1
|
Ciliberti MG, Albenzio M, Sevi A, Frabboni L, Marino R, Caroprese M. Immunomodulatory Role of Rosmarinus officinalis L., Mentha x piperita L., and Lavandula angustifolia L. Essential Oils in Sheep Peripheral Blood Mononuclear Cells. Vet Sci 2024; 11:157. [PMID: 38668424 PMCID: PMC11054635 DOI: 10.3390/vetsci11040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Recently, the uses of essential oils (EOs) as rumen modifiers, anti-inflammatory agents, and antioxidants were demonstrated in livestock. In the present study, the role of Mentha x piperita L. (MEO), Rosmarinus officinalis L. (REO), and Lavandula angustifolia L. (LEO) EOs in an in vitro sheep model of inflammation was investigated. With this aim, peripheral blood mononuclear cells (PBMCs) were treated with incremental concentrations (3, 5, 7, and 10%) of each EO to test their effects on cell viability and proliferation and on interleukin (IL)-6, IL-10, and IL-8 secretion. The PBMCs were stimulated by Concanavalin A (ConA) alone or in combination with lipopolysaccharide (LPS) mitogen. The positive and negative controls were represented by PBMCs in the presence or absence, respectively, of mitogens only. The cell viability and proliferation were determined by XTT and BrdU assays, while the cytokines were analyzed by ELISA. The EO treatments did not affect the viability; on the contrary, the PBMC proliferation increased in presence of all the EOs tested, according to the different percentages and mitogens used. The IL-10 secretion was higher in both the REO and the LEO tested at 3% than in the positive control; furthermore, the IL-8 level was influenced differently by the various EOs. The present data demonstrate that EOs may modulate the immune response activated by inflammation.
Collapse
Affiliation(s)
- Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (M.A.); (A.S.); (L.F.); (R.M.); (M.C.)
| | | | | | | | | | | |
Collapse
|
2
|
Wan Z, Chen YF, Pan Q, Wang Y, Yuan S, Chin HY, Wu HH, Lin WT, Cheng PY, Yang YJ, Wang YF, Kumta SM, Lee CW, Lee OKS. Single-cell transcriptome analysis reveals the effectiveness of cytokine priming irrespective of heterogeneity in mesenchymal stromal cells. Cytotherapy 2023; 25:1155-1166. [PMID: 37715776 DOI: 10.1016/j.jcyt.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are recognized as a potential cell-based therapy for regenerative medicine. Short-term inflammatory cytokine pre-stimulation (cytokine priming) is a promising approach to enhance regenerative efficacy of MSCs. However, it is unclear whether their intrinsic heterogenic nature causes an unequal response to cytokine priming, which might blunt the accessibility of clinical applications. METHODS In this study, by analyzing the single-cell transcriptomic landscape of human bone marrow MSCs from a naïve to cytokine-primed state, we elucidated the potential mechanism of superior therapeutic potential in cytokine-primed MSCs. RESULTS We found that cytokine-primed MSCs had a distinct transcriptome landscape. Although substantial heterogeneity was identified within the population in both naïve and primed states, cytokine priming enhanced the several characteristics of MSCs associated with therapeutic efficacy irrespective of heterogeneity. After cytokine-priming, all sub-clusters of MSCs possessed high levels of immunoregulatory molecules, trophic factors, stemness-related genes, anti-apoptosis markers and low levels of multi-lineage and senescence signatures, which are critical for their therapeutic potency. CONCLUSIONS In conclusion, our results provide new insights into MSC heterogeneity under cytokine stimulation and suggest that cytokine priming reprogrammed MSCs independent of heterogeneity.
Collapse
Affiliation(s)
- Zihao Wan
- Department of Orthopaedics and Limb Reconstruction/Paediatric Orthopaedics, South China Hospital of Shenzhen University, Shenzhen, China; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Hospital Authority, Hong Kong SAR, China
| | - Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Qi Pan
- Department of Orthopaedics and Limb Reconstruction/Paediatric Orthopaedics, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yiwei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hui Yen Chin
- Hong Kong Hub of Paediatric Excellence, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao-Hsiang Wu
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Ting Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Po-Yu Cheng
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Jung Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shekhar Madhukar Kumta
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Gianulis E, Wetzell B, Scheunemann D, Gazzolo P, Sohoni P, Moore MA, Chen J. Characterization of an advanced viable bone allograft with preserved native bone-forming cells. Cell Tissue Bank 2023; 24:417-434. [PMID: 36434165 PMCID: PMC10209280 DOI: 10.1007/s10561-022-10044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022]
Abstract
Bone grafts are widely used to successfully restore structure and function to patients with a broad range of musculoskeletal ailments and bone defects. Autogenous bone grafts are historically preferred because they theoretically contain the three essential components of bone healing (ie, osteoconductivity, osteoinductivity, and osteogenicity), but they have inherent limitations. Allograft bone derived from deceased human donors is one alternative that is also capable of providing both an osteoconductive scaffold and osteoinductive potential but, until recently, lacked the osteogenic component of bone healing. Relatively new, cellular bone allografts (CBAs) were designed to address this need by preserving viable cells. Although most commercially-available CBAs feature mesenchymal stem cells (MSCs), osteogenic differentiation is time-consuming and complex. A more advanced graft, a viable bone allograft (VBA), was thus developed to preserve lineage-committed bone-forming cells, which may be more suitable than MSCs to promote bone fusion. The purpose of this paper was to present the results of preclinical research characterizing VBA. Through a comprehensive series of in vitro and in vivo assays, the present results demonstrate that VBA in its final form is capable of providing all three essential bone remodeling properties and contains viable lineage-committed bone-forming cells, which do not elicit an immune response. The results are discussed in the context of clinical evidence published to date that further supports VBA as a potential alternative to autograft without the associated drawbacks.
Collapse
Affiliation(s)
- Elena Gianulis
- Global Scientific Affairs and Clinical Engagement, LifeNet Health®, 1864 Concert Dr., Virginia Beach, VA 23453 USA
| | - Bradley Wetzell
- Global Scientific Affairs and Clinical Engagement, LifeNet Health®, 1864 Concert Dr., Virginia Beach, VA 23453 USA
| | - Danielle Scheunemann
- Global Scientific Affairs and Clinical Engagement, LifeNet Health®, 1864 Concert Dr., Virginia Beach, VA 23453 USA
| | - Patrick Gazzolo
- Global Spine and General Orthopedics, LifeNet Health®, Virginia Beach, VA USA
| | - Payal Sohoni
- Global Trauma and CMF, LifeNet Health®, Virginia Beach, VA USA
| | - Mark A. Moore
- Global Scientific Affairs and Clinical Engagement, LifeNet Health®, 1864 Concert Dr., Virginia Beach, VA 23453 USA
| | - Jingsong Chen
- Institute of Regenerative Medicine, LifeNet Health®, Virginia Beach, VA USA
| |
Collapse
|
4
|
Wattrang E, Lundén A, Ibrahim O, Dalgaard TS. Phenotypic characterization of Eimeria tenella-specific chicken T-cells responding to in vitro parasite antigen re-stimulation. J Med Microbiol 2023; 72. [PMID: 36748566 DOI: 10.1099/jmm.0.001650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction. Coccidiosis, caused by protozoan parasites of genus Eimeria, is a disease with large impact on poultry production worldwide. It is well known that Eimeria immunity is dependent on Th1-type responses.Gap Statement. In vitro assessment of Eimeria-specific T-cell activity would therefore be a valuable research tool but has so far proven difficult to establish.Aim. The present study aimed to evaluate in vitro induced blast transformation and CD25 expression in defined chicken T-cell populations as a measure of Eimeria immunity.Methodology. Three E. tenella infection experiments were performed and PBMC and/or spleen cells were collected between 6 and 16 days after infection of chickens. Cells were stimulated in vitro with E. tenella antigens and T-cell activation was assessed by immunofluorescence labelling and flow cytometry.Results. The results consistently showed statistically significant E. tenella specific activation of TCRα/β+T cells within a 'window' from 8 to 14 days after infection for both spleen cells and PBMC. Responding T-cells were identified as CD4+CD8-, CD4+CD8αα+ and CD4-CD8αβ+ where the CD4+CD8αα+ cells generally showed the highest responses. All three of these TCRα/βT-cell subsets showed significant E. tenella induced blast transformation and/or CD25 expression albeit not always in concert on the same days after infection indicating complex kinetics of T-cell responses. In general, responses were higher for spleen cells compared to PBMC for all responding T-cell populations.Conclusions. This methodology shows promise to study Eimeria-specific T-cells, e.g. to evaluate vaccine responses. Results indicated that a Th1-type response was induced and suggested a role for CD4+CD8αα+ cells in Eimeria immunity.
Collapse
Affiliation(s)
- Eva Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Osama Ibrahim
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | | |
Collapse
|
5
|
Depuydt E, Broeckx SY, Chiers K, Patruno M, Da Dalt L, Duchateau L, Saunders J, Pille F, Martens A, Van Hecke L, Spaas JH. Cellular and Humoral Immunogenicity Investigation of Single and Repeated Allogeneic Tenogenic Primed Mesenchymal Stem Cell Treatments in Horses Suffering From Tendon Injuries. Front Vet Sci 2022; 8:789293. [PMID: 35281431 PMCID: PMC8907452 DOI: 10.3389/fvets.2021.789293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for the treatment of equine tendon disease is widely investigated because of their regenerative and immunomodulatory potential. However, questions have been raised concerning the immunogenic properties of allogeneic MSCs. Therefore, two studies were conducted to assess the safety of equine allogeneic peripheral blood-derived tenogenic primed MSCs (tpMSCs). The objective was to evaluate if a single and repeated tpMSC administration induced a cellular and humoral immune response in horses suffering from tendon injuries. Horses enrolled in the first study (n = 8) had a surgically induced superficial digital flexor tendon core lesion and were treated intralesionally with tpMSCs. Before and after treatment the cellular immunogenicity was assessed by modified mixed lymphocyte reactions. The humoral immune response was investigated using a crossmatch assay. Presence of anti-bovine serum albumin (BSA) antibodies was detected via ELISA. Horses enrolled in the second study (n = 6) suffered from a naturally occurring tendon injury and were treated twice with tpMSCs. Blood was collected after the second treatment for the same immunological assays. No cellular immune response was found in any of the horses. One out of eight horses in the first study and none of the horses in the second study had anti-tpMSC antibodies. This particular horse had an equine sarcoid and further investigation revealed presence of antibodies against sarcoid cells and epithelial-like stem cells before treatment, which increased after treatment. Additionally, formation of antibodies against BSA was observed. These findings might indicate a non-specific immune response generated after treatment. Serum from the other horses revealed no such antibody formation. These two studies showed that the administration of tpMSCs did not induce a cellular or humoral immune response following an intralesional single or repeated (two consecutive) allogeneic tpMSC treatment in horses with tendon injury, except for one horse. Therefore, a larger field study should confirm these findings and support the safe use of tpMSCs as a therapeutic for horses suffering from tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y. Broeckx
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Jan H. Spaas
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
Hao X, Zhang F, Yang Y, Shang S. The Evaluation of Cellular Immunity to Avian Viral Diseases: Methods, Applications, and Challenges. Front Microbiol 2021; 12:794514. [PMID: 34950125 PMCID: PMC8689181 DOI: 10.3389/fmicb.2021.794514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Cellular immune responses play critical roles in the control of viral infection. However, the immune protection against avian viral diseases (AVDs), a major challenge to poultry industry, is yet mainly evaluated by measuring humoral immune response though antibody-independent immune protection was increasingly evident in the development of vaccines against some of these diseases. The evaluation of cellular immune response to avian viral infection has long been neglected due to limited reagents and methods. Recently, with the availability of more immunological reagents and validated approaches, the evaluation of cellular immunity has become feasible and necessary for AVD. Herein, we reviewed the methods used for evaluating T cell immunity in chickens following infection or vaccination, which are involved in the definition of different cellular subset, the analysis of T cell activation, proliferation and cytokine secretion, and in vitro culture of antigen-presenting cells (APC) and T cells. The pros and cons of each method were discussed, and potential future directions to enhance the studies of avian cellular immunity were suggested. The methodological improvement and standardization in analyzing cellular immune response in birds after viral infection or vaccination would facilitate the dissection of mechanism of immune protection and the development of novel vaccines and therapeutics against AVD.
Collapse
Affiliation(s)
- Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Fan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Hunter TTJ, Fear D, Lavender P, Spencer J, Peakman M, Ibrahim MAA. Quantitative assessment of NFκB transcription factor activity. J Immunol Methods 2021; 492:112954. [PMID: 33388338 DOI: 10.1016/j.jim.2020.112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022]
Abstract
The Nuclear Factor Kappa B (NFκB) pathway is an important signalling pathway in the immune system. Single gene defects in the NFκB pathway are described in a number of immunodeficiency diseases. These conditions provide a unique opportunity to investigate the mechanisms of NFκB function and how genetic mutations that disrupt this function lead to human disease. Here we describe a robust method for quantifying small differences in the functional activity of the NFκB pathway. Peripheral blood mononuclear cells from healthy donors were stimulated over several days, with a combination of anti-IgM antibody and multimeric CD40 ligand. Nuclear proteins were thereafter extracted and tested for the ability of activated transcription factors, to bind known NFκB DNA binding motifs. Repeatability experiments showed that the DNA binding Activity can be quantified with an average inter and intra assay coefficient of variation of less than 10% (RelB and p52) and less than 15% (p50 and RelA). In healthy individuals there is a significant increase in the DNA binding activity of NFκB transcription factors in response to stimulation, although the magnitude of this response varies across individuals. The kinetics of the DNA binding activity also differs between the canonical and non-canonical transcription factors. P50 and RelA DNA binding activity responds within hours of stimulation, whilst RelB and p52 response was delayed to more than a day after stimulation. Activation of NFκB signalling in response to B cell specific stimulation, can be precisely measured to distinguish individuals with differences in the functional activity of this pathway. This test may prove to be an important biomarker for investigating the functional impact of genetic variants on NFκB signalling.
Collapse
Affiliation(s)
- Terrence T J Hunter
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Immunology & Microbial Sciences, Denmark Hill, London, UK; Viapath LLP, King's College Hospital, Denmark Hill, London, UK
| | - David Fear
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Paul Lavender
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Jo Spencer
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Mark Peakman
- Immunobiology, School of Immunology & Microbial Sciences, King's College London, UK
| | - Mohammad A A Ibrahim
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Immunology & Microbial Sciences, Denmark Hill, London, UK.
| |
Collapse
|
8
|
Khanolkar A, Wilks JD, Liu G, Simpson BM, Caparelli EA, Kirschmann DA, Bergerson J, Fuleihan RL. A case of aberrant CD8 T cell-restricted IL-7 signaling with a Janus kinase 3 defect-associated atypical severe combined immunodeficiency. Immunol Res 2020; 68:13-27. [PMID: 32215810 DOI: 10.1007/s12026-020-09123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Severe combined immunodeficiency (SCID) disorders compromise lymphocyte numbers and/or function. One subset of SCID typically affects T cell and Natural Killer (NK) cell development in tandem (T-B+NK-) due to mutations arising in the genes encoding the common γ chain or Janus Kinase 3 (JAK3). In rare circumstances, mutations in the JAK3 gene have been reported to cause atypical SCID that selectively affects T cells (T-B+NK+). Here we describe a case involving a female infant who was referred to our institution on day nine of life following an abnormal newborn screen result for T-SCID. Immunological assessments revealed a T-B+NK+ phenotype and molecular analyses, including whole exome sequencing, identified compound heterozygous JAK3 variants (R117C and E658K). Pre-transplant phosflow analyses revealed a persistent IL-7 signaling defect, based on phospho-STAT5 measurements, only in CD8 but not CD4 T cells. Intriguingly, phospho-STAT5 signals in response to IL-2 stimulation were not affected in either CD4 or CD8 T cells. The pre-transplant clinical course was unremarkable, and the patient received a cord-blood stem cell transplant on day 716 of life. Post-transplant monitoring revealed that despite normalization of lymphocyte counts, the CD8 T cell-restricted IL-7 signaling defect was still evident at day 627 post-transplant (phospho-STAT5 signal in CD8 T cells was > 60% reduced compared with CD4 T cells). The post-transplant clinical course has also been complicated by identification of autoimmune responses and likely GVHD-induced ichthyosis. To the best of our knowledge, this report represents the third case of JAK3-associated atypical SCID reported in the literature.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA. .,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Chicago, IL, 60611, USA.
| | - Jeffrey D Wilks
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Guorong Liu
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Bridget M Simpson
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Edward A Caparelli
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Dawn A Kirschmann
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Jenna Bergerson
- Department of Pediatrics, Division of Allergy and Immunology, Feinberg School of Medicine, Chicago, IL, 60611, USA.,Primary Immunodeficiency Clinic, NIH/NIAID, 9000 Rockville Pike, Bldg. 10, Room 11N244A MSC 1960, Bethesda, MD, 20892, USA
| | - Ramsay L Fuleihan
- Department of Pediatrics, Division of Allergy and Immunology, Feinberg School of Medicine, Chicago, IL, 60611, USA.,Division of Allergy & Immunology, Sidra Medicine, Doha, Qatar
| |
Collapse
|
9
|
Eleftheriadis T, Pissas G, Mavropoulos A, Nikolaou E, Filippidis G, Liakopoulos V, Stefanidis I. In Mixed Lymphocyte Reaction, the Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitor Roxadustat Suppresses Cellular and Humoral Alloimmunity. Arch Immunol Ther Exp (Warsz) 2020; 68:31. [PMID: 33011826 DOI: 10.1007/s00005-020-00596-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Hypoxia-inducible factor (HIF) prolyl-hydroxylase inhibitors are currently used for the treatment of renal anemia. Since HIF affects immune cells, we evaluated the effect of such a drug, the roxadustat, on adaptive immunity. Cell proliferation was assessed in a two-way mixed lymphocyte reaction (MLR) with BrdU assay. In CD4+ T cells isolated from the two-way MLRs, western blotting was performed to detect the impact of roxadustat on HIF-1α and HIF-2α, the apoptotic marker cleaved caspase-3, and the master transcription factors of CD4+ T cells differentiation towards Th1, Th2, Th17, Treg and Tfh subsets. The signature cytokines of the above CD4+ T-cell subsets IFN-γ, IL-4, IL-17, IL-10, and IL-21 were measured in the supernatants. For assessing humoral immunity, we developed a suitable antibody-mediated complement-dependent cytotoxicity assay. Roxadustat stabilized HIF-1α and HIF-2α, suppressed cell proliferation, inhibited CD4+ T-cell differentiation into Th1 and Th17 subsets, while it favored differentiation towards Th2, Treg and Tfh. Roxadustat suppressed humoral immunity too. These immunosuppressive properties of roxadustat indicate that the recently introduced HIF prolyl-hydroxylase inhibitors in medical therapeutics may render the patients vulnerable to infections. This possibility should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece.
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Evdokia Nikolaou
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| |
Collapse
|
10
|
Abstract
Intracellular cytokine staining (ICS) utilizing fluorescently labeled, cytokine-specific antibodies is a powerful technique utilized to evaluate cytokine expression that provides resolution at the single cell level. Combined with multi-parameter flow cytometry, ICS can provide detailed information on complex cytokine profiles and cellular phenotypes within the tumor microenvironment, particularly for the CD4+ T helper and CD8+ cytotoxic T cell compartments. This technique provides critical information concerning tumor-infiltrating T cell function that is essential for evaluating existing or therapeutically-induced tumor antigen-specific T cell responses in both preclinical models and cancer patients. In this chapter we will discuss in detail the critical steps necessary for a successful ICS assay and outline common protocols for the evaluation of cytokine production from T cell subsets present within the tumor microenvironment.
Collapse
|
11
|
Peripheral blood mononuclear cellular viability and its correlation with long-term pulmonary complications after sulfur mustard exposure. Int Immunopharmacol 2019; 76:105814. [PMID: 31493666 DOI: 10.1016/j.intimp.2019.105814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Sulfur mustard (SM) as a chemical warfare agent has short- and long-term complications on its victims. Complications of exposure to SM depend on the level of contamination. Long-term pulmonary complications are the most serious problems. Recent evidence has shown that absorbed SM can be conducted to other tissues by the bloodstream. In this study, we evaluated the long-term effects of SM on the vital activity of peripheral blood mononuclear cells (PBMCs) in SM-exposed patients with long-term pulmonary complications. MATERIALS AND METHODS Our study samples were 110 patients with long-term pulmonary complications in the SM-exposed group and 109 unexposed individuals in the control group. After clinical examination and pulmonary function tests, the severity of pulmonary complications was classified. Also, the participants' peripheral blood was taken into EDTA-treated Vacutainer tubes. Then, the complete blood count (CBC) was calculated, and PBMCs was purified from whole blood using Ficol-Paque gradient method, finally, the vital activity was assessed by MTT assay. RESULT The vital activity of PBMCs in the SM-exposed group with the mitogen was significantly lower than that in the control group (P = 0.016). Whereas, there was no significant difference in the viability of PBMCs without the mitogen between two groups. Furthermore, hematologic findings indicated that the SM-exposed group had a significant increase in the total count of WBC, neutrophil, MCV, and HCT values but the lymphocyte count and MCHC value were significantly lower than those in the control group. CONCLUSION Exposure to SM even after a long time, can affect hematologic parameters and vital activity of PBMCs.
Collapse
|
12
|
Gharbavi M, Manjili HK, Amani J, Sharafi A, Danafar H. In vivo and in vitro biocompatibility study of novel microemulsion hybridized with bovine serum albumin as nanocarrier for drug delivery. Heliyon 2019; 5:e01858. [PMID: 31198875 PMCID: PMC6556858 DOI: 10.1016/j.heliyon.2019.e01858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to synthesize triacetin-microemulsion (T-ME) and T-ME hybridized with bovine serum albumin nanoparticles (T-BSA-ME) having narrow particle size distribution and versatile carrier systems as a novel microemulsion system. The suggested ME system was characterized by Fourier Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Atomic Force Microscopy (AFM). The physicochemical properties of microemulsion system including particle size, PDI and ζ-potential, refractive index, Conductivity, %Transmittance, pH, and rheological behavior were also evaluated. In vivo biocompatibility was done using Median Lethal Dose (LD 50) calculated and trialed to evaluate the acute toxicity. In Addition, hemolysis and leukocyte proliferation assay were characterized to evaluate in-vitro biocompatibility of the suggested MEs systems. Moreover, cytotoxicity of MEs systems was also investigated on HFF-2 and HEK-293 cells. The presence of BSA NPs as a macromolecular biomaterial hybridized with T-ME reduced the cytotoxicity. The properties of the suggested MEs system proposed the T-ME hybridized with BSA-NPs as a promising candidate for co-delivery and multifunctional biomedicine applications.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamidreza Kheiri Manjili
- Pharmaceutical Nanotechnology Department, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Kaplan BLF. Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis. CURRENT PROTOCOLS IN TOXICOLOGY 2018; 75:11.25.1-11.25.22. [PMID: 29512125 DOI: 10.1002/cptx.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one's ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
14
|
Khanolkar A, Kirschmann DA, Caparelli EA, Wilks JD, Cerullo JM, Bergerson JRE, Jennings LJ, Fuleihan RL. CD4 T cell-restricted IL-2 signaling defect in a patient with a novel IFNGR1 deficiency. J Allergy Clin Immunol 2018; 141:435-439.e7. [PMID: 28927822 DOI: 10.1016/j.jaci.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Ill; Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill.
| | - Dawn A Kirschmann
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Edward A Caparelli
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Jeffrey D Wilks
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Jillian M Cerullo
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Jenna R E Bergerson
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Chicago, Ill; Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Lawrence J Jennings
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Ramsay L Fuleihan
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Chicago, Ill; Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| |
Collapse
|
15
|
Kumar A, Bezbradica JS, Stanic AK, Joyce S. Characterization and Functional Analysis of Mouse Semi-invariant Natural T Cells. ACTA ACUST UNITED AC 2017; 117:14.13.1-14.13.55. [PMID: 28369682 DOI: 10.1002/cpim.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Semi-invariant natural killer T (iNKT) cells are CD1d-restricted innate-like lymphocytes that recognize lipid agonists. Activated iNKT cells have immunoregulatory properties. Human and mouse iNKT cell functions elicited by different glycolipid agonists are highly conserved, making the mouse an excellent animal model for understanding iNKT cell biology in vivo. This unit describes basic methods for the characterization and quantification (see Basic Protocol 1) and functional analysis of mouse iNKT cells in vivo or in vitro. This unit also contains protocols that describe enrichment and purification of iNKT cells, generation of CD1d tetramer, and lipid antigen loading onto cell-bound and soluble CD1d for activation of NKT cell hybridomas. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Sebastian Joyce
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
16
|
Su KY, Watanabe A, Yeh CH, Kelsoe G, Kuraoka M. Efficient Culture of Human Naive and Memory B Cells for Use as APCs. THE JOURNAL OF IMMUNOLOGY 2016; 197:4163-4176. [PMID: 27815447 DOI: 10.4049/jimmunol.1502193] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B cell culture is the capacity to support mature B cell proliferation. We developed a culture method to support the efficient activation and proliferation of naive and memory human B cells. This culture supports extensive B cell proliferation, with ∼103-fold increases following 8 d in culture and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naive B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved and, when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHC class II, CD80, and CD86. CD B cells act as APCs and present alloantigens and microbial Ags to T cells. We are able to activate and expand Ag-specific memory B cells; these cultured cells are highly effective in presenting Ag to T cells. We characterized the TCR repertoire of rare Ag-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual.
Collapse
Affiliation(s)
- Kuei-Ying Su
- Department of Immunology, Duke University, Durham, NC 27710.,Tzu Chi Medical Center, Hualien 970, Taiwan; and
| | - Akiko Watanabe
- Department of Immunology, Duke University, Durham, NC 27710
| | - Chen-Hao Yeh
- Department of Immunology, Duke University, Durham, NC 27710
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710; .,Human Vaccine Institute, Duke University, Durham, NC 27710
| | | |
Collapse
|
17
|
Luo WH, Yang YW. Activation of Antigen-Specific CD8(+) T Cells by Poly-DL-Lactide/Glycolide (PLGA) Nanoparticle-Primed Gr-1(high) Cells. Pharm Res 2015; 33:942-55. [PMID: 26715415 DOI: 10.1007/s11095-015-1840-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. METHODS PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. RESULTS Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. CONCLUSION This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.
Collapse
Affiliation(s)
- Wen-Hui Luo
- School of Pharmacy, College of Medicine, National Taiwan University, 33 Linsen South Road, Taipei City, 10050, Taiwan
| | - Ya-Wun Yang
- School of Pharmacy, College of Medicine, National Taiwan University, 33 Linsen South Road, Taipei City, 10050, Taiwan.
| |
Collapse
|
18
|
Hsu PJ, Liu KJ, Chao YY, Sytwu HK, Yen BL. Assessment of the Immunomodulatory Properties of Human Mesenchymal Stem Cells (MSCs). J Vis Exp 2015:e53265. [PMID: 26780482 PMCID: PMC4758772 DOI: 10.3791/53265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The immunomodulatory properties of multilineage human mesenchymal stem cells (MSCs) appear to be highly relevant for clinical use towards a wide-range of immune-related diseases. Mechanisms involved are increasingly being elucidated and in this article, we describe the basic experiment to assess MSC immunomodulation by assaying for suppression of effector leukocyte proliferation. Representing activation, leukocyte proliferation can be assessed by a number of techniques, and we describe in this protocol the use of the fluorescent cellular dye carboxyfluorescein succinimidyl ester (CFSE) to label leukocytes with subsequent flow cytometric analyses. This technique can not only assess proliferation without radioactivity, but also the number of cell divisions that have occurred as well as allowing for identification of the specific population of proliferating cells and intracellular cytokine/factor expression. Moreover, the assay can be tailored to evaluate specific populations of effector leukocytes by magnetic bead surface marker selection of single peripheral blood mononuclear cell populations prior to co-culture with MSCs. The flexibility of this co-culture assay is useful for investigating cellular interactions between MSCs and leukocytes.
Collapse
Affiliation(s)
- Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI)
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes (NHRI)
| | - Ying-Yin Chao
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI)
| | - Huey-Kang Sytwu
- Institute of Microbiology & Immunology, National Defense Medical Center
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI);
| |
Collapse
|
19
|
Yin Y, Mitson-Salazar A, Prussin C. Detection of Intracellular Cytokines by Flow Cytometry. ACTA ACUST UNITED AC 2015; 110:6.24.1-6.24.18. [PMID: 26237012 DOI: 10.1002/0471142735.im0624s110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intracellular cytokine staining (ICCS), employing fluorescently labeled MAbs detected by flow cytometry, has emerged as the premier technique for studying cytokine expression at the single-cell level. Advances in polychromatic flow cytometry have dramatically enhanced the sophistication of ICCS investigations. ICCS can simultaneously measure multiple cytokines within a single cell, allowing the detection of complex cytokine phenotypes. Additionally, cytokines can be measured with a variety of other analytes, including transcription factors, proliferation dilution dyes, activation markers, and viability dyes. This capability, combined with the high throughput inherent in the instrumentation, gives ICCS an enormous advantage over other single-cell techniques such as ELISPOT, limiting dilution, and T cell cloning. The unit describes intracellular staining of cells that have already been stimulated in vitro and fixed. Methods for in vitro activation by PMA and ionomycin or antigens, fixation of cell suspensions, and cell surface staining are also described.
Collapse
Affiliation(s)
- Yuzhi Yin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alyssa Mitson-Salazar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Yale School of Medicine, New Haven, Connecticut
| | - Calman Prussin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Khanolkar A, Wilks JD, Jennings LJ, Davies JL, Zollett JA, Lott LL, Fullmer ER, Bensen NE, Carlson-Leuer KM, Tse WT, Fuleihan RL. Signaling impairments in maternal T cells engrafted in an infant with a novel IL-2 receptor γ mutation. J Allergy Clin Immunol 2015; 135:1093-1096.e8. [DOI: 10.1016/j.jaci.2015.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/08/2015] [Accepted: 02/11/2015] [Indexed: 01/01/2023]
|
21
|
Bostock IC, Furuzawa-Carballeda J, Gómez-Martín D, Lima G, Martin-Onraët A, Sierra J, Uribe-Uribe NO, Vilatobá M, Contreras AG, Gabilondo B, Morales-Buenrostro LE, Alberú J. Renal transplant recipient with advanced HIV infection: graft and peripheral cell population analysis. Clin Case Rep 2014; 1:79-85. [PMID: 25356218 PMCID: PMC4184755 DOI: 10.1002/ccr3.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/01/2013] [Accepted: 10/10/2013] [Indexed: 12/02/2022] Open
Abstract
The scenario of a renal transplant recipient who is diagnosed with HIV infection in the late post transplant period is very uncommon. The viral infection effect on immunologic stability, regulatory cells, and allogeneic response during immune quiescence and graft acceptance provides a fertile ground in organ transplantation research and translational immunology.
Collapse
Affiliation(s)
- Ian C Bostock
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Guadalupe Lima
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Alexandra Martin-Onraët
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Juan Sierra
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Norma O Uribe-Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Mario Vilatobá
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Alan G Contreras
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Bernardo Gabilondo
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Luis E Morales-Buenrostro
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| | - Josefina Alberú
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Vasco de Quiroga No. 15 Col. Sección XVI, Mexico City, Mexico
| |
Collapse
|
22
|
Schnabel LV, Abratte CM, Schimenti JC, Felippe MJB, Cassano JM, Southard TL, Cross JA, Fortier LA. Induced pluripotent stem cells have similar immunogenic and more potent immunomodulatory properties compared with bone marrow-derived stromal cells in vitro. Regen Med 2014; 9:621-35. [PMID: 24773530 PMCID: PMC4352342 DOI: 10.2217/rme.14.29] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM To evaluate the in vitro immunogenic and immunomodulatory properties of induced pluripotent stem cells (iPSCs) compared with bone marrow-derived mesenchymal stromal cells (MSCs). MATERIALS & METHODS Mouse embryonic fibroblasts (MEFs) were isolated from C3HeB/FeJ and C57BL/6J mice, and reprogrammed to generate iPSCs. Mixed leukocyte reactions were performed using MHC-matched and -mismatched responder leukocytes and stimulator leukocytes, iPSCs or MSCs. To assess immunogenic potential, iPSCs and MSCs were used as stimulator cells for responder leukocytes. To assess immunomodulatory properties, iPSCs and MSCs were cultured in the presence of stimulator and responder leukocytes. MEFs were used as a control. RESULTS iPSCs had similar immunogenic properties but more potent immunomodulatory effects than MSCs. Co-culture of MHC-mismatched leukocytes with MHC-matched iPSCs resulted in significantly less responder T-cell proliferation than observed for MHC-mismatched leukocytes alone and at more responder leukocyte concentrations than with MSCs. In addition, MHC-mismatched iPSCs significantly reduced responder T-cell proliferation when co-cultured with MHC-mismatched leukocytes, while MHC-mismatched MSCs did not. CONCLUSION These results provide important information when considering the use of iPSCs in place of MSCs in both regenerative and transplantation medicine.
Collapse
Affiliation(s)
- Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Christian M Abratte
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - M Julia Bevilaqua Felippe
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer M Cassano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jessica A Cross
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Abstract
Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births(1,2), 60-80% of all miscarriages(3,4), 10% of stillbirths(2,5), 13% of individuals with congenital heart disease(6), 3-6% of infertility cases(2), and in many patients with developmental delay and birth defects(7). Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance(8,9). Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents(10-13). Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)(14,15).
Collapse
Affiliation(s)
- Bradley Howe
- Department of Genetics, Louisiana State University Health Science Center
| | | | | |
Collapse
|
24
|
Pastori C, Lopalco L. Isolation and in vitro Activation of Mouse Peyer’s Patch Cells from Small Intestine Tissue. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Kasemwattanaroj P, Moongkarndi P, Pattanapanyasat K, Mangmool S, Rodpai E, Samer J, Konlata J, Sukapirom K. Immunomodulatory Activities of α-Mangostin on Peripheral Blood Mononuclear Cells. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mangosteen ( Garcinia mangostana L.) a tropical fruit, has been used in traditional medicine. A frequently used part of mangosteen is the pericarp, containing a high content of xanthones. α-Mangostin, one of the major xanthone derivatives, exhibits a variety of actions, including antimicrobial, antioxidant, cytotoxic and antitumor; however, its function on the immune system is still equivocal. This study aimed to examine the immunomodulatory activities of α-mangostin on lymphocyte lineage and cytokine production in human peripheral blood mononuclear cells (PBMCs). The cytotoxic activity of α-mangostin was measured by MTT assay. The concentration of α-mangostin at 5.55 μg/mL resulted in a 50% survival of PBMCs, which was as potent a cytotoxic activity as that of paclitaxel. After 24 h of PBMCs culture, the percentages of T cells (CD3+), B cells (CD19+) and NK cells (CD3-CD16+CD56+) were not significantly changed by treatment with 1, 2 and 4 μg/mL of α-mangostin compared with untreated-PBMCs; in addition, the percentages of these lymphocytes treated with the combination of α-mangostin (1, 2 and 4 μg/mL) and the mitogen concanavalin A (ConA) was not significantly different from that of ConA-treated PBMCs. For cytokine secretion, α-mangostin (1, 2 and 4 μg/mL) did not significantly induce either proinflammatory cytokines (i.e., TNF-α and IL-1β) or cytokine of adaptive immunity (i.e., IL-2). The combination of α-mangostin (1, 2 and 4 μg/mL) and ConA did not significantly alter the relative difference of TNF-α and IL-1β compared with ConA-treated PBMCs; however, these combinations could significantly decrease the relative difference of IL-2 compared with ConA-treated PBMCs. These data indicated that α-mangostin was able to inhibit IL-2 release without interfering with human immune cells; therefore, further studies are necessary to investigate its effect on IL-2 production.
Collapse
Affiliation(s)
| | - Primchanien Moongkarndi
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Kovit Pattanapanyasat
- Office of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Ekkarat Rodpai
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Jutima Samer
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Julaporn Konlata
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Kasama Sukapirom
- Office of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
26
|
Soto PC, Stein LL, Hurtado-Ziola N, Hedrick SM, Varki A. Relative over-reactivity of human versus chimpanzee lymphocytes: implications for the human diseases associated with immune activation. THE JOURNAL OF IMMUNOLOGY 2010; 184:4185-95. [PMID: 20231688 DOI: 10.4049/jimmunol.0903420] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although humans and chimpanzees share >99% identity in alignable protein sequences, they differ surprisingly in the incidence and severity of some common diseases. In general, humans infected with various viruses, such as HIV and hepatitis C virus, appear to develop stronger reactions and long-term complications. Humans also appear to suffer more from other diseases associated with over-reactivity of the adaptive immune system, such as asthma, psoriasis, and rheumatoid arthritis. In this study, we show that human T cells are more reactive than chimpanzee T cells to a wide variety of stimuli, including anti-TCR Abs of multiple isotypes, l-phytohemagglutin, Staphylococcus aureus superantigen, a superagonist anti-CD28 Ab, and in MLRs. We also extend this observation to B cells, again showing a human propensity to react more strongly to stimuli. Finally, we show a relative increase in activation markers and cytokine production in human lymphocytes in response to uridine-rich (viral-like) ssRNA. Thus, humans manifest a generalized lymphocyte over-reactivity relative to chimpanzees, a finding that is correlated with decreased levels of inhibitory sialic acid-recognizing Ig-superfamily lectins (Siglecs; particularly Siglec-5) on human T and B cells. Furthermore, Siglec-5 levels are upregulated by activation in chimpanzee but not human lymphocytes, and human T cell reactivity can be downmodulated by forced expression of Siglec-5. Thus, a key difference in the immune reactivity of chimp and human lymphocytes appears to be related to the differential expression of Siglec-5. Taken together, these data may help explain human propensities for diseases associated with excessive activation of the adaptive immune system.
Collapse
Affiliation(s)
- Paula C Soto
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|