1
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Chheda U, Pradeepan S, Esposito E, Strezsak S, Fernandez-Delgado O, Kranz J. Factors Affecting Stability of RNA - Temperature, Length, Concentration, pH, and Buffering Species. J Pharm Sci 2024; 113:377-385. [PMID: 38042343 DOI: 10.1016/j.xphs.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
RNA is prone to both chemical degradation and/or physical instability. Some of the factors affecting stability of RNA in solution are its length, 3' poly A tail and 5' cap integrity, excipients, buffering species, pH of the solution, nucleases, and divalent cations. In this work, we showed the effect of temperature, messenger RNA (mRNA) length, buffering species, pH of the solution, and the concentration of mRNA on its chemical and physical stability. Our thermodynamic analysis of a 4000 nucleotide-long mRNA measured an activation energy of 31.5 kcal/mol normalized per phosphodiester backbone. We found mRNA length to be negatively correlated to its stability. Buffering species and pH of the solution affected mRNA integrity along with affecting the onset temperature of melting obtained by Differential Scanning Calorimetry (DSC) thermograms. It was also found that increasing the concentration of mRNA in solution increased its stability.
Collapse
Affiliation(s)
- Urmi Chheda
- GreenLight Biosciences, Lexington, MA 02421, United States.
| | | | | | | | | | - James Kranz
- GreenLight Biosciences, Lexington, MA 02421, United States
| |
Collapse
|
3
|
Amadei F, Reichenbach M, Gallo S, Sigel RKO. The structural features of the ligand-free moaA riboswitch and its ion-dependent folding. J Inorg Biochem 2023; 242:112153. [PMID: 36774787 DOI: 10.1016/j.jinorgbio.2023.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Riboswitches are structural elements of mRNA involved in the regulation of gene expression by responding to specific cellular metabolites. To fulfil their regulatory function, riboswitches prefold into an active state, the so-called binding competent form, that guarantees metabolite binding and allows a consecutive refolding of the RNA. Here, we describe the folding pathway to the binding competent form as well as the ligand free structure of the moaA riboswitch of E. coli. This RNA proposedly responds to the molybdenum cofactor (Moco), a highly oxygen-sensitive metabolite, essential in the carbon and sulfur cycles of eukaryotes. K+- and Mg2+-dependent footprinting assays and spectroscopic investigations show a high degree of structure formation of this RNA already at very low ion-concentrations. Mg2+ facilitates additionally a general compaction of the riboswitch towards its proposed active structure. We show that this fold agrees with the earlier suggested secondary structure which included also a long-range tetraloop/tetraloop-receptor like interaction. Metal ion cleavage assays revealed specific Mg2+-binding pockets within the moaA riboswitch. These Mg2+ binding pockets are good indicators for the potential Moco binding site, since in riboswitches, Mg2+ was shown to be necessary to bind phosphate-carrying metabolites. The importance of the phosphate and of other functional groups of Moco is highlighted by binding assays with tetrahydrobiopterin, the reduced and oxygen-sensitive core moiety of Moco. We demonstrate that the general molecular shape of pterin by its own is insufficient for the recognition by the riboswitch.
Collapse
Affiliation(s)
- Fabio Amadei
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - María Reichenbach
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sofia Gallo
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
4
|
Kenkpen AK, Storey JJ, Olson ER, Guden TE, Card TT, Jensen AS, Ahrens JL, Hellmann Whitaker RA. Developing Connections Between LINC00298 RNA and Alzheimer's Disease Through Mapping Its Interactome and Through Biochemical Characterization. J Alzheimers Dis 2023; 95:641-661. [PMID: 37574728 DOI: 10.3233/jad-230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Long non-coding RNAs are ubiquitous throughout the human system, yet many of their biological functions remain unknown. LINC00298 RNA, a long intergenic non-coding RNA, has been shown to have preferential expression in the central nervous system where it contributes to neuronal differentiation and development. Furthermore, previous research has indicated that LINC00298 RNA is known to be a genetic risk factor for the development of Alzheimer's disease. OBJECTIVE To biochemically characterize LINC00298 RNA and to elucidate its biological function within hippocampal neuronal cells, thereby providing a greater understanding of its role in Alzheimer's disease pathogenesis. METHODS LINC00298 RNA was in vitro transcribed and then subjected to structural analysis using circular dichroism, and UV-Vis spectroscopy. Additionally, affinity column chromatography was used to capture LINC00298 RNA's protein binding partners from hippocampal neuronal cells, which were then identified using liquid chromatography and mass spectrometry (LC/MS). RESULTS LINC00298 RNA is comprised of stem-loop secondary structural elements, with a cylindrical tertiary structure that has highly dynamic regions, which result in high positional entropy. LC/MS identified 24 proteins within the interactome of LINC00298 RNA. CONCLUSION Through analysis of LINC00298 RNA's 24 protein binding partners, it was determined that LINC00298 RNA may play significant roles in neuronal development, proliferation, and cellular organization. Furthermore, analysis of LINC00298 RNA's interactome indicated that LINC00298 RNA is capable of intracellular motility with dual localization in the nucleus and the cytosol. This biochemical characterization of LINC00298 RNA has shed light on its role in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Angel K Kenkpen
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Joshua J Storey
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Emma R Olson
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Ty E Guden
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Tate T Card
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Ashley S Jensen
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | - Jordyn L Ahrens
- Department of Chemistry, Bemidji State University, Bemidji, MN, USA
| | | |
Collapse
|
5
|
Valentini P, Pierattini B, Zacco E, Mangoni D, Espinoza S, Webster NA, Andrews B, Carninci P, Tartaglia GG, Pandolfini L, Gustincich S. Towards SINEUP-based therapeutics: Design of an in vitro synthesized SINEUP RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1092-1102. [PMID: 35228902 PMCID: PMC8857549 DOI: 10.1016/j.omtn.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
Abstract
SINEUPs are a novel class of natural and synthetic non-coding antisense RNA molecules able to increase the translation of a target mRNA. They present a modular organization comprising an unstructured antisense target-specific domain, which sets the specificity of each individual SINEUP, and a structured effector domain, which is responsible for the translation enhancement. In order to design a fully functional in vitro transcribed SINEUP for therapeutics applications, SINEUP RNAs were synthesized in vitro with a variety of chemical modifications and screened for their activity on endogenous target mRNA upon transfection. Three combinations of modified ribonucleotides-2'O methyl-ATP (Am), N6 methyl-ATP (m6A), and pseudo-UTP (ψ)-conferred SINEUP activity to naked RNA. The best combination tested in this study was fully modified with m6A and ψ. Aside from functionality, this combination conferred improved stability upon transfection and higher thermal stability. Common structural determinants of activity were identified by circular dichroisms, defining a core functional structure that is achieved with different combinations of modifications.
Collapse
Affiliation(s)
- Paola Valentini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Bianca Pierattini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Elsa Zacco
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Natalie A. Webster
- STORM Therapeutics, Babraham Research Campus, Moneta Building, Cambridge, CB22 3AT, UK
| | - Byron Andrews
- STORM Therapeutics, Babraham Research Campus, Moneta Building, Cambridge, CB22 3AT, UK
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | | | - Luca Pandolfini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| |
Collapse
|
6
|
Desai N, Shah V, Datta B. Assessing G4-Binding Ligands In Vitro and in Cellulo Using Dimeric Carbocyanine Dye Displacement Assay. Molecules 2021; 26:molecules26051400. [PMID: 33807659 PMCID: PMC7961521 DOI: 10.3390/molecules26051400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 12/05/2022] Open
Abstract
G-quadruplexes (G4) are the most actively studied non-canonical secondary structures formed by contiguous repeats of guanines in DNA or RNA strands. Small molecule mediated targeting of G-quadruplexes has emerged as an attractive tool for visualization and stabilization of these structures inside the cell. Limited number of DNA and RNA G4-selective assays have been reported for primary ligand screening. A combination of fluorescence spectroscopy, AFM, CD, PAGE, and confocal microscopy have been used to assess a dimeric carbocyanine dye B6,5 for screening G4-binding ligands in vitro and in cellulo. The dye B6,5 interacts with physiologically relevant DNA and RNA G4 structures, resulting in fluorescence enhancement of the molecule as an in vitro readout for G4 selectivity. Interaction of the dye with G4 is accompanied by quadruplex stabilization that extends its use in primary screening of G4 specific ligands. The molecule is cell permeable and enables visualization of quadruplex dominated cellular regions of nucleoli using confocal microscopy. The dye is displaced by quarfloxin in live cells. The dye B6,5 shows remarkable duplex to quadruplex selectivity in vitro along with ligand-like stabilization of DNA G4 structures. Cell permeability and response to RNA G4 structures project the dye with interesting theranostic potential. Our results validate that B6,5 can serve the dual purpose of visualization of DNA and RNA G4 structures and screening of G4 specific ligands, and adds to the limited number of probes with such potential.
Collapse
Affiliation(s)
- Nakshi Desai
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
| | - Viraj Shah
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gandhinagar 382355, India
- Correspondence: ; Tel.: +91-79-2395-2427; Fax: +91-79-2397-2622
| |
Collapse
|
7
|
Umar MI, Kwok CK. Specific suppression of D-RNA G-quadruplex-protein interaction with an L-RNA aptamer. Nucleic Acids Res 2020; 48:10125-10141. [PMID: 32976590 PMCID: PMC7544233 DOI: 10.1093/nar/gkaa759] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
G-quadruplexes (G4s) are nucleic acid structure motifs that are of significance in chemistry and biology. The function of G4s is often governed by their interaction with G4-binding proteins. Few categories of G4-specific tools have been developed to inhibit G4-protein interactions; however, until now there is no aptamer tool being developed to do so. Herein, we present a novel L-RNA aptamer that can generally bind to D-RNA G-quadruplex (rG4) structure, and interfere with rG4-protein interaction. Using hTERC rG4 as the target for in vitro selection, we report the shortest L-aptamer being developed so far, with only 25 nucleotides. Notably, this new aptamer, L-Apt.4-1c, adopts a stem-loop structure with the loop folding into an rG4 motif with two G-quartet, demonstrates preferential binding toward rG4s over non-G4s and DNA G-quadruplexes (dG4s), and suppresses hTERC rG4-nucleolin interactions. We also show that inhibition of rG4-protein interaction using L-RNA aptamer L-Apt.4-1c is comparable to or better than G4-specific ligands such as carboxypyridostatin and QUMA-1 respectively, highlighting that our approach and findings expand the current G4 toolbox, and open a new avenue for diverse applications.
Collapse
Affiliation(s)
- Mubarak I Umar
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
8
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
9
|
Abstract
Guanine (G)-rich sequences in RNA can fold into diverse RNA G-quadruplex (rG4) structures to mediate various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4s in prokaryotes are still elusive. We used QUMA-1, an rG4-specific fluorescent probe, to detect rG4 structures in a wide range of bacterial species both in vitro and in live cells and found rG4 to be an abundant RNA secondary structure across those species. Subsequently, to identify bacterial rG4 sites in the transcriptome, the model Escherichia coli strain and a major human pathogen, Pseudomonas aeruginosa, were subjected to recently developed high-throughput rG4 structure sequencing (rG4-seq). In total, 168 and 161 in vitro rG4 sites were found in E. coli and P. aeruginosa, respectively. Genes carrying these rG4 sites were found to be involved in virulence, gene regulation, cell envelope synthesis, and metabolism. More importantly, biophysical assays revealed the formation of a group of rG4 sites in mRNAs (such as hemL and bswR), and they were functionally validated in cells by genetic (point mutation and lux reporter assays) and phenotypic experiments, providing substantial evidence for the formation and function of rG4s in bacteria. Overall, our study uncovers important regulatory functions of rG4s in bacterial pathogenicity and metabolic pathways and strongly suggests that rG4s exist and can be detected in a wide range of bacterial species.IMPORTANCE G-quadruplex in RNA (rG4) mediates various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4 are still elusive in prokaryotes. Here, we found that rG4 is an abundant RNA secondary structure across a wide range of bacterial species. Subsequently, the transcriptome-wide rG4 structure sequencing (rG4-seq) revealed that the model E. coli strain and a major human pathogen, P. aeruginosa, have 168 and 161 in vitro rG4 sites, respectively, involved in virulence, gene regulation, cell envelope, and metabolism. We further verified the regulatory functions of two rG4 sites in bacteria (hemL and bswR). Overall, this finding strongly suggests that rG4s play key regulatory roles in a wide range of bacterial species.
Collapse
|
10
|
A Structural Basis for Restricted Codon Recognition Mediated by 2-thiocytidine in tRNA Containing a Wobble Position Inosine. J Mol Biol 2020; 432:913-929. [PMID: 31945376 DOI: 10.1016/j.jmb.2019.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022]
Abstract
Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.
Collapse
|
11
|
Jaganade T, Chattopadhyay A, Pazhayam NM, Priyakumar UD. Energetic, Structural and Dynamic Properties of Nucleobase-Urea Interactions that Aid in Urea Assisted RNA Unfolding. Sci Rep 2019; 9:8805. [PMID: 31217494 PMCID: PMC6584539 DOI: 10.1038/s41598-019-45010-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023] Open
Abstract
Understanding the structure-function relationships of RNA has become increasingly important given the realization of its functional role in various cellular processes. Chemical denaturation of RNA by urea has been shown to be beneficial in investigating RNA stability and folding. Elucidation of the mechanism of unfolding of RNA by urea is important for understanding the folding pathways. In addition to studying denaturation of RNA in aqueous urea, it is important to understand the nature and strength of interactions of the building blocks of RNA. In this study, a systematic examination of the structural features and energetic factors involving interactions between nucleobases and urea is presented. Results from molecular dynamics (MD) simulations on each of the five DNA/RNA bases in water and eight different concentrations of aqueous urea, and free energy calculations using the thermodynamic integration method are presented. The interaction energies between all the nucleobases with the solvent environment and the transfer free energies become more favorable with respect to increase in the concentration of urea. Preferential interactions of urea versus water molecules with all model systems determined using Kirkwood-Buff integrals and two-domain models indicate preference of urea by nucleobases in comparison to water. The modes of interaction between urea and the nucleobases were analyzed in detail. In addition to the previously identified hydrogen bonding and stacking interactions between urea and nucleobases that stabilize the unfolded states of RNA in aqueous solution, NH-π interactions are proposed to be important. Dynamic properties of each of these three modes of interactions have been presented. The study provides fundamental insights into the nature of interaction of urea molecules with nucleobases and how it disrupts nucleic acids.
Collapse
Affiliation(s)
- Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Aditya Chattopadhyay
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Nila M Pazhayam
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
12
|
Szabat M, Kierzek E, Kierzek R. Modified RNA triplexes: Thermodynamics, structure and biological potential. Sci Rep 2018; 8:13023. [PMID: 30158667 PMCID: PMC6115336 DOI: 10.1038/s41598-018-31387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/17/2018] [Indexed: 12/23/2022] Open
Abstract
The occurrence of triplexes in vivo has been well documented and is determined by the presence of long homopurine-homopyrimidine tracts. The formation of these structures is the result of conformational changes that occur in the duplex, which allow the binding of a third strand within the major groove of the helix. Formation of these noncanonical forms by introducing synthetic triplex-forming oligonucleotides (TFOs) into the cell may have applications in molecular biology, diagnostics and therapy. This study focused on the formation of RNA triplexes as well as their thermal stability and biological potential in the HeLa cell line. Thermodynamics studies revealed that the incorporation of multiple locked nucleic acid (LNA) and 2-thiouridine (2-thioU) residues increased the stability of RNA triplexes. These data suggest that the number and position of the modified nucleotides within TFOs significantly stabilize the formed structures. Moreover, specificity of the interactions between the modified TFOs and the RNA hairpin was characterized using electrophoretic mobility-shift assay (EMSA), and triplex dissociation constants have been also determined. Finally, through quantitative analysis of GFP expression, the triplex structures were shown to regulate GFP gene silencing. Together, our data provide a first glimpse into the thermodynamic, structural and biological properties of LNA- and 2-thioU modified RNA triplexes.
Collapse
Affiliation(s)
- Marta Szabat
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
13
|
del Villar-Guerra R, Gray RD, Chaires JB. Characterization of Quadruplex DNA Structure by Circular Dichroism. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 68:17.8.1-17.8.16. [PMID: 28252181 PMCID: PMC5334661 DOI: 10.1002/cpnc.23] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Circular dichroism (CD) is a phenomenon that arises from the differential absorption of left- and right-handed circularly polarized light, and may be seen with optically active molecules. CD spectroscopy provides useful spectral signatures for biological macromolecules in solution, and provides low-resolution structural information about macromolecular conformation. CD spectroscopy is particularly useful for monitoring conformational changes in macromolecules upon environmental perturbations. G-quadruplex structures show unique CD spectral signatures, and CD is an important tool for characterizing their formation and global structure. This protocol offers step-by-step methods for determining reliable and reproducible CD spectra of quadruplex structures and normalizing the spectra for presentation. CD spectra properly normalized with respect to quadruplex concentration and path length are required to facilitate accurate comparison of results among laboratories. The standard operating procedures proposed are recommended to make such comparison accurate and informative. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Rafael del Villar-Guerra
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Robert D. Gray
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| |
Collapse
|
14
|
Crenshaw E, Leung BP, Kwok CK, Sharoni M, Olson K, Sebastian NP, Ansaloni S, Schweitzer-Stenner R, Akins MR, Bevilacqua PC, Saunders AJ. Amyloid Precursor Protein Translation Is Regulated by a 3'UTR Guanine Quadruplex. PLoS One 2015; 10:e0143160. [PMID: 26618502 PMCID: PMC4664259 DOI: 10.1371/journal.pone.0143160] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
A central event in Alzheimer’s disease is the accumulation of amyloid β (Aβ) peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP). APP overexpression leads to increased Aβ generation and Alzheimer’s disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aβ levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aβ levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes), non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3’UTR (untranslated region) at residues 3008–3027 (NM_201414.2). This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3’UTR G-quadruplex as a novel mechanism regulating APP expression.
Collapse
Affiliation(s)
- Ezekiel Crenshaw
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Brian P. Leung
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Chemistry, Drexel University, Philadelphia, PA, United States of America
| | - Chun Kit Kwok
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
- Department of Biochemistry & Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michal Sharoni
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Kalee Olson
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
| | - Neeraj P. Sebastian
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Sara Ansaloni
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | | | - Michael R. Akins
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
- Department of Biochemistry & Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Aleister J. Saunders
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Borodavka A, Ault J, Stockley PG, Tuma R. Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment. Nucleic Acids Res 2015; 43:7044-57. [PMID: 26109354 PMCID: PMC4538827 DOI: 10.1093/nar/gkv639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 12/15/2022] Open
Abstract
Reoviruses are important human, animal and plant pathogens having 10-12 segments of double-stranded genomic RNA. The mechanisms controlling the assortment and packaging of genomic segments in these viruses, remain poorly understood. RNA-protein and RNA-RNA interactions between viral genomic segment precursors have been implicated in the process. While non-structural viral RNA-binding proteins, such as avian reovirus σNS, are essential for virus replication, the mechanism by which they assist packaging is unclear. Here we demonstrate that σNS assembles into stable elongated hexamers in vitro, which bind single-stranded nucleic acids with high affinity, but little sequence specificity. Using ensemble and single molecule fluorescence spectroscopy, we show that σNS also binds to a partially double-stranded RNA, resulting in gradual helix unwinding. The hexamer can bind multiple RNA molecules and exhibits strand-annealing activity, thus mediating conversion of metastable, intramolecular stem-loops into more stable heteroduplexes. We demonstrate that the ARV σNS acts as an RNA chaperone facilitating specific RNA-RNA interactions between genomic precursors during segment assortment and packaging.
Collapse
Affiliation(s)
- Alexander Borodavka
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - James Ault
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G Stockley
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
16
|
Shaw E, St-Pierre P, McCluskey K, Lafontaine DA, Penedo JC. Using sm-FRET and denaturants to reveal folding landscapes. Methods Enzymol 2015; 549:313-41. [PMID: 25432755 DOI: 10.1016/b978-0-12-801122-5.00014-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNA folding studies aim to clarify the relationship among sequence, tridimensional structure, and biological function. In the last decade, the application of single-molecule fluorescence resonance energy transfer (sm-FRET) techniques to investigate RNA structure and folding has revealed the details of conformational changes and timescale of the process leading to the formation of biologically active RNA structures with subnanometer resolution on millisecond timescales. In this review, we initially summarize the first wave of single-molecule FRET-based RNA techniques that focused on analyzing the influence of mono- and divalent metal ions on RNA function, and how these studies have provided very valuable information about folding pathways and the presence of intermediate and low-populated states. Next, we describe a second generation of single-molecule techniques that combine sm-FRET with the use of chemical denaturants as an emerging powerful approach to reveal information about the dynamics and energetics of RNA folding that remains hidden using conventional sm-FRET approaches. The main advantages of using the competing interplay between folding agents such as metal ions and denaturants to observe and manipulate the dynamics of RNA folding and RNA-ligand interactions is discussed in the context of the adenine riboswitch aptamer.
Collapse
Affiliation(s)
- Euan Shaw
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Daniel A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom; Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, United Kingdom.
| |
Collapse
|
17
|
Hong S, Harris KA, Fanning KD, Sarachan KL, Frohlich KM, Agris PF. Evidence That Antibiotics Bind to Human Mitochondrial Ribosomal RNA Has Implications for Aminoglycoside Toxicity. J Biol Chem 2015; 290:19273-86. [PMID: 26060252 DOI: 10.1074/jbc.m115.655092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/11/2022] Open
Abstract
Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3-1.7 and 4.0-5.4 μM, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity.
Collapse
Affiliation(s)
- Seoyeon Hong
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kimberly A Harris
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kathryn D Fanning
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kathryn L Sarachan
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kyla M Frohlich
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Paul F Agris
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| |
Collapse
|
18
|
Unlocked nucleic acids: implications of increased conformational flexibility for RNA/DNA triplex formation. Biochem J 2015; 464:203-11. [PMID: 25226286 DOI: 10.1042/bj20141023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unlocked nucleic acids (UNAs) have been introduced at specific positions in short model DNA hairpins and RNA/DNA triplexes for the first time. UNA residues destabilize the hairpins and decrease triplex thermodynamic stability or suppress triplex formation for most of the evaluated structures. Nevertheless, the incorporation of UNA residues at certain positions of dsDNA was found to be energetically favourable or at least did not affect triplex stability. Notably, the most thermodynamically stable UNA-modified triplexes exhibited improved stability at both acidic and physiological pH. The specificity of the interactions between the triplex-forming oligonucleotide and dsDNA was characterized using EMSA for the most thermodynamically stable structures, and triplex dissociation constants were determined. One of the modified triplexes exhibited an improved Kd in comparison with the unmodified triplex. CD and thermal difference spectra indicated that UNA residues do not alter the overall structure of the most thermodynamically stable triplexes. In addition, incubation of the modified oligonucleotides with human serum indicated that the UNAs demonstrate the potential to improve the biological stability of nucleic acids.
Collapse
|
19
|
Dalgarno PA, Bordello J, Morris R, St-Pierre P, Dubé A, Samuel IDW, Lafontaine DA, Penedo JC. Single-molecule chemical denaturation of riboswitches. Nucleic Acids Res 2013; 41:4253-65. [PMID: 23446276 PMCID: PMC3627600 DOI: 10.1093/nar/gkt128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To date, single-molecule RNA science has been developed almost exclusively around the effect of metal ions as folding promoters and stabilizers of the RNA structure. Here, we introduce a novel strategy that combines single-molecule Förster resonance energy transfer (FRET) and chemical denaturation to observe and manipulate RNA dynamics. We demonstrate that the competing interplay between metal ions and denaturant agents provides a platform to extract information that otherwise will remain hidden with current methods. Using the adenine-sensing riboswitch aptamer as a model, we provide strong evidence for a rate-limiting folding step of the aptamer domain being modulated through ligand binding, a feature that is important for regulation of the controlled gene. In the absence of ligand, the rate-determining step is dominated by the formation of long-range key tertiary contacts between peripheral stem-loop elements. In contrast, when the adenine ligand interacts with partially folded messenger RNAs, the aptamer requires specifically bound Mg2+ ions, as those observed in the crystal structure, to progress further towards the native form. Moreover, despite that the ligand-free and ligand-bound states are indistinguishable by FRET, their different stability against urea-induced denaturation allowed us to discriminate them, even when they coexist within a single FRET trajectory; a feature not accessible by existing methods.
Collapse
Affiliation(s)
- Paul A Dalgarno
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cantara WA, Bilbille Y, Kim J, Kaiser R, Leszczyńska G, Malkiewicz A, Agris PF. Modifications Modulate Anticodon Loop Dynamics and Codon Recognition of E. coli tRNAArg1,2. J Mol Biol 2012; 416:579-97. [DOI: 10.1016/j.jmb.2011.12.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 12/13/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
|
21
|
Blose JM, Pabit SA, Meisburger SP, Li L, Jones CD, Pollack L. Effects of a protecting osmolyte on the ion atmosphere surrounding DNA duplexes. Biochemistry 2011; 50:8540-7. [PMID: 21882885 DOI: 10.1021/bi200710m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osmolytes are small, chemically diverse, organic solutes that function as an essential component of cellular stress response. Protecting osmolytes enhance protein stability via preferential exclusion, and nonprotecting osmolytes, such as urea, destabilize protein structures. Although much is known about osmolyte effects on proteins, less is understood about osmolyte effects on nucleic acids and their counterion atmospheres. Nonprotecting osmolytes destabilize nucleic acid structures, but effects of protecting osmolytes depend on numerous factors including the type of nucleic acid and the complexity of the functional fold. To begin quantifying protecting osmolyte effects on nucleic acid interactions, we used small-angle X-ray scattering (SAXS) techniques to monitor DNA duplexes in the presence of sucrose. This protecting osmolyte is a commonly used contrast matching agent in SAXS studies of protein-nucleic acid complexes; thus, it is important to characterize interaction changes induced by sucrose. Measurements of interactions between duplexes showed no dependence on the presence of up to 30% sucrose, except under high Mg(2+) conditions where stacking interactions were disfavored. The number of excess ions associated with DNA duplexes, reported by anomalous small-angle X-ray scattering (ASAXS) experiments, was sucrose independent. Although protecting osmolytes can destabilize secondary structures, our results suggest that ion atmospheres of individual duplexes remain unperturbed by sucrose.
Collapse
Affiliation(s)
- Joshua M Blose
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | | | |
Collapse
|
22
|
Mullen MA, Olson KJ, Dallaire P, Major F, Assmann SM, Bevilacqua PC. RNA G-Quadruplexes in the model plant species Arabidopsis thaliana: prevalence and possible functional roles. Nucleic Acids Res 2010; 38:8149-63. [PMID: 20860998 PMCID: PMC3001093 DOI: 10.1093/nar/gkq804] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 01/25/2023] Open
Abstract
Tandem stretches of guanines can associate in hydrogen-bonded arrays to form G-quadruplexes, which are stabilized by K(+) ions. Using computational methods, we searched for G-Quadruplex Sequence (GQS) patterns in the model plant species Arabidopsis thaliana. We found ∼ 1200 GQS with a G(3) repeat sequence motif, most of which are located in the intergenic region. Using a Markov modeled genome, we determined that GQS are significantly underrepresented in the genome. Additionally, we found ∼ 43,000 GQS with a G(2) repeat sequence motif; notably, 80% of these were located in genic regions, suggesting that these sequences may fold at the RNA level. Gene Ontology functional analysis revealed that GQS are overrepresented in genes encoding proteins of certain functional categories, including enzyme activity. Conversely, GQS are underrepresented in other categories of genes, notably those for non-coding RNAs such as tRNAs and rRNAs. We also find that genes that are differentially regulated by drought are significantly more likely to contain a GQS. CD-detected K(+) titrations performed on representative RNAs verified formation of quadruplexes at physiological K(+) concentrations. Overall, this study indicates that GQS are present at unique locations in Arabidopsis and that folding of RNA GQS may play important roles in regulating gene expression.
Collapse
Affiliation(s)
- Melissa A. Mullen
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Kalee J. Olson
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Paul Dallaire
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - François Major
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Sarah M. Assmann
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Philip C. Bevilacqua
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|