1
|
The dynamic architecture of photoreceptor ribbon synapses: cytoskeletal, extracellular matrix, and intramembrane proteins. Vis Neurosci 2012; 28:453-71. [PMID: 22192503 DOI: 10.1017/s0952523811000356] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rod and cone photoreceptors possess ribbon synapses that assist in the transmission of graded light responses to second-order bipolar and horizontal cells of the vertebrate retina. Proper functioning of the synapse requires the juxtaposition of presynaptic release sites immediately adjacent to postsynaptic receptors. In this review, we focus on the synaptic, cytoskeletal, and extracellular matrix proteins that help to organize photoreceptor ribbon synapses in the outer plexiform layer. We examine the proteins that foster the clustering of release proteins, calcium channels, and synaptic vesicles in the presynaptic terminals of photoreceptors adjacent to their postsynaptic contacts. Although many proteins interact with one another in the presynaptic terminal and synaptic cleft, these protein-protein interactions do not create a static and immutable structure. Instead, photoreceptor ribbon synapses are remarkably dynamic, exhibiting structural changes on both rapid and slow time scales.
Collapse
|
2
|
Zanazzi G, Matthews G. The molecular architecture of ribbon presynaptic terminals. Mol Neurobiol 2009; 39:130-48. [PMID: 19253034 PMCID: PMC2701268 DOI: 10.1007/s12035-009-8058-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/04/2009] [Indexed: 12/24/2022]
Abstract
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.
Collapse
Affiliation(s)
- George Zanazzi
- Department of Neurobiology & Behavior, State Universtiy of New York, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
3
|
Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol 2007; 36:205-23. [PMID: 17955196 PMCID: PMC2474471 DOI: 10.1007/s12035-007-0019-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/18/2007] [Indexed: 11/24/2022]
Abstract
The ribbon synapse is a specialized structure that allows photoreceptors to sustain the continuous release of vesicles for hours upon hours and years upon years but also respond rapidly to momentary changes in illumination. Light responses of cones are faster than those of rods and, mirroring this difference, synaptic transmission from cones is also faster than transmission from rods. This review evaluates the various factors that regulate synaptic kinetics and contribute to kinetic differences between rod and cone synapses. Presynaptically, the release of glutamate-laden synaptic vesicles is regulated by properties of the synaptic proteins involved in exocytosis, influx of calcium through calcium channels, calcium release from intracellular stores, diffusion of calcium to the release site, calcium buffering, and extrusion of calcium from the cytoplasm. The rate of vesicle replenishment also limits the ability of the synapse to follow changes in release. Post-synaptic factors include properties of glutamate receptors, dynamics of glutamate diffusion through the cleft, and glutamate uptake by glutamate transporters. Thus, multiple synaptic mechanisms help to shape the responses of second-order horizontal and bipolar cells.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, 4th floor, Durham Research Center, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, USA.
| |
Collapse
|
4
|
Stella SL, Hu WD, Vila A, Brecha NC. Adenosine inhibits voltage-dependent Ca2+ influx in cone photoreceptor terminals of the tiger salamander retina. J Neurosci Res 2007; 85:1126-37. [PMID: 17304584 PMCID: PMC3737423 DOI: 10.1002/jnr.21210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endogenous adenosine has already been shown to inhibit transmitter release from the rod synapse by suppressing Ca(2+) influx through voltage-gated Ca(2+) channels. However, it is not clear how adenosine modulates the cone synapse. Cone photoreceptors, like rod photoreceptors, also possess L-type Ca(2+) channels that regulate the release of L-glutamate. To assess the impact of adenosine on Ca(2+) influx though voltage-gated Ca(2+) channels in cone terminals, whole-cell perforated-patch clamp recording and Ca(2+) imaging with fluo-4 were used on isolated cones and salamander retinal slices. Synaptic markers (VAMP and piccolo) and activity-dependent dye labeling revealed that tiger salamander cone terminals contain a broad, vesicle-filled cytoplasmic extension at the base of the somatic compartment, which is unlike rod terminals that contain one or more thin axons, each terminating in a large bulbous synaptic terminal. The spatiotemporal Ca(2+) responses of the cone terminals do not differ significantly from the Ca(2+) responses of the soma or inner segment like that observed in rods. Whole-cell recording of cone I(Ca) and Ca(2+) imaging of synaptic terminals in cones demonstrate that adenosine inhibited both I(Ca) and the depolarization-evoked Ca(2+) increase in cone terminals in a dose-dependent manner from 1 to 50 muM. These results indicate that, as in rods, adenosine's ability to suppress voltage-dependent Ca(2+) channels at the cone synapse will limit the amount of L-glutamate released. Therefore, adenosine has an inhibitory effect on L-glutamate release at the first synapse, which likely favors elevated adenosine levels in the dark or during dark-adapted conditions.
Collapse
Affiliation(s)
- Salvatore L Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels.
Collapse
Affiliation(s)
- Ruth Heidelberger
- Department of Neurobiology & Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Wallace B. Thoreson
- Department of Ophthalmology & Visual Sciences and Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Witkovsky
- Department of Ophthalmology and Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA
- *Corresponding author. Tel: +1 212 263 6488; fax: +1 212 263 7602. E-mail address: (P. Witkovsky)
| |
Collapse
|
6
|
Sherry DM, Heidelberger R. Distribution of proteins associated with synaptic vesicle endocytosis in the mouse and goldfish retina. J Comp Neurol 2005; 484:440-57. [PMID: 15770653 DOI: 10.1002/cne.20504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current models of synaptic transmission require retrieval of membrane from the presynaptic terminal following neurotransmitter exocytosis. Dynamin, a GTPase, is thought to be critical for this retrieval process. At ribbon synapses of retinal bipolar neurons, however, compensatory endocytosis does not require GTP hydrolysis, suggesting that endocytosis mechanisms may differ among synapses. To understand better the synaptic vesicle recycling at conventional and ribbon synapses, the distributions of dynamin and two associated proteins, amphiphysin and clathrin, were examined in the retinas of goldfish and mouse by using immunocytochemical methods. Labeling for dynamin, clathrin, and amphiphysin was distributed differentially among conventional and ribbon synapses in retinas of both species. Ribbon synapses of photoreceptors and most bipolar cells labeled only weakly for dynamin relative to conventional synapses. Amphyiphysin labeling was strong at many ribbon synapses, and labeling in rod terminals was stronger than in cone terminals in the mouse retina. Clathrin labeling was heterogeneous among ribbon synapses. Similarly to the case with amphiphysin, mouse rod terminals showed stronger clathrin labeling than cone terminals. Among conventional synapses, there was heterogeneous labeling for all three endocytic proteins. Some labeling for each protein might have been associated with postsynaptic terminals. The differential distribution of labeling for these proteins among identified synapses in the retina suggests considerable heterogeneity in the molecular mechanisms underlying synaptic membrane retrieval, even among synapses with similar active zone ultrastructure. Thus, as with exocytosis, mechanisms of synaptic membrane retrieval may be tuned by the precise complement of proteins expressed within the synaptic terminal.
Collapse
Affiliation(s)
- David M Sherry
- University of Houston College of Optometry, Houston, Texas 77204-2020, USA.
| | | |
Collapse
|
7
|
Thoreson WB, Bryson EJ. Chloride equilibrium potential in salamander cones. BMC Neurosci 2004; 5:53. [PMID: 15579212 PMCID: PMC539262 DOI: 10.1186/1471-2202-5-53] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 12/05/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl) was determined in red-sensitive, large single cones from the tiger salamander retinal slice. RESULTS Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca)) and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. CONCLUSIONS The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca).
Collapse
Affiliation(s)
- Wallace B Thoreson
- Departments of Ophthalmology and Pharmacology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric J Bryson
- Departments of Ophthalmology and Pharmacology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Johnson J, Sherry DM, Liu X, Fremeau RT, Seal RP, Edwards RH, Copenhagen DR. Vesicular glutamate transporter 3 expression identifies glutamatergic amacrine cells in the rodent retina. J Comp Neurol 2004; 477:386-98. [PMID: 15329888 PMCID: PMC2586940 DOI: 10.1002/cne.20250] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synaptic transmission from glutamatergic neurons requires vesicular glutamate transporters (VGLUTs) to concentrate cytosolic glutamate in synaptic vesicles. In retina, glutamatergic photoreceptors and bipolar cells exclusively express the VGLUT1 isoform, whereas ganglion cells express VGLUT2. Surprisingly, the recently identified VGLUT3 isoform was found in presumed amacrine cells, generally considered to be inhibitory interneurons. To investigate the synaptic machinery and conceivable secondary neurotransmitter composition of VGLUT3 cells, and to determine a potential functional role, we further investigated these putative glutamatergic amacrine cells in adult and developing rodent retina. Reverse transcriptase-PCR substantiated VGLUT3 expression in mouse retina. VGLUT3 cells did not immunostain for ganglion or bipolar cell markers, providing evidence that they are amacrine cells. VGLUT3 colocalized with synaptic vesicle markers, and electron microscopy showed that VGLUT3 immunostained synaptic vesicles. VGLUT3 cells were not immunoreactive for amacrine cell markers gamma-aminobutyric acid, choline acetyltransferase, calretinin, or tyrosine hydroxylase, although they immunostain for glycine. VGLUT3 processes made synaptic contact with ganglion cell dendrites, suggesting input onto these cells. VGLUT3 immunostaining was closely associated with the metabotropic glutamate receptor 4, which is consistent with glutamatergic synaptic exocytosis by these cells. In the maturing mouse retina, Western blots showed VGLUT3 expression at postnatal day 7/8 (P7/8). VGLUT3 immunostaining in retinal sections was first observed at P8, achieving an adult pattern at P12. Thus, VGLUT3 function commences around the same time as VGLUT1-mediated glutamatergic transmission from bipolar cells. Furthermore, a subset of VGLUT3 cells expressed the circadian clock gene period 1, implicating VGLUT3 cells as part of the light-entrainable retina-based circadian system.
Collapse
Affiliation(s)
- Juliette Johnson
- Department of Ophthalmology, University of California School of Medicine, San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Krizaj D, Liu X, Copenhagen DR. Expression of calcium transporters in the retina of the tiger salamander (Ambystoma tigrinum). J Comp Neurol 2004; 475:463-80. [PMID: 15236230 PMCID: PMC2579895 DOI: 10.1002/cne.20170] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Changes in intracellular calcium concentration, [Ca2+]i, modulate the flow of visual signals across all stages of processing in the retina, yet the identities of Ca2+ transporters responsible for these changes are still largely unknown. In the current study, the distribution of plasma membrane and intracellular Ca2+ transporters in the retina of tiger salamander, a model system for physiological studies of retinal function, was determined. Plasma membrane calcium ATPases (PMCAs), responsible for high-affinity Ca2+ extrusion, were highly expressed in the salamander retina. PMCA isoforms 1, 2, and 4 were localized to photoreceptors, whereas the inner retina expressed all four isoforms. PMCA3 was expressed in a sparse population of amacrine and ganglion neurons, whereas PMCA2 was expressed in most amacrine and ganglion cells. Na+/Ca2+ exchangers, a high-capacity Ca2+ extrusion system, were expressed in the outer plexiform layer and in a subset of inner nuclear and ganglion layer cells. Intracellular Ca2+ store transporters were also represented prominently. SERCA2a, a splice variant of the sarcoplasmic-endoplasmic Ca2+ ATPase, was found mostly in photoreceptors, whereas SERCA2b was found in the majority of retinal neurons and in glial cells. The predominant endoplasmic reticulum (ER) Ca2+ channels in the salamander retina are represented by the isoform 2 of the IP3 receptor family and the isoform 2 of the ryanodine receptor family. These results indicate that Ca2+ transporters in the salamander retina are expressed in a cell type-specific manner.
Collapse
Affiliation(s)
- David Krizaj
- Department of Ophthalmology, University of California, San Francisco, School of Medicine, San Francisco, California 94143-0730, USA.
| | | | | |
Collapse
|
10
|
Sherry DM, Wang MM, Bates J, Frishman LJ. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. J Comp Neurol 2003; 465:480-98. [PMID: 12975811 DOI: 10.1002/cne.10838] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glutamatergic transmission is crucial to the segregation of ON and OFF pathways in the developing retina. The temporal sequence of maturation of vesicular glutamatergic transmission in rod and cone photoreceptor and ON and OFF bipolar cell terminals is currently unknown. Vesicular glutamate transporters (VGLUTs) that load glutamate into synaptic vesicles are necessary for vesicular glutamatergic transmission. To understand better the formation and maturation of glutamatergic transmission in the rod vs. cone and ON vs. OFF pathways of the retina, we examined the developmental expression of VGLUT1 and VGLUT2 immunocytochemically in the mouse retina. Photoreceptor and bipolar cell terminals showed only VGLUT1-immunoreactivity (-IR); no VGLUT2-IR was present in any synapses of the developing or adult retina. VGLUT1-IR was first detected in cone photoreceptor terminals at postnatal day 2 (P2), several days before initiation of ribbon synapse formation at P4-P5. Rod terminals showed VGLUT1-IR by P8, when they invade the outer plexiform layer (OPL) and initiate synaptogenesis. Developing OFF bipolar cell terminals showed VGLUT1-IR around P8, 2-3 days after bipolar terminals were first identified in the inner plexiform layer (IPL) by labeling for the photoreceptor and bipolar cell terminal marker, synaptic vesicle protein 2B. Although terminals of ON bipolar cells were present in the IPL by P6-P8, most did not show VGLUT1-IR until P8-P10 and increased dramatically from P12. These data suggest a hierarchical development of glutamatergic transmission in which cone circuits form prior to rod circuits in both the OPL and IPL, and OFF circuits form prior to ON circuits in the IPL.
Collapse
Affiliation(s)
- David M Sherry
- University of Houston, College of Optometry, Houston, Texas 77204-2020, USA.
| | | | | | | |
Collapse
|
11
|
Kreft M, Križaj D, Grilc S, Zorec R. Properties of exocytotic response in vertebrate photoreceptors. J Neurophysiol 2003; 90:218-25. [PMID: 12660355 PMCID: PMC2922923 DOI: 10.1152/jn.01025.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic transmission at the photoreceptor synapse is characterized by continuous release of glutamate in darkness. Release is regulated by the intracellular calcium concentration ([Ca2+]i). We here examined the physiological properties of exocytosis in tiger salamander (Ambystoma tigrinum) retinal rods and cones. Patch-clamp capacitance measurements were used to monitor exocytosis elicited by a rapid and uniform increase in [Ca2+]i by photolysis of the caged Ca2+ compound NP-EGTA. The amplitude of flash-induced increases in membrane capacitance (Cm) varied monotonically with [Ca2+]i beyond approximately 15 microM. The following two types of kinetic responses in Cm were recorded in both rods and cones: 1) a single exponential rise (39% of cells) or 2) a double-exponential rise (61%). Average rate constants of rapid and slow exocytotic responses were 420 +/- 168 and 7.85 +/- 5.02 s-1, respectively. The rate constant for the single exponential exocytotic response was 17.5 +/- 12.4 s-1, not significantly different from that of the slow exocytotic response. Beyond the threshold [Ca2+]i of approximately 15 microM, the average amplitude of rapid, slow, and single Cm response were 0.84 +/- 0.35, 0.82 +/- 0.20, and 0.70 +/- 0.23 pF, respectively. Antibodies against synaptotagmin I, a vesicle protein associated with fast exocytosis, strongly stained the synaptic terminal of isolated photoreceptors, suggesting the presence of fusion-competent vesicles. Our results confirm that photoreceptors possess a large rapidly releasable pool activated by a low-affinity Ca2+ sensor whose kinetic and calcium-dependent properties are similar to those reported in retinal bipolar cells and cochlear hair cells.
Collapse
Affiliation(s)
- M. Kreft
- Laboratory Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical Faculty, Zalos ka 4
- Celica Biomedical Sciences Center, Stegne 21, 1000 Ljubljana, Slovenia
| | - D. Križaj
- Departments of Ophthalmology and Physiology, University of California School of Medicine, San Francisco, California 94143-0730
| | - S. Grilc
- Laboratory Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical Faculty, Zalos ka 4
| | - R. Zorec
- Laboratory Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical Faculty, Zalos ka 4
- Celica Biomedical Sciences Center, Stegne 21, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Yang H, Standifer KM, Sherry DM. Synaptic protein expression by regenerating adult photoreceptors. J Comp Neurol 2002; 443:275-88. [PMID: 11807837 DOI: 10.1002/cne.10116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Regeneration of functionally normal synapses is required for functional recovery after degenerative central nervous system insults and requires proper expression and targeting of presynaptic proteins by regenerating neurons. The reconstitution of presynaptic terminals by regenerating adult neurons is poorly understood, however. We examined the intrinsic ability of regenerating adult retinal photoreceptors to reconstitute properly differentiated presynaptic terminals in the absence of target contact. The expression and localization of vesicle-associated membrane protein (VAMP), synaptic vesicle protein 2 (SV2), synaptophysin, synapsin I, and synaptosomal-associated protein of 25 kDa (SNAP-25) was assessed immunocytochemically. Photoreceptor terminals in the intact retina contain VAMP, SV2, synaptophysin, and SNAP-25, but not synapsin I. Isolated, regenerating adult photoreceptors intrinsically expressed the proper complement of synaptic vesicle proteins in the absence of target contact: VAMP, SV2, and synaptophysin were present at all stages of regenerative growth; synapsin I was never expressed. At early stages of regenerative growth, VAMP, SV2, and synaptophysin were diffusely localized in the cell, with prominent VAMP labeling distributed along the plasma membrane. SV2 and synaptophysin rapidly localized to regenerated terminals, but VAMP accumulated much more slowly, indicating that these proteins are trafficked independently. In contrast, labeling for SNAP-25, which is associated with the presynaptic plasma membrane, was undetectable in regenerating photoreceptors, suggesting that SNAP-25 expression is target-regulated. Thus, regenerating photoreceptors can intrinsically regulate the expression of the proper set of synaptic vesicle proteins. Proper expression of other presynaptic proteins, such as SNAP-25, and proper subcellular localization of synaptic proteins such as VAMP, however, may require extrinsic cues such as target contact.
Collapse
Affiliation(s)
- Haidong Yang
- College of Optometry, University of Houston, Houston, Texas 77204-2020, USA
| | | | | |
Collapse
|