1
|
Moriyama R, Nakamura S, Mitsui I, Sugiyama M, Fukui H, Fukui H, Hagiwara T, Miyabe-Nishiwaki T, Suzuki J. Expression of SARS-CoV-2 entry molecules ACE2, NRP1, TMPRSS2, and FURIN in the reproductive tissues of male macaques. Histochem Cell Biol 2024; 162:465-475. [PMID: 39153130 DOI: 10.1007/s00418-024-02314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Coronavirus disease 2019 (COVID-19) reportedly affects male reproductive function by causing spermatogenesis dysfunction and suppressing testosterone secretion. However, the relationship between COVID-19 and impaired reproductive function, such as whether these effects on reproductive function are a direct effect of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in male reproductive organs or an indirect effect of high fever, is not known. Here, we examined whether the cell entry molecules of SARS-CoV-2, namely, ACE2, NRP1, TMPRSS2, and FURIN, are expressed in the male reproductive organs using the testes and accessory gonads of macaques during the breeding season. RT-PCR expression analysis showed that the testes alone expressed all four molecules. Immunohistochemical staining of testis tissue sections revealed that ACE2 is expressed in Leydig cells and the apical region of Sertoli cells, whereas NRP1 is expressed in the cell bodies surrounding the Leydig and Sertoli cell nuclei. FURIN is mainly expressed in Leydig cells, secondary spermatocytes, and spermatids. However, TMPRSS2 immunopositive cells were not observed. Therefore, it was not possible to observe cells expressing all four molecules in the gonads and accessory gonads of male primates. These results suggest that SARS-CoV-2 is unlikely to directly affect spermatogenesis in primates or proliferate in cells of the seminiferous tubules and undergo release into the semen through the previously known ACE2-mediated infection route. However, the expression of three molecules, including ACE2, was observed in Leydig cells, suggesting that testosterone synthesis and secretion may be affected when primates, including humans, are infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Department of Life Science, Kindai University, Higashiosaka, Osaka, 577-8502, Japan.
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ikki Mitsui
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Aomori, 034-8628, Japan
| | - Hirotaka Fukui
- Fukui Veterinary Hospital, Higashiosaka, Osaka, 577-0809, Japan
| | - Hitomi Fukui
- Fukui Veterinary Hospital, Higashiosaka, Osaka, 577-0809, Japan
| | - Teruki Hagiwara
- Department of Life Science, Kindai University, Higashiosaka, Osaka, 577-8502, Japan
| | - Takako Miyabe-Nishiwaki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
2
|
Bach ML, Laftih S, Andresen JK, Pedersen RM, Andersen TE, Madsen LW, Madsen K, Hinrichs GR, Zachar R, Svenningsen P, Lund L, Johansen IS, Hansen LF, Palarasah Y, Jensen BL. ACE2 and TMPRSS2 in human kidney tissue and urine extracellular vesicles with age, sex, and COVID-19. Pflugers Arch 2024:10.1007/s00424-024-03022-y. [PMID: 39382598 DOI: 10.1007/s00424-024-03022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
SARS-CoV-2 virus infects cells by engaging with ACE2 requiring protease TMPRSS2. ACE2 is highly expressed in kidneys. Predictors for severe disease are high age and male sex. We hypothesized that ACE2 and TMPRSS2 proteins are more abundant (1) in males and with increasing age in kidney and (2) in urine and extracellular vesicles (EVs) from male patients with COVID-19 and (3) SARS-CoV-2 is present in urine and EVs during infection. Kidney cortex samples from patients subjected to cancer nephrectomy (male/female; < 50 years/˃75 years, n = 24; ˃80 years, n = 15) were analyzed for ACE2 and TMPRSS2 protein levels. Urine from patients hospitalized with SARS-CoV-2 infection was analyzed for ACE2 and TMPRSS2. uEVs were used for immunoblotting and SARS-CoV-2 mRNA and antigen detection. Tissue ACE2 and TMPRSS2 protein levels did not change with age. ACE2 was not more abundant in male kidneys in any age group. ACE2 protein was associated with proximal tubule apical membranes in cortex. TMPRSS2 was observed predominantly in the medulla. ACE2 was elevated significantly in uEVs and urine from patients with COVID-19 with no sex difference compared with urine from controls w/wo albuminuria. TMPRSS2 was elevated in uEVs from males compared to female. ACE2 and TMPRSS2 did not co-localize in uEVs/apical membranes. SARS-CoV-2 nucleoprotein and mRNA were not detected in urine. Higher kidney ACE2 protein abundance is unlikely to explain higher susceptibility to SARS-CoV-2 infection in males. Kidney tubular cells appear not highly susceptible to SARS-CoV-2 infection. Loss of ACE2 into urine in COVID could impact susceptibility and angiotensin metabolism.
Collapse
Affiliation(s)
- Marie Lykke Bach
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sara Laftih
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper K Andresen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rune M Pedersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
- Unit for Infectious Diseases, Department of Medicine, Sygehus Lillebælt, Kolding, Denmark
| | - Kirsten Madsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Gitte R Hinrichs
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Rikke Zachar
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Per Svenningsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | | | - Yaseelan Palarasah
- Unit of Inflammation and Cancer Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Faridzadeh A, Mahmoudi M, Rahimlou B, Naghizadeh MM, Ghazanfari T. Association between TMPRSS2 rs2070788 polymorphism and COVID-19 severity: a case-control study in multiple cities of Iran. Front Med (Lausanne) 2024; 11:1425916. [PMID: 39188881 PMCID: PMC11345270 DOI: 10.3389/fmed.2024.1425916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction Host genetic variations have been identified as potential influencers of COVID-19 infection. This study aimed to examine the association between transmembrane serine protease type 2 (TMPRSS2) rs2070788 single nucleotide polymorphism (SNP) and the prognosis of COVID-19 in Iranian populations. Method This case-control study was performed on 756 COVID-19 patients and 59 healthy individuals across Iran. Clinical data, blood samples, and the presence of the TMPRSS2 rs2070788: G>A SNP were determined using T-ARMS-PCR. Additionally, serum levels of tumor necrosis factor α (TNF-α), C-reactive protein (CRP), interleukin-6 (IL-6), and IL-1β were evaluated in the collected blood samples. Results No significant association was found between the genotypes and allele frequencies of TMPRSS2 rs2070788 SNP and susceptibility to or mortality from COVID-19 infection. However, we observed a substantial increase in IL-6 and CRP levels associated with the severity of COVID-19, while no such trend was observed for IL-1β and TNF-α. This study showed a considerable rise in TNF-α and IL-1β serum levels exclusively in COVID-19 patients with TT rs2070788 TMPRSS2 SNP genotype compared to healthy controls. Conclusion In this study conducted across multiple cities in Iran, no significant association was found between the TMPRSS2 rs2070788 SNP genotypes and COVID-19 severity or mortality.
Collapse
Affiliation(s)
- Arezoo Faridzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Rahimlou
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Department of Immunology, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Bärreiter VA, Meister TL. Renal implications of coronavirus disease 2019: insights into viral tropism and clinical outcomes. Curr Opin Microbiol 2024; 79:102475. [PMID: 38615393 DOI: 10.1016/j.mib.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
In recent years, multiple coronaviruses have emerged, with the latest one, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing a global pandemic. Besides respiratory symptoms, some patients experienced extrapulmonary effects, such as cardiac damage or renal injury, indicating the broad tropism of SARS-CoV-2. The ability of the virus to effectively invade the renal cellular environment can eventually cause tissue-specific damage and disease. Indeed, patients with severe coronavirus disease 2019 exhibited a variety of symptoms such as acute proximal tubular injury, ischemic collapse, and severe acute tubular necrosis resulting in irreversible kidney failure. This review summarizes the current knowledge on how it is believed that SARS-CoV-2 influences the renal environment and induces kidney disease, as well as current therapy approaches.
Collapse
Affiliation(s)
- Valentin A Bärreiter
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Toni L Meister
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany; German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
5
|
Boon ACM, Bricker TL, Fritch EJ, Leist SR, Gully K, Baric RS, Graham RL, Troan BV, Mahoney M, Janetka JW. Efficacy of host cell serine protease inhibitor MM3122 against SARS-CoV-2 for treatment and prevention of COVID-19. J Virol 2024; 98:e0190323. [PMID: 38593045 PMCID: PMC11092322 DOI: 10.1128/jvi.01903-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.
Collapse
Affiliation(s)
- Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R. Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kendra Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rachel L. Graham
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
6
|
Nagahawatta DP, Liyanage NM, Jayawardena TU, Jayawardhana HHACK, Jeong SH, Kwon HJ, Jeon YJ. Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:280-297. [PMID: 38827130 PMCID: PMC11136918 DOI: 10.1007/s42995-023-00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 06/04/2024]
Abstract
A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has surfaced and caused global concern owing to its ferocity. SARS-CoV-2 is the causative agent of coronavirus disease 2019; however, it was only discovered at the end of the year and was considered a pandemic by the World Health Organization. Therefore, the development of novel potent inhibitors against SARS-CoV-2 and future outbreaks is urgently required. Numerous naturally occurring bioactive substances have been studied in the clinical setting for diverse disorders. The intricate infection and replication mechanism of SARS-CoV-2 offers diverse therapeutic drug targets for developing antiviral medicines by employing natural products that are safer than synthetic compounds. Marine natural products (MNPs) have received increased attention in the development of novel drugs owing to their high diversity and availability. Therefore, this review article investigates the infection and replication mechanisms, including the function of the SARS-CoV-2 genome and structure. Furthermore, we highlighted anti-SARS-CoV-2 therapeutic intervention efforts utilizing MNPs and predicted SARS-CoV-2 inhibitor design. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00215-9.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3 Canada
| | | | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333 Republic of Korea
| |
Collapse
|
7
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Duloquin G, Pommier T, Georges M, Giroud M, Guenancia C, Béjot Y, Laurent G, Rabec C. Is COVID-19 Infection a Multiorganic Disease? Focus on Extrapulmonary Involvement of SARS-CoV-2. J Clin Med 2024; 13:1397. [PMID: 38592697 PMCID: PMC10932259 DOI: 10.3390/jcm13051397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
First described in December 2019 in Wuhan (China), COVID-19 disease rapidly spread worldwide, constituting the biggest pandemic in the last 100 years. Even if SARS-CoV-2, the agent responsible for COVID-19, is mainly associated with pulmonary injury, evidence is growing that this virus can affect many organs, including the heart and vascular endothelial cells, and cause haemostasis, CNS, and kidney and gastrointestinal tract abnormalities that can impact in the disease course and prognosis. In fact, COVID-19 may affect almost all the organs. Hence, SARS-CoV-2 is essentially a systemic infection that can present a large number of clinical manifestations, and it is variable in distribution and severity, which means it is potentially life-threatening. The goal of this comprehensive review paper in the series is to give an overview of non-pulmonary involvement in COVID-19, with a special focus on underlying pathophysiological mechanisms and clinical presentation.
Collapse
Affiliation(s)
- Gauthier Duloquin
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Thibaut Pommier
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Marjolaine Georges
- Department of Pneumology and Intensive Care Unit, Reference Centre for Rare Lung Diseases, Dijon University Hospital, 14 Boulevard Gaffarel, 21000 Dijon, France;
- Centre des Sciences du Goût et de l’Alimentation, INRA, UMR 6265 CNRS 1234, University of Bourgogne Franche-Comté, 21000 Dijon, France
| | - Maurice Giroud
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Charles Guenancia
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Yannick Béjot
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Gabriel Laurent
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Claudio Rabec
- Department of Pneumology and Intensive Care Unit, Reference Centre for Rare Lung Diseases, Dijon University Hospital, 14 Boulevard Gaffarel, 21000 Dijon, France;
| |
Collapse
|
9
|
Boon ACM, L Bricker T, Fritch EJ, Leist SR, Gully K, Baric RS, Graham RL, Troan BV, Mahoney M, Janetka JW. Efficacy of Host Cell Serine Protease Inhibitor MM3122 against SARS-CoV-2 for Treatment and Prevention of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579701. [PMID: 38405752 PMCID: PMC10888838 DOI: 10.1101/2024.02.09.579701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including transmembrane protease serine 2 (TMPRSS2), matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower respiratory tract and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell receptor binding, entry, replication, and dissemination of new virion particles. We have previously shown that compound MM3122 exhibited sub nanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell-viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Further, we have evaluated MM3122 in a mouse model of COVID-19 and have demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion, and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in pro-inflammatory cytokines and chemokines production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2 infected mice. Therefore, MM3122 is a promising lead candidate small molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host-cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and therapeutic drug for the treatment of COVID-19 in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.
Collapse
|
10
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
11
|
Cheng Y, Clark AE, Yim W, Borum RM, Chang YC, Jin Z, He T, Carlin AF, Jokerst JV. Protease-Responsive Potential-Tunable AIEgens for Cell Selective Imaging of TMPRSS2 and Accurate Inhibitor Screening. Anal Chem 2023; 95:3789-3798. [PMID: 36753444 PMCID: PMC10614162 DOI: 10.1021/acs.analchem.2c04988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Transmembrane protease serine 2 (TMPRSS2) is a plasma membrane protease that activates both spike protein of coronaviruses for cell entry and oncogenic signaling pathways for tumor progression. TMPRSS2 inhibition can reduce cancer invasion and metastasis and partially prevent the entry of SARS-CoV-2 into host cells. Thus, there is an urgent need for both TMPRSS2-selective imaging and precise screening of TMPRSS2 inhibitors. Here, we report a TMPRSS2-responsive surface-potential-tunable peptide-conjugated probe (EGTP) with aggregation-induced emission (AIE) features for TMPRSS2 selective imaging and accurate inhibitor screening. The amphiphilic EGTP was constructed with tunable surface potential and responsive efficiency with TMPRSS2 and its inhibitor. The rational construction of AIE luminogens (AIEgens) with modular peptides indicated that the cleavage of EGTP led to a gradual aggregation with bright fluorescence in high TMPRSS2-expressing cells. This strategy may have value for selective detection of cancer cells, SARS-CoV-2-target cells, and screening of protease inhibitors.
Collapse
Affiliation(s)
- Yong Cheng
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Alex E Clark
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Raina M Borum
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Aaron F Carlin
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pathology, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020483. [PMID: 36830041 PMCID: PMC9952211 DOI: 10.3390/antiox12020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
SARS-CoV-2 induces a broad range of clinical manifestations. Besides the main receptor, ACE2, other putative receptors and co-receptors have been described and could become genuinely relevant to explain the different tropism manifested by new variants. In this study, we propose a biochemical model envisaging the competition for cysteine as a key mechanism promoting the infection and the selection of host receptors. The SARS-CoV-2 infection produces ROS and triggers a massive biosynthesis of proteins rich in cysteine; if this amino acid becomes limiting, glutathione levels are depleted and cannot control oxidative stress. Hence, infection succeeds. A receptor should be recognized as a marker of suitable intracellular conditions, namely the full availability of amino acids except for low cysteine. First, we carried out a comparative investigation of SARS-CoV-2 proteins and human ACE2. Then, using hierarchical cluster protein analysis, we searched for similarities between all human proteins and spike produced by the latest variant, Omicron BA.1. We found 32 human proteins very close to spike in terms of amino acid content. Most of these potential SARS-CoV-2 receptors have less cysteine than spike. We suggest that these proteins could signal an intracellular shortage of cysteine, predicting a burst of oxidative stress when used as viral entry mediators.
Collapse
|
13
|
Makarova YA, Ryabkova VA, Salukhov VV, Sagun BV, Korovin AE, Churilov LP. Atherosclerosis, Cardiovascular Disorders and COVID-19: Comorbid Pathogenesis. Diagnostics (Basel) 2023; 13:478. [PMID: 36766583 PMCID: PMC9914751 DOI: 10.3390/diagnostics13030478] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The article describes how atherosclerosis and coronavirus disease 19 (COVID-19) may affect each other. The features of this comorbid pathogenesis at various levels (vascular, cellular and molecular) are considered. A bidirectional influence of these conditions is described: the presence of cardiovascular diseases affects different individuals' susceptibility to viral infection. In turn, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can have a negative effect on the endothelium and cardiomyocytes, causing blood clotting, secretion of pro-inflammatory cytokines, and thus exacerbating the development of atherosclerosis. In addition to the established entry into cells via angiotensin-converting enzyme 2 (ACE2), other mechanisms of SARS-CoV-2 entry are currently under investigation, for example, through CD147. Pathogenesis of comorbidity can be determined by the influence of the virus on various links which are meaningful for atherogenesis: generation of oxidized forms of low-density lipoproteins (LDL), launch of a cytokine storm, damage to the endothelial glycocalyx, and mitochondrial injury. The transformation of a stable plaque into an unstable one plays an important role in the pathogenesis of atherosclerosis complications and can be triggered by COVID-19. The impact of SARS-CoV-2 on large vessels such as the aorta is more complex than previously thought considering its impact on vasa vasorum. Current information on the mutual influence of the medicines used in the treatment of atherosclerosis and acute COVID-19 is briefly summarized.
Collapse
Affiliation(s)
- Yulia A. Makarova
- Laboratory of the Microangiopathic Mechanisms of Atherogenesis, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Varvara A. Ryabkova
- Laboratory of the Microangiopathic Mechanisms of Atherogenesis, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
- M.V. Chernorutsky Department of Internal Medicine (Hospital Course), Pavlov First Saint Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Vladimir V. Salukhov
- N.S. Molchanov 1st Clinic for the Improvement of Physicians, S.M. Kirov Military Medical Academy, 194044 Saint-Petersburg, Russia
| | - Boris V. Sagun
- N.S. Molchanov 1st Clinic for the Improvement of Physicians, S.M. Kirov Military Medical Academy, 194044 Saint-Petersburg, Russia
| | - Aleksandr E. Korovin
- Laboratory of the Microangiopathic Mechanisms of Atherogenesis, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
- N.S. Molchanov 1st Clinic for the Improvement of Physicians, S.M. Kirov Military Medical Academy, 194044 Saint-Petersburg, Russia
| | - Leonid P. Churilov
- Laboratory of the Microangiopathic Mechanisms of Atherogenesis, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
- Department of Experimental Tuberculosis, Saint Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia
| |
Collapse
|
14
|
Giotis ES, Cil E, Brooke GN. Use of Antiandrogens as Therapeutic Agents in COVID-19 Patients. Viruses 2022; 14:2728. [PMID: 36560732 PMCID: PMC9788624 DOI: 10.3390/v14122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), is estimated to have caused over 6.5 million deaths worldwide. The emergence of fast-evolving SARS-CoV-2 variants of concern alongside increased transmissibility and/or virulence, as well as immune and vaccine escape capabilities, highlight the urgent need for more effective antivirals to combat the disease in the long run along with regularly updated vaccine boosters. One of the early risk factors identified during the COVID-19 pandemic was that men are more likely to become infected by the virus, more likely to develop severe disease and exhibit a higher likelihood of hospitalisation and mortality rates compared to women. An association exists between SARS-CoV-2 infectiveness and disease severity with sex steroid hormones and, in particular, androgens. Several studies underlined the importance of the androgen-mediated regulation of the host protease TMPRSS2 and the cell entry protein ACE2, as well as the key role of these factors in the entry of the virus into target cells. In this context, modulating androgen signalling is a promising strategy to block viral infection, and antiandrogens could be used as a preventative measure at the pre- or early hospitalisation stage of COVID-19 disease. Different antiandrogens, including commercial drugs used to treat metastatic castration-sensitive prostate cancer and other conditions, have been tested as antivirals with varying success. In this review, we summarise the most recent updates concerning the use of antiandrogens as prophylactic and therapeutic options for COVID-19.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Department of Infectious Diseases, Imperial College London, London W2 1PG, UK
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Emine Cil
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Greg N. Brooke
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
15
|
Silva AVBDA, Campanati JDEAG, Barcelos IDES, Santos ACL, Deus UPDE, Soares TDEJ, Amaral LSDEB. COVID-19 and Acute Kidney Injury - Direct and Indirect Pathophysiological Mechanisms Underlying Lesion Development. AN ACAD BRAS CIENC 2022; 94:e20211501. [PMID: 36477239 DOI: 10.1590/0001-3765202220211501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) responsible for millions of deaths worldwide. Although the respiratory system is the main target of COVID-19, the disease can affect other organs, including the kidneys. Acute Kidney Injury (AKI), commonly seen in patients infected with COVID-19, has a multifactorial cause. Several studies associate this injury with the direct involvement of the virus in renal cells and the indirect damage stimulated by the infection. The direct cytopathic effects of SARS-CoV-2 are due to the entry and replication of the virus in renal cells, changing several regulatory pathways, especially the renin-angiotensin-aldosterone system (RAAS), with repercussions on the kallikrein-kinin system (KKS). Furthermore, the virus can deregulate the immune system, leading to an exaggerated response of inflammatory cells, characterizing the state of hypercytokinemia. The such exaggerated inflammatory response is commonly associated with hemodynamic changes, reduced renal perfusion, tissue hypoxia, generation of reactive oxygen species (ROS), endothelial damage, and coagulopathies, which can result in severe damage to the renal parenchyma. Thereby, understanding the molecular mechanisms and pathophysiology of kidney injuries induced by SARS-COV-2 is of fundamental importance to obtaining new therapeutic insights for the prevention and management of AKI.
Collapse
Affiliation(s)
- Antônio V B DA Silva
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - João DE A G Campanati
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Isadora DE S Barcelos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Alberto C L Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Uildson P DE Deus
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Telma DE J Soares
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Liliany S DE B Amaral
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| |
Collapse
|
16
|
De Maio F, Rullo M, de Candia M, Purgatorio R, Lopopolo G, Santarelli G, Palmieri V, Papi M, Elia G, De Candia E, Sanguinetti M, Altomare CD. Evaluation of Novel Guanidino-Containing Isonipecotamide Inhibitors of Blood Coagulation Factors against SARS-CoV-2 Virus Infection. Viruses 2022; 14:v14081730. [PMID: 36016352 PMCID: PMC9415951 DOI: 10.3390/v14081730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023] Open
Abstract
Coagulation factor Xa (fXa) and thrombin (thr) are widely expressed in pulmonary tissues, where they may catalyze, together with the transmembrane serine protease 2 (TMPRSS2), the coronaviruses spike protein (SP) cleavage and activation, thus enhancing the SP binding to ACE2 and cell infection. In this study, we evaluate in vitro the ability of approved (i.e., dabigatran and rivaroxaban) and newly synthesized isonipecotamide-based reversible inhibitors of fXa/thr (cmpds 1-3) to hinder the SARS-CoV-2 infectivity of VERO cells. Nafamostat, which is a guanidine/amidine antithrombin and antiplasmin agent, disclosed as a covalent inhibitor of TMPRSS2, was also evaluated. While dabigatran and rivaroxaban at 100 μM concentration did not show any effect on SARS-CoV-2 infection, the virus preincubation with new guanidino-containing fXa-selective inhibitors 1 and 3 did decrease viral infectivity of VERO cells at subtoxic doses. When the cells were pre-incubated with 3, a reversible nanomolar inhibitor of fXa (Ki = 15 nM) showing the best in silico docking score toward TMPRSS2 (pdb 7MEQ), the SARS-CoV-2 infectivity was completely inhibited at 100 μM (p < 0.0001), where the cytopathic effect was just about 10%. The inhibitory effects of 3 on SARS-CoV-2 infection was evident (ca. 30%) at lower concentrations (3-50 μM). The covalent TMPRSS2 and the selective inhibitor nafamostat mesylate, although showing some effect (15-20% inhibition), did not achieve statistically significant activity against SARS-CoV-2 infection in the whole range of test concentrations (3-100 μM). These findings suggest that direct inhibitors of the main serine proteases of the blood coagulation cascade may have potential in SARS-CoV-2 drug discovery. Furthermore, they prove that basic amidino-containing fXa inhibitors with a higher docking score towards TMPRSS2 may be considered hits for optimizing novel small molecules protecting guest cells from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Mariagrazia Rullo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Modesto de Candia
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Rosa Purgatorio
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Gianfranco Lopopolo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Giulia Santarelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Valentina Palmieri
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Massimiliano Papi
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, I-70125 Bari, Italy;
| | - Erica De Candia
- Department of Translational Medicine and Surgery, Catholic University of Rome, I-00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
- Correspondence: (M.S.); (C.D.A.)
| | - Cosimo Damiano Altomare
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
- Correspondence: (M.S.); (C.D.A.)
| |
Collapse
|
17
|
Study of protease-mediated processes initiating viral infection and cell-cell viral spreading of SARS-CoV-2. J Mol Model 2022; 28:224. [PMID: 35854129 PMCID: PMC9296015 DOI: 10.1007/s00894-022-05206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
Abstract
Viral-cell entry and cell-cell viral spreading processes of SARS-CoV-2 are subjected to fast evolutionary optimization because of its worldwide spreading, requiring the need for new drug developments. However, this task is still challenging, because a detailed understanding of the underlying molecular processes, mediated by the key cellular proteases TMPRSS2 and furin, is still lacking. Here, we show by large-scale atomistic calculations that binding of the ACE2 cell receptor at one of the heteromers of the SARS-CoV-2 spike leads to a release of its furin cleavage site (S1/S2), enabling an enhanced furin binding, and that this latter process promotes the binding of TMPRSS2 through the release of the TMPRSS2 cleavage site (S2') out of the ACE2-binding heteromer. Moreover, we find that, after proteolytic cleavage, improved furin binding causes that parts of the S2 subunit dissociate from the complex, suggesting that furin promotes the fusion of the S2 subunit with the cell membrane before transfer of the viral RNA. Here we show by computational means that binding of the ACE2-cell receptor at one of the heteromers of the SARS-CoV-2 spike leads to an enhanced binding of the protease furin, promoting the binding of the protease TMPRSS2. Moreover, we show that, after proteolytic cleavage, improved furin binding causes that parts of the heteromer dissociate from the spike.
Collapse
|
18
|
Ghosh A, Kar PK, Gautam A, Gupta R, Singh R, Chakravarti R, Ravichandiran V, Ghosh Dastidar S, Ghosh D, Roy S. An insight into SARS-CoV-2 structure, pathogenesis, target hunting for drug development and vaccine initiatives. RSC Med Chem 2022; 13:647-675. [PMID: 35814927 PMCID: PMC9215161 DOI: 10.1039/d2md00009a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been confirmed to be a new coronavirus having 79% and 50% similarity with SARS-CoV and MERS-CoV, respectively. For a better understanding of the features of the new virus SARS-CoV-2, we have discussed a possible correlation between some unique features of the genome of SARS-CoV-2 in relation to pathogenesis. We have also reviewed structural druggable viral and host targets for possible clinical application if any, as cases of reinfection and compromised protection have been noticed due to the emergence of new variants with increased infectivity even after vaccination. We have also discussed the types of vaccines that are being developed against SARS-CoV-2. In this review, we have tried to give a brief overview of the fundamental factors of COVID-19 research like basic virology, virus variants and the newly emerging techniques that can be applied to develop advanced treatment strategies for the management of COVID-19 disease.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
- Department of Chemistry, University of Calcutta Kolkata India
- Netaji Subhas Chandra Bose Cancer Research institute 3081, Nayabad Kolkata-700094 India
| | - Paritosh K Kar
- Foundation on Tropical Diseases & Health Research Development, A Mission on Charitable Health Care Unit Balichak CT, Paschim Medinipur West Bengal 721 124 India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen Sand 14 72076 Tübingen Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen Max-Planck-Ring 5 72076 Tübingen Germany
| | - Rahul Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology Kolkata India
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
| | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
| | - Syamal Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology Kolkata India
| |
Collapse
|
19
|
Gorący A, Rosik J, Szostak B, Ustianowski Ł, Ustianowska K, Gorący J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses 2022; 14:v14051092. [PMID: 35632833 PMCID: PMC9144443 DOI: 10.3390/v14051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Since the end of 2019, the whole world has been struggling with the life-threatening pandemic amongst all age groups and geographic areas caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). The Coronavirus Disease 2019 (COVID-19) pandemic, which has led to more than 468 million cases and over 6 million deaths reported worldwide (as of 20 March 2022), is one of the greatest threats to human health in history. Meanwhile, the lack of specific and irresistible treatment modalities provoked concentrated efforts in scientists around the world. Various mechanisms of cell entry and cellular dysfunction were initially proclaimed. Especially, mitochondria and cell membrane are crucial for the course of infection. The SARS-CoV-2 invasion depends on angiotensin converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and cluster of differentiation 147 (CD147), expressed on host cells. Moreover, in this narrative review, we aim to discuss other cell organelles targeted by SARS-CoV-2. Lastly, we briefly summarize the studies on various drugs.
Collapse
Affiliation(s)
- Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jakub Rosik
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Jarosław Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
| |
Collapse
|
20
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
David A, Parkinson N, Peacock TP, Pairo-Castineira E, Khanna T, Cobat A, Tenesa A, Sancho-Shimizu V, Casanova JL, Abel L, Barclay WS, Baillie JK, Sternberg MJ. A common TMPRSS2 variant has a protective effect against severe COVID-19. Curr Res Transl Med 2022; 70:103333. [PMID: 35104687 PMCID: PMC8743599 DOI: 10.1016/j.retram.2022.103333] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus' spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. METHODS We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. RESULTS We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p = 0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p = 1.3 × 10-3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. CONCLUSION TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.
Collapse
Affiliation(s)
- Alessia David
- Centre for Integrative System Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Nicholas Parkinson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Thomas P Peacock
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | | | - Tarun Khanna
- Centre for Integrative System Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Aurelie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU France; University of Paris, Imagine Institute, Paris, EU France
| | - Albert Tenesa
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU France; University of Paris, Imagine Institute, Paris, EU France; Howard Hughes Medical Institute, New York, NY, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU France; University of Paris, Imagine Institute, Paris, EU France
| | - Wendy S Barclay
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK; Intenstive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK
| | - Michael Je Sternberg
- Centre for Integrative System Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
22
|
Sure F, Bertog M, Afonso S, Diakov A, Rinke R, Madej MG, Wittmann S, Gramberg T, Korbmacher C, Ilyaskin AV. Transmembrane serine protease 2 (TMPRSS2) proteolytically activates the epithelial sodium channel (ENaC) by cleaving the channel's γ-subunit. J Biol Chem 2022; 298:102004. [PMID: 35504352 PMCID: PMC9163703 DOI: 10.1016/j.jbc.2022.102004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer consisting of α-, β-, and γ-subunits. Channel activation requires proteolytic release of inhibitory tracts from the extracellular domains of α-ENaC and γ-ENaC; however, the proteases involved in the removal of the γ-inhibitory tract remain unclear. In several epithelial tissues, ENaC is coexpressed with the transmembrane serine protease 2 (TMPRSS2). Here, we explored the effect of human TMPRSS2 on human αβγ-ENaC heterologously expressed in Xenopus laevis oocytes. We found that coexpression of TMPRSS2 stimulated ENaC-mediated whole-cell currents by approximately threefold, likely because of an increase in average channel open probability. Furthermore, TMPRSS2-dependent ENaC stimulation was not observed using a catalytically inactive TMPRSS2 mutant and was associated with fully cleaved γ-ENaC in the intracellular and cell surface protein fractions. This stimulatory effect of TMPRSS2 on ENaC was partially preserved when inhibiting its proteolytic activity at the cell surface using aprotinin but was abolished when the γ-inhibitory tract remained attached to its binding site following introduction of two cysteine residues (S155C–Q426C) to form a disulfide bridge. In addition, computer simulations and site-directed mutagenesis experiments indicated that TMPRSS2 can cleave γ-ENaC at sites both proximal and distal to the γ-inhibitory tract. This suggests a dual role of TMPRSS2 in the proteolytic release of the γ-inhibitory tract. Finally, we demonstrated that TMPRSS2 knockdown in cultured human airway epithelial cells (H441) reduced baseline proteolytic activation of endogenously expressed ENaC. Thus, we conclude that TMPRSS2 is likely to contribute to proteolytic ENaC activation in epithelial tissues in vivo.
Collapse
Affiliation(s)
- Florian Sure
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Marko Bertog
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Sara Afonso
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alexei Diakov
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Ralf Rinke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - M Gregor Madej
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | - Sabine Wittmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Thomas Gramberg
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Christoph Korbmacher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany.
| | - Alexandr V Ilyaskin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| |
Collapse
|
23
|
Stakišaitis D, Kapočius L, Valančiūtė A, Balnytė I, Tamošuitis T, Vaitkevičius A, Sužiedėlis K, Urbonienė D, Tatarūnas V, Kilimaitė E, Gečys D, Lesauskaitė V. SARS-CoV-2 Infection, Sex-Related Differences, and a Possible Personalized Treatment Approach with Valproic Acid: A Review. Biomedicines 2022; 10:biomedicines10050962. [PMID: 35625699 PMCID: PMC9138665 DOI: 10.3390/biomedicines10050962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Sex differences identified in the COVID-19 pandemic are necessary to study. It is essential to investigate the efficacy of the drugs in clinical trials for the treatment of COVID-19, and to analyse the sex-related beneficial and adverse effects. The histone deacetylase inhibitor valproic acid (VPA) is a potential drug that could be adapted to prevent the progression and complications of SARS-CoV-2 infection. VPA has a history of research in the treatment of various viral infections. This article reviews the preclinical data, showing that the pharmacological impact of VPA may apply to COVID-19 pathogenetic mechanisms. VPA inhibits SARS-CoV-2 virus entry, suppresses the pro-inflammatory immune cell and cytokine response to infection, and reduces inflammatory tissue and organ damage by mechanisms that may appear to be sex-related. The antithrombotic, antiplatelet, anti-inflammatory, immunomodulatory, glucose- and testosterone-lowering in blood serum effects of VPA suggest that the drug could be promising for therapy of COVID-19. Sex-related differences in the efficacy of VPA treatment may be significant in developing a personalised treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
- Correspondence: (D.S.); (V.L.)
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Daiva Urbonienė
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
- Correspondence: (D.S.); (V.L.)
| |
Collapse
|
24
|
Ziuzia-Januszewska L, Januszewski M. Pathogenesis of Olfactory Disorders in COVID-19. Brain Sci 2022; 12:brainsci12040449. [PMID: 35447981 PMCID: PMC9029941 DOI: 10.3390/brainsci12040449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Since the outbreak of the SARS-CoV-2 pandemic, olfactory disorders have been reported as a frequent symptom of COVID-19; however, its pathogenesis is still debated. The aim of this review is to summarize the current understanding of the pathogenesis of smell impairment in the course of COVID-19 and to highlight potential avenues for future research on this issue. Several theories have been proposed to explain the pathogenesis of COVID-19-related anosmia, including nasal obstruction and rhinorrhea, oedema of the olfactory cleft mucosa, olfactory epithelial damage either within the olfactory receptor cells or the supporting non-neural cells (either direct or immune-mediated), damage to the olfactory bulb, and impairment of the central olfactory pathways. Although the pathogenesis of COVID-19-related anosmia is still not fully elucidated, it appears to be mainly due to sensorineural damage, with infection of the olfactory epithelium support cells via the ACE1 receptor and disruption of the OE caused by immense inflammatory reaction, and possibly with direct olfactory sensory neurons infection mediated by the NRP-1 receptor. Involvement of the higher olfactory pathways and a conductive component of olfactory disorders, as well as genetic factors, may also be considered.
Collapse
Affiliation(s)
- Laura Ziuzia-Januszewska
- Department of Otolaryngology, Central Clinical Hospital, Ministry of Interior and Administration, 02-507 Warsaw, Poland
- Correspondence: or ; Tel.: +48-477221182
| | - Marcin Januszewski
- Department of Obstetrics and Gynecology, Central Clinical Hospital, Ministry of Interior and Administration, 02-507 Warsaw, Poland;
| |
Collapse
|
25
|
Manandhar S, Pai KSR, Krishnamurthy PT, Kiran AVVVR, Kumari GK. Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: a structure-based virtual screening and molecular dynamics study. Struct Chem 2022; 33:1529-1541. [PMID: 35345416 PMCID: PMC8941836 DOI: 10.1007/s11224-022-01921-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/13/2022] [Indexed: 12/27/2022]
Abstract
The scientific insights gained from the severe acute respiratory syndrome (SARS) and the middle east respiratory syndrome (MERS) outbreaks are helping scientists to fast-track the antiviral drug discovery process against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses, as well as influenza viruses, depend on host type 2 transmembrane serine protease, TMPRSS2, for entry and propagation in the human cell. Recent studies show that SARS-CoV-2 also uses TMPRSS2 for its cell entry. In the present study, a structure-based virtual screening of 52,337, protease ligands downloaded from the Zinc database was carried out against the homology model of TMPRSS2 protein followed by the molecular dynamics-based simulation to identify potential TMPRSS2 hits. The virtual screening has identified 13 hits with a docking score range of -10.447 to -9.863 and glide energy range of -60.737 to -40.479 kcal/mol. The binding mode analysis shows that the hit molecules form H-bond (Asp180, Gly184 & Gly209), Pi-Pi stacking (His41), and salt bridge (Asp180) type of contacts with the active site residues of TMPRSS2. In the MD simulation of ZINC000013444414, ZINC000137976768, and ZINC000143375720 hits show that these molecules form a stable complex with TMPRSS2. The complex equilibrates well with a minimal RMSD and RMSF fluctuation. All three structures, as predicted in Glide XP docking, show a prominent interaction with the Asp180, Gly184, Gly209, and His41. Further, MD simulation also identifies a notable H-bond interaction with Ser181 for all three hits. Among these hits, ZINC000143375720 shows the most stable binding interaction with TMPRSS2. The present study is successful in identifying TMPRSS2 ligands from zinc data base for a possible application in the treatment of COVID-19.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, The Nilgiris, 643 001 Tamil Nadu India
| | - Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, The Nilgiris, 643 001 Tamil Nadu India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, The Nilgiris, 643 001 Tamil Nadu India
| |
Collapse
|
26
|
Pandey RK, Srivastava A, Singh PP, Chaubey G. Genetic association of TMPRSS2 rs2070788 polymorphism with COVID-19 case fatality rate among Indian populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105206. [PMID: 34995811 PMCID: PMC8730738 DOI: 10.1016/j.meegid.2022.105206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2, the causative agent for COVID-19, an ongoing pandemic, engages the ACE2 receptor to enter the host cell through S protein priming by a serine protease, TMPRSS2. Variation in the TMPRSS2 gene may account for the disparity in disease susceptibility between populations. Therefore, in the present study, we have used next-generation sequencing (NGS) data of world populations from 393 individuals and analyzed the TMPRSS2 gene using a haplotype-based approach with a major focus on South Asia to study its phylogenetic structure and their haplotype sharing among various populations worldwide. Our analysis of phylogenetic relatedness showed a closer affinity of South Asians with the West Eurasian populations therefore, host disease susceptibility and severity particularly in the context of TMPRSS2 will be more akin to West Eurasian instead of East Eurasian. This is in contrast to our prior study on the ACE2 gene which shows South Asian haplotypes have a strong affinity towards West Eurasians. Thus ACE2 and TMPRSS2 have an antagonistic genetic relatedness among South Asians. Considering the significance of the TMPRSS2 gene in the SARS-CoV-2 pathogenicity, COVID-19 infection and intensity trends could be directly associated with increased expression therefore, we have also tested the SNPs frequencies of this gene among various Indian state populations with respect to the case fatality rate (CFR). Interestingly, we found a significant positive association between the rs2070788 SNP (G Allele) and the CFR among Indian populations. Further our cis eQTL analysis of rs2070788 shows that the GG genotype of the rs2070788 tends to have a significantly higher expression of TMPRSS2 gene in the lung compared to the AG and AA genotypes thus validating the previous observation and therefore it might play a vital part in determining differential disease vulnerability. We trust that this information will be useful in understanding the role of the TMPRSS2 variant in COVID-19 susceptibility and using it as a biomarker may help to predict populations at risk.
Collapse
Affiliation(s)
- Rudra Kumar Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | - Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
27
|
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022; 14:v14020351. [PMID: 35215937 PMCID: PMC8878323 DOI: 10.3390/v14020351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.
Collapse
|
28
|
Grigoryev DN, Rabb H. Possible kidney-lung cross-talk in COVID-19: in silico modeling of SARS-CoV-2 infection. BMC Nephrol 2022; 23:57. [PMID: 35123426 PMCID: PMC8817768 DOI: 10.1186/s12882-022-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Publicly available genomics datasets have grown drastically during the past decades. Although most of these datasets were initially generated to answer a pre-defined scientific question, their repurposing can be useful when new challenges such as COVID-19 arise. While the establishment and use of experimental models of COVID-19 are in progress, the potential hypotheses for mechanisms of onset and progression of COVID-19 can be generated by using in silico analysis of known molecular changes during COVID-19 and targets for SARS-CoV-2 invasion. Methods Selecting condition: COVID-19 infection leads to pneumonia and mechanical ventilation (PMV) and associated with acute kidney injury (AKI). There is increasing data demonstrating mechanistic links between AKI and lung injury caused by mechanical ventilation. Selecting targets: SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) for cell entry. We hypothesized that expression of ACE2 and TMPRSS2 would be affected in models of AKI and PMV. We therefore evaluated expression of ACE2 and TMPRSS2 as well as other novel molecular players of AKI and AKI-lung cross-talk in the publicly available microarray datasets GSE6730 and GSE60088, which represent gene expression of lungs and kidneys in mouse models of AKI and PMV, respectively. Results Expression of COVID-19 related genes ACE2 and TMPRSS2 was downregulated in lungs after 6 h of distant AKI effects. The expression of ACE2 decreased further after 36 h, while expression of TMPRSS2 recovered. In kidneys, both genes were downregulated by AKI, but not by distant lung injury. We also identified 53 kidney genes upregulated by PMV; and 254 lung genes upregulated by AKI, 9 genes of which were common to both organs. 3 of 9 genes were previously linked to kidney-lung cross-talk: Lcn2 (Fold Change (FC)Lung (L) = 18.6, FCKidney (K) = 6.32), Socs3 (FCL = 10.5, FCK = 10.4), Inhbb (FCL = 6.20, FCK = 6.17). This finding validates the current approach and reveals 6 new candidates, including Maff (FCL = 7.21, FCK = 5.98). Conclusions Using our in silico approach, we identified changes in COVID-19 related genes ACE2 and TMPRSS2 in traditional mouse models of AKI and kidney-lung cross-talk. We also found changes in new candidate genes, which could be involved in the combined kidney-lung injury during COVID-19.
Collapse
|
29
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|
30
|
Gawish R, Starkl P, Pimenov L, Hladik A, Lakovits K, Oberndorfer F, Cronin SJF, Ohradanova-Repic A, Wirnsberger G, Agerer B, Endler L, Capraz T, Perthold JW, Cikes D, Koglgruber R, Hagelkruys A, Montserrat N, Mirazimi A, Boon L, Stockinger H, Bergthaler A, Oostenbrink C, Penninger JM, Knapp S. ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology. eLife 2022; 11:e74623. [PMID: 35023830 PMCID: PMC8776253 DOI: 10.7554/elife.74623] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022] Open
Abstract
Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNγ and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo.
Collapse
Affiliation(s)
- Riem Gawish
- Laboratory of Infection Biology, Department of Medicine I, Medical University of ViennaViennaAustria
| | - Philipp Starkl
- Laboratory of Infection Biology, Department of Medicine I, Medical University of ViennaViennaAustria
| | - Lisabeth Pimenov
- Laboratory of Infection Biology, Department of Medicine I, Medical University of ViennaViennaAustria
| | - Anastasiya Hladik
- Laboratory of Infection Biology, Department of Medicine I, Medical University of ViennaViennaAustria
| | - Karin Lakovits
- Laboratory of Infection Biology, Department of Medicine I, Medical University of ViennaViennaAustria
| | | | - Shane JF Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | | | - Benedikt Agerer
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Lukas Endler
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Tümay Capraz
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life SciencesViennaAustria
| | - Jan W Perthold
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life SciencesViennaAustria
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Rubina Koglgruber
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y NanomedicinaMadridSpain
| | - Ali Mirazimi
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical MicrobiologyStockholmSweden
- National Veterinary InstituteUppsalaSweden
| | | | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Andreas Bergthaler
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life SciencesViennaAustria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Medical Genetics, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Sylvia Knapp
- Laboratory of Infection Biology, Department of Medicine I, Medical University of ViennaViennaAustria
| |
Collapse
|
31
|
Dahal A, Sonju JJ, Kousoulas KG, Jois SD. Peptides and peptidomimetics as therapeutic agents for Covid-19. Pept Sci (Hoboken) 2022; 114:e24245. [PMID: 34901700 PMCID: PMC8646791 DOI: 10.1002/pep2.24245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Covid-19 pandemic has caused high morbidity and mortality rates worldwide. Virus entry into cells can be blocked using several strategies, including inhibition of protein-protein interactions (PPIs) between the viral spike glycoprotein and cellular receptors, as well as blocking of spike protein conformational changes that are required for cleavage/activation and fusogenicity. The spike-mediated viral attachment and entry into cells via fusion of the viral envelope with cellular membranes involve PPIs mediated by short peptide fragments exhibiting particular secondary structures. Thus, peptides that can inhibit these PPIs may be used as potential antiviral agents preventing virus entry and spread. This review is focused on peptides and peptidomimetics as PPI modulators and protease inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| |
Collapse
|
32
|
Aimrane A, Laaradia MA, Sereno D, Perrin P, Draoui A, Bougadir B, Hadach M, Zahir M, Fdil N, El Hiba O, El Hidan MA, Kahime K. Insight into COVID-19's epidemiology, pathology, and treatment. Heliyon 2022; 8:e08799. [PMID: 35071819 PMCID: PMC8767941 DOI: 10.1016/j.heliyon.2022.e08799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/08/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
The newly emerged 2019 coronavirus disease (COVID-19) has urged scientific and medical communities to focus on epidemiology, pathophysiology, and treatment of SARS-CoV-2. Indeed, little is known about the virus causing this severe acute respiratory syndrome pandemic, coronavirus (SARS-CoV-2). Data already collected on viruses belonging to the coronaviridae family are of interest to improve our knowledge rapidly on this pandemic. The current review aims at delivering insight into the fundamental advances inSARS-CoV-2 epidemiology, pathophysiology, life cycle, and treatment.
Collapse
Affiliation(s)
- Abdelmohcine Aimrane
- Metabolics Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
- Nutritional Physiopathology Team, Faculty of Sciences, ChouaibDoukkali University, El Jadida, 24000, Morocco
| | - Mehdi Ait Laaradia
- Laboratory of Pharmacology, Neurobiology and Behavior, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Denis Sereno
- IRD, University of Montpellier, InterTryp, Parasite Infectiology Research Group, 34000, Montpellier, France
| | - Pascale Perrin
- IRD, University of Montpellier, MiVeGec, Parasite Infectiology Research Group, 34000, Montpellier, France
| | - Ahmed Draoui
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Morocco
| | - Blaid Bougadir
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| | - Mohamed Hadach
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| | - Mustapha Zahir
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| | - Naima Fdil
- Metabolics Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Omar El Hiba
- Nutritional Physiopathology Team, Faculty of Sciences, ChouaibDoukkali University, El Jadida, 24000, Morocco
| | | | - Kholoud Kahime
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| |
Collapse
|
33
|
Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Nat Rev Urol 2022; 19:116-127. [PMID: 34837081 PMCID: PMC8622117 DOI: 10.1038/s41585-021-00542-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Although many studies have focused on SARS-CoV-2 infection in the lungs, comparatively little is known about the potential effects of the virus on male fertility. SARS-CoV-2 infection of target cells requires the presence of furin, angiotensin-converting enzyme 2 (ACE2) receptors, and transmembrane protease serine 2 (TMPRSS2). Thus, cells in the body that express these proteins might be highly susceptible to viral entry and downstream effects. Currently, reports regarding the expression of the viral entry proteins in the testes are conflicting; however, other members of the SARS-CoV family of viruses - such as SARS-CoV - have been suspected to cause testicular dysfunction and/or orchitis. SARS-CoV-2, which displays many similarities to SARS-CoV, could potentially cause similar adverse effects. Commonalities between SARS family members, taken in combination with sparse reports of testicular discomfort and altered hormone levels in patients with SARS-CoV-2, might indicate possible testicular dysfunction. Thus, SARS-CoV-2 infection has the potential for effects on testis somatic and germline cells and experimental approaches might be required to help identify potential short-term and long-term effects of SARS-CoV-2 on male fertility.
Collapse
|
34
|
Mule S, Singh A, Greish K, Sahebkar A, Kesharwani P, Shukla R. Drug repurposing strategies and key challenges for COVID-19 management. J Drug Target 2021; 30:413-429. [PMID: 34854327 DOI: 10.1080/1061186x.2021.2013852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
COVID-19 is a clinical outcome of viral infection emerged due to strain of beta coronavirus which attacks the type-2 pneumocytes in alveoli via angiotensin-converting enzyme 2 (ACE2) receptors. There is no satisfactory drug developed against 'SARS-CoV2', highlighting an immediate necessity chemotherapeutic repurposing plan COVID-19. Drug repurposing is a method of selection of approved therapeutics for new use and is considered to be the most effective drug finding strategy since it includes less time and cost to obtain treatment compared to the de novo drug acquisition process. Several drugs such as hydroxychloroquine, remdesivir, teicoplanin, darunavir, ritonavir, nitazoxanide, chloroquine, tocilizumab and favipiravir (FPV) showed their activity against 'SARS-CoV2' in vitro. This review has emphasized on repurposing of drugs, and biologics used in clinical set up for targeting COVID-19 and to evaluate their pharmacokinetics, pharmacodynamics and safety with their future aspect. The key benefit of drug repurposing is the wealth of information related to its safety, and easy accessibility. Altogether repurposing approach allows access to regulatory approval as well as reducing sophisticated safety studies.
Collapse
Affiliation(s)
- Shubham Mule
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Khaled Greish
- Nanomedicine Unit, College of Medicine and Medical Sciences, Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
35
|
Muralidar S, Gopal G, Visaga Ambi S. Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19. J Med Virol 2021; 93:5260-5276. [PMID: 33851732 PMCID: PMC8251167 DOI: 10.1002/jmv.27019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) infection, which has emerged as a global pandemic causing serious concerns. Lack of specific and effective therapeutics for the treatment of COVID-19 is a major concern and the development of vaccines is another important aspect in managing the infection effectively. The first step in the SARS-CoV-2 pathogenesis is the viral entry and it is mediated by its densely glycosylated spike protein (S-protein). Similar to the SARS-CoV, SARS-CoV-2 also engages angiotensin-converting enzyme 2 (ACE2) as the host cell entry receptor. In addition to ACE2, several recent studies have implicated the crucial role of cell surface heparan sulfate (HS) as a necessary assisting cofactor for ACE2-mediated SARS-CoV-2 entry. Furthermore, SARS-CoV-2 was also identified to use both endosomal cysteine proteases cathepsin B and L (CatB/L) and the transmembrane serine protease 2 (TMPRSS2) for the pivotal role of S-protein priming mediating viral entry. As the entry of SARS-CoV-2 into host cells is mandatory for viral infection, it becomes an extremely attractive therapeutic intervention point. In this regard, this review will focus on the therapeutic targeting of the crucial steps of SARS-CoV-2 viral entry like S-protein/ACE2 interaction and S-protein priming by host cell proteases. In addition, this review will also give insights to the readers on several therapeutic opportunities, pharmacological targeting of the viral-entry facilitators like S-Protein, ACE2, cell surface HS, TMPRSS2, and CatB/L and evidence for those drugs currently ongoing clinical studies.
Collapse
Affiliation(s)
- Shibi Muralidar
- Biopharmaceutical Research Lab, Anusandhan Kendra‐1SASTRA Deemed‐to‐be‐UniversityThanjavurTamil NaduIndia
- School of Chemical and BiotechnologySASTRA Deemed‐to‐be‐UniversityThanjavurTamil NaduIndia
| | - Gayathri Gopal
- Biopharmaceutical Research Lab, Anusandhan Kendra‐1SASTRA Deemed‐to‐be‐UniversityThanjavurTamil NaduIndia
- School of Chemical and BiotechnologySASTRA Deemed‐to‐be‐UniversityThanjavurTamil NaduIndia
| | - Senthil Visaga Ambi
- Biopharmaceutical Research Lab, Anusandhan Kendra‐1SASTRA Deemed‐to‐be‐UniversityThanjavurTamil NaduIndia
- School of Chemical and BiotechnologySASTRA Deemed‐to‐be‐UniversityThanjavurTamil NaduIndia
| |
Collapse
|
36
|
Ayele AG, Enyew EF, Kifle ZD. Roles of existing drug and drug targets for COVID-19 management. Metabol Open 2021; 11:100103. [PMID: 34222852 PMCID: PMC8239316 DOI: 10.1016/j.metop.2021.100103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
In December 2019, a highly transmissible, pneumonia epidemic caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), erupted in China and other countries, resulting in devastation and health crisis worldwide currently. The search and using existing drugs support to curb the current highly contagious viral infection is spirally increasing since the pandemic began. This is based on these drugs had against other related RNA-viruses such as MERS-Cov, and SARS-Cov. Moreover, researchers are scrambling to identify novel drug targets and discover novel therapeutic options to vanquish the current pandemic. Since there is no definitive treatment to control Covid-19 vaccines are remain to be a lifeline. Currently, many vaccine candidates are being developed with most of them are reported to have positive results. Therapeutic targets such as helicases, transmembrane serine protease 2, cathepsin L, cyclin G-associated kinase, adaptor-associated kinase 1, two-pore channel, viral virulence factors, 3-chymotrypsin-like protease, suppression of excessive inflammatory response, inhibition of viral membrane, nucleocapsid, envelope, and accessory proteins, and inhibition of endocytosis were identified as a potential target against COVID-19 infection. This review also summarizes plant-based medicines for the treatment of COVID-19 such as saposhnikoviae divaricata, lonicerae japonicae flos, scutellaria baicalensis, lonicera japonicae, and some others. Thus, this review aimed to focus on the most promising therapeutic targets being repurposed against COVID-19 and viral elements that are used in COVID-19 vaccine candidates.
Collapse
Key Words
- 3CLpro, 3-chymotrypsin-like protease
- AAK1, adaptor-associated kinase 1
- ACE-2, Angiotensin-Converting Enzyme-2
- CEF, Cepharanthine
- COVID-19
- COVID-19, coronavirus disease-2019
- Existing drug
- GAK, cyclin G-associated kinase
- MERS-CoV, Middle East respiratory syndrome coronavirus
- Management
- Nsp, non-structure protein
- ORF, open reading frame
- PLpro, papain-like protease
- RdRp, RNA-dependence RNA-polymerase
- SARS-COV-2, severe acute respiratory syndrome coronavirus-2
- TMPRSS2, transmembrane Serine Protease 2
- TPC2, two-pore channel 2
- Therapeutic target
Collapse
Affiliation(s)
- Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Engidaw Fentahun Enyew
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Sciences, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
37
|
Epstein RJ. The secret identities of TMPRSS2: Fertility factor, virus trafficker, inflammation moderator, prostate protector and tumor suppressor. Tumour Biol 2021; 43:159-176. [PMID: 34420994 DOI: 10.3233/tub-211502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The human TMPRSS2 gene is pathogenetically implicated in both coronaviral lung infection and prostate cancer, suggesting its potential as a drug target in both contexts. SARS-COV-2 spike polypeptides are primed by the host transmembrane TMPRSS2 protease, triggering virus fusion with epithelial cell membranes followed by an endocytotic internalisation process that bypasses normal endosomal activation of cathepsin-mediated innate immunity; viral co-opting of TMPRSS2 thus favors microbial survivability by attenuating host inflammatory responses. In contrast, most early hormone-dependent prostate cancers express TMPRSS2:ERG fusion genes arising from deletions that eliminate the TMPRSS2 coding region while juxtaposing its androgen-inducible promoter and the open reading frame of ERG, upregulating pro-inflammatory ERG while functionally disabling TMPRSS2. Moreover, inflammatory oxidative DNA damage selects for TMPRSS2:ERG-fused cancers, whereas patients treated with antiinflammatory drugs develop fewer of these fusion-dependent tumors. These findings imply that TMPRSS2 protects the prostate by enabling endosomal bypass of pathogens which could otherwise trigger inflammation-induced DNA damage that predisposes to TMPRSS2:ERG fusions. Hence, the high oncogenic selectability of TMPRSS2:ERG fusions may reflect a unique pro-inflammatory synergy between androgenic ERG gain-of-function and fusogenic TMPRSS2 loss-of-function, cautioning against the use of TMPRSS2-inhibitory drugs to prevent or treat early prostate cancer.
Collapse
Affiliation(s)
- Richard J Epstein
- New Hope Cancer Center, Beijing United Hospital, Jiangtai Xi Rd 9-11, Chaoyang, Beijing, China.,Garvan Institute of Medical Research, and UNSW Medical School, St Vincent's Hospital, Victoria St, Darlinghurst, Sydney, Australia
| |
Collapse
|
38
|
Rodrigues R, Costa de Oliveira S. The Impact of Angiotensin-Converting Enzyme 2 ( ACE2) Expression Levels in Patients with Comorbidities on COVID-19 Severity: A Comprehensive Review. Microorganisms 2021; 9:1692. [PMID: 34442770 PMCID: PMC8398209 DOI: 10.3390/microorganisms9081692] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Angiotensin-Converting Enzyme 2 (ACE2) has been proved to be the main host cell receptor for the binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the COVID-19 pandemic. The SARS-CoV-2 spike (S) protein binds to ACE2 to initiate the process of replication. This enzyme is widely present in human organ tissues, such as the heart and lung. The pathophysiology of ACE2 in SARS-CoV-2 infection is complex and may be associated with several factors and conditions that are more severe in COVID-19 patients, such as age, male gender, and comorbidities, namely, cardiovascular diseases, chronic respiratory diseases, obesity, and diabetes. Here we present a comprehensive review that aims to correlate the levels of expression of the ACE2 in patients with comorbidities and with a poor outcome in COVID-19 disease. Significantly higher levels of expression of ACE2 were observed in myocardial and lung tissues in heart failure and COPD patients, respectively. An age-dependent increase in SARS2-CoV-2 receptors in the respiratory epithelium may be also responsible for the increased severity of COVID-19 lung disease in elderly people. Although the role of ACE2 is highlighted regarding the damage that can arise upon the SARS-CoV-2 invasion, there was no association observed between renin-angiotensin-aldosterone system (RAAS) inhibitors and the severity of COVID-19.
Collapse
Affiliation(s)
- Rui Rodrigues
- Department of Pathology, Division of Microbiology, Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Sofia Costa de Oliveira
- Department of Pathology, Division of Microbiology, Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Center for Research in Health Technologies and Information Systems (CINTESIS), R. Dr. Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
39
|
Azevedo PRG, Freitas NLDE, Brandão F. Testosterone and COVID-19 - a stone in the way. AN ACAD BRAS CIENC 2021; 93:e20210510. [PMID: 34378642 DOI: 10.1590/0001-3765202120200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Pedro Ricardo G Azevedo
- University of Brasília, Faculty of Health, Department of Pharmacy, Laboratory of Clinical Analysis, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Natália L DE Freitas
- University of Brasília, Faculty of Health, Department of Pharmacy, Laboratory of Clinical Analysis, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Fabiana Brandão
- University of Brasília, Faculty of Health, Department of Pharmacy, Laboratory of Clinical Analysis, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
40
|
Sarker J, Das P, Sarker S, Roy AK, Momen AZMR. A Review on Expression, Pathological Roles, and Inhibition of TMPRSS2, the Serine Protease Responsible for SARS-CoV-2 Spike Protein Activation. SCIENTIFICA 2021; 2021:2706789. [PMID: 34336361 PMCID: PMC8313365 DOI: 10.1155/2021/2706789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 05/30/2021] [Accepted: 07/14/2021] [Indexed: 05/08/2023]
Abstract
SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, uses the host cell membrane receptor angiotensin-converting enzyme 2 (ACE2) for anchoring its spike protein, and the subsequent membrane fusion process is facilitated by host membrane proteases. Recent studies have shown that transmembrane serine protease 2 (TMPRSS2), a protease known for similar role in previous coronavirus infections, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), is responsible for the proteolytic cleavage of the SARS-CoV-2 spike protein, enabling host cell fusion of the virus. TMPRSS2 is known to be expressed in the epithelial cells of different sites including gastrointestinal, respiratory, and genitourinary system. The infection site of the SARS-CoV-2 correlates with the coexpression sites of ACE2 and TMPRSS2. Besides, age-, sex-, and comorbidity-associated variation in infection rate correlates with the expression rate of TMPRSS2 in those groups. These findings provide valid reasons for the assumption that inhibiting TMPRSS2 can have a beneficial effect in reducing the cellular entry of the virus, ultimately affecting the infection rate and case severity. Several drug development studies are going on to develop potential inhibitors of the protease, using both conventional and computational approaches. Complete understanding of the biological roles of TMPRSS2 is necessary before such therapies are applied.
Collapse
Affiliation(s)
- Jyotirmoy Sarker
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Pritha Das
- Independent Author, Dhaka 1207, Bangladesh
| | - Sabarni Sarker
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | - Apurba Kumar Roy
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | | |
Collapse
|
41
|
Cao W, Feng Q, Wang X. Computational analysis of TMPRSS2 expression in normal and SARS-CoV-2-infected human tissues. Chem Biol Interact 2021; 346:109583. [PMID: 34284028 PMCID: PMC8285370 DOI: 10.1016/j.cbi.2021.109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
The transmembrane serine protease 2 (TMPRSS2) is a key molecule for SARS-CoV-2 invading human host cells. To provide insights into SARS-CoV-2 infection of various human tissues and understand the potential mechanism of SARS-CoV-2 infection, we investigated TMPRSS2 expression in various normal human tissues and SARS-CoV-2-infected human tissues. Using publicly available datasets, we performed computational analyses of TMPRSS2 expression levels in 30 normal human tissues, and compared them between males and females and between younger (ages ≤ 49 years) and older (ages > 49 years) populations in these tissues. We found that TMPRSS2 expression levels were the highest in the prostate, stomach, pancreas, lungs, small intestine, and salivary gland. The TMPRSS2 protein had relatively high expression levels in the parathyroid gland, stomach, small intestine, pancreas, kidneys, seminal vesicle, epididymis, and prostate. However, TMPRSS2 expression levels were not significantly different between females and males or between younger and older populations in these tissues. The pathways enriched in TMPRSS2-upregulated pan-tissue were mainly involved in immune, metabolism, cell growth and proliferation, stromal signatures, and cancer and other diseases. Many cytokine genes displayed positive expression correlations with TMPRSS2 in pan-tissue, including TNF-α, IL-1, IL-2, IL-4, IL-7, IL-8, IL-12, IL-18, IFN-α, MCP-1, G-CSF, and IP-10. We further analyzed TMPRSS2 expression levels in nasopharyngeal swabs from SARS-CoV-2-infected patients. TMPRSS2 expression levels showed no significant difference between males and females or between younger and older patients. However, they were significantly lower in SARS-CoV-2-infected than in healthy individuals and patients with other viral acute respiratory illnesses. Interestingly, TMPRSS2 expression levels were positively correlated with the enrichment levels of four immune signatures (B cells, CD8+ T cells, NK cells, and interferon response) in SARS-CoV-2-infected patients but likely to be negatively correlated with them in the normal lung tissue. Our data may provide insights into the mechanism of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wenxiu Cao
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiushi Feng
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
42
|
Tarek M, Abdelzaher H, Kobeissy F, El-Fawal HAN, Salama MM, Abdelnaser A. Bioinformatics Analysis of Allele Frequencies and Expression Patterns of ACE2, TMPRSS2 and FURIN in Different Populations and Susceptibility to SARS-CoV-2. Genes (Basel) 2021; 12:1041. [PMID: 34356057 PMCID: PMC8303858 DOI: 10.3390/genes12071041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
The virus responsible for the COVID-19 global health crisis, SARS-CoV-2, has been shown to utilize the ACE2 protein as an entry point to its target cells. The virus has been shown to rely on the actions of TMPRSS2 (a serine protease), as well as FURIN (a peptidase), for the critical priming of its spike protein. It has been postulated that variations in the sequence and expression of SARS-CoV-2's receptor (ACE2) and the two priming proteases (TMPRSS2 and FURIN) may be critical in contributing to SARS-CoV-2 infectivity. This study aims to examine the different expression levels of FURIN in various tissues and age ranges in light of ACE2 and TMPRSS2 expression levels using the LungMAP database. Furthermore, we retrieved expression quantitative trait loci (eQTLs) of the three genes and their annotation. We analyzed the frequency of the retrieved variants in data from various populations and compared it to the Egyptian population. We highlight FURIN's potential interplay with the immune response to SARS-CoV-2 and showcase a myriad of variants of the three genes that are differentially expressed across populations. Our findings provide insights into potential genetic factors that impact SARS-CoV-2 infectivity in different populations and shed light on the varying expression patterns of FURIN.
Collapse
Affiliation(s)
- Mohammad Tarek
- Bioinformatics Department, Armed Forces College of Medicine, Cairo 12622, Egypt;
| | - Hana Abdelzaher
- Institute of Global Health and Human Ecology, School of Science and Engineering, The American University in Cairo, Cairo 12622, Egypt; (H.A.); (H.A.N.E.-F.); (M.M.S.)
| | - Firas Kobeissy
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hassan A. N. El-Fawal
- Institute of Global Health and Human Ecology, School of Science and Engineering, The American University in Cairo, Cairo 12622, Egypt; (H.A.); (H.A.N.E.-F.); (M.M.S.)
| | - Mohammed M. Salama
- Institute of Global Health and Human Ecology, School of Science and Engineering, The American University in Cairo, Cairo 12622, Egypt; (H.A.); (H.A.N.E.-F.); (M.M.S.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Science and Engineering, The American University in Cairo, Cairo 12622, Egypt; (H.A.); (H.A.N.E.-F.); (M.M.S.)
| |
Collapse
|
43
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
44
|
Nickols NG, Goetz MB, Graber CJ, Bhattacharya D, Soo Hoo G, Might M, Goldstein DB, Wang X, Ramoni R, Myrie K, Tran S, Ghayouri L, Tsai S, Geelhoed M, Makarov D, Becker DJ, Tsay JC, Diamond M, George A, Al-Ajam M, Belligund P, Montgomery RB, Mostaghel EA, Sulpizio C, Mi Z, Dematt E, Tadalan J, Norman LE, Briones D, Clise CE, Taylor ZW, Huminik JR, Biswas K, Rettig MB. Hormonal intervention for the treatment of veterans with COVID-19 requiring hospitalization (HITCH): a multicenter, phase 2 randomized controlled trial of best supportive care vs best supportive care plus degarelix: study protocol for a randomized controlled trial. Trials 2021; 22:431. [PMID: 34225789 PMCID: PMC8256647 DOI: 10.1186/s13063-021-05389-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background Therapeutic targeting of host-cell factors required for SARS-CoV-2 entry is an alternative strategy to ameliorate COVID-19 severity. SARS-CoV-2 entry into lung epithelium requires the TMPRSS2 cell surface protease. Pre-clinical and correlative data in humans suggest that anti-androgenic therapies can reduce the expression of TMPRSS2 on lung epithelium. Accordingly, we hypothesize that therapeutic targeting of androgen receptor signaling via degarelix, a luteinizing hormone-releasing hormone (LHRH) antagonist, will suppress COVID-19 infection and ameliorate symptom severity. Methods This is a randomized phase 2, placebo-controlled, double-blind clinical trial in 198 patients to compare efficacy of degarelix plus best supportive care versus placebo plus best supportive care on improving the clinical outcomes of male Veterans who have been hospitalized due to COVID-19. Enrolled patients must have documented infection with SARS-CoV-2 based on a positive reverse transcriptase polymerase chain reaction result performed on a nasopharyngeal swab and have a severity of illness of level 3–5 (hospitalized but not requiring invasive mechanical ventilation). Patients stratified by age, history of hypertension, and severity are centrally randomized 2:1 (degarelix: placebo). The composite primary endpoint is mortality, ongoing need for hospitalization, or requirement for mechanical ventilation at 15 after randomization. Important secondary endpoints include time to clinical improvement, inpatient mortality, length of hospitalization, duration of mechanical ventilation, time to achieve a normal temperature, and the maximum severity of COVID-19 illness. Exploratory analyses aim to assess the association of cytokines, viral load, and various comorbidities with outcome. In addition, TMPRSS2 expression in target tissue and development of anti-viral antibodies will also be investigated. Discussion In this trial, we repurpose the FDA approved LHRH antagonist degarelix, commonly used for prostate cancer, to suppress TMPRSS2, a host cell surface protease required for SARS-CoV-2 cell entry. The objective is to determine if temporary androgen suppression with a single dose of degarelix improves the clinical outcomes of patients hospitalized due to COVID-19. Trial registration ClinicalTrials.gov NCT04397718. Registered on May 21, 2020
Collapse
Affiliation(s)
- Nicholas G Nickols
- Radiation Oncology Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Matthew B Goetz
- Infectious Diseases Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Christopher J Graber
- Infectious Diseases Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Debika Bhattacharya
- Infectious Diseases Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Guy Soo Hoo
- Division of Pulmonary and Critical Care, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, USA
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, USA
| | - Xinchen Wang
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, USA
| | - Rachel Ramoni
- Office of Research and Development, Veterans Health Administration, Washington, D.C., USA
| | - Kenute Myrie
- Office of Research and Development, Veterans Health Administration, Washington, D.C., USA
| | - Samantha Tran
- Division of Hematology-Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Leila Ghayouri
- Division of Hematology-Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Sonny Tsai
- Division of Hematology-Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Michelle Geelhoed
- Division of Hematology-Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Danil Makarov
- Division of Hematology-Oncology, VA New York Harbor Healthcare System, New York, USA
| | - Daniel J Becker
- Division of Hematology-Oncology, VA New York Harbor Healthcare System, New York, USA.,Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, USA
| | - Jun-Chieh Tsay
- Division of Pulmonary and Critical Care, VA New York Harbor Healthcare System, New York, USA
| | - Melissa Diamond
- Division of Hematology-Oncology, VA New York Harbor Healthcare System, New York, USA
| | - Asha George
- Division of Hematology-Oncology, VA New York Harbor Healthcare System, New York, USA
| | - Mohammad Al-Ajam
- Division of Pulmonary and Critical Care, VA New York Harbor Healthcare System, New York, USA
| | - Pooja Belligund
- Division of Pulmonary and Critical Care, VA New York Harbor Healthcare System, New York, USA
| | - R Bruce Montgomery
- Division of Hematology-Oncology, VA Puget Sound Healthcare System, Seattle, USA
| | - Elahe A Mostaghel
- Geriatric Research Education and Clinical Care (GRECC), VA Puget Sound Health Care System, Seattle, USA
| | - Carlie Sulpizio
- Division of Hematology-Oncology, VA Puget Sound Healthcare System, Seattle, USA
| | - Zhibao Mi
- VA Cooperative Studies Program Coordinating Center, Point, Perry, MD, USA
| | - Ellen Dematt
- VA Cooperative Studies Program Coordinating Center, Point, Perry, MD, USA
| | - Joseph Tadalan
- VA Cooperative Studies Program Coordinating Center, Point, Perry, MD, USA
| | - Leslie E Norman
- VA Cooperative Studies Program Coordinating Center, Point, Perry, MD, USA
| | - Daniel Briones
- VA Cooperative Studies Program Coordinating Center, Point, Perry, MD, USA
| | - Christina E Clise
- VA Cooperative Studies Program Coordinating Center, Point, Perry, MD, USA
| | - Zachary W Taylor
- VA Cooperative Research Pharmacy Coordinating Center, Albuquerque, NM, USA
| | - Jeffrey R Huminik
- VA Cooperative Research Pharmacy Coordinating Center, Albuquerque, NM, USA
| | - Kousick Biswas
- VA Cooperative Studies Program Coordinating Center, Point, Perry, MD, USA
| | - Matthew B Rettig
- Division of Hematology-Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
45
|
Pattanashetti L, Patil S, Nyamgouda S, Bhagiratha M, Gadad P. COVID-19 and pregnant women - An overview on diagnosis, treatment approach with limitation, and clinical management. Monaldi Arch Chest Dis 2021; 91. [PMID: 34121377 DOI: 10.4081/monaldi.2021.1785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease or more popularly called COVID-19 is known to be caused by a novel coronavirus 2. The COVID-19 has been identified to be originated from Wuhan, Hubei, China. This pandemic started in December 2019, and since then it has spread across the world within a short period. The health and family welfare ministry of the Government of India reported 227,546 active, 9,997,272 discharged cases, and 150,114 deaths due to COVID-19 as of 06 January 2021. Indian Council of Medical Research (ICMR) reports that the cumulative testing status of SARS-CoV-2 (COVID-19) was 931,408 up to November 03, 2020. Currently, no specific anti-viral drug for COVID-19 management is recommended in the current scenario. Vulnerable populations such as pregnant women affected by COVID-19 infection need to be recognized and followed up for effective handling concerning morbidity and mortality. At present, very few case reports on COVID-19 infected pregnant women have been published in India and there is no proven exclusive treatment protocol. This article summarizes a review of signs and symptoms, etiopathogenesis, risk factors, diagnosis, and possible management of COVID-19 infection in pregnant women. This overview may be useful for health care providers for practical approach and limitation of drugs used in the current management and considers the choice of drugs with their special attention given to adverse effects to improvise maternal health, pregnancy, and birth outcomes.
Collapse
Affiliation(s)
- Laxmi Pattanashetti
- Department of Pharmacology, KLE College of Pharmacy, Hubli (A constituent unit of KLE Academy of Higher Education and Research, Belagavi), Karnataka.
| | - Santosh Patil
- Department of Pharmacology, KLE College of Pharmacy, Hubli (A constituent unit of KLE Academy of Higher Education and Research, Belagavi), Karnataka.
| | - Sanath Nyamgouda
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli (A constituent unit of KLE Academy of Higher Education and Research, Belagavi, Karnataka.
| | - Mahendrakumar Bhagiratha
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli (A constituent unit of KLE Academy of Higher Education and Research, Belagavi, Karnataka.
| | - Pramod Gadad
- Department of Pharmacology, KLE College of Pharmacy, Hubli (A constituent unit of KLE Academy of Higher Education and Research, Belagavi), Karnataka.
| |
Collapse
|
46
|
Pérez-Campos Mayoral L, Hernández-Huerta MT, Papy-García D, Barritault D, Zenteno E, Sánchez Navarro LM, Pérez-Campos Mayoral E, Matias Cervantes CA, Martínez Cruz M, Mayoral Andrade G, López Cervantes M, Vázquez Martínez G, López Sánchez C, Pina Canseco S, Martínez Cruz R, Pérez-Campos E. Immunothrombotic dysregulation in chagas disease and COVID-19: a comparative study of anticoagulation. Mol Cell Biochem 2021; 476:3815-3825. [PMID: 34110554 PMCID: PMC8190527 DOI: 10.1007/s11010-021-04204-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Chagas and COVID-19 are diseases caused by Trypanosoma cruzi and SARS-CoV-2, respectively. These diseases present very different etiological agents despite showing similarities such as susceptibility/risk factors, pathogen-associated molecular patterns (PAMPs), recognition of glycosaminoglycans, inflammation, vascular leakage hypercoagulability, microthrombosis, and endotheliopathy; all of which suggest, in part, treatments with similar principles. Here, both diseases are compared, focusing mainly on the characteristics related to dysregulated immunothrombosis. Given the in-depth investigation of molecules and mechanisms related to microthrombosis in COVID-19, it is necessary to reconsider a prompt treatment of Chagas disease with oral anticoagulants.
Collapse
Affiliation(s)
- Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04360, México
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | - Gabriel Mayoral Andrade
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | - Claudia López Sánchez
- Tecnológico Nacional de México / Instituto Tecnológico de Oaxaca, Oaxaca, 68030, México
| | - Socorro Pina Canseco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | - Ruth Martínez Cruz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México / Instituto Tecnológico de Oaxaca, Oaxaca, 68030, México. .,Laboratorio de Patología Clínica "Eduardo Pérez Ortega", Oaxaca, 68000, México.
| |
Collapse
|
47
|
Buqaileh R, Saternos H, Ley S, Aranda A, Forero K, AbouAlaiwi WA. Can cilia provide an entry gateway for SARS-CoV-2 to human ciliated cells? Physiol Genomics 2021; 53:249-258. [PMID: 33855870 PMCID: PMC8213509 DOI: 10.1152/physiolgenomics.00015.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
A worldwide coronavirus pandemic is in full swing and, at the time of writing, there are only few treatments that have been successful in clinical trials, but no effective antiviral treatment has been approved. Because of its lethality, it is important to understand the current strain's effects and mechanisms not only in the respiratory system but also in other affected organ systems as well. Past coronavirus outbreaks caused by SARS-CoV and MERS-CoV inflicted life-threatening acute kidney injuries (AKI) on their hosts leading to significant mortality rates, which went somewhat overlooked in the face of the severe respiratory effects. Recent evidence has emphasized renal involvement in SARS-CoV-2, stressing that kidneys are damaged in patients with COVID-19. The mechanism by which this virus inflicts AKI is still unclear, but evidence from other coronavirus strains may hold some clues. Two theories exist for the proposed mechanism of AKI: 1) the AKI is a secondary effect to reduced blood and oxygen levels causing hyperinflammation and 2) the AKI is due to cytotoxic effects. Kidneys express angiotensin-converting enzyme-2 (ACE2), the confirmed SARS-CoV-2 target receptor as well as collectrin, an ACE2 homologue that localizes to the primary cilium, an organelle historically targeted by coronaviruses. Although the available literature suggests that kidney damage is leading to higher mortality rates in patients with COVID-19, especially in those with preexisting kidney and cardiovascular diseases, the pathogenesis of COVID-19 is still being investigated. Here, we present brief literature review supporting our proposed hypothesis of a possible link between SARS-CoV-2 cellular infection and cilia.
Collapse
Affiliation(s)
- Raghad Buqaileh
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| | - Hannah Saternos
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| | - Sidney Ley
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| | - Arianna Aranda
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| | - Kathleen Forero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| | - Wissam A AbouAlaiwi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| |
Collapse
|
48
|
Host serine proteases TMPRSS2 and TMPRSS11D mediate proteolytic activation and trypsin-independent infection in group A rotaviruses. J Virol 2021; 95:JVI.00398-21. [PMID: 33762412 PMCID: PMC8139689 DOI: 10.1128/jvi.00398-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.ImportanceProteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.
Collapse
|
49
|
Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, Abediazar S, Shoja MM, Ardalan M, Zununi Vahed S. Covid-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev Med Virol 2021; 31:e2176. [PMID: 33022818 PMCID: PMC7646060 DOI: 10.1002/rmv.2176] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The novel coronavirus (SARS-CoV-2) has turned into a life-threatening pandemic disease (Covid-19). About 5% of patients with Covid-19 have severe symptoms including septic shock, acute respiratory distress syndrome, and the failure of several organs, while most of them have mild symptoms. Frequently, the kidneys are involved through direct or indirect mechanisms. Kidney involvement mainly manifests itself as proteinuria and acute kidney injury (AKI). The SARS-CoV-2-induced kidney damage is expected to be multifactorial; directly it can infect the kidney podocytes and proximal tubular cells and based on an angiotensin-converting enzyme 2 (ACE2) pathway it can lead to acute tubular necrosis, protein leakage in Bowman's capsule, collapsing glomerulopathy and mitochondrial impairment. The SARS-CoV-2-driven dysregulation of the immune responses including cytokine storm, macrophage activation syndrome, and lymphopenia can be other causes of the AKI. Organ interactions, endothelial dysfunction, hypercoagulability, rhabdomyolysis, and sepsis are other potential mechanisms of AKI. Moreover, lower oxygen delivery to kidney may cause an ischaemic injury. Understanding the fundamental molecular pathways and pathophysiology of kidney injury and AKI in Covid-19 is necessary to develop management strategies and design effective therapies.
Collapse
Affiliation(s)
- Elham Ahmadian
- Kidney Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Saiedeh Razi Soofiyani
- Clinical Research Development UnitSina Educational, Research and Treatment CenterTabriz University of Medical SciencesTabrizIran
| | - Sima Abediazar
- Kidney Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammadali M. Shoja
- Department of SurgeryUniversity of Illinois at Chicago‐Metropolitan Group Hospitals (UIC‐MGH)ChicagoIllinoisUSA
| | | | | |
Collapse
|
50
|
Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021; 40:905-919. [PMID: 33389262 PMCID: PMC7778857 DOI: 10.1007/s10096-020-04138-6] [Citation(s) in RCA: 413] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 pandemic is caused by the novel coronavirus SARS-CoV-2. Angiotensin-converting enzyme 2 (ACE2) is not only an enzyme but also a functional receptor on cell surfaces through which SARS-CoV-2 enters the host cells and is highly expressed in the heart, kidneys, and lungs and shed into the plasma. ACE2 is a key regulator of the renin-angiotensin-aldosterone system (RAAS). SARS-CoV-2 causes ACE/ACE2 balance disruption and RAAS activation, which leads ultimately to COVID-19 progression, especially in patients with comorbidities, such as hypertension, diabetes mellitus, and cardiovascular disease. Therefore, ACE2 expression may have paradoxical effects, aiding SARS-CoV-2 pathogenicity, yet conversely limiting viral infection. This article reviews the existing literature and knowledge of ACE2 in COVID-19 setting and focuses on its pathophysiologic involvement in disease progression, clinical outcomes, and therapeutic potential.
Collapse
Affiliation(s)
- Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, 627 Albert Einstein Avenue, Building A, Morumbi, São Paulo, SP, Brazil
| | - Expedito Barbosa Casaro
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, 627 Albert Einstein Avenue, Building A, Morumbi, São Paulo, SP, Brazil
| | - Érika Bevilaqua Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, 627 Albert Einstein Avenue, Building A, Morumbi, São Paulo, SP, Brazil.
- Nephrology Division, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|