1
|
Fidecicchi T, Giannini A, Chedraui P, Luisi S, Battipaglia C, Genazzani AR, Genazzani AD, Simoncini T. Neuroendocrine mechanisms of mood disorders during menopause transition: A narrative review and future perspectives. Maturitas 2024; 188:108087. [PMID: 39111089 DOI: 10.1016/j.maturitas.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
The menopause transition is an important period in a woman's life, during which she is at an increased risk of mood disorders. Estrogen and progesterone fluctuations during the menopausal transition and very low levels of estradiol after menopause have a profound effect on the central nervous system (CNS), causing an imbalance between excitatory and inhibitory inputs. Changes in neurotransmission and neuronal interactions that occur with estradiol withdrawal disrupt the normal neurological balance and may be associated with menopausal symptoms. Hot flushes, depressed mood and anxiety are all symptoms of menopause that are a consequence of the complex changes that occur in the CNS, involving many signaling pathways and neurotransmitters (i.e. γ-aminobutyric acid, serotonin, dopamine), neurosteroids (i.e. allopregnanolone), and neuropeptides (i.e. kisspeptin, neurokinin B). All these pathways are closely linked, and the complex interactions that exist are not yet fully understood. This review summarizes the neuroendocrine changes in the CNS during the menopausal transition, with particular emphasis on those that underlie mood changes.
Collapse
Affiliation(s)
- Tiziana Fidecicchi
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy
| | - Andrea Giannini
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy.
| | - Peter Chedraui
- Escuela de Posgrado en Salud, Universidad Espíritu Santo, Av. Samborondón 5, Samborondón 092301, Ecuador
| | - Stefano Luisi
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy.
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41125 Modena, MO, Italy.
| | - Andrea R Genazzani
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy
| | - Alessandro D Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Largo del Pozzo, 71, 41125 Modena, MO, Italy
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 67, 56126 Pisa, PI, Italy.
| |
Collapse
|
2
|
Stute NL, Stickford JL, Province VM, Augenreich MA, Ratchford SM, Stickford ASL. COVID-19 is getting on our nerves: sympathetic neural activity and haemodynamics in young adults recovering from SARS-CoV-2. J Physiol 2021; 599:4269-4285. [PMID: 34174086 PMCID: PMC8447023 DOI: 10.1113/jp281888#support-information-section] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2023] Open
Abstract
KEY POINTS The impact of SARS-CoV-2 infection on autonomic and cardiovascular function in otherwise healthy individuals is unknown. For the first time it is shown that young adults recovering from SARS-CoV-2 have elevated resting sympathetic activity, but similar heart rate and blood pressure, compared with control subjects. Survivors of SARS-CoV-2 also exhibit similar sympathetic nerve activity and haemodynamics, but decreased pain perception, during a cold pressor test compared with healthy controls. Further, these individuals display higher sympathetic nerve activity throughout an orthostatic challenge, as well as an exaggerated heart rate response to orthostasis. If similar autonomic dysregulation, like that found here in young individuals, is present in older adults following SARS-CoV-2 infection, there may be substantial adverse implications for cardiovascular health. ABSTRACT The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can elicit systemic adverse physiological effects. However, the impact of SARS-CoV-2 on autonomic and cardiovascular function in otherwise healthy individuals remains unclear. Young adults who tested positive for SARS-CoV-2 (COV+; n = 16, 8 F) visited the laboratory 35 ± 16 days following diagnosis. Muscle sympathetic nerve activity (MSNA), systolic (SBP) and diastolic (DBP) blood pressure, and heart rate (HR) were measured in participants at rest and during a 2 min cold pressor test (CPT) and 5 min each at 30° and 60° head-up tilt (HUT). Data were compared with age-matched healthy controls (CON; n = 14, 9 F). COV+ participants (18.2 ± 6.6 bursts min-1 ) had higher resting MSNA burst frequency compared with CON (12.7 ± 3.4 bursts min-1 ) (P = 0.020), as well as higher MSNA burst incidence and total activity. Resting HR, SBP and DBP were not different. During CPT, there were no differences in MSNA, HR, SBP or DBP between groups. COV+ participants reported less pain during the CPT compared with CON (5.7 ± 1.8 vs. 7.2 ± 1.9 a.u., P = 0.036). MSNA was higher in COV+ compared with CON during HUT. There was a group-by-position interaction in MSNA burst incidence, as well as HR, in response to HUT. These results indicate resting sympathetic activity, but not HR or BP, may be elevated following SARS-CoV-2 infection. Further, cardiovascular and perceptual responses to physiological stress may be altered, including both exaggerated (orthostasis) and suppressed (pain perception) responses, compared with healthy young adults.
Collapse
Affiliation(s)
- Nina L. Stute
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNCUSA
| | | | - Valesha M. Province
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNCUSA
| | - Marc A. Augenreich
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNCUSA
| | | | | |
Collapse
|
3
|
Stute NL, Stickford JL, Province VM, Augenreich MA, Ratchford SM, Stickford ASL. COVID-19 is getting on our nerves: sympathetic neural activity and haemodynamics in young adults recovering from SARS-CoV-2. J Physiol 2021; 599:4269-4285. [PMID: 34174086 PMCID: PMC8447023 DOI: 10.1113/jp281888] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Key points The impact of SARS‐CoV‐2 infection on autonomic and cardiovascular function in otherwise healthy individuals is unknown. For the first time it is shown that young adults recovering from SARS‐CoV‐2 have elevated resting sympathetic activity, but similar heart rate and blood pressure, compared with control subjects. Survivors of SARS‐CoV‐2 also exhibit similar sympathetic nerve activity and haemodynamics, but decreased pain perception, during a cold pressor test compared with healthy controls. Further, these individuals display higher sympathetic nerve activity throughout an orthostatic challenge, as well as an exaggerated heart rate response to orthostasis. If similar autonomic dysregulation, like that found here in young individuals, is present in older adults following SARS‐CoV‐2 infection, there may be substantial adverse implications for cardiovascular health.
Abstract The novel severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) can elicit systemic adverse physiological effects. However, the impact of SARS‐CoV‐2 on autonomic and cardiovascular function in otherwise healthy individuals remains unclear. Young adults who tested positive for SARS‐CoV‐2 (COV+; n = 16, 8 F) visited the laboratory 35 ± 16 days following diagnosis. Muscle sympathetic nerve activity (MSNA), systolic (SBP) and diastolic (DBP) blood pressure, and heart rate (HR) were measured in participants at rest and during a 2 min cold pressor test (CPT) and 5 min each at 30° and 60° head‐up tilt (HUT). Data were compared with age‐matched healthy controls (CON; n = 14, 9 F). COV+ participants (18.2 ± 6.6 bursts min−1) had higher resting MSNA burst frequency compared with CON (12.7 ± 3.4 bursts min−1) (P = 0.020), as well as higher MSNA burst incidence and total activity. Resting HR, SBP and DBP were not different. During CPT, there were no differences in MSNA, HR, SBP or DBP between groups. COV+ participants reported less pain during the CPT compared with CON (5.7 ± 1.8 vs. 7.2 ± 1.9 a.u., P = 0.036). MSNA was higher in COV+ compared with CON during HUT. There was a group‐by‐position interaction in MSNA burst incidence, as well as HR, in response to HUT. These results indicate resting sympathetic activity, but not HR or BP, may be elevated following SARS‐CoV‐2 infection. Further, cardiovascular and perceptual responses to physiological stress may be altered, including both exaggerated (orthostasis) and suppressed (pain perception) responses, compared with healthy young adults. The impact of SARS‐CoV‐2 infection on autonomic and cardiovascular function in otherwise healthy individuals is unknown. For the first time it is shown that young adults recovering from SARS‐CoV‐2 have elevated resting sympathetic activity, but similar heart rate and blood pressure, compared with control subjects. Survivors of SARS‐CoV‐2 also exhibit similar sympathetic nerve activity and haemodynamics, but decreased pain perception, during a cold pressor test compared with healthy controls. Further, these individuals display higher sympathetic nerve activity throughout an orthostatic challenge, as well as an exaggerated heart rate response to orthostasis. If similar autonomic dysregulation, like that found here in young individuals, is present in older adults following SARS‐CoV‐2 infection, there may be substantial adverse implications for cardiovascular health.
Collapse
Affiliation(s)
- Nina L Stute
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Jonathon L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Valesha M Province
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Marc A Augenreich
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Stephen M Ratchford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Abigail S L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| |
Collapse
|
4
|
Coovadia Y, Adler TE, Steinback CD, Fraser GM, Usselman CW. Sex differences in dynamic blood pressure regulation: beat-by-beat responses to muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol 2020; 319:H531-H538. [PMID: 32734818 DOI: 10.1152/ajpheart.00245.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been suggested that sex differences in acute blood pressure fluctuations occur during the periods of time between bursts of muscle sympathetic nerve activity. Therefore, we tested the hypothesis that men experience more dynamic changes in mean arterial pressure (Finometer MIDI) than women during acute sympathoinhibition (i.e., slow breathing) in which bursts of sympathetic activity occur more infrequently than at rest. We tested healthy women (n = 9) and men (n = 9) of similar age (22 ± 2 vs. 23 ± 3 yr, P = 0.6). Custom software was used to calculate beat-by-beat changes in blood pressure following sympathetic burst and nonburst sequences (recorded using microneurography) during 10 min of supine rest and a 15-min bout of slow breathing. During slow breathing following nonburst sequences, women demonstrated smaller overall reductions in mean arterial pressure compared with men over the subsequent 15 cardiac cycles (P < 0.01). In addition, following a burst of sympathetic activity, women experienced greater overall increases in mean arterial pressure compared with men over the following 15 cardiac cycles (P < 0.01). Despite these differences, the peak and nadir changes in arterial pressure following burst and nonburst sequences were not different between the sexes (P = 0.45 and P = 0.48, burst and nonburst sequences, respectively). As such, these data suggest that women respond to a burst of sympathetic activity with more sustained increases in blood pressure than men, coupled with improved maintenance of blood pressure during acute periods of sympathetic quiescence. In other words, these findings suggest that men rely more on frequent bursts of sympathetic activity to acutely regulate arterial pressure than women.NEW & NOTEWORTHY We demonstrate that during acute sympathoinhibition, women demonstrate more sustained increases in blood pressure following sympathetic bursts of activity than men. Likewise, during prolonged sympathetic quiescence, blood pressure is less labile in women than men. This suggests that lower overall blood pressure in young women may not be mediated by smaller beat-by-beat changes in blood pressure in response to sympathetic outflow but may instead be mediated by a lower frequency of sympathetic bursts.
Collapse
Affiliation(s)
- Yasmine Coovadia
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Tessa E Adler
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Craig D Steinback
- Neurovascular Health Laboratory, Program for Pregnancy and Postpartum Health, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,McGill Research Centre for Physical Activity and Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Ponzi D, Gioiosa L, Parmigiani S, Palanza P. Effects of Prenatal Exposure to a Low-Dose of Bisphenol A on Sex Differences in Emotional Behavior and Central Alpha 2-Adrenergic Receptor Binding. Int J Mol Sci 2020; 21:ijms21093269. [PMID: 32380724 PMCID: PMC7246441 DOI: 10.3390/ijms21093269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Prenatal exposure to bisphenol A (BPA) influences the development of sex differences neurologically and behaviorally across many species of vertebrates. These effects are a consequence of BPA’s estrogenic activity and its ability to act as an endocrine disrupter even, at very low doses. When exposure to BPA occurs during critical periods of development, it can interfere with the normal activity of sex steroids, impacting the fate of neurons, neural connectivity and the development of brain regions sensitive to steroid activity. Among the most sensitive behavioral targets of BPA action are behaviors that are characterized by a sexual dimorphism, especially emotion and anxiety related behaviors, such as the amount of time spent investigating a novel environment, locomotive activity and arousal. Moreover, in some species of rodents, BPA exposure affected males’ sexual behaviors. Interestingly, these behaviors are at least in part modulated by the catecholaminergic system, which has been reported to be a target of BPA action. In the present study we investigated the influence of prenatal exposure of mice to a very low single dose of BPA on emotional and sexual behaviors and on the density and binding characteristics of alpha2 adrenergic receptors. Alpha2 adrenergic receptors are widespread in the central nervous system and they can act as autoreceptors, inhibiting the release of noradrenaline and other neurotransmitters from presynaptic terminals. BPA exposure disrupted sex differences in behavioral responses to a novel environment, but did not affect male mice sexual behavior. Importantly, BPA exposure caused a change in the binding affinity of alpha2 adrenergic receptors in the locus coeruleus and medial preoptic area (mPOA) and it eliminated the sexual dimorphism in the density of the receptors in the mPOA.
Collapse
Affiliation(s)
- Davide Ponzi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.G.); (P.P.)
- Correspondence: ; Tel.: +39-0521904776
| | - Laura Gioiosa
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.G.); (P.P.)
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy;
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.G.); (P.P.)
| |
Collapse
|
6
|
Rubinow DR, Johnson SL, Schmidt PJ, Girdler S, Gaynes B. EFFICACY OF ESTRADIOL IN PERIMENOPAUSAL DEPRESSION: SO MUCH PROMISE AND SO FEW ANSWERS. Depress Anxiety 2015; 32:539-49. [PMID: 26130315 PMCID: PMC6309886 DOI: 10.1002/da.22391] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/30/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Controversy regarding the antidepressant efficacy of hormone replacement therapy (HRT) stems almost from its inception and reflects the same methodological inconsistencies that have compromised efforts to determine whether the perimenopause is accompanied by an increase in mood symptoms or depression. Methodologic differences of note (other than study design) include menopausal state (perimenopause vs. postmenopause), determination of state (earlier studies used age as a proxy measure), baseline symptomatology (asymptomatic vs. depressive symptoms vs. syndromic depression), route of hormone administration (transdermal vs. oral), and symptom or syndrome measure. Zweifel and O'Brien's 1997 meta-analysis included 26 studies of the effects of menopausal HRT on depressed mood and revealed an overall effect size of 0.68. This moderate to large effect size, showing lower ratings of depressed mood in treated patients compared with controls, implicated HRT as a potential treatment of or prophylactic for depression in menopausal women. Since this publication, multiple studies have aimed to discern the relationship between HRT and menopausal mood. METHODS The purpose of this systematic review is to examine the findings and quality of the evidence amassed since Zweifel and O'Brien's meta-analysis. RESULTS Of the 24 studies meeting criteria for review, only five RCTs examined depressed subjects, and only two of the study samples were solely perimenopausal. CONCLUSIONS One can generalize from the studies reviewed here only with great caution, but there is little evidence to support the use of estradiol to improve mood in nondepressed patients (not surprisingly) and some evidence to support the antidepressant efficacy of estradiol in perimenopausal but not postmenopausal women.
Collapse
Affiliation(s)
- David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina,Correspondence to: David Rubinow, Department of Psychiatry, University of North Carolina School of Medicine, Campus Box 7160, Chapel Hill, NC 27599–7160.
| | - Sarah Lanier Johnson
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, NIMH, Department of Health and Human Services, Bethesda, Maryland
| | - Susan Girdler
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Bradley Gaynes
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Abstract
Exposure-based therapy has proven to be useful to treat various anxiety disorders as well as post-traumatic stress disorder (PTSD). Despite its efficacy, a fair proportion of patients remain symptomatic after treatment. Different lines of research have put considerable efforts to investigate ways to enhance the efficacy of exposure-based therapy, which could ultimately lead to better clinical outcomes for patients. Given that this type of therapy relies on extinction learning principles, neuroscience research has tested different adjuncts that could be used as cognitive enhancers through their impact on extinction learning and its consolidation. The current review will summarize some of the latest compounds that have received attention and show some promise to be used in clinical settings to improve the efficacy of exposure-based therapy.
Collapse
|
8
|
Wang W, Bai W, Cui G, Jin B, Wang K, Jia J, Da Y, Qin L. Effects of estradiol valerate and remifemin on norepinephrine signaling in the brain of ovariectomized rats. Neuroendocrinology 2015; 101:120-32. [PMID: 25613345 DOI: 10.1159/000375162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022]
Abstract
AIMS We investigated the norepinephrine pathway changes from the locus coeruleus (LC) to the preoptic area of the hypothalamus (POAH) in the brain of ovariectomized rats under low estrogen levels and explored the therapeutic effects of estradiol valerate (E2) and Remifemin (ICR) on these changes. METHODS 40 female Sprague-Dawley rats were randomly divided into the following groups: surgery with vehicle (SHAM), ovariectomy surgery with vehicle (OVX), ovariectomy with E2 treatment (OVX + E2), and ovariectomy with Remifemin (OVX + ICR). After 4 weeks of treatment, we observed the changes by immunohistochemistry. RESULTS (1) The average optical density of DBH-ir fibers and the number of α1-adrenoreceptor- and estrogen receptor (ER)α-positive neurons in the main nuclei of POAH were all reduced in OVX rats compared with the SHAM group. The above changes were normalized in all nuclei of the POAH in the E2 group, while they were normalized in some nuclei in the ICR group. Coexpression of ERα and α1-adrenoreceptor was observed in the POAH. (2) The number of DBH- and ERα-positive neurons in the LC decreased in the OVX group compared with the SHAM group and increased after treatment with E2 and ICR. Coexpression of ERα and DBH was observed in the LC. CONCLUSION Low estrogen (OVX) altered norepinephrine synthesis in the LC, the projection of norepinephrine fibers and α1-adrenoreceptor expression in the POAH. Both E2 and ICR normalized the norepinephrine pathway, but E2 achieved greater effects than ICR. ICR had different effects in different nuclei in the POAH and its therapeutic effect was better in the LC.
Collapse
Affiliation(s)
- Wenjuan Wang
- Anatomy and Embryology Department, Peking University Health Science Center, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Should there be sex-specific criteria for the diagnosis and treatment of heart failure? J Cardiovasc Transl Res 2013; 7:139-55. [PMID: 24214112 PMCID: PMC3935102 DOI: 10.1007/s12265-013-9514-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
All-cause mortality from cardiovascular disease is declining in the USA. However, there remains a significant difference in risk factors for disease and in mortality between men and women. For example, prevalence and outcomes for heart failure with preserved ejection fraction differ between men and women. The reasons for these differences are multifactorial, but reflect, in part, an incomplete understanding of sex differences in the etiology of cardiovascular diseases and a failure to account for sex differences in pre-clinical studies including those designed to develop new diagnostic and treatment modalities. This review focuses on the underlying physiology of these sex differences and provides evidence that inclusion of female animals in pre-clinical studies of heart failure and in development of imaging modalities to assess cardiac function might provide new information from which one could develop sex-specific diagnostic criteria and approaches to treatment.
Collapse
|
10
|
Usselman CW, Luchyshyn TA, Gimon TI, Nielson CA, Van Uum SHM, Shoemaker JK. Hormone phase dependency of neural responses to chemoreflex-driven sympathoexcitation in young women using hormonal contraceptives. J Appl Physiol (1985) 2013; 115:1415-22. [PMID: 24009009 DOI: 10.1152/japplphysiol.00681.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hormone fluctuations in women may influence muscle sympathetic nerve activity (MSNA) in a manner dependent on the severity of the sympathoexcitatory stimulus. This study examined MSNA patterns at rest and during chemoreflex stimulation in low- (LH) vs. high-hormone (HH) phases of contraceptive use in healthy young women (n = 7). We tested the hypothesis that MSNA would be greater in the HH phase at baseline and in response to chemoreflex stimulation. MSNA recordings were obtained through microneurography in LH and HH at baseline, during rebreathing causing progressive hypoxia and hypercapnia, and during a hypercapnic-hypoxic end-inspiratory apnea. Baseline MSNA burst incidence (P = 0.03) and burst frequency (P = 0.02) were greater in the HH phase, while MSNA burst amplitude distributions and hemodynamic measures were similar between phases. Rebreathing elicited increases in all MSNA characteristics from baseline (P < 0.05), but was not associated with hormone phase-dependent changes to MSNA patterns. Apnea data were considered in two halves, both of which caused large increases in all MSNA variables from baseline in each hormone phase (P < 0.01). Increases in burst incidence and frequency were greater in LH during the first half of the apnea (P = 0.03 and P = 0.02, respectively), while increases in burst amplitude and total MSNA were greater in LH during the second half of the apnea (P < 0.05). These results indicate that change in hormone phase brought on through use of hormonal contraceptives influences MSNA patterns such that baseline MSNA is greater in the HH phase, but responses to severe chemoreflex stimulation are greater in the LH phase.
Collapse
Affiliation(s)
- Charlotte W Usselman
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Meitzen J, Perry AN, Westenbroek C, Hedges VL, Becker JB, Mermelstein PG. Enhanced striatal β1-adrenergic receptor expression following hormone loss in adulthood is programmed by both early sexual differentiation and puberty: a study of humans and rats. Endocrinology 2013; 154:1820-31. [PMID: 23533220 PMCID: PMC3628022 DOI: 10.1210/en.2012-2131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After reproductive senescence or gonadectomy, changes occur in neural gene expression, ultimately altering brain function. The endocrine mechanisms underlying these changes in gene expression beyond immediate hormone loss are poorly understood. To investigate this, we measured changes in gene expression the dorsal striatum, where 17β-estradiol modulates catecholamine signaling. In human caudate, quantitative PCR determined a significant elevation in β1-adrenergic receptor (β1AR) expression in menopausal females when compared with similarly aged males. No differences were detected in β2-adrenergic and D1- and D2-dopamine receptor expression. Consistent with humans, adult ovariectomized female rats exhibited a similar increase in β1AR expression when compared with gonadectomized males. No sex difference in β1AR expression was detected between intact adults, prepubertal juveniles, or adults gonadectomized before puberty, indicating the necessity of pubertal development and adult ovariectomy. Additionally, increased β1AR expression in adult ovariectomized females was not observed if animals were masculinized/defeminized with testosterone injections as neonates. To generate a model system for assessing functional impact, increased β1AR expression was induced in female-derived cultured striatal neurons via exposure to and then removal of hormone-containing serum. Increased β1AR action on cAMP formation, cAMP response element-binding protein phosphorylation and gene expression was observed. This up-regulation of β1AR action was eliminated with 17β-estradiol addition to the media, directly implicating this hormone as a regulator of β1AR expression. Beyond having implications for the known sex differences in striatal function and pathologies, these data collectively demonstrate that critical periods early in life and at puberty program adult gene responsiveness to hormone loss after gonadectomy and potentially reproductive senescence.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Miller VM, Garovic VD, Kantarci K, Barnes JN, Jayachandran M, Mielke MM, Joyner MJ, Shuster LT, Rocca WA. Sex-specific risk of cardiovascular disease and cognitive decline: pregnancy and menopause. Biol Sex Differ 2013; 4:6. [PMID: 23537114 PMCID: PMC3623746 DOI: 10.1186/2042-6410-4-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/05/2013] [Indexed: 12/26/2022] Open
Abstract
Understanding the biology of sex differences is integral to personalized medicine. Cardiovascular disease and cognitive decline are two related conditions, with distinct sex differences in morbidity and clinical manifestations, response to treatments, and mortality. Although mortality from all-cause cardiovascular diseases has declined in women over the past five years, due in part to increased educational campaigns regarding the recognition of symptoms and application of treatment guidelines, the mortality in women still exceeds that of men. The physiological basis for these differences requires further research, with particular attention to two physiological conditions which are unique to women and associated with hormonal changes: pregnancy and menopause. Both conditions have the potential to impact life-long cardiovascular risk, including cerebrovascular function and cognition in women. This review draws on epidemiological, translational, clinical, and basic science studies to assess the impact of hypertensive pregnancy disorders on cardiovascular disease and cognitive function later in life, and examines the effects of post-menopausal hormone treatments on cardiovascular risk and cognition in midlife women. We suggest that hypertensive pregnancy disorders and menopause activate vascular components, i.e., vascular endothelium and blood elements, including platelets and leukocytes, to release cell-membrane derived microvesicles that are potential mediators of changes in cerebral blood flow, and may ultimately affect cognition in women as they age. Research into specific sex differences for these disease processes with attention to an individual's sex chromosomal complement and hormonal status is important and timely.
Collapse
Affiliation(s)
- Virginia M Miller
- Departments of Surgery and Physiology and Biomedical Engineering, 200 1st St SW, Rochester, MN 55905, USA
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, 200 1st St SW, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, 200 1st St SW, Rochester, MN 55905, USA
| | - Jill N Barnes
- Department of Anesthesiology, 200 1st St SW, Rochester, MN 55905, USA
| | - Muthuvel Jayachandran
- Department of Physiology and Biomedical Engineering, 200 1st St SW, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Health Science Research, Division of Epidemiology, 200 1st St SW, Rochester, MN 55905, USA
| | - Michael J Joyner
- Department of Anesthesiology, 200 1st St SW, Rochester, MN 55905, USA
| | - Lynne T Shuster
- Department of Internal Medicine, Women’s Health Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Walter A Rocca
- Department of Health Science Research, Division of Epidemiology, and Neurology, College of Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Leposavic G, Perisic M, Pilipovic I. Role of gonadal hormones in programming developmental changes in thymopoietic efficiency and sexual diergism in thymopoiesis. Immunol Res 2012; 52:7-19. [PMID: 22407539 DOI: 10.1007/s12026-012-8278-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a growing body of evidence indicating the important role of the neonatal steroid milieu in programming sexually diergic changes in thymopoietic efficiency, which in rodents occur around puberty and lead to a substantial phenotypic and functional remodeling of the peripheral T-cell compartment. This in turn leads to an alteration in the susceptibility to infection and various immunologically mediated pathologies. Our laboratory has explored interdependence in the programming and development of the hypothalamo-pituitary-gonadal axis and thymus using experimental model of neonatal androgenization. We have outlined critical points in the complex process of T-cell development depending on neonatal androgen imprinting and the peripheral outcome of these changes and have pointed to underlying mechanisms. Our research has particularly contributed to an understanding of the putative role of changes in catecholamine-mediated communications in the thymopoietic alterations in adult neonatally androgenized rats.
Collapse
Affiliation(s)
- Gordana Leposavic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| | | | | |
Collapse
|
14
|
Rubinow DR, Girdler SS. Hormones, heart disease, and health: individualized medicine versus throwing the baby out with the bathwater. Depress Anxiety 2011; 28:E1-E15. [PMID: 21648024 DOI: 10.1002/da.20833] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is increasingly axiomatic that depression has widespread adverse physiological effects and, conversely, that a variety of physiological systems impact the risk for developing depression. This convergence of depression and altered physiology is particularly dramatic during midlife--a time during which reproductive failure presages dramatic increases in prevalence of both heart disease and depression. The potentially meaningful and illuminating links between estrogen deficiency, cardiovascular disease (CVD), and depression have largely been obscured, first by assertions, subsequently repudiated, that the perimenopause was not a time of increased risk of depression, and more recently by the denegration of hormone replacement therapy by initial reports of the Women's Health Initiative. Increasingly, however, research has led to unavoidable conclusions that CVD and depression share common, mediating pathogenic processes and that these same processes are dramatically altered by the presence or absence of estrogen (E2). This review summarizes data supporting these contentions with the intent of placing depression and estrogen therapy in their proper physiologic context.
Collapse
Affiliation(s)
- David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599. USA
| | | |
Collapse
|
15
|
Rubinow DR, Girdler SS. Hormones, heart disease, and health: individualized medicine versus throwing the baby out with the bathwater. Depress Anxiety 2011; 28:282-96. [PMID: 21456038 DOI: 10.1002/da.20810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It is increasingly axiomatic that depression has widespread adverse physiological effects, and conversely that a variety of physiological systems impact the risk for developing depression. This convergence of depression and altered physiology is particularly dramatic during midlife-a time during which reproductive failure presages dramatic increases in prevalence of both heart disease and depression. The potentially meaningful and illuminating links between estrogen (E2) deficiency, cardiovascular disease (CVD), and depression have largely been obscured, first by assertions, subsequently repudiated that the perimenopause was not a time of increased risk of depression, and more recently by the denegration of hormone replacement therapy by initial reports of the Women's Health Initiative. Increasingly, however, research has led to unavoidable conclusions that CVD and depression share common and mediating pathogenic processes and that these same processes are dramatically altered by the presence or absence of E2. This review summarizes data supporting this contention with the intent of placing depression and E2 therapy in their proper physiologic context.
Collapse
Affiliation(s)
- David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
16
|
Bohacek J, Daniel JM. The beneficial effects of estradiol on attentional processes are dependent on timing of treatment initiation following ovariectomy in middle-aged rats. Psychoneuroendocrinology 2010; 35:694-705. [PMID: 19926225 DOI: 10.1016/j.psyneuen.2009.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/23/2009] [Accepted: 10/09/2009] [Indexed: 12/18/2022]
Abstract
The goal of the present study was to explore the effects of long-term hormone deprivation on the ability of subsequent estrogen treatment to affect attention performance on the 5-choice serial reaction time task (5-CSRTT). In an initial experiment to assess estradiol effects in young adults, 2-month-old rats were trained on the 5-CSRTT, then ovariectomized and immediately implanted with capsules containing cholesterol (n=10) or estradiol (n=10). Then rats were tested on the 5-CSRTT under baseline task parameters, under increased task difficulty (behavior challenge condition), and finally in muscarinic and nicotinic drug challenge conditions. In a second experiment, 10-month-old rats were trained on the 5-CSRTT and at 12 or 17 months of age rats were ovariectomized and treated with estradiol or cholesterol, so that one group received continuous cholesterol control treatment, two groups received estradiol treatment immediately following ovariectomy (either at 12 or 17 months), and one group received delayed estradiol treatment initiated 5 months following ovariectomies. At 17 months of age, rats were tested on the 5-CSRTT. Baseline performance was comparable between estradiol- and cholesterol-treated rats of both age groups. However, young estradiol-treated rats outperformed controls when behavior was challenged by shortening the intertrial interval (Short ITI). In the same Short ITI condition, middle-aged rats receiving immediate estradiol treatment beginning at the age of 17 months, but not 12 months, outperformed controls as well as animals receiving delayed estradiol treatment. No differences between groups were found in the cholinergic drug challenge conditions. These data indicate that chronic estradiol treatment for approximately 1 month but not 6 months is able to enhance attention performance, and that prolonged ovarian hormone deprivation attenuates these beneficial effects of subsequent estradiol treatment. These findings have implications for informing clinical research about the importance of timing and duration of hormone treatment.
Collapse
Affiliation(s)
- Johannes Bohacek
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA.
| | | |
Collapse
|
17
|
Arain FA, Kuniyoshi FH, Abdalrhim AD, Miller VM. Sex/gender medicine. The biological basis for personalized care in cardiovascular medicine. Circ J 2009; 73:1774-82. [PMID: 19729858 DOI: 10.1253/circj.cj-09-0588] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sex differences in morbidity and mortality associated with cardiovascular disease have been recognized by the medical community for decades. Investigation into the underlying biological basis of these differences was largely neglected by the scientific community until a report released by the Institute of Medicine in the United States in 2001 "Exploring the Biological Contributions to Human Health: Does Sex Matter?" Recommendations from this report included the need for more accurate use of the terms "sex" and "gender", better tools and resources to study the biological basis of sex differences, integration of findings from different levels of biological organization and continued synergy between basic and clinical researchers. Ten years after the Institute's report, this review evaluates some of the sex differences in cardiovascular disease, reviews new approaches to study sex differences and emphasizes areas where further research is required. In the era of personalized medicine, the study of the biological basis of sex differences promises to optimize preventive, diagnostic and therapeutic strategies for cardiovascular disease in men and women, but will require diligence by the scientific and medical communities to remember that sex does matter.
Collapse
Affiliation(s)
- Faisal A Arain
- Department of General Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
18
|
Rossmanith WG, Ruebberdt W. What causes hot flushes? The neuroendocrine origin of vasomotor symptoms in the menopause. Gynecol Endocrinol 2009; 25:303-14. [PMID: 19903037 DOI: 10.1080/09513590802632514] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vasomotor symptoms (VMS) such as hot flushes and night sweats are frequently encountered during menopause and can greatly reduce the quality of life. These symptoms are causally related to decreasing estradiol concentrations, mainly in the serum and subsequently also in the hypothalamic temperature regulating centre. The lack of estrogens alters neurotransmitter activity, especially in the serotonergic and noradrenergic pathways. Because sex steroids act as potent neuromodulators, the substitution of ovarian sex steroids by hormone replacement therapy is the most effective treatment option for VMS. When contraindications exist for the use of sex steroids, steroid-free drugs are a possible alternative. A better understanding of the physiology of thermoregulation, thermoregulatory dysfunction and adaptive processes of the brain may facilitate the development of new therapeutic approaches. Such drugs could then be used to treat vasomotor disorders even when the use of steroid hormones is contraindicated. This review article summarises our knowledge on the mechanisms of temperature regulation and describes deviations from this regulation during altered sex steroid conditions. Our current knowledge on neuroendocrinology of thermoregulation may serve as a basis for the use of steroid-free pharmacological intervention.
Collapse
Affiliation(s)
- Winfried G Rossmanith
- Department of Obstetrics and Gynecology, Diakonissenkrankenhaus 28, D-76199 Karlsruhe, Germany.
| | | |
Collapse
|
19
|
Abstract
The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, the goal of this review is to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared with men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis, and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine, and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. Although consensus opinions are emphasized, controversial views are presented to stimulate future research.
Collapse
Affiliation(s)
- Virginia M. Miller
- Professor, Surgery and Physiology, Mayo Clinic College of Medicine, , Phone: 507-284-2290, Fax: 507-266-2233
| | - Sue P. Duckles
- Professor, Pharmacology, University of California, Irvine, School of Medicine, , Phone: 949-824-4265, Fax: 949-824-4855
| |
Collapse
|
20
|
Johnson MP, Fernandez F, Colson NJ, Griffiths LR. A pharmacogenomic evaluation of migraine therapy. Expert Opin Pharmacother 2007; 8:1821-35. [PMID: 17696786 DOI: 10.1517/14656566.8.12.1821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Migraine is a common idiopathic primary headache disorder with significant mental, physical and social health implications. Accompanying an intense unilateral pulsating head pain other characteristic migraine symptoms include nausea, emesis, phonophobia, photophobia and in approximately 20-30% of migraine cases, neurologic disturbances associated with the aura phase. Although selective serotonin (5-HT) receptor agonists (i.e., 5-HT(1B/1D)) are successful in alleviating migrainous symptoms in < or = 70% of known sufferers, for the remaining 30%, additional migraine abortive medications remain unsuccessful, not tested or yet to be identified. Genetic characterization of the migrainous disorder is making steady progress with an increasing number of genomic susceptibility loci now identified on chromosomes 1q, 4q, 5q, 6p, 11q, 14q, 15q, 17p, 18q, 19p and Xq. The 4q, 5q, 17p and 18q loci involve endophenotypic susceptibility regions for various migrainous symptoms. In an effort to develop individualized pharmacotherapeutics, the identification of these migraine endophenotypic loci may well be the catalyst needed to aid in this goal. In this review the authors discuss the present treatment of migraine, known genomic susceptibility regions and results from migraine (genetic) association studies. The authors also discuss pharmacogenomic considerations for more individualized migraine prophylactic treatments.
Collapse
Affiliation(s)
- Matthew P Johnson
- Griffith University, Genomics Research Centre, School of Medical Science, PMB 50 GCMC Gold Coast, Queensland, Australia
| | | | | | | |
Collapse
|
21
|
Cornil CA, Dalla C, Papadopoulou-Daifoti Z, Baillien M, Balthazart J. Estradiol rapidly activates male sexual behavior and affects brain monoamine levels in the quail brain. Behav Brain Res 2005; 166:110-23. [PMID: 16159671 DOI: 10.1016/j.bbr.2005.07.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/19/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Steroids are generally viewed as transcription factors binding to intracellular receptors and activating gene transcription. Rapid cellular effects mediated via non-genomic mechanisms have however been identified and one report showed that injections of estradiol rapidly stimulate chemoinvestigation and mounting behavior in castrated male rats. It is not known whether such effects take place in other species and what are the cellular underlying mechanisms. We show here that a single injection of estradiol (500 microg/kg) rapidly and transiently activates copulatory behavior in castrated male quail pre-treated with a dose of testosterone behaviorally ineffective by itself. The maximal behavioral effect was observed after 15 min. In a second experiment, the brain of all subjects was immediately collected after behavioral tests performed 15 min after injection. The preoptic area--hypothalamus (HPOA), hindbrain, telencephalon and cerebellum were isolated and monoamines measured by HPLC-ED. Estradiol increased levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA/serotonin ratios in the telencephalon and hindbrain independently of whether animals had mated or not. Estradiol also affected these measures in HPOA and cerebellum but this effect was correlated with the level of sexual activity so that significant effects of the treatment only appeared when sexual activity was used as a covariate. Interactions between estradiol effects and sexual activity were also observed for dopamine in the HPOA and for serotonin in the hindbrain and cerebellum. Together, these data demonstrate that a single estradiol injection rapidly activates male sexual behavior in quail and that this behavioral effect is correlated with changes in monoaminergic activity.
Collapse
Affiliation(s)
- Charlotte A Cornil
- Center for Cellular & Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, B-4000 Liège 1, Belgium.
| | | | | | | | | |
Collapse
|
22
|
Cornil CA, Dalla C, Papadopoulou-Daifoti Z, Baillien M, Dejace C, Ball GF, Balthazart J. Rapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior. Endocrinology 2005; 146:3809-20. [PMID: 15932925 PMCID: PMC3909742 DOI: 10.1210/en.2005-0441] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In Japanese quail, as in rats, the expression of male sexual behavior over relatively long time periods (days to weeks) is dependent on the local production of estradiol in the preoptic area via the aromatization of testosterone. On a short-term basis (minutes to hours), central actions of dopamine as well as locally produced estrogens modulate behavioral expression. In rats, a view of and sexual interaction with a female increase dopamine release in the preoptic area. In quail, in vitro brain aromatase activity (AA) is rapidly modulated by calcium-dependent phosphorylations that are likely to occur in vivo as a result of changes in neurotransmitter activity. Furthermore, an acute estradiol injection rapidly stimulates copulation in quail, whereas a single injection of the aromatase inhibitor vorozole rapidly inhibits this behavior. We hypothesized that brain aromatase and dopaminergic activities are regulated in quail in association with the expression of male sexual behavior. Visual access as well as sexual interactions with a female produced a significant decrease in brain AA, which was maximal after 5 min. This expression of sexual behavior also resulted in a significant decrease in dopaminergic as well as serotonergic activity after 1 min, which returned to basal levels after 5 min. These results demonstrate for the first time that AA is rapidly modulated in vivo in parallel with changes in dopamine activity. Sexual interactions with the female decreased aromatase and dopamine activities. These data challenge established views about the causal relationships among dopamine, estrogen action, and male sexual behavior.
Collapse
Affiliation(s)
- C A Cornil
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liege, 1 Boulevard de l'Hopital (Bâtiment B36) 4000 Liege 1, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Genazzani AR, Bernardi F, Pluchino N, Begliuomini S, Lenzi E, Casarosa E, Luisi M. Endocrinology of menopausal transition and its brain implications. CNS Spectr 2005; 10:449-57. [PMID: 15908899 DOI: 10.1017/s1092852900023142] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The central nervous system is one of the main target tissues for sex steroid hormones, which act on both through genomic mechanisms, modulating synthesis, release, and metabolism of many neuropeptides and neurotransmitters, and through non-genomic mechanisms, influencing electrical excitability, synaptic function, morphological features, and neuron-glia interactions. During the climacteric period, sex steroid deficiency causes many neuroendocrine changes. At the hypothalamic level, estrogen withdrawal gives rise to vasomotor symptoms, to eating behavior disorders, and altered blood pressure control. On the other hand, at the limbic level, the changes in serotoninergic, noradrenergic, and opioidergic tones contribute to the modifications in mood, behavior, and nociception. Hormone replacement therapy (HRT) positively affects climateric depression throughout a direct effect on neural activity and on the modulation of adrenergic and serotoninergic tones and may modulate the decrease in cognitive efficiency observed in climaterium. The identification of the brain as a de novo source of neurosteroids, suggests that the modifications in mood and cognitive performances occurring in postmenopausal women may also be related to a change in the levels of neurosteroids. These findings open new perspectives in the study of the effects of sex steroids on the central nervous system and on the possible use of alternative and/or auxiliary HRT.
Collapse
Affiliation(s)
- Andrea Riccardo Genazzani
- Department of Reproductive Medicine and Child Development, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. After menopause, circulating levels of oestrogens decline markedly and oestrogen influences several brain processes predicted to modify AD risk. For example, oestrogen reduces the formation of beta-amyloid, a biochemical hallmark of AD. Oestrogen effects on oxidative stress and some effects on inflammation and the cerebral vasculature might also be expected to ameliorate risk. However, AD pathogenesis is incompletely understood and other oestrogen actions could be deleterious. Limited clinical trial evidence suggests that oestrogen therapy, begun after the onset of AD symptoms, is without substantial benefit or harm. Observational studies have associated oestrogen-containing hormone therapy with reduced AD risk. However, in the Women's Health Initiative Memory Study - a randomised, placebo-controlled trial of women 65 - 79 years of age - oral oestrogen plus progestin doubled the rate of dementia, with heightened risk appearing soon after treatment was initiated. Based on current evidence, hormone therapy is thus not indicated for the prevention of AD. Discrepancies between observational studies and the Women's Health Initiative clinical trial may reflect biases and unrecognised confounding factors in observational reports. Other explanations for divergent findings should be considered in future research, including effects of unopposed oestrogen or different hormone therapy preparations and the intriguing theoretical possibility that effects of hormone therapy on AD risk may be modified by the timing of use (e.g., initiation during the menopausal transition or early postmenopause versus initiation during the late postmenopause).
Collapse
Affiliation(s)
- Victor W Henderson
- Donald W Reynolda Center on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
25
|
van Stegeren AH, Goekoop R, Everaerd W, Scheltens P, Barkhof F, Kuijer JPA, Rombouts SARB. Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. Neuroimage 2005; 24:898-909. [PMID: 15652324 DOI: 10.1016/j.neuroimage.2004.09.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/01/2004] [Accepted: 09/09/2004] [Indexed: 11/24/2022] Open
Abstract
The amygdala is a pivotal structure in humans for encoding of emotional information, as shown by recent imaging studies. It is unknown which neurotransmitters are specifically involved in the human amygdala, although in animal studies noradrenaline was shown to be essential. In our study, participants received the betablocker propranolol (which blocks the noradrenergic response) or placebo when watching neutral to highly negative arousing pictures. Amygdala activation, monitored with functional magnetic resonance imaging (fMRI), increased with emotional intensity of the pictures under placebo condition. Betablockade selectively decreased amygdala activation for emotional pictures of the second highest category, but not for the highest or lower (neutral) category pictures. Two findings add to the existing knowledge in this area. First, the activation pattern in the amygdala under placebo condition shows a nonlinearity related to the emotional categories of the pictures. Second, propranolol disturbs this activation pattern in the amygdala. Explorations with respect to gender show a similar effect of betablockade on amygdala activation in both men and women, but a difference in its effect on long-term memory for emotional pictures. This study supports the hypothesis that the neurotransmitter noradrenaline also mediates amygdala activity in humans when processing emotional stimuli and that betablockers can disrupt the normal activation pattern in the amygdala.
Collapse
Affiliation(s)
- Anda H van Stegeren
- Department of Clinical Psychology and Cognitive Science Center Amsterdam, University of Amsterdam, 1018 WB Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ostlund H, Keller E, Hurd YL. Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann N Y Acad Sci 2004; 1007:54-63. [PMID: 14993040 DOI: 10.1196/annals.1286.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Compelling evidence now exists for estrogen's involvement in the regulation of mood and cognitive functions. Serum estrogen levels have been shown to play an important role in the expression of psychiatric disorders such as depression and schizophrenia. We have characterized the distribution of the estrogen receptors, ERalpha and ERbeta, in the human brain and showed a preferential limbic-related expression pattern for these transcripts. The ERalpha mRNA dominates in the amygdala and hypothalamus, suggesting estrogen modulation of autonomic and neuroendocrine as well as emotional functions. In contrast, the hippocampal formation, entorhinal cortex, and thalamus appear to be ERbeta-dominant areas, suggesting a role for ERbeta in cognition, non-emotional memory, and motor functions. The role of estradiol can also be examined in regard to its relationship to other neurotransmitter systems known to be linked to specific psychiatric disorders. Estradiol has been shown to regulate the serotonin (5-HT) system, which has been strongly implicated in affective disorders. We have studied a genetic animal model of depression, and found altered 5-HT receptor mRNA levels in discrete brain regions; many of the abnormalities are reversed by estradiol treatment, especially for the 5-HT(2A) receptor subtype. The norepinephrine (NE) system is, similar to serotonin, a target for antidepressant drugs, and projects to mesocorticolimbic structures implicated in mood disorders. We have recently observed that NE neurons in the human locus coeruleus (LC) express moderate levels of both ER transcripts. The possibility of estrogen's regulating LC function has been documented in animal studies. Results from our preliminary experiments have revealed that the ERbeta mRNA is decreased in persons committing suicide, a cause of death that is highly linked to affective disorder. Follow-up studies are currently under way with a much larger population to validate these results. Overall, the discrete anatomical organization of the ER mRNAs in the human brain provide evidence as to the specific neuronal populations in which the actions of ERs could modulate mood and thus underlie the neuropathology of psychiatric disorders such as depression.
Collapse
Affiliation(s)
- Hanna Ostlund
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Thanky NR, Son JH, Herbison AE. Sex differences in the regulation of tyrosine hydroxylase gene transcription by estrogen in the locus coeruleus of TH9-LacZ transgenic mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:220-6. [PMID: 12225877 DOI: 10.1016/s0169-328x(02)00383-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although estrogen is recognized increasingly as having an important role in modulating extrahypothalamic brain function, the mechanisms through which this occur are not well established. The norepinephrine (NE) neurons of the locus coeruleus provide an important neuromodulatory influence upon multiple neural networks throughout the brain and estrogen has been implicated in their regulation. Using a tyrosine hydroxylase (TH) promoter-LacZ transgenic mouse model, which enables rates of TH gene transcription to be examined in vivo, we have examined here whether estrogen regulates expression of the TH gene in the locus coeruleus of males and females. Optical area measurements of Xgal reaction product in the locus coeruleus revealed that gonadectomy exerted opposite effects on TH gene transcription in males and females; transgene expression was increased in males (P<0.01) but reduced in females (P<0.05). Estrogen reversed these effects in both sexes by suppressing gene expression in males (P<0.05) but elevating it in the female (P<0.05). These studies reveal a marked and unexpected sex difference in the regulation of TH gene activity in the mouse. While estrogen in the male, synthesized from circulating testosterone, suppresses TH gene transcription, estrogen in the female enhances TH promoter activity. The present results indicate that estrogen may exert very different sex-dependent effects upon the biosynthesis of NE within the locus coeruleus.
Collapse
Affiliation(s)
- Niren R Thanky
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
28
|
Abstract
Selective oestrogen receptor modulators (SERMs) are compounds that interact with the oestrogen receptor and have tissue-specific effects distinct from those of oestradiol, acting as an oestrogen agonist in some tissues and as an antagonist in others. The development of SERMs that selectively interact with specific receptors, coactivators and corepressors in different organ systems offers the possibility of improving the risk:benefit profile relative to hormone replacement therapy. Tamoxifen is a SERM that acts as an oestrogen antagonist in breast tissue and is currently being used for the treatment and prevention of breast cancer. Tamoxifen also exhibits oestrogen-agonistic properties in the endometrium and increases the risk of endometrial cancer. Oestrogen and another SERM, raloxifene, have been shown to prevent osteoporosis. The effects of oestrogens on cognitive functions are currently being investigated. Recent data reveal the lack of secondary prevention of coronary heart disease with oestrogen. Oestrogen has been used to treat menopausal symptoms, whereas the SERMs have been shown to induce hot flushes. Current research is focused on producing the ideal SERM, which would have benefits over existing SERMs in terms of preventing cancer, cardiovascular disease, osteoporosis and menopausal symptoms, improving cognitive functions, and have a significantly better toxicity profile in terms of endometrial cancer and thromboembolic events.
Collapse
Affiliation(s)
- Banu Arun
- Department of Breast Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
29
|
Tosta CE. Coevolutionary networks: a novel approach to understanding the relationships of humans with the infectious agents. Mem Inst Oswaldo Cruz 2001; 96:415-25. [PMID: 11313655 DOI: 10.1590/s0074-02762001000300024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human organism is interpenetrated by the world of microorganisms, from the conception until the death. This interpenetration involves different levels of interactions between the partners including trophic exchanges, bi-directional cell signaling and gene activation, besides genetic and epigenetic phenomena, and tends towards mutual adaptation and coevolution. Since these processes are critical for the survival of individuals and species, they rely on the existence of a complex organization of adaptive systems aiming at two apparently conflicting purposes: the maintenance of the internal coherence of each partner, and a mutually advantageous coexistence and progressive adaptation between them. Humans possess three adaptive systems: the nervous, the endocrine and the immune system, each internally organized into subsystems functionally connected by intraconnections, to maintain the internal coherence of the system. The three adaptive systems aim at the maintenance of the internal coherence of the organism and are functionally linked by interconnections, in such way that what happens to one is immediately sensed by the others. The different communities of infectious agents that live within the organism are also organized into functional networks. The members of each community are linked by intraconnections, represented by the mutual trophic, metabolic and other influences, while the different infectious communities affect each other through interconnections. Furthermore, by means of its adaptive systems, the organism influences and is influenced by the microbial communities through the existence of transconnections. It is proposed that these highly complex and dynamic networks, involving gene exchange and epigenetic phenomena, represent major coevolutionary forces for humans and microorganisms.
Collapse
Affiliation(s)
- C E Tosta
- Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, 70910-900, Brasil.
| |
Collapse
|