J Cell Physiol 2012; 227:3648-60. [PMID: 22377968 DOI: 10.1002/jcp.24072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β-estradiol (E(2)) treatment is sufficient to inhibit cell proliferation and cell migration in human colon cancer cells. Up-regulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. In the present study, we treated human LoVo colon cancer cells with E(2) to explore whether E(2) down-regulates cell proliferation and migration, and to identify the precise molecular and cellular mechanisms behind the down-regulatory responses. Here, we found that E(2) treatment decreased cell proliferation and cell cycle-regulating factors such as cyclin A, cyclin D1 and cyclin E. At the same time, E(2) significantly inhibited cell migration and migration-related factors such as uPA, tPA, MMP-2, and MMP-9. However, E(2) treatment showed no effects on upregulating expression of plasminogen activator inhibitor-1 (PAI-1), tissue inhibitor of metalloproteinase-1, -2, -3, and -4 (TIMP-1, -2, -3, and -4). After administration of inhibitors including QNZ (NFκB inhibitor), LY294002 (Akt activation inhibitor), U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor) or SP600125 (JNK1/2 inhibitor), E(2) -downregulated cell migration and expression of MMP-2 and MMP-9 in LoVo cells is markedly inhibited only by p38 MAPK inhibitors, SB203580. Application of specific target gene siRNA (ERα, ERβ, p38α, and p38β) to LoVo cells further confirmed that p38 MAPK mediates E(2) /ERs inhibition of MMP-2 and -9 expression and cell motility in LoVo cells. Collectively, these results suggest that E(2) treatment down-regulates cell proliferation by modulating the expression of cyclin A, cyclin D1 and cyclin E. E(2) treatment simultaneously impaired cell migration by inhibiting the expression of uPA, tPA, MMP-2, and MMP-9 through E(2) /ERs - p38α MAPK signaling pathway in human LoVo colon cancer cells.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tee YT, Liu YF, Chang JT, Yang SF, Chen SC, Han CP, Wang PH, Liao CL. Single-nucleotide polymorphisms and haplotypes of membrane type 1-matrix metalloproteinase in susceptibility and clinical significance of squamous cell neoplasia of uterine cervix in Taiwan women. Reprod Sci 2012; 19:932-8. [PMID: 22527983 DOI: 10.1177/1933719112438445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) participates in the activity of MMP-2, which correlates with cancer of uterine cervix. Single-nucleotide polymorphisms (SNPs) in promoter and exon of MT1-MMP may influence their binding with transcription factors and gene transcription. To date, no study reports the association of the MT1-MMP polymorphisms with cervical neoplasia. Therefore, we investigated the influence of the MT1-MMP gene polymorphisms on the susceptibility and clinicopathological variables of cervical neoplasia for women in Taiwan. We recruited 72 patients with cervical squamous cell carcinoma and 63 with high-grade dysplasia as 1 subgroup. Meanwhile, 280 control women were included as another subgroup. The SNPs rs1003349 (site -165), rs2236307 (+7096), and rs3751489 (+8153) as well as rs2236302 (site +6727) of MT1-MMP gene were determined by polymerase chain reaction (PCR)-restriction fragment length polymorphism and real-time PCR genotyping, respectively. Then, we correlated these SNPs and haplotypes with the development of cervical neoplasia and cancer clinicopathological variables. We found that women with CC genotype in rs2236307 SNP exhibited a more risk to develop cervical neoplasia as compared with those with wild genotype TT. Haplotypes -165 T, +6727 C, +7096 C, +8153 G or -165 G, +6727 G, +7096 T, and +8153 G and diplotypes including at least 1 type of these haplotypes of MT1-MMP gene showed a higher risk of cervical neoplasia. However, both haplotypes were not significantly correlated with the clinicopathological characteristics of cervical cancer. In conclusion, Taiwan women with variant homozygote CC (+7096) and haplotypes, TCCG and GGTG, of MT1-MMP exhibit more risk in developing cervical neoplasia.
Collapse
Affiliation(s)
- Yi-Torng Tee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hsu HH, Hu WS, Lin YM, Kuo WW, Chen LM, Chen WK, Hwang JM, Tsai FJ, Liu CJ, Huang CY. JNK suppression is essential for 17β-Estradiol inhibits prostaglandin E2-Induced uPA and MMP-9 expressions and cell migration in human LoVo colon cancer cells. J Biomed Sci 2011; 18:61. [PMID: 21859479 PMCID: PMC3179949 DOI: 10.1186/1423-0127-18-61] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/22/2011] [Indexed: 02/08/2023] Open
Abstract
Background Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β-estradiol treatment is sufficient to inhibit prostaglandin E2 (PGE2)-induced cellular motility in human colon cancer cells. Methods We analyzed the protein expression of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), matrix metallopeptidases (MMPs), plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metalloproteinases (TIMPs), and the cellular motility in PGE2-stimulated human LoVo cells. 17β-Estradiol and the inhibitors including LY294002 (Akt activation inhibitor), U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), QNZ (NFκB inhibitor) and ICI 182 780 were further used to explore the inhibitory effects of 17β-estradiol on PGE2-induced LoVo cell motility. Student's t-test was used to analyze the difference between the two groups. Results Upregulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA) and matrix metallopeptidases (MMPs) is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. After administration of inhibitors including LY294002, U0126, SB203580, SP600125 or QNZ, we found that PGE2 treatment up-regulated uPA and MMP-9 expression via JNK1/2 signaling pathway, thus promoting cellular motility in human LoVo cancer cells. However, PGE2 treatment showed no effects on regulating expression of tPA, MMP-2, plasminogen activator inhibitor-1 (PAI-1), tissue inhibitor of metalloproteinase-1, -2, -3 and -4 (TIMP-1, -2, -3 and -4). We further observed that 17β-estradiol treatment inhibited PGE2-induced uPA, MMP-9 and cellular motility by suppressing activation of JNK1/2 in human LoVo cancer cells. Conclusions Collectively, these results suggest that 17β-estradiol treatment significantly inhibits PGE2-induced motility of human LoVo colon cancer cells.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- 1Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The metastasis is the spread of cancer from one part of the body to another. Two-thirds of patients with cancer will develop bone metastasis. Breast, prostate and lung cancer are responsible for more than 80% of cases of metastatic bone disease. The spine is the most common site of bone metastasis. A spinal metastasis may cause pain, instability and neurological injuries. The diffusion through Batson venous system is the principal process of spinal metastasis, but the dissemination is possible also through arterial and lymphatic system or by contiguity. Once cancer cells have invaded the bone, they produce growth factors that stimulate osteoblastic or osteolytic activity resulting in bone remodeling with release of other growth factors that lead to a vicious cycle of bone destruction and growth of local tumour.
Collapse
|
23
|
Doratiotto S, Krause P, Serra MP, Marongiu F, Sini M, Koenig S, Laconi E. The growth pattern of transplanted normal and nodular hepatocytes. Histochem Cell Biol 2011; 135:581-91. [PMID: 21528371 PMCID: PMC3106155 DOI: 10.1007/s00418-011-0813-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2011] [Indexed: 01/16/2023]
Abstract
Overt neoplasia is often the end result of a long biological process beginning with the appearance of focal lesions of altered tissue morphology. While the putative clonal nature of focal lesions has often been emphasized, increasing attention is being devoted to the possible role of an altered growth pattern in the evolution of carcinogenesis. Here we compare the growth patterns of normal and nodular hepatocytes in a transplantation system that allows their selective clonal proliferation in vivo. Rats were pre-treated with retrorsine, which blocks the growth of resident hepatocytes, and were then transplanted with hepatocytes isolated from either normal liver or hepatocyte nodules. Both cell types were able to proliferate extensively in the recipient liver, as expected. However, their growth pattern was remarkably different. Clusters of normal hepatocytes integrated in the host liver, displaying a normal histology; however, transplanted nodular hepatocytes formed new hepatocyte nodules, with altered morphology and sharp demarcation from surrounding host liver. Both the expression and distribution of proteins involved in cell polarity, cell communication, and cell adhesion, including connexin 32, E-cadherin, and matrix metalloproteinase-2, were altered in clusters of nodular hepatocytes. Furthermore, we were able to show that down-regulation of connexin 32 and E-cadherin in nodular hepatocyte clusters was independent of growth rate. These results support the concept that a dominant pathway towards neoplastic disease in several organs involves defect(s) in tissue pattern formation.
Collapse
Affiliation(s)
- Silvia Doratiotto
- Department of Biomedical Sciences and Biotechnology, Section of Experimental Pathology, University of Cagliari, Via Porcell, 4, 09125 Cagliari, Italy
| | - Petra Krause
- Department of General Surgery, University Medical Centre Goettingen, Göttingen, Germany
| | - Maria Paola Serra
- Department of Biomedical Sciences and Biotechnology, Section of Experimental Pathology, University of Cagliari, Via Porcell, 4, 09125 Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences and Biotechnology, Section of Experimental Pathology, University of Cagliari, Via Porcell, 4, 09125 Cagliari, Italy
| | - Marcella Sini
- Department of Biomedical Sciences and Biotechnology, Section of Experimental Pathology, University of Cagliari, Via Porcell, 4, 09125 Cagliari, Italy
| | - Sarah Koenig
- Department of General Surgery, University Medical Centre Goettingen, Göttingen, Germany
| | - Ezio Laconi
- Department of Biomedical Sciences and Biotechnology, Section of Experimental Pathology, University of Cagliari, Via Porcell, 4, 09125 Cagliari, Italy
| |
Collapse
|
24
|
Khokha R, Werb Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004333. [PMID: 21106646 DOI: 10.1101/cshperspect.a004333] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adult mammary structure provides for the rapid growth, development, and immunological protection of the live-born young of mammals through its production of milk. The dynamic remodeling of the branched epithelial structure of the mammary gland in response to physiological stimuli that allow its programmed branching morphogenesis at puberty, cyclical turnover during the reproductive cycle, differentiation into a secretory organ at parturition, postlactational involution, and ultimately, regression with age is critical for these processes. Extracellular metalloproteinases are essential for the remodeling programs that operate in the tissue microenvironment at the interface of the epithelium and the stroma, coupling form with function. Deregulated proteolytic activity drives the transition of a physiological mammary microenvironment into a tumor microenvironment, facilitating malignant transformation.
Collapse
Affiliation(s)
- Rama Khokha
- Ontario Cancer Institute/University Health Network, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
25
|
|
26
|
Ayşegül B, Veysi GH, Muzaffer M, Irfan D, Azra A, Hulyam K. Is a single nucleotide polymorphism a risk factor for lung cancer in the matrix metalloproteinase-2 promoter? Mol Biol Rep 2010; 38:1469-74. [PMID: 20845079 DOI: 10.1007/s11033-010-0253-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 09/02/2010] [Indexed: 11/28/2022]
Abstract
We aimed to investigate the association of polymorphism frequencies of MMP-2 C1306T and MMP-2 plasma enzyme activity in lung cancer patients. In this study 300 genomic DNA (200 lung cancer patients + 100 no lung cancer) were analyzed. Polymorphisms were determined by using polymerase chain reaction-restriction fragment length polymorphism (RFLP) and electrophoresis. Plasma MMP-2 enzyme activity levels were measured by using ELISA. Sex, asbestos expose and smoking might be risk factors for lung cancer. The frequencies of C1306T genotypes in controls CC 65%, CT 32%, TT 3% and in patients CC 61%, CT 37%, TT2 % were found. It was determined that CC genotype frequency increase significantly in patients and controls. Plasma MMP-2 enzyme activity levels were increased in lung cancer patients according to controls. Finally, we claimed that determining of MMP-2 enzyme level can be used as a marker in lung cancer.
Collapse
Affiliation(s)
- Bayramoglu Ayşegül
- Faculty of Medicine, Department of Medical Biology, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey.
| | | | | | | | | | | |
Collapse
|
27
|
Roghi C, Jones L, Gratian M, English WR, Murphy G. Golgi reassembly stacking protein 55 interacts with membrane-type (MT) 1-matrix metalloprotease (MMP) and furin and plays a role in the activation of the MT1-MMP zymogen. FEBS J 2010; 277:3158-75. [PMID: 20608975 DOI: 10.1111/j.1742-4658.2010.07723.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a proteinase involved in the remodelling of extracellular matrix and the cleavage of a number of substrates. MT1-MMP is synthesized as a zymogen that requires intracellular post-translational cleavage to gain biological activity. Furin, a member of the pro-protein convertase family, has been implicated in the proteolytic removal of the MT1-MMP prodomain sequence. In the present study, we demonstrate a role for the peripheral Golgi matrix protein GRASP55 in the furin-dependent activation of MT1-MMP. MT1-MMP and furin were found to co-localize with Golgi reassembly stacking protein 55 (GRASP55). Further analysis revealed that GRASP55 associated with the cytoplasmic domain of both proteases and that the LLY(573) motif in the MT1-MMP intracellular domain was crucial for the interaction with GRASP55. Overexpression of GRASP55 was found to enhance the formation of a complex between MT1-MMP and furin. Finally, we report that disruption of the interaction between GRASP55 and furin led to a reduction in pro-MT1-MMP activation. Taken together, these data suggest that GRASP55 may function as an adaptor protein coupling MT1-MMP with furin, thus leading to the activation of the zymogen.
Collapse
Affiliation(s)
- Christian Roghi
- Cancer Research UK Cambridge Research Institute, The Li Ka Shing Centre, UK.
| | | | | | | | | |
Collapse
|
28
|
Shen Q, Lee ES, Pitts RL, Wu MH, Yuan SY. Tissue inhibitor of metalloproteinase-2 regulates matrix metalloproteinase-2-mediated endothelial barrier dysfunction and breast cancer cell transmigration through lung microvascular endothelial cells. Mol Cancer Res 2010; 8:939-51. [PMID: 20571065 PMCID: PMC5584073 DOI: 10.1158/1541-7786.mcr-09-0523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Matrix metalloproteinases (MMP) have been implicated in multiple stages of cancer metastasis. Tissue inhibitor of metalloproteinase-2 (TIMP-2) plays an important role in regulating MMP-2 activity. By forming a ternary complex with pro-MMP-2 and its activator MMP-14 on the cell surface, TIMP-2 can either initiate or restrain the cleavage and subsequent activation of MMP-2. Our recent work has shown that breast cancer cell adhesion to vascular endothelial cells activates endothelial MMP-2, promoting tumor cell transendothelial migration (TEM(E)). However, the mechanism of MMP-2 regulation during TEM(E) remains unclear. In the current study, we present evidence that MMP-14 is expressed in both invasive breast cancer cells (MDA-MB-231 and MDA-MB-436) and lung microvascular endothelial cells (HBMVEC-L), whereas TIMP-2 is exclusively expressed and released from the cancer cells. The tumor cell-derived TIMP-2 was further identified as a major determinant of endothelial MMP-2 activity during tumor cell transmigration in the presence of MMP-14. This response was associated with endothelial barrier dysfunction because coculture of MDA-MB-231 or MDA-MB-436 with HBMVEC-L caused a significant decrease in transendothelial electrical resistance concomitantly with endothelial cell-cell junction disruption and tumor cell transmigration. Knockdown of TIMP-2 or inhibition of TIMP-2/MMP-14 attenuated MMP-2-dependent transendothelial electrical resistance response and TEM(E). These findings suggest a novel interactive role of breast cancer cells and vascular endothelial cells in regulating the TIMP-2/MMP-14/MMP-2 pathway during tumor metastasis.
Collapse
Affiliation(s)
- Qiang Shen
- Division of Research, Department of Surgery, University of California at Davis School of Medicine, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|
29
|
Kim S, Oh JH, Lee Y, Lee J, Cho KH, Chung JH. Induction of tissue inhibitor of matrix metalloproteinase-2 by cholesterol depletion leads to the conversion of proMMP-2 into active MMP-2 in human dermal fibroblasts. Exp Mol Med 2010; 42:38-46. [PMID: 19887895 DOI: 10.3858/emm.2010.42.1.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-beta-cyclodextrin (MbetaCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (>or=200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Institute of Dermatological Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
30
|
Bayramoglu A, Gunes HV, Metintas M, Değirmenci I, Mutlu F, Alataş F. The association of MMP-9 enzyme activity, MMP-9 C1562T polymorphism, and MMP-2 and -9 and TIMP-1, -2, -3, and -4 gene expression in lung cancer. Genet Test Mol Biomarkers 2010; 13:671-8. [PMID: 19814619 DOI: 10.1089/gtmb.2009.0053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM To investigate the association of gene expression of MMP-2 and -9, and TIMP-1, -2, -3, and -4 and polymorphism frequencies of MMP-9 C1562T and plasma MMP-9 enzyme activity in lung cancer patients. METHODS In this study, DNA and RNA samples were extracted from peripheral blood of 300 subjects (200 lung cancer patients and 100 controls). MMP-9 C1562T polymorphism was determined using restriction fragment length polymorphism (RFLP) method, and expression of MMP-2 and -9, TIMP-1, -2, -3, and -4 was determined using reverse transcriptase polymerase chain reaction. Plasma MMP-9 enzyme activity levels were measured using enzyme-linked immunosorbent assay. RESULTS AND CONCLUSION The frequencies of C1562T genotypes were found to be CC 67%, CT 30%, and TT 3% in the control group and CC 75%, CT 24%, and TT 1% in the patient group. It was determined that CC genotype frequency increases significantly in patients according to control group. Plasma MMP-9 enzyme activity levels increased in patients with lung cancer compared to the control group. The cut-off value of MMP-9 enzyme activity was determined as 7.76 ng/mL by receiver operating characteristics curve analysis. The sensitivity, specificity, positive predictive value, and negative predictive value were 77%, 51%, 75.9%, and 52.6%, respectively. The expression of MMP-2 and TIMP-1 was found to be higher in lung cancer patients. Finally, we claim that determination of MMP-9 enzyme levels and expression of MMP-2 and -9 and TIMP-1 can be used as a marker in lung cancer.
Collapse
Affiliation(s)
- Aysegul Bayramoglu
- Department of Medical Biology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | | | | | | | | | | |
Collapse
|
31
|
Yin LL, Chung CM, Chen J, Fok KL, Ng CP, Jia RR, Ren X, Zhou J, Zhang T, Zhao XH, Lin M, Zhu H, Zhang XH, Tsang LL, Bi Y, Zhou Z, Mo F, Wong N, Chung YW, Sha J, Chan HC. A suppressor of multiple extracellular matrix-degrading proteases and cancer metastasis. J Cell Mol Med 2009; 13:4034-41. [PMID: 19017363 PMCID: PMC4516550 DOI: 10.1111/j.1582-4934.2008.00576.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cancer metastasis remains the most poorly understood process in cancer biology. It involves the degradation of extracellular matrix (ECM) proteins by a series of ‘tumour-associated’ proteases. Here we report the identification of a novel protease suppressor, NYD-SP8, which is located on human chromosome 19q13.2. NYD-SP8 encodes a 27 kD GPI-anchored cell surface protein, which shows structural homology to urokinase plasminogen activator receptor (uPAR). Co-immunoprecipitation experiments showed that NYD-SP8 binds to uPA/uPAR complexes and interfere with active uPA production. Overexpression of NYD-SP8 results in reducing activities of the three major classes of proteases known to be involved in ECM degradation, including uPA, matrix metalloproteinases (MMPs) and cathepsin B, leading to suppression of both in vitro and in vivo cancer cell invasion and metastasis. These data demonstrate an important role of NYD-SP8 in regulating ECM degradation, providing a novel mechanism that modulates urokinase signalling in the suppression of cancer progression.
Collapse
Affiliation(s)
- Lan Lan Yin
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Puxbaum V, Mach L. Proteinases and their inhibitors in liver cancer. World J Hepatol 2009; 1:28-34. [PMID: 21160962 PMCID: PMC2998952 DOI: 10.4254/wjh.v1.i1.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/05/2009] [Accepted: 09/12/2009] [Indexed: 02/06/2023] Open
Abstract
Proteinases are known to be involved in many cancer-related processes, particularly in the breakdown of extracellular matrix barriers in the course of tumor invasion and metastasis. In this review we summarize the current knowledge about the role of the most important matrix-degrading proteinases (cathepsins, matrix metalloproteinases, plasmin/plasminogen activators) and their respective inhibitors in liver cancer progression and metastasis.
Collapse
Affiliation(s)
- Verena Puxbaum
- Verena Puxbaum, Lukas Mach, Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | | |
Collapse
|
33
|
Kaulfuß S, von Hardenberg S, Schweyer S, Herr AM, Laccone F, Wolf S, Burfeind P. Leupaxin acts as a mediator in prostate carcinoma progression through deregulation of p120catenin expression. Oncogene 2009; 28:3971-82. [DOI: 10.1038/onc.2009.254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Cheng YC, Chen LM, Chang MH, Chen WK, Tsai FJ, Tsai CH, Lai TY, Kuo WW, Huang CY, Liu CJ. Lipopolysaccharide upregulates uPA, MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells. Mol Cell Biochem 2009; 325:15-23. [PMID: 19184369 DOI: 10.1007/s11010-008-0016-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/30/2008] [Indexed: 11/24/2022]
Abstract
Upregulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is associated with the development of myocardial infarction (MI), dilated cardiomyopathy, cardiac fibrosis, and heart failure (HF). Evidences suggest that lipopolysaccharide (LPS) participates in the inflammatory response in the cardiovascular system; however, it is unknown if LPS is sufficient to upregulate expressions and/or activity of uPA, tPA, MMP-2, and MMP-9 in myocardial cells. In this study, we treated H9c2 cardiomyoblasts with LPS to explore whether LPS upregulates uPA, tPA, MMP-2, and MMP-9, and further to identify the precise molecular and cellular mechanisms behind this upregulatory responses. Here, we show that LPS challenge increased the protein levels of uPA, MMP-2 and MMP-9, and induced the activity of MMP-2 and MMP-9 in H9c2 cardiomyoblasts. However, LPS showed no effects on the expression of tissue inhibitor of metalloproteinase-1, -2, -3, and -4 (TIMP-1, -2, -3, and -4). After administration of inhibitors including U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), CsA (calcineurin inhibitor), and QNZ (NFkappaB inhibitor), the LPS-upregulated expression and/or activity of uPA, MMP-2, and MMP-9 in H9c2 cardiomyoblasts are markedly inhibited only by ERK1/2 inhibitors, U0126. Collectively, these results suggest that LPS upregulates the expression and/or activity of uPA, MMP-2, and MMP-9 through ERK1/2 signaling pathway in H9c2 cardiomyoblasts. Our findings further provide a link between the LPS-induced cardiac dysfunction and the ERK1/2 signaling pathway that mediates the upregulation of uPA, MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Yi-Chang Cheng
- Emergency Department, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Collagen I but not Matrigel matrices provide an MMP-dependent barrier to ovarian cancer cell penetration. BMC Cancer 2008; 8:223. [PMID: 18681958 PMCID: PMC2519089 DOI: 10.1186/1471-2407-8-223] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 08/05/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The invasive potential of cancer cells is usually assessed in vitro using Matrigel as a surrogate basement membrane. Yet cancer cell interaction with collagen I matrices is critical, particularly for the peritoneal metastatic route undertaken by several cancer types including ovarian. Matrix metalloprotease (MMP) activity is important to enable cells to overcome the barrier constraints imposed by basement membranes and stromal matrices in vivo. Our objective was to compare matrices reconstituted from collagen I and Matrigel as representative barriers for ovarian cancer cell invasion. METHODS The requirement of MMP activity for ovarian cancer cell penetration of Matrigel and collagen matrices was assessed in 2D transwell and 3D spheroid culture systems. RESULTS The broad range MMP inhibitor GM6001 completely prevented cell perforation of polymerised collagen I-coated transwell membranes. In contrast, GM6001 decreased ES-2 cell penetration of Matrigel by only approximately 30% and had no effect on HEY cell Matrigel penetration. In 3D culture, ovarian cancer cells grown as spheroids also migrated into surrounding Matrigel matrices despite MMP blockade. In contrast, MMP activity was required for invasion into 3D matrices of collagen I reconstituted from acid-soluble rat-tail collagen I, but not from pepsin-extracted collagen I (Vitrogen/Purecol), which lacks telopeptide regions. CONCLUSION Matrigel does not form representative barriers to ovarian cancer cells in either 2D or 3D culture systems. Our findings support the use of collagen I rather than Matrigel as a matrix barrier for invasion studies to better approximate critical interactions and events associated with peritoneal metastasis.
Collapse
|
36
|
van Kilsdonk JWJ, Wilting RH, Bergers M, van Muijen GNP, Schalkwijk J, van Kempen LCLT, Swart GWM. Attenuation of melanoma invasion by a secreted variant of activated leukocyte cell adhesion molecule. Cancer Res 2008; 68:3671-9. [PMID: 18483249 DOI: 10.1158/0008-5472.can-07-5767] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a marker of various cancers and mesenchymal stem cells, is involved in melanoma metastasis. We have exploited a secreted NH(2)-terminal fragment, sALCAM, to test the hypothesis that ALCAM coordinates tissue growth and cell migration. Overexpression of sALCAM in metastatic melanoma cells disturbed clustering of endogenous ALCAM and inhibited activation of matrix metalloproteinase-2 (MMP-2). Exposure of HT1080 fibrosarcoma cells to sALCAM similarly inhibited MMP-2, suggesting a broader effect on ALCAM-positive tumor cells. In contrast to the previously reported, promotive effects of an NH(2)-terminally truncated, transmembrane variant (DeltaN-ALCAM), sALCAM impaired the migratory capacity of transfected cells in vitro, reduced basement membrane penetration in reconstituted human skin equivalents, and diminished metastatic capacity in nude mice. Remarkably, L1 neuronal cell adhesion molecule (L1CAM/CD171), another progression marker of several cancers including melanoma, was suppressed upon sALCAM overexpression but was up-regulated by DeltaN-ALCAM. The partially overlapping and opposite effects induced by alternative strategies targeting ALCAM functions collectively attribute an integrative role to ALCAM in orchestrating cell adhesion, growth, invasion, and proteolysis in the tumor tissue microenvironment and disclose a therapeutic potential for sALCAM.
Collapse
Affiliation(s)
- Jeroen W J van Kilsdonk
- Department of Biomolecular Chemistry 271, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Faculty of Science, Radboud University Nijmegen
| | | | | | | | | | | | | |
Collapse
|
37
|
Marongiu F, Doratiotto S, Montisci S, Pani P, Laconi E. Liver repopulation and carcinogenesis: two sides of the same coin? THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:857-64. [PMID: 18321999 DOI: 10.2353/ajpath.2008.070910] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver repopulation by transplanted normal hepatocytes has been described in a number of experimental settings. Extensive repopulation can also occur from the selective proliferation of endogenous normal hepatocytes, both in experimental animals and in the human liver. This review highlights the intriguing association between clinical and experimental conditions related to liver repopulation and an increased risk for development of hepatocellular carcinoma. It is suggested that any microenvironment that is able to sustain the clonal growth of normal transplanted (or endogenous) hepatocytes is also geared to select for the emergence of rare resistant cells with an altered phenotype. Whereas the first pathway leads to liver repopulation with normal histology, the latter results in the growth of focal proliferative lesions and carries an increased risk of neoplastic disease. The implications of this association are discussed, both in terms of pathogenetic significance and possible therapeutic exploitation.
Collapse
Affiliation(s)
- Fabio Marongiu
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Patologia Sperimentale, Università di Cagliari, Cagliari, Italy
| | | | | | | | | |
Collapse
|
38
|
Barbolina MV, Adley BP, Shea LD, Stack MS. Wilms tumor gene protein 1 is associated with ovarian cancer metastasis and modulates cell invasion. Cancer 2008; 112:1632-41. [DOI: 10.1002/cncr.23341] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Hayashi R, Jin X, Cook GR. Synthesis and evaluation of novel heterocyclic MMP inhibitors. Bioorg Med Chem Lett 2007; 17:6864-70. [PMID: 18029173 PMCID: PMC2574968 DOI: 10.1016/j.bmcl.2007.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 11/23/2022]
Abstract
A variety of novel heterocyclic compounds were synthesized and evaluated for MMP inhibition. Broad spectrum inhibition of MMPs 1, 2, 9, and 12 was found with pyridinone-based compounds while N-heterocyclic triazoles and tetrazoles were largely ineffective. A highly selective tetrazole inhibitor for MMP-2 was discovered.
Collapse
Affiliation(s)
- Ryuji Hayashi
- Center for Protease Research, Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA
| | - Xiaomin Jin
- Center for Protease Research, Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA
| | - Gregory R. Cook
- Center for Protease Research, Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
40
|
Kargozaran H, Yuan SY, Breslin JW, Watson KD, Gaudreault N, Breen A, Wu MH. A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across the endothelial-basement membrane barrier. Clin Exp Metastasis 2007; 24:495-502. [PMID: 17653824 DOI: 10.1007/s10585-007-9086-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 07/03/2007] [Indexed: 11/25/2022]
Abstract
Invasive cancer cells utilize matrix metalloproteinases (MMPs) to degrade the extracellular matrix and basement membrane in the process of metastasis. Among multiple members of the MMP family, the gelatinase MMP-2 has been implicated in the development and dissemination of malignancies. However, the cellular source of MMP-2 and its effect on metastatic extravasation have not been well characterized. The objective of this study was to test the hypothesis that active MMP-2 derived from endothelial cells facilitated the transmigration of breast cancer cells across the microvascular barrier. Gelatin zymography was used to assess latent and active MMP-2 production in conditioned media from MDA-MB-231 human breast cancer cells, human lung microvascular endothelial cells (HLMVEC) and co-culture of these two cells. Transmigrated cancer cells were measured during MMP-2 knockdown with siRNA and pharmacological inhibition of MMP activity with OA-HY. The results showed consistent MMP-2 secretion by the HLMVECs, whereas a low level production was seen in the MDA-MB-231 cells. Inhibition of MMP-2 expression or activity in HLMVECs significantly attenuated the transmigration of MDA-MB-231 cells across an endothelial monolayer barrier grown on a reconstituted basement membrane. The data provide evidence supporting a potential role for the endothelial production of MMPs in promoting cancer cell extravasation. We suggest that the interaction between malignant cells and peritumoral benign tissues including the vascular endothelium may serve as an important mechanism in the regulation of tumor invasion and metastasis.
Collapse
Affiliation(s)
- Hamed Kargozaran
- Department of Surgery, Division of Research, University of California Davis School of Medicine, 4625 2nd Avenue, Room 3006, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Barbolina MV, Stack MS. Membrane type 1-matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin Cell Dev Biol 2007; 19:24-33. [PMID: 17702616 PMCID: PMC2685078 DOI: 10.1016/j.semcdb.2007.06.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 06/29/2007] [Indexed: 01/12/2023]
Abstract
Enzymes in the matrix metalloproteinase (MMP) family have been linked to key events in developmental biology for almost 50 years. Biochemical, cellular and in vivo analyses have established that pericellular proteolysis contributes to numerous aspects of ontogeny including ovulation, fertilization, implantation, cellular migration, tissue remodeling and repair. Surface anchoring of proteinase activity provides spatial restrictions on substrate targeting. This review will utilize membrane type 1 MMP (MT1-MMP) as an example to highlight substrate diversity in pericellular proteolysis catalyzed by a membrane anchored MMP.
Collapse
Affiliation(s)
- Maria V. Barbolina
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - M. Sharon Stack
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia MO 65212
- To whom the correspondence should be addressed: M. Sharon Stack, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, M214E, Columbia, MO 65212, Ph. 573-884-7301,
| |
Collapse
|
42
|
Klemke M, Rafael MT, Wabnitz GH, Weschenfelder T, Konstandin MH, Garbi N, Autschbach F, Hartschuh W, Samstag Y. Phosphorylation of ectopically expressed L-plastin enhances invasiveness of human melanoma cells. Int J Cancer 2007; 120:2590-9. [PMID: 17290393 DOI: 10.1002/ijc.22589] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The leukocyte specific actin-binding protein L-plastin is aberrantly expressed in several nonhematopoetic malignant tumors. However, little is known about the functional consequences of L-plastin expression. Here, we investigated the function of L-plastin in human malignant melanoma cells. Knock-down of endogenous L-plastin by siRNA treatment reduced migration of the melanoma cell line IF6. However, in melanoma patients, no correlation existed between L-plastin expression and tumor stages. This implied that additional factors such as phosphorylation of L-plastin may influence its function in tumor cells. To investigate this further, EGFP-tagged wild-type L-plastin (wt-LPL-EGFP) and a mutated, nonphosphorylatable L-plastin protein (5A7A-LPL-EGFP), were expressed in the L-plastin negative melanoma cell line MV3. Biochemical analysis revealed that wt-LPL-EGFP is phosphorylated in MV3 cells while 5A7A-LPL-EGFP is not. Although both wt-LPL-EGFP and 5A7A-LPL-EGFP were targeted to, and promote the formation of, vinculin-containing adhesion sites, static adhesion to either Matrigel or isolated extracellular matrix molecules was neither influenced by expression of wt-LPL-EGFP nor by expression of 5A7A-LPL-EGFP when compared with EGFP expressing control cells. In contrast, haptotactic, but not chemotactic, migration of melanoma cells towards either Matrigel or isolated extracellular matrix molecules was similarly enhanced, if either 5A7A-LPL-EGFP or wt-LPL-EGFP were expressed in MV3 cells. Interestingly, only cells expressing the phosphorylatable wt-LPL-EGFP protein showed enhanced invasion into Matrigel. In line with these findings the in vivo metastatic capacity of mouse B16 melanoma cells correlates with expression and phosphorylation of L-plastin. These data show that an increase in melanoma cell invasiveness requires not only expression but also phosphorylation of L-plastin.
Collapse
Affiliation(s)
- Martin Klemke
- Department of Immunology and Serology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Do TV, Symowicz JC, Berman DM, Liotta LA, Petricoin EF, Stack MS, Fishman DA. Lysophosphatidic acid down-regulates stress fibers and up-regulates pro-matrix metalloproteinase-2 activation in ovarian cancer cells. Mol Cancer Res 2007; 5:121-31. [PMID: 17314270 DOI: 10.1158/1541-7786.mcr-06-0319] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) is asymptomatic at early stages and is often diagnosed late when tumor cells are highly metastatic. Lysophosphatidic acid (LPA) has been implicated in ovarian oncogenesis as levels of this lipid are elevated in patient ascites and plasma. Because the underlying mechanism governing LPA regulation of matrix metalloproteinase-2 (MMP-2) activation remains undefined, we investigated the relationship between LPA-induced changes in actin microfilament organization and MMP-2 enzymatic activity. We report that when cells were cultured at a high density, LPA mediated stress fiber and focal adhesion disassembly and significantly repressed RhoA activity in EOC cells. Inhibition of Rho-kinase/ROCK enhanced both LPA-stimulated loss of stress fibers and pro-MMP-2 activation. In contrast, expression of the constitutively active RhoA(G14V) mutant diminished LPA-induced pro-MMP-2 activation. LPA had no effects on membrane type 1-MMP or tissue inhibitor of metalloproteinase-2 expression, but up-regulated MMP-2 levels, contributing to the induction of MMP-2 activation. Interestingly, when cells were cultured at a low density, stress fibers were present after LPA stimulation, and ROCK activity was required for EOC cell migration. Collectively, these results were consistent with a model in which LPA stimulates the metastatic dissemination of EOC cells by initiating loss of adhesion and metalloproteinase activation.
Collapse
Affiliation(s)
- Thuy-Vy Do
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
da Silva Cardeal LB, Brohem CA, Corrêa TCS, Winnischofer SMB, Nakano F, Boccardo E, Villa LL, Sogayar MC, Maria-Engler SS. Higher expression and activity of metalloproteinases in human cervical carcinoma cell lines is associated with HPV presence. Biochem Cell Biol 2007; 84:713-9. [PMID: 17167534 DOI: 10.1139/o06-084] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MT1-MMP are required for basement membrane degradation in cervical carcinoma. We evaluated the expression and activity of MMPs and their inhibitors RECK and TIMP-2 in 3 human invasive cervical carcinoma cell lines. Two HPV16-positive cell lines (SiHa and CaSki) and an HPV-negative cell line (C33A) were cultured either onto a type-I collagen gel, Matrigel, or plastic, to recreate their three-dimensional growth environment and evaluate the expression of these genes using quantitative real-time PCR. We also analyzed the gelatinolytic activity of MMP-2 and MMP-9 by zymography. We found that HPV (human papillomavirus)-positive cell lines express higher levels of MMP-2, MT1-MMP, and TIMP-2 than the HPV negative cell line. In addition, MMP-9 was expressed at very low levels in both HPV-negative and HPV-positive cell lines. We also observed that the expression of the RECK gene is higher in CaSki cells, being associated with higher pro-MMP-2 activity. Furthermore, Matrigel substrate influences MMP-2 expression in both SiHa and CaSki cells. On the other hand, we found that type-I collagen gel, but not Matrigel, can enhance pro-MMP-2 activity in all cell lines. Our results suggest that the presence of HPV is related to increased expression of MMP-2, MT1-MMP, and TIMP-2, and that pro-MMP-2 activity is higher in HPV-positive than in HPV-negative cells.
Collapse
Affiliation(s)
- Laura Beatriz da Silva Cardeal
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, Bloco 17, 05508-000 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
English JL, Kassiri Z, Koskivirta I, Atkinson SJ, Di Grappa M, Soloway PD, Nagase H, Vuorio E, Murphy G, Khokha R. Individual Timp deficiencies differentially impact pro-MMP-2 activation. J Biol Chem 2006; 281:10337-46. [PMID: 16469749 DOI: 10.1074/jbc.m512009200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) have emerged as key enzymes in tumor cell biology. The importance of MT1-MMP, in particular, is highlighted by its ability to activate pro-MMP-2 at the cell surface through the formation of a trimolecular complex comprised of MT1-MMP/tissue inhibitor of metalloproteinase-2 (TIMP-2)/pro-MMP-2. TIMPs 1-4 are physiological MMP inhibitors with distinct roles in the regulation of pro-MMP-2 processing. Here, we have shown that individual Timp deficiencies differentially affect MMP-2 processing using primary mouse embryonic fibroblasts (MEFs). Timp-3 deficiency accelerated pro-MMP-2 activation in response to both cytochalasin D and concanavalin A. Exogenous TIMP-2 and N-TIMP-3 inhibited this activation, whereas TIMP-3 containing matrix from wild-type MEFs did not rescue the enhanced MMP-2 activation in Timp-3(-/-) cells. Increased processing of MMP-2 did not arise from increased expression of MT1-MMP, MT2-MMP, or MT3-MMP or altered expression of TIMP-2 and MMP-2. To test whether increased MMP-2 processing in Timp-3(-/-) MEFs is dependent on TIMP-2, double deficient Timp-2(-/-)/-3(-/-) MEFs were used. In these double deficient cells, the cleavage of pro-MMP-2 to its intermediate form was substantially increased, but the subsequent cleavage of intermediate-MMP-2 to fully active form, although absent in Timp-2(-/-) MEFs, was detectable with combined Timp-2(-/-)/-3(-/-) deficiency. TIMP-4 associates with MMP-2 and MT1-MMP in a manner similar to TIMP-3, but its deletion had no effect on pro-MMP-2 processing. Thus, TIMP-3 provides an inherent regulation over the kinetics of pro-MMP-2 processing, serving at a level distinct from that of TIMP-2 and TIMP-4.
Collapse
Affiliation(s)
- Jane L English
- Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lunter PC, van Kilsdonk JWJ, van Beek H, Cornelissen IMHA, Bergers M, Willems PHGM, van Muijen GNP, Swart GWM. Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166/MEMD), a Novel Actor in Invasive Growth, Controls Matrix Metalloproteinase Activity. Cancer Res 2005; 65:8801-8. [PMID: 16204050 DOI: 10.1158/0008-5472.can-05-0378] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD) could function as a cell surface sensor for cell density, controlling the transition between local cell proliferation and tissue invasion in melanoma progression. We have tested the hypothesis that progressive cell clustering controls the proteolytic cascade for activation of gelatinase A/matrix metalloproteinase-2 (MMP-2), which involves formation of an intermediate ternary complex of membrane type 1 MMP (MT1-MMP/MMP-14), tissue inhibitor of metalloproteinase-2 (TIMP-2), and pro-MMP-2 at the cell surface. Surprisingly, truncation of ALCAM severely impaired MMP-2 activation in a nude mouse xenograft model, in which we previously observed diminished primary tumor growth and enhanced melanoma metastasis. Comparative studies of two-dimensional monolayer and three-dimensional collagen-gel cultures revealed that extensive cell-to-cell contacts, wild-type ALCAM, and cell-to-matrix interactions were all indispensable for efficient conversion of pro-MMP-2 to its active form in metastatic melanoma cells. Truncated, dominant-negative ALCAM diminished MMP-2 activation via reduced transcript levels and decreased processing of MT1-MMP. Failure of the proteolytic cascade after selective ALCAM depletion by RNA interference was mainly due to incomplete MT1-MMP processing, which was otherwise promoted by extensive cell-to-cell contacts. These data attribute a novel signaling role to ALCAM in regulation of proteolysis and support its previously postulated sensor function in invasive growth.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Cell Adhesion/physiology
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/physiology
- Cell Communication/physiology
- Cell Count
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Collagen
- Enzyme Activation
- Fetal Proteins/metabolism
- Fetal Proteins/physiology
- Humans
- Male
- Matrix Metalloproteinase 14
- Matrix Metalloproteinase 2/biosynthesis
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinases, Membrane-Associated
- Melanoma/enzymology
- Melanoma/pathology
- Metalloendopeptidases/biosynthesis
- Metalloendopeptidases/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Tissue Inhibitor of Metalloproteinase-2/biosynthesis
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Pim C Lunter
- Department of Biochemistry 161, Nijmegen Center of Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cai G, Chen X, Fu B, Lu Y. Activation of gelatinases by fibrin is PA/plasmin system-dependent in human glomerular endothelial cells. Mol Cell Biochem 2005; 277:171-9. [PMID: 16132729 DOI: 10.1007/s11010-005-5995-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
Evidence suggests that fibrin deposit is related to severity of glomerulonephropathy. Fibrin is considered to play an active role beyond a haemostatic plug or temporary matrix in response to injury. We have reported that fibrin induced specific morphological changes and up-regulated intercellular adhesion molecule-1 expression of glomerular endothelial cells (GECs). Changes of gelatinases activity have been implicated playing a prominent role in glomerular diseases involving matrix turnover. This study examined whether overlying fibrin influences the expression of gelatinase A and B in cultured human GECs and mechanism underlying the activation. No gelatinase activity was detectable in supernatant of cultured GECs; however, physiological concentration of fibrin (0.5-2.0 mg/ml) induced a dramatic expression of activated MMP-2 and MMP-9 at both mRNA and protein level in a dose and time dependent manner. Increased mRNA level of membrane-type 1 matrix metalloproteinases (MT1-MMPs) was also found. Interestingly, we observed that fibrin also induced the expression of tissue type plasminogen activator (tPA), urokinase type plasminogen activator (uPA) and plasminogen activator inhibitor-1 by casein zymographic and reverse zymographic analysis. Fibrin plate assay revealed the net activity was PA predominant. Serine protease inhibitor aprotinin blocked the conversion of pro-gelatinase A and B to their active forms. The results demonstrate that overlying fibrin increased the secretion of gelatinase A and B from GECs. PA/plasmin proteolytic pathways contributed to the activation of gelatinases.
Collapse
Affiliation(s)
- Guangyan Cai
- Department of Nephrology, Kidney Center and Key Laboratory of PLA, General Hospital of PLA, Beijing, P.R. China
| | | | | | | |
Collapse
|
48
|
Zhai Y, Hotary KB, Nan B, Bosch FX, Muñoz N, Weiss SJ, Cho KR. Expression of Membrane Type 1 Matrix Metalloproteinase Is Associated with Cervical Carcinoma Progression and Invasion. Cancer Res 2005; 65:6543-50. [PMID: 16061633 DOI: 10.1158/0008-5472.can-05-0231] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) is frequently expressed by cancer cells and is believed to play an important role in cancer cell invasion and metastasis. However, little is known about the role of MT1-MMP in mediating invasiveness of cervical cancer cells. In this study, we examined MT1-MMP expression in 58 primary human cervical tissue specimens, including normal cervix, low-grade squamous intraepithelial lesions (LSIL), high-grade SILs (HSIL), and invasive carcinomas. We also evaluated MT1-MMP, MMP-2, and tissue inhibitor of metalloproteinase-2 expression in several cervical cancer-derived cell lines, human papillomavirus (HPV)-immortalized keratinocytes, and keratinocytes derived from a LSIL. Using in situ hybridization techniques to study the cervical tissue specimens, we found that MT1-MMP expression increases with cervical tumor progression (Spearman correlation coefficient = 0.66; P < 0.0001, exact test). Specifically, MT1-MMP expression is very low or absent in normal cervix and LSILs, is readily detectable in HSILs, and is very strongly expressed in nearly all invasive carcinomas. Most but not all cervical cancer-derived cell lines also expressed significant levels of MT1-MMP and MMP-2. Constitutive expression of exogenous MT1-MMP in cervical carcinoma-derived cells and HPV-immortalized keratinocytes with low endogenous levels of MT1-MMP induced invasiveness in collagen I, but this effect was not observed in LSIL-derived keratinocytes. Our results show that MT1-MMP is a key enzyme mediating cervical cancer progression. However, MT1-MMP alone is not always sufficient for inducing keratinocyte invasiveness at least in the collagen I invasion assay used in this study. Further studies of gene expression in preinvasive and invasive cervical cancers should assist with identification of additional critical factors mediating cervical cancer progression.
Collapse
Affiliation(s)
- Yali Zhai
- Department of Pathology, University of Michigan Medical School and Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
McHugh B, Krause SA, Yu B, Deans AM, Heasman S, McLaughlin P, Heck MMS. Invadolysin: a novel, conserved metalloprotease links mitotic structural rearrangements with cell migration. ACTA ACUST UNITED AC 2005; 167:673-86. [PMID: 15557119 PMCID: PMC2172566 DOI: 10.1083/jcb.200405155] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell cycle is widely known to be regulated by networks of phosphorylation and ubiquitin-directed proteolysis. Here, we describe IX-14/invadolysin, a novel metalloprotease present only in metazoa, whose activity appears to be essential for mitotic progression. Mitotic neuroblasts of Drosophila melanogaster IX-14 mutant larvae exhibit increased levels of nuclear envelope proteins, monopolar and asymmetric spindles, and chromosomes that appear hypercondensed in length with a surrounding halo of loosely condensed chromatin. Zymography reveals that a protease activity, present in wild-type larval brains, is missing from homozygous tissue, and we show that IX-14/invadolysin cleaves lamin in vitro. The IX-14/invadolysin protein is predominantly found in cytoplasmic structures resembling invadopodia in fly and human cells, but is dramatically relocalized to the leading edge of migrating cells. Strikingly, we find that the directed migration of germ cells is affected in Drosophila IX-14 mutant embryos. Thus, invadolysin identifies a new family of conserved metalloproteases whose activity appears to be essential for the coordination of mitotic progression, but which also plays an unexpected role in cell migration.
Collapse
Affiliation(s)
- Brian McHugh
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|