1
|
Kampel L, Goldsmith M, Ramishetti S, Veiga N, Rosenblum D, Gutkin A, Chatterjee S, Penn M, Lerman G, Peer D, Muhanna N. Therapeutic inhibitory RNA in head and neck cancer via functional targeted lipid nanoparticles. J Control Release 2021; 337:378-389. [PMID: 34303750 DOI: 10.1016/j.jconrel.2021.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
Abstract
Currently there are no specific therapies addressing the distinctive biology of human papillomavirus (HPV)-induced cancer approved for clinical use. Short interfering RNA (siRNA) has much potential for therapeutic manipulation of HPV E6/E7 oncoproteins. Lipid-based nanoparticles (LNPs) can be utilized for systemic transportation and delivery of siRNA at target site. We recently developed a recombinant protein linker that enables uniform conjugation of targeting antibodies to the LNPs. Herein, we demonstrate the therapeutic efficacy of anti-E6/E7 siRNA delivered via targeted LNPs (tLNPs) in a xenograft HPV-positive tumor model. We show that anti-epidermal growth factor receptor (EGFR) antibodies, anchored to the LNPs as targeting moieties, facilitate cargo delivery but also mediate anti-tumor activity. Treatment with siE6 via tLNPs resulted in 50% greater reduction of tumor volume compared to treatment with siControl encapsulated in isoLNPs (coated with isotype control antibodies). We demonstrate superior suppression of HPV oncogenes and higher induction of apoptosis by the tLNPs both in vitro and in vivo. Altogether, the coupling of inhibitory siE6 with anti-EGFR antibodies, that further elicited anti-tumor effects, successfully restricted tumor progression. This system that combines potent siRNA and therapeutically functional tLNPs can be modulated against various cancer models.
Collapse
Affiliation(s)
- Liyona Kampel
- The Head and Neck Cancer Research Laboratory, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel; The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel; Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Meir Goldsmith
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nuphar Veiga
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rosenblum
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Gutkin
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sushmita Chatterjee
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran Penn
- The Head and Neck Cancer Research Laboratory, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel
| | - Galya Lerman
- The Head and Neck Cancer Research Laboratory, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Nidal Muhanna
- The Head and Neck Cancer Research Laboratory, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel; The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6423906, Israel.
| |
Collapse
|
2
|
Blokpoel Ferreras LA, Chan SY, Vazquez Reina S, Dixon JE. Rapidly Transducing and Spatially Localized Magnetofection Using Peptide-Mediated Non-Viral Gene Delivery Based on Iron Oxide Nanoparticles. ACS APPLIED NANO MATERIALS 2021; 4:167-181. [PMID: 33763629 PMCID: PMC7978400 DOI: 10.1021/acsanm.0c02465] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
Non-viral delivery systems are generally of low efficiency, which limits their use in gene therapy and editing applications. We previously developed a technology termed glycosaminoglycan (GAG)-binding enhanced transduction (GET) to efficiently deliver a variety of cargos intracellularly; our system employs GAG-binding peptides, which promote cell targeting, and cell penetrating peptides (CPPs), which enhance endocytotic cell internalization. Herein, we describe a further modification by combining gene delivery and magnetic targeting with the GET technology. We associated GET peptides, plasmid (p)DNA, and iron oxide superparamagnetic nanoparticles (MNPs), allowing rapid and targeted GET-mediated uptake by application of static magnetic fields in NIH3T3 cells. This produced effective transfection levels (significantly higher than the control) with seconds to minutes of exposure and localized gene delivery two orders of magnitude higher in targeted over non-targeted cell monolayers using magnetic fields (in 15 min exposure delivering GFP reporter pDNA). More importantly, high cell membrane targeting by GET-DNA and MNP co-complexes and magnetic fields allowed further enhancement to endocytotic uptake, meaning that the nucleic acid cargo was rapidly internalized beyond that of GET complexes alone (GET-DNA). Magnetofection by MNPs combined with GET-mediated delivery allows magnetic field-guided local transfection in vitro and could facilitate focused gene delivery for future regenerative and disease-targeted therapies in vivo.
Collapse
Affiliation(s)
- Lia A. Blokpoel Ferreras
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Sze Yan Chan
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Saul Vazquez Reina
- School
of Veterinary Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - James E. Dixon
- Regenerative
Medicine & Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
3
|
Wang L, Chang CC, Sylvers J, Yuan F. A statistical framework for determination of minimal plasmid copy number required for transgene expression in mammalian cells. Bioelectrochemistry 2020; 138:107731. [PMID: 33434786 DOI: 10.1016/j.bioelechem.2020.107731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Plasmid DNA (pDNA) has been widely used for non-viral gene delivery. After pDNA molecules enter a mammalian cell, they may be trapped in subcellular structures or degraded by nucleases. Only a fraction of them can function as templates for transcription in the nucleus. Thus, an important question is, what is the minimal amount of pDNA molecules that need to be delivered into a cell for transgene expression? At present, it is technically a challenge to experimentally answer the question. To this end, we developed a statistical framework to establish the relationship between two experimentally quantifiable factors - average copy number of pDNA per cell among a group of cells after transfection and percent of the cells with transgene expression. The framework was applied to the analysis of electrotransfection under different experimental conditions in vitro. We experimentally varied the average copy number per cell and the electrotransfection efficiency through changes in extracellular pDNA dose, electric field strength, and pulse number. The experimental data could be explained or predicted quantitatively by the statistical framework. Based on the data and the framework, we could predict that the minimal number of pDNA molecules in the nucleus for transgene expression was on the order of 10. Although the prediction was dependent on the cell and experimental conditions used in the study, the framework may be generally applied to analysis of non-viral gene delivery.
Collapse
Affiliation(s)
- Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Justin Sylvers
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
4
|
Khan A, Aljarbou AN, Aldebasi YH, Allemailem KS, Alsahli MA, Khan S, Alruwetei AM, Khan MA. Fatty Acid Synthase (FASN) siRNA-Encapsulated-Her-2 Targeted Fab'-Immunoliposomes for Gene Silencing in Breast Cancer Cells. Int J Nanomedicine 2020; 15:5575-5589. [PMID: 32801705 PMCID: PMC7415462 DOI: 10.2147/ijn.s256022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The overexpression of Her-2 in 25–30% breast cancer cases and the crosstalk between Her-2 and fatty acid synthase (FASN) establishes Her-2 as a promising target for site-directed delivery. The present study aimed to develop the novel lipid base formulations to target and inhibit the cellular proliferation of Her-2-expressing breast cancer cells through the silencing of FASN. In order to achieve this goal, we prepared DSPC/Chol and DOPE/CHEMS immunoliposomes, conjugated with the anti-Her-2 fab’ and encapsulated FASN siRNA against breast cancer cells. Methods We evaluated the size, stability, cellular uptake and internalization of various formulations of liposomes. The antiproliferative gene silencing potential was investigated by the cell cytotoxicity, crystal violet, wound healing and Western blot analyses in Her-2+ and Her-2¯ breast cancer cells. Results The data revealed that both nanosized FASN-siRNA-encapsulated liposomes showed significantly higher cellular uptake and internalization with enhanced stability. The cell viability of Her-2+ SK-BR3 cells treated with the targeted formulation of DSPC/Chol- and DOPE/CHEMS-encapsulating FASN-siRNA reduced to 30% and 20%, respectively, whereas it was found to be 45% and 36% in MCF-7 cells. The wounds were not only failed to close but they became broader in Her-2+ cells treated with targeted liposomes of siRNA. Consequently, the amount of FASN decreased by 80% in SK-BR3 cells treated with non-targeted liposomes and it was 30% and 60% in the MCF-7 cells treated with DSPC/Chol and DOPE/CHEMS liposomes, respectively. Conclusion In this study, we developed the formulation that targeted Her-2 for the suppression of FASN and, therefore, inhibited the proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Ahmed N Aljarbou
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Shamshir Khan
- Dentistry and Pharmacy College, Buraydah Private Colleges, Al-Qassim, Buraydah, Saudi Arabia
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| |
Collapse
|
5
|
Steinmetz NF, Lim S, Sainsbury F. Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomater Sci 2020; 8:2771-2777. [PMID: 32352101 PMCID: PMC8085892 DOI: 10.1039/d0bm00159g] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein cages (viral and non-viral) found in nature have evolved for a variety of purposes and are found in all kingdoms of life. The main functions of these nanoscale compartments are the protection and delivery of nucleic acids e.g. virus capsids, or the enrichment and sequestration of metabolons e.g. bacterial microcompartments. This review focuses on recent developments of protein cages for use in immunotherapy and therapeutic delivery. In doing so, we highlight the unique ways in which protein cages have informed on fundamental principles governing bio-nano interactions. With the enormous existing design space among naturally occurring protein cages, there is still much to learn from studying them as biomimetic particles.
Collapse
Affiliation(s)
- Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, CA 92093, USA and Department of Bioengineering, University of California, San Diego, CA 92093, USA and Department of Radiology, University of California, San Diego, CA 92093, USA and Moores Cancer Center, University of California, San Diego, CA 92093, USA and Center for Nano-ImmunoEngineering, University of California, San Diego, CA 92093, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore and NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637457, Singapore
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia. and Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD 4001, Australia
| |
Collapse
|
6
|
Abstract
The use of proteins and peptides as nanoscale components to generate new-to-nature physical entities holds great promise in biocatalysis, therapeutic or diagnostic delivery, and materials templating. The majority of functionalized particles have been based on existing structures found in nature. Developing biomimetic particles in this way takes advantage of highly evolved platforms for organization or encapsulation of functional moieties, offering significant advantages in stoichiometry, multivalency, and sequestration. However, novel assembly paradigms for the modular construction of macromolecular structures are now greatly expanding the functional diversity of protein-based nanoparticles in health and manufacturing. In the February issue of ACS Nano, Kepiro et al. demonstrate the refinement of this concept, engineering the capacity for self-assembly such that it is integral to pore-forming peptide motifs, resulting in superior antibiotic activity of the self-assembled particle. Nature encodes multiple functions in proteins with exquisite efficiency, and emulating this multiplicity may be the ultimate goal of biomimetic nanotechnologies.
Collapse
Affiliation(s)
- Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland 4001, Australia
| |
Collapse
|
7
|
Scott B, Shen J, Nizzero S, Boom K, Persano S, Mi Y, Liu X, Zhao Y, Blanco E, Shen H, Ferrari M, Wolfram J. A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells. Pharmacol Res 2016; 111:413-421. [PMID: 27394167 DOI: 10.1016/j.phrs.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 01/18/2023]
Abstract
Cancer cells have high rates of glycolysis and lactic acid fermentation in order to fuel accelerated rates of cell division (Warburg effect). Here, we present a strategy for merging cancer and yeast metabolism to remove pyruvate, a key intermediate of cancer cell metabolism, and produce the toxic compound acetaldehyde. This approach was achieved by administering the yeast enzyme pyruvate decarboxylase to triple negative breast cancer cells. To overcome the challenges of protein delivery, a nanoparticle-based system consisting of cationic lipids and porous silicon were employed to obtain efficient intracellular uptake. The results demonstrate that the enzyme therapy decreases cancer cell viability through production of acetaldehyde and reduction of lactic acid fermentation.
Collapse
Affiliation(s)
- Bronwyn Scott
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jianliang Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA
| | - Kathryn Boom
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Stefano Persano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yu Mi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
|
9
|
Khan MA, Wu VM, Ghosh S, Uskoković V. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives. J Colloid Interface Sci 2016; 471:48-58. [PMID: 26971068 DOI: 10.1016/j.jcis.2016.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/24/2023]
Abstract
Despite the long history of nanoparticulate calcium phosphate (CaP) as a non-viral transfection agent, there has been limited success in attempts to optimize its properties for transfection comparable in efficiency to that of viral vectors. Here we focus on the optimization of: (a) CaP nanoparticle precipitation conditions, predominantly supersaturation and Ca/P molar ratios; (b) transfection conditions, mainly the concentrations of the carrier and plasmid DNA; (c) the presence of surface additives, including citrate anion and cationic poly(l-lysine) (PLL). CaP nanoparticles significantly improved transfection with plasmid DNA encoding enhanced green fluorescent protein (eGFP) in pre-osteoblastic MC3T3-E1 cells compared to a commercial non-viral carrier. At the same time they elicited significantly lesser cytotoxicity than the commercial carrier. Plasmid DNA acted as a nucleation promoter, decreasing the nucleation lag time of metastable CaP solutions and leading to a higher rate of nucleation and a lower size of the precipitated particles. The degree of supersaturation (DS) of 15 was found to be more optimal for transfection than that of 12.5 or 17.5 and higher. Because CaP particles precipitated at DS 15 were spherical, while DS 17.5 and 21 yielded acicular particles, it was concluded that spherical particle morphologies were more conducive to transfection than the anisotropic ones. Even though the yield at DS 15 was 10 and 100 times lower than that at DS 17.5 and 21, respectively, transfection rates were higher using CaP nanoparticle colloids prepared at DS 15 than using those made at higher or lower DS, indicating that the right particle morphology can outweigh the difference in the amount of the carrier, even when this difference is close to 100×. In contrast to the commercial carrier, the concentration of CaP-pDNA delivered to the cells was directly proportional to the transfection rate. Osteosarcoma K7M2 cells were four times more easily transfectable with CaP nanoparticles than the MC3T3-E1 cells. The addition of citrate increased the transfection rate at lower concentrations; however, a complete redispersal of CaP-pDNA nanoparticles at higher concentrations of citrate coincided with a complete diminishment of transfection, implying the benefits of partial aggregation of CaP nanoparticles carrying pDNA. In contrast, PLL delayed transfection initially, but enhanced it at longer time points (⩾96h), leading to the conclusion that both citrate and PLL could exert positive effects on transfection: citrate if added at low concentrations and PLL to extend transfection over longer periods of time.
Collapse
Affiliation(s)
- Mohammed A Khan
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
| | - Shreya Ghosh
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA.
| |
Collapse
|
10
|
Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J Control Release 2015; 203:126-39. [DOI: 10.1016/j.jconrel.2015.02.022] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
|
11
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
12
|
Shrestha N, Araújo F, Sarmento B, Hirvonen J, Santos HA. Gene-based therapy for Type 1 diabetes mellitus: viral and nonviral vectors. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/dmt.14.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting. BIOMED RESEARCH INTERNATIONAL 2014; 2014:526391. [PMID: 25057492 PMCID: PMC4098891 DOI: 10.1155/2014/526391] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
The therapeutic potential of antisense oligonucleotides (ASODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study focuses on designing mannosylated low molecular weight (LMW) chitosan nanoconstructs for safe ODNs delivery by macrophage targeting. Mannose groups were coupled with LMW chitosan and characterized spectroscopically. Mannosylated chitosan ODN nanoparticles (MCHODN NPs) were formulated by self-assembled method using various N/P ratio (moles of amine groups of MCH to phosphate moieties of ODNs) and characterized for gel retardation assay, physicochemical characteristics, cytotoxicity and transfection efficiency, and antisense assay. Complete complexation of MCH/ODN was achieved at charge ratio of 1:1 and above. On increasing the N/P ratio of MCH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) increased. MCHODN NPs displayed much higher transfection efficiency into Raw 264.7 cells (bears mannose receptors) than Hela cells and no significant toxicity was observed at all MCH concentrations. Antisense assay revealed that reduction in lipopolysaccharide (LPS) induced serum TNF-α is due to antisense activity of TJU-2755 ODN (sequence complementary to 3′-UTR of TNF-α). These results suggest that MCHODN NPs are acceptable choice to improve transfection efficiency in vitro and in vivo.
Collapse
|
14
|
Influence of Short-Chain Cell-Penetrating Peptides on Transport of Doxorubicin Encapsulating Receptor-Targeted Liposomes Across Brain Endothelial Barrier. Pharm Res 2013; 31:1194-209. [DOI: 10.1007/s11095-013-1242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/20/2013] [Indexed: 12/24/2022]
|
15
|
Karjoo Z, McCarthy HO, Patel P, Nouri FS, Hatefi A. Systematic engineering of uniform, highly efficient, targeted and shielded viral-mimetic nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2774-2783. [PMID: 23468416 PMCID: PMC5222681 DOI: 10.1002/smll.201300077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/05/2013] [Indexed: 06/01/2023]
Abstract
In the past decades, numerous types of nanomedicines have been developed for the efficient and safe delivery of nucleic acid-based drugs for cancer therapy. Given that the destination sites for nucleic acid-based drugs are inside cancer cells, delivery systems need to be both targeted and shielded in order to overcome the extracellular and intracellular barriers. One of the major obstacles that has hindered the translation of nanotechnology-based gene-delivery systems into the clinic has been the complexity of the design and assembly processes, resulting in non-uniform nanocarriers with unpredictable surface properties and efficiencies. Consequently, no product has reached the clinic yet. In order to address this shortcoming, a multifunctional targeted biopolymer is genetically engineered in one step, eliminating the need for multiple chemical conjugations. Then, by systematic modulation of the ratios of the targeted recombinant vector to PEGylated peptides of different sizes, a library of targeted-shielded viral-mimetic nanoparticles (VMNs) with diverse surface properties are assembled. Through the use of physicochemical and biological assays, targeted-shielded VMNs with remarkably high transfection efficiencies (>95%) are screened. In addition, the batch-to-batch variability of the assembled targeted-shielded VMNs in terms of uniformity and efficiency is examined and, in both cases, the coefficient of variation is calculated to be below 20%, indicating a highly reproducible and uniform system. These results provide design parameters for engineering uniform, targeted-shielded VMNs with very high cell transfection rates that exhibit the important characteristics for in vivo translation. These design parameters and principles could be used to tailor-make and assemble targeted-shielded VMNs that could deliver any nucleic acid payload to any mammalian cell type.
Collapse
Affiliation(s)
- Zahra Karjoo
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University, Belfast, BT9 7BL, United Kingdom
| | - Parin Patel
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
16
|
Abstract
To improve the nuclear-targeted delivery of non-viral vectors, extensive effort has been carried out on the development of smart vectors which could overcome multiple barriers. The nuclear envelope presents a major barrier to transgene delivery. Viruses are capable of crossing the nuclear envelope to efficiently deliver their genome into the nucleus through the specialized protein components. However, non-viral vectors are preferred over viral ones because of the safety concerns associated with the latter. Non-viral delivery systems have been designed to include various types of components to enable nuclear translocation at the periphery of the nucleus. This review summarizes the progress of research regarding nuclear transport mechanisms. "Smart" non-viral vectors that have been modified by peptides and other small molecules are able to facilitate the nuclear translocation and enhance the efficacy of gene expression. The resulting technology may also enhance delivery of other macromolecules to the nucleus.
Collapse
Affiliation(s)
- Jing Yao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA and
| | | | | | | |
Collapse
|
17
|
Jiang ZK, Koh SBS, Sato M, Atanasov IC, Johnson M, Zhou ZH, Deming TJ, Wu L. Engineering polypeptide coatings to augment gene transduction and in vivo stability of adenoviruses. J Control Release 2013; 166:75-85. [PMID: 23247040 DOI: 10.1016/j.jconrel.2012.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/19/2012] [Accepted: 10/29/2012] [Indexed: 01/19/2023]
Abstract
We sought to modify adenoviral (Ad) particles by incorporating the advantageous characteristics of non-viral gene delivery vehicles to complement the viral vectors. α-Amino acid-N-carboxyanhydride chemistry was used to synthesize homopolypeptides and diblock copolypeptides that possess well-defined secondary structures. Using cryo-electron and fluorescence microscopy, we showed that these polypeptides can coat the surfaces of Ad particles in a non-covalent manner to modify their transduction properties. The coated Ad particles were found to bind to and be internalized by cells. In contrast to reports using covalently PEGylated Ad particles, we found that our physically coated Ad hybrid complexes facilitate gene transfer both in vitro and in vivo. We showed that our polypeptide coating was able to shield the Ad particles from the neutralizing effect of antibodies and mitigate the binding of blood coagulation factor (Factor X) in vitro. The coating also reduced the antigenicity of Ad in immunocompetent mice. The biodistribution of the systemically administered hybrid complexes mirrored the behavior of both viral and non-viral vectors, exhibiting liver tropism as well as enhanced lung transduction. These data demonstrated that our non-covalent modification was able to alter Ad's interactions with cells and organs with retention of transduction efficiency. Advantages such as facile coating of the Ad vector, design flexibility and ease of attaching ligands to the polypeptides make this system potentially useful as a platform for adding functionalities to Ad to target cancer metastasis.
Collapse
Affiliation(s)
- Ziyue Karen Jiang
- Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Peptide based drug design efforts have gained renewed interest with the discovery of cargo-carrying or cell-penetrating peptides. Understanding the translocation mechanism of these peptides and identifying the residues or elements that contribute to uptake can provide valuable clues toward the design of novel peptides. To this end, we have performed steered molecular dynamics (SMD) simulations on the pVEC peptide from murine vascular endothelial-cadherin protein and its two variants. Translocation was found to occur in three stages, adsorption via the cationic residues, inclusion of the whole peptide inside the membrane accompanied by formation of a water defect, and exit of both peptide and water molecules from the bilayer. Our simulation results suggest that the precise order in which the hydrophobic, cationic, and the polar regions are located in the amphipathic pVEC peptide contributes to its uptake mechanism. These results present new opportunities for the design of novel cell-penetrating and antimicrobial peptides.
Collapse
|
19
|
Welser K, Campbell F, Kudsiova L, Mohammadi A, Dawson N, Hart SL, Barlow DJ, Hailes HC, Lawrence MJ, Tabor AB. Gene Delivery Using Ternary Lipopolyplexes Incorporating Branched Cationic Peptides: The Role of Peptide Sequence and Branching. Mol Pharm 2012; 10:127-41. [DOI: 10.1021/mp300187t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Katharina Welser
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - Frederick Campbell
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - Laila Kudsiova
- Institute
of Pharmaceutical
Science, King’s College London, Franklin-Wilkins Building,
150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Atefeh Mohammadi
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - Natalie Dawson
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - Stephen L. Hart
- Wolfson Centre for Gene Therapy
of Childhood Disease, UCL Institute of Child Health, 30 Guilford Street,
London WC1N 1EH, U.K
| | - David J. Barlow
- Institute
of Pharmaceutical
Science, King’s College London, Franklin-Wilkins Building,
150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Helen C. Hailes
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - M. Jayne Lawrence
- Institute
of Pharmaceutical
Science, King’s College London, Franklin-Wilkins Building,
150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Alethea B. Tabor
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| |
Collapse
|
20
|
Bacalocostantis I, Mane VP, Goodley AS, Bentley WE, Muro S, Kofinas P. Investigating polymer thiolation in gene delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:912-26. [DOI: 10.1080/09205063.2012.727266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Irene Bacalocostantis
- a Fischell Department of Bioengineering , University of Maryland , College Park , MD , 20742 , USA
| | - Viraj P. Mane
- a Fischell Department of Bioengineering , University of Maryland , College Park , MD , 20742 , USA
| | - Addison S. Goodley
- a Fischell Department of Bioengineering , University of Maryland , College Park , MD , 20742 , USA
| | - William E. Bentley
- a Fischell Department of Bioengineering , University of Maryland , College Park , MD , 20742 , USA
- b Institute for Bioscience and Biotechnology Research, University of Maryland , College Park , MD , 20742 , USA
| | - Silvia Muro
- a Fischell Department of Bioengineering , University of Maryland , College Park , MD , 20742 , USA
- b Institute for Bioscience and Biotechnology Research, University of Maryland , College Park , MD , 20742 , USA
| | - Peter Kofinas
- a Fischell Department of Bioengineering , University of Maryland , College Park , MD , 20742 , USA
| |
Collapse
|
21
|
Durymanov MO, Beletkaia EA, Ulasov AV, Khramtsov YV, Trusov GA, Rodichenko NS, Slastnikova TA, Vinogradova TV, Uspenskaya NY, Kopantsev EP, Rosenkranz AA, Sverdlov ED, Sobolev AS. Subcellular trafficking and transfection efficacy of polyethylenimine-polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1. J Control Release 2012; 163:211-9. [PMID: 22964392 DOI: 10.1016/j.jconrel.2012.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/16/2012] [Accepted: 08/24/2012] [Indexed: 11/25/2022]
Abstract
We have synthesized and investigated properties of new PEI-PEG-based polyplexes containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (targeted polyplexes), and control polyplexes without this ligand peptide (non-targeted polyplexes). The targeted polyplexes demonstrated receptor-mediated transfection of Cloudman S91 (clone M-3) murine melanoma cells that was more efficient than with the non-targeted ones. Transfection with the targeted polyplexes was inhibited by chlorpromazine, an inhibitor of the clathrin-mediated endocytosis pathway, and, to a lesser extent, by filipin III or nystatin, inhibitors of the lipid-raft endocytosis pathway, whereas transfection with the non-targeted polyplexes was inhibited mainly by nystatin or filipin III. The targeted polyplexes caused significantly higher in vivo transfection of melanoma tumor cells after intratumoral administration compared to the non-targeted control. The targeted polyplexes carrying the HSVtk gene, after ganciclovir administration, more efficiently inhibited melanoma tumor growth and prolonged the lifespan of DBA/2 tumor-bearing mice compared to the non-targeted ones. Packed targeted polyplexes appeared and accumulated in the melanoma cells 6h earlier than the non-targeted ones. The targeted polyplexes enter into the nuclei of the melanoma cells more rapidly than the non-targeted control, and this difference may also be attributed to processes of receptor-mediated endocytosis. We believe that these data may be useful for the optimization of polyplex systems.
Collapse
Affiliation(s)
- Mikhail O Durymanov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5, Vavilov St., 119334, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bacalocostantis I, Mane VP, Kang MS, Goodley AS, Muro S, Kofinas P. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors. Biomacromolecules 2012; 13:1331-9. [PMID: 22515194 DOI: 10.1021/bm3004786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand, displayed high DNA binding efficiency and pH-sensitive release.
Collapse
Affiliation(s)
- Irene Bacalocostantis
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | |
Collapse
|
23
|
Mazi H, Emregul E, Rzaev ZMO, Kibarer G. Preparation and properties of invertase immobilized on a poly(maleic anhydride-hexen-1) membrane. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:821-35. [PMID: 16909948 DOI: 10.1163/156856206777656490] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Poly(maleic anhydride-alt-hexen-1)(poly(MA-alt-H-1)) has been synthesized by radical polymerization and characterized by DSC, FT-IR, acid number determination, viscometric and NMR methods. Data showed that the co-polymer is an alternating co-polymer whose composition does not depend on the monomer feed composition. Invertase was immobilized onto a poly(MA-alt-H-1) membrane via glutaraldehyde and bovine serum albumin. The Km value of poly(MA-alt-H-1)-invertase was approximately 4.4-fold higher than the free enzyme, indicating decreased affinity by the invertase for its substrate (sucrose), whereas Vmax was lower for the immobilized invertase. Immobilization improved the pH stability of the enzyme, as well as its temperature stability. Immobilized samples obtained were stable and could be used many times over a period of 2 months without considerable activity loss.
Collapse
Affiliation(s)
- Hidayet Mazi
- Department of Chemistry, Faculty of Science, Hacettepe University, 06532, Ankara, Turkey
| | | | | | | |
Collapse
|
24
|
|
25
|
Kudsiova L, Fridrich B, Ho J, Mustapa MFM, Campbell F, Welser K, Keppler M, Ng T, Barlow DJ, Tabor AB, Hailes HC, Lawrence MJ. Lipopolyplex Ternary Delivery Systems Incorporating C14 Glycerol-Based Lipids. Mol Pharm 2011; 8:1831-47. [DOI: 10.1021/mp2001796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laila Kudsiova
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Barbara Fridrich
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Jimmy Ho
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - M. Firouz Mohd Mustapa
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Frederick Campbell
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Katharina Welser
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Melanie Keppler
- Randall Division of Cell and Molecular Biophysics, King’s College London, Henriette Raphael Building, Guy's Campus, London SE1 1UL, U.K
| | - Tony Ng
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- Randall Division of Cell and Molecular Biophysics, King’s College London, Henriette Raphael Building, Guy's Campus, London SE1 1UL, U.K
| | - David J. Barlow
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Alethea B. Tabor
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Helen C. Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - M. Jayne Lawrence
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| |
Collapse
|
26
|
Canine BF, Hatefi A. Development of recombinant cationic polymers for gene therapy research. Adv Drug Deliv Rev 2010; 62:1524-9. [PMID: 20399239 DOI: 10.1016/j.addr.2010.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/26/2010] [Accepted: 04/06/2010] [Indexed: 11/17/2022]
Abstract
Cationic polymers created through recombinant DNA technology have the potential to fill a void in the area of gene delivery. The recombinant cationic polymers to be discussed here are amino acid based polymers synthesized in E. coli with the purpose to not only address the major barriers to efficient gene delivery but offer safety, biodegradability, targetability and cost-effectiveness. This review helps the readers to get a better understanding about the evolution of recombinant cationic polymers; and the potential advantages that they could offer over viral and synthetic non-viral vectors for gene delivery. It also discusses some of the major challenges that must be addressed in future studies to turn recombinant polymers into clinically effective gene delivery systems. Recent advances with the biopolymer design suggest that this emerging new class of gene delivery systems has the potential to address some of the major barriers to efficient, safe and cost-effective gene therapy.
Collapse
Affiliation(s)
- Brenda F Canine
- Department of Pharmaceutical Sciences, Center for Integrated Biotechnology, Washington State University, Pullman, 99164, USA
| | | |
Collapse
|
27
|
Millili PG, Selekman JA, Blocker KM, Johnson DA, Naik UP, Sullivan MO. Structural and functional consequences of poly(ethylene glycol) inclusion on DNA condensation for gene delivery. Microsc Res Tech 2010; 73:866-77. [PMID: 20232467 DOI: 10.1002/jemt.20839] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polycationic polymers have been used to condense therapeutic DNA into submicron particles, offering protection from shear-induced or enzymatic degradation. However, the spontaneous nature of this self-assembly process gives rise to the formation of multimolecular aggregates, resulting in significant polyplex heterogeneity. Additionally, cytotoxicity issues and serum instability have limited the in vivo efficacy of such systems. One way these issues can be addressed is through the inclusion of poly(ethylene glycol) (PEG). PEG has known steric effects that inhibit polyplex self-aggregation. A variety of PEGylated gene delivery formulations have been previously pursued in an effort to take advantage of this material's benefits. Because of such interest, our aim was to further explore the consequences of PEG inclusion on the structure and activity of gene delivery vehicle formulations. We explored the complexation of plasmid DNA with varying ratios of a PEGylated trilysine peptide (PEG-K(3)) and 25-kDa polyethylenimine (PEI). Atomic force and scanning electron microscopy were utilized to assess the polyplex size and shape and revealed that a critical threshold of PEG was necessary to promote the formation of homogeneous polyplexes. Flow cytometry and fluorescence microscopy analyses suggested that the presence of PEG inhibited transfection efficiency as a consequence of changes in intracellular trafficking and promoted an increased reliance on energy-independent mechanisms of cellular uptake. These studies provide new information on the role of PEG in delivery vehicle design and lay the foundation for future work aimed at elucidating the details of the intracellular transport of PEGylated polyplexes.
Collapse
Affiliation(s)
- Peter G Millili
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | |
Collapse
|
28
|
McCarthy HO, Wang Y, Mangipudi SS, Hatefi A. Advances with the use of bio-inspired vectors towards creation of artificial viruses. Expert Opin Drug Deliv 2010; 7:497-512. [PMID: 20151849 DOI: 10.1517/17425240903579989] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE OF THE FIELD In recent years, there has been a great deal of interest in the development of recombinant vectors based on biological motifs with potential applications in gene therapy. Several such vectors have been genetically engineered, resulting in biomacromolecules with new properties that are not present in nature. AREAS COVERED IN THIS REVIEW This review briefly discusses the advantages and disadvantages of the current state-of-the-art gene delivery systems (viral and non-viral) and then provides an overview on the application of various biological motifs in vector development for gene delivery. Finally, it highlights some of the most advanced bio-inspired vectors that are designed to perform several self-guided functions. WHAT THE READER WILL GAIN This review helps the readers get a better understanding about the history and evolution of bio-inspired fusion vectors with the potential to merge the strengths of both viral and non-viral vectors in order to create efficient, safe and cost-effective gene delivery systems. TAKE HOME MESSAGE With the emergence of new technologies such as recombinant bio-inspired vectors, it may not take long before non-viral vectors are observed that are not just safe and tissue-specific, but even more efficient than viral vectors.
Collapse
Affiliation(s)
- Helen O McCarthy
- Queens University Belfast, School of Pharmacy, BT9 7BL, Northern Ireland, UK
| | | | | | | |
Collapse
|
29
|
Dewa T, Asai T, Tsunoda Y, Kato K, Baba D, Uchida M, Sumino A, Niwata K, Umemoto T, Iida K, Oku N, Nango M. Liposomal Polyamine−Dialkyl Phosphate Conjugates as Effective Gene Carriers: Chemical Structure, Morphology, and Gene Transfer Activity. Bioconjug Chem 2010; 21:844-52. [DOI: 10.1021/bc900376y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takehisa Dewa
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Tomohiro Asai
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Yuka Tsunoda
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Kiyoshi Kato
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Daisuke Baba
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Misa Uchida
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Ayumi Sumino
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Kayoko Niwata
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Takuya Umemoto
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Kouji Iida
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Naoto Oku
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| | - Mamoru Nango
- Department of Life and Materials Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan, Department of Medical Biochemistry and Global COE, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan, and Nagoya Municipal Industrial Research Institute, 3-4-41 Rokuban-cho, Atsuta-ku, Nagoya 456-0058 Japan
| |
Collapse
|
30
|
Schwake G, Youssef S, Kuhr JT, Gude S, David MP, Mendoza E, Frey E, Rädler JO. Predictive modeling of non-viral gene transfer. Biotechnol Bioeng 2010; 105:805-13. [PMID: 19953668 DOI: 10.1002/bit.22604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In non-viral gene delivery, the variance of transgenic expression stems from the low number of plasmids successfully transferred. Here, we experimentally determine Lipofectamine- and PEI-mediated exogenous gene expression distributions from single cell time-lapse analysis. Broad Poisson-like distributions of steady state expression are observed for both transfection agents, when used with synchronized cell lines. At the same time, co-transfection analysis with YFP- and CFP-coding plasmids shows that multiple plasmids are simultaneously expressed, suggesting that plasmids are delivered in correlated units (complexes). We present a mathematical model of transfection, where a stochastic, two-step process is assumed, with the first being the low-probability entry step of complexes into the nucleus, followed by the subsequent release and activation of a small number of plasmids from a delivered complex. This conceptually simple model consistently predicts the observed fraction of transfected cells, the cotransfection ratio and the expression level distribution. It yields the number of efficient plasmids per complex and elucidates the origin of the associated noise, consequently providing a platform for evaluating and improving non-viral vectors.
Collapse
Affiliation(s)
- Gerlinde Schwake
- Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, D-80539 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Millili PG, Yin DH, Fan H, Naik UP, Sullivan MO. Formulation of a peptide nucleic acid based nucleic acid delivery construct. Bioconjug Chem 2010; 21:445-55. [PMID: 20131756 DOI: 10.1021/bc900328j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene delivery biomaterials need to be designed to efficiently achieve nuclear delivery of plasmid DNA. Polycations have been used to package DNA and other nucleic acids within submicrometer-sized particles, offering protection from shear-induced or enzymatic degradation. However, cytotoxicity issues coupled with limited in vivo transfection efficiencies minimize the effectiveness of this approach. In an effort to improve upon existing technologies aimed at delivering nucleic acids, an alternative approach to DNA packaging was explored. Peptide nucleic acids (PNAs) were used to directly functionalize DNA with poly(ethylene glycol) (PEG) chains that provide a steric layer and inhibit multimolecular aggregation during complexation. DNA prePEGylation by this strategy was predicted to enable the formation of more homogeneous and efficiently packaged polyplexes. In this work, DNA-PNA-peptide-PEG (DP3) conjugates were synthesized and self-assembled with 25 kDa poly(ethylenimine) (PEI). Complexes with small standard deviations and average diameters ranging 30-50 nm were created, with minimal dependence of complex size on N/P ratio (PEI amines to DNA phosphates). Furthermore, PEI-DNA interactions were altered by the derivatization strategy, resulting in tighter compaction of the PEI-DP3 complexes in comparison to PEI-DNA complexes. Transfection experiments in Chinese hamster ovary (CHO) cells revealed comparable transfection efficiencies but reduced cytotoxicities of the PEI-DP3 complexes relative to PEI-DNA complexes. The enhanced cellular activities of the PEI-DP3 complexes were maintained following the removal of free PEI from the PEI-DP3 formulations, whereas the cellular activity of the conventional PEI-DNA formulations was reduced by free PEI removal. These findings suggest that DNA prePEGylation by the PNA-based strategy might provide a way to circumvent cytotoxicity and formulation issues related to the use of PEI for in vivo gene delivery.
Collapse
Affiliation(s)
- Peter G Millili
- Department of Chemical Engineering, Department of Biological Sciences, Department of Chemistry and Biochemistry, and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716, and Department of Pharmaceutical Research, Development, Merck Research Laboratories, West Point, Pennsylvania 19486
| | | | | | | | | |
Collapse
|
32
|
Hart SL. Multifunctional nanocomplexes for gene transfer and gene therapy. Cell Biol Toxicol 2010; 26:69-81. [DOI: 10.1007/s10565-009-9141-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/21/2009] [Indexed: 01/28/2023]
|
33
|
Abstract
The paradigm of using nanoparticulate pharmaceutical carriers has been well established over the past decade, both in pharmaceutical research and in the clinical setting. Drug carriers are expected to stay in the blood for long time, accumulate in pathological sites with affected and leaky vasculature (tumors, inflammations, and infarcted areas) via the enhanced permeability and retention (EPR) effect, and facilitate targeted delivery of specific ligand-modified drugs and drug carriers into poorly accessible areas. Among various approaches to specifically target drug-loaded carrier systems to required pathological sites in the body, two seem to be most advanced--passive (EPR effect-mediated) targeting, based on the longevity of the pharmaceutical carrier in the blood and its accumulation in pathological sites with compromised vasculature, and active targeting, based on the attachment of specific ligands to the surface of pharmaceutical carriers to recognize and bind pathological cells. Here, we will consider and discuss these two targeting approaches using tumor targeting as an example.
Collapse
|
34
|
Toita R, Kang JH, Kim JH, Tomiyama T, Mori T, Niidome T, Jun B, Katayama Y. Protein kinase C alpha-specific peptide substrate graft-type copolymer for cancer cell-specific gene regulation systems. J Control Release 2009; 139:133-9. [PMID: 19545594 DOI: 10.1016/j.jconrel.2009.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/04/2009] [Accepted: 06/13/2009] [Indexed: 12/11/2022]
Abstract
We recently proposed a novel gene regulation system responding to specifically and abnormally activated intracellular enzymes in diseased cells. In the present study, we focused on protein kinase C (PKC)alpha, which is hyper-activated in most tumor cells, as a trigger for transgene regulation. We prepared cationic copolymers comprising hydrophilic and neutral polymers in main chains and cationic peptide substrates with different contents in side chains. Our copolymer with high peptide content (>3 mol%) condensed with pDNA more weakly than with poly(L-lysine) (pLL) having a similar molecular weight, but gene suppression was nearly identical to that of pLL, probably due to the steric hindrance of the main chains in our copolymer. Steric hindrance of the main chains barely affected the phosphorylation reaction of the pendant peptide. In cell and mouse experiments, higher gene expression was observed in complexes of pDNA with copolymers pended PKC alpha-specific substrate peptide than that in complexes with negative copolymers pended peptide substituted phosphorylation site of serine residues with alanine. These results indicate that our system can recognize intracellular PKC alpha as a trigger to regulate transgene expression, and may be useful for tumor gene therapy.
Collapse
Affiliation(s)
- Riki Toita
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kawamura K, Kuramoto M, Mori T, Toita R, Oishi J, Sato Y, Kang JH, Asai D, Niidome T, Katayama Y. Molecular mechanism of caspase-3-induced gene expression of polyplexes formed from polycations grafted with cationic substrate peptides. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 20:967-80. [PMID: 19454163 DOI: 10.1163/156856209x444376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported a novel disease-site-specific gene targeting system that can release plasmid DNA (pDNA) from polymeric carriers responding to abnormally activated signal proteins in disease cells. In this study, the molecular mechanism of the gene targeting system responding to Caspase-3 activity was studied in detail. The polymeric carrier used was composed of a neutral main chain polymer and a grafted oligocationic peptide which contains the substrate sequence of Caspase-3. The polyplex formed from the polymeric carrier and pDNA was stable in physiological saline solution and protected from access of RNA polymerase and the transcriptional factors. These results indicate that the polyplex adopts a core-shell-like structure with a polyion complex core surrounded by neutral main chain polymers. In spite of the inert character of the polyplex to transcription, the polyplex afforded the access of Caspase-3 to the substrate peptide because the electrostatic interaction between each peptide and DNA is essentially weak. After the Caspase-3 reaction, the polyplex was weakened and then became available as a template for transcription.
Collapse
Affiliation(s)
- Kenji Kawamura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Niu Y, Liang S. Progress in gene transfer by germ cells in mammals. J Genet Genomics 2009; 35:701-14. [PMID: 19103425 DOI: 10.1016/s1673-8527(08)60225-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 10/21/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences. Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT) or female germ cell mediated gene transfer (FGCMGT) technique. Sperm-mediated gene transfer (SMGT), including its alternative method, testis-mediated gene transfer (TMGT), becomes an established and reliable method for transgenesis. They have been extensively used for producing transgenic animals. The newly developed approach of FGCMGT, ovary-mediated gene transfer (OMGT) is also a novel and useful tool for efficient transgenesis. This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques, methods developed and mechanisms of nucleic acid uptake by germ cells.
Collapse
Affiliation(s)
- Yidong Niu
- Laboratory Animal Center, Peking University People's Hospital, Beijing 100044, China.
| | | |
Collapse
|
37
|
Noor F, Kinscherf R, Bonaterra GA, Walczak S, Wölfl S, Metzler-Nolte N. Enhanced cellular uptake and cytotoxicity studies of organometallic bioconjugates of the NLS peptide in Hep G2 cells. Chembiochem 2009; 10:493-502. [PMID: 19115329 DOI: 10.1002/cbic.200800469] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SPACE INVADERS: Organometallic fragments such as the ferrocenyl group (shown in red in the picture) help to enhance cellular entry of NLS peptides. Eventually, these nontoxic conjugates find their way to the cellular nucleus as shown by fluorescence microscopy studies in this work. Intracellular delivery to biomolecular targets is still a major challenge in molecular and cell biology. We recently found that attaching an organometallic group, namely the cobaltocenium cation, to the SV 40 large T antigen nuclear localisation signal (NLS) greatly enhances cellular uptake of the conjugate (Noor et al., Angew. Chem. Int. Ed. 2005, 45, 2429). In addition, nuclear localisation of the conjugate was observed. In this work, we present a thorough investigation of this novel cellular delivery system with respect to the nature of the metal complex and the peptide sequence. A number of ferrocene ((Fe(II)), neutral metal complex) and cobaltocenium ((Co(III)), cationic metal complex) bioconjugates with both the NLS wild-type sequence PKKKRKV and a scrambled sequence (NLS(scr), KKVKPKR) were prepared by solid-phase peptide synthesis (SPPS). Cellular and nuclear uptake of these bioconjugates was studied by fluorescence microscopy on living Hep G2 cells. In addition, cytotoxicity screening on the conjugates was carried out, as the toxic effects of several simple metallocenes have been noted previously. Rapid cellular uptake as well as nuclear localisation was observed for the metal-NLS conjugates, but not for any dipeptide controls, the metal-NLS(scr) conjugates or any metal-free conjugates. It thus appears that the presence of a metallocene, but not its charge, and the correct NLS sequence is essential for cellular uptake. Fluorescence microscopy co-localisation studies did not reveal a significant endosomal entrapment of the conjugates. The metallocene not only provides a hydrophobic handle for membrane translocation but also facilitates the localisation and distribution of the conjugate in the cytoplasm. The NLS peptide on the other hand is responsible for the nuclear localisation of the bioconjugate. Finally, none of the conjugates were found to be toxic up to the highest concentrations that was tested (1 mM) against the Hep G2 cells that were used in this study. In conclusion, this work supports metallocene-NLS bioconjugates, in particular with the very robust cobaltocenium group, as a simple but potent, nontoxic system for cellular uptake and nuclear delivery. Concurrently, our finding is relevant to the still-unresolved question of cytotoxicity of metallocenes because it excludes binding and/or damage to the DNA as a mechanism of metallocene cytotoxicity. This finding is confirmed by a combined yeast cytotoxicity/genotoxicity assay, which also shows very little toxic effects for all organometal-NLS conjugates that were tested.
Collapse
Affiliation(s)
- Fozia Noor
- Department of Biochemical Engineering, University of Saarland, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Mustapa MFM, Grosse SM, Kudsiova L, Elbs M, Raiber EA, Wong JB, Brain APR, Armer HEJ, Warley A, Keppler M, Ng T, Lawrence MJ, Hart SL, Hailes HC, Tabor AB. Stabilized Integrin-Targeting Ternary LPD (Lipopolyplex) Vectors for Gene Delivery Designed To Disassemble Within the Target Cell. Bioconjug Chem 2009; 20:518-32. [DOI: 10.1021/bc800450r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M. Firouz Mohd Mustapa
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Stephanie M. Grosse
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Laila Kudsiova
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Martin Elbs
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Eun-Ang Raiber
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - John B. Wong
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Anthony P. R. Brain
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Hannah E. J. Armer
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Alice Warley
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Melanie Keppler
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Tony Ng
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - M. Jayne Lawrence
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Stephen L. Hart
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Helen C. Hailes
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| | - Alethea B. Tabor
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, Wolfson Centre for Gene Therapy of Childhood Disease, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, School of Biomedical and Health Sciences, Pharmaceutical Science Research Division, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, Centre for Ultrastructure Imaging, King’s College London, New Hunt’s House,
| |
Collapse
|
39
|
Ditto AJ, Shah PN, Lopina ST, Yun YH. Nanospheres formulated from l-tyrosine polyphosphate as a potential intracellular delivery device. Int J Pharm 2009; 368:199-206. [DOI: 10.1016/j.ijpharm.2008.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/20/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
|
40
|
Barbul A, Antov Y, Rosenberg Y, Korenstein R. Enhanced delivery of macromolecules into cells by electroendocytosis. Methods Mol Biol 2009; 480:141-150. [PMID: 19085126 DOI: 10.1007/978-1-59745-429-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transfer of exogenous material into the cytosol of cells is one of the main challenges in drug delivery. We present a novel physical approach for efficient incorporation of macromolecules into living cells, based on exposing them to a train of unipolar electric field pulses, possessing much lower amplitude than used for electroporation. The exposure of cells to a low electric field (LEF) alters the cell surface, leading to enhanced adsorption of macromolecules and their subsequent uptake by stimulated endocytosis. The macromolecules are initially encapsulated in membrane vesicles and then, at a later stage, are released into the cytosol and interact with intracellular targets. The uptake of fluorescently labeled macromolecules is monitored using confocal microscopy and flow cytometry. The biological activities of the incorporated macromolecules are determined by biochemical methods.
Collapse
Affiliation(s)
- Alexander Barbul
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978 Tel-Aviv, Israel
| | | | | | | |
Collapse
|
41
|
Asai D, Kang JH, Toita R, Tsuchiya A, Niidome T, Nakashima H, Katayama Y. Regulation of Transgene Expression in Tumor Cells by Exploiting Endogenous Intracellular Signals. NANOSCALE RESEARCH LETTERS 2008; 4:229-233. [PMID: 20592962 PMCID: PMC2893789 DOI: 10.1007/s11671-008-9230-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/02/2008] [Indexed: 05/29/2023]
Abstract
Recently, we have proposed a novel strategy for a cell-specific gene therapy system based on responses to intracellular signals. In this system, an intracellular signal that is specifically and abnormally activated in the diseased cells is used for the activation of transgene expression. In this study, we used protein kinase C (PKC)alpha as a trigger to activate transgene expression. We prepared a PKCalpha-responsive polymer conjugate [PPC(S)] and a negative control conjugate [PPC(A)], in which the phosphorylation site serine (Ser) was replaced with alanine (Ala). The phosphorylation for polymer/DNA complexes was determined with a radiolabel assay using [gamma-(32)P]ATP. PPC(S)/DNA complexes were phosphorylated by the addition of PKCalpha, but no phosphorylation of the PPC(A)/DNA complex was observed. Moreover, after microinjection of polymer/GFP-encoding DNA complexes into HepG2 cells at cation/anion (C/A) ratios of 0.5 to 2.0, significant expression of GFP was observed in all cases using PPC(S)/DNA complexes, but no GFP expression was observed in the negative control PPC(A)/DNA complex-microinjected cells at C/A ratios of 1.0 and 2.0. On the other hand, GFP expression from PPC(S)/DNA complexes was completely suppressed in cells pretreated with PKCalpha inhibitor (Ro31-7549). These results suggest that our gene regulation system can be used for tumor cell-specific expression of a transgene in response to PKCalpha activity.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
| | - Jeong-Hun Kang
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Riki Toita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Akira Tsuchiya
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takuro Niidome
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
| | - Yoshiki Katayama
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
42
|
Abstract
Cationic lipid/DNA-complexes have been widely used as gene transfer vectors because they are less toxic and immunogenic than viral vectors. The aim of the present study was to improve and characterize lipofection of an insulin-producing cell line. We compared the transfection efficiency of seven commercially available lipid formulations (Lipotaxi, SuperFect, Fugene, TransFast, Dosper, GenePORTER and LipofectAMINE) by flow cytometry analysis of GFP-expression. In addition, we have determined the influences of centrifugation, serum and a nuclear localization signal peptide on the lipofection efficiency. We observed that two lipid formulations, GenePORTER and LipofectAMINE, were able to promote efficient gene transfer in RINm5F cells. However, GenePORTER exhibited the important advantage of being able to transfect cells in the presence of serum and with less cytotoxicity than LipofectAMINE. LipofectAMINE-induced RINm5F cell death could partially be counteracted by TPA, forskolin or fumonisin beta(1). Finally, both centrifugation and a nuclear localization signal peptide increased transfection efficiency.
Collapse
Affiliation(s)
- Andreea Barbu
- Department of Medical Cell Biology, Uppsala University.,Uppsala.,Sweden.
| | | |
Collapse
|
43
|
From the first to the third generation adenoviral vector: what parameters are governing the production yield? Biotechnol Adv 2008; 27:133-44. [PMID: 19013226 DOI: 10.1016/j.biotechadv.2008.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/22/2022]
Abstract
Human adenoviral viral vector serotype 5 (AdV) is presently the primary viral vector used in gene therapy trials. Advancements in AdV process development directly contribute to the clinical application and commercialization of the AdV gene delivery technology. Notably, the development of AdV production in suspension culture has driven the increase in AdV volumetric and specific productivity, therefore providing large quantities of AdV required for clinical studies. This review focuses on detailing the viral, cell and cell culture parameters governing the productivity of the three generations of AdV vectors.
Collapse
|
44
|
Kwon YJ, Peng CA. Differential interaction of retroviral vector with target cell: quantitative effect of cellular receptor, soluble proteoglycan, and cell type on gene delivery efficiency. Tissue Eng Part A 2008; 14:1497-506. [PMID: 18620488 DOI: 10.1089/ten.tea.2007.0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retroviral vectors are powerful tools for gene therapy and stem cell engineering. To improve efficiency of retroviral gene delivery, quantitative understanding of interactions of a retroviral vector and a cell is crucial. Effects of nonspecific adsorption of retrovirus on a cell via proteoglycans and receptor-mediated binding of retrovirus to a cell on overall transduction efficiency were quantified by combining a mathematical model and experimental data. Results represented by transduction rate constant, a lumped parameter of overall transduction efficiency, delineated that chondroitin sulfate C (CSC) plays dual roles as either enhancer or inhibitor of retroviral transduction, depending on its concentrations in the retroviral supernatant. At the concentration of 20 microg/mL, CSC enhanced the transduction efficiency up to threefold but inhibited more than sevenfold at the concentration of 100 microg/mL. Transduction rate constants for amphotropic retroviral infection of NIH 3T3 cells under phosphate-depleted culture condition showed a proportional relationship between cellular receptor density on a cell and transduction efficiency. It was finally shown that amphotropic retrovirus transduced human fibroblast HT1080 cells more efficiently than NIH 3T3 cells. On the contrary, the transduction efficiency of NIH 3T3 cells by vesicular stomatitis virus G protein pseudotyped retroviruses was eightfold higher than that of HT1080 cells. This study implies usefulness of using quantitative analysis of retroviral transduction in understanding and optimizing retroviral gene delivery systems for therapeutic approaches to tissue engineering.
Collapse
Affiliation(s)
- Young Jik Kwon
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 92697, USA.
| | | |
Collapse
|
45
|
Pilkington-Miksa MA, Sarkar S, Writer MJ, Barker SE, Shamlou PA, Hart SL, Hailes HC, Tabor AB. Synthesis of Bifunctional Integrin-Binding Peptides Containing PEG Spacers of Defined Length for Non-Viral Gene Delivery. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Mata-Espinosa DA, Mendoza-Rodríguez V, Aguilar-León D, Rosales R, López-Casillas F, Hernández-Pando R. Therapeutic effect of recombinant adenovirus encoding interferon-gamma in a murine model of progressive pulmonary tuberculosis. Mol Ther 2008; 16:1065-1072. [PMID: 18431363 DOI: 10.1038/mt.2008.69] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 01/21/2008] [Indexed: 01/09/2023] Open
Abstract
We constructed recombinant adenoviruses encoding murine interferon-gamma (AdIFNgamma) and tested its therapeutic efficiency in a well characterized model of progressive pulmonary tuberculosis (TB) in Balb/c mice, infected through the trachea with the laboratory drug-susceptible H37Rv strain or multidrug-resistant (MDR) clinical isolate. When the disease was in a late phase, 2 months after infection, we administered by intratracheal cannulation a single dose [1.7 x 10(9) plaque forming units (pfu)] of AdIFNgamma or the control adenovirus. Groups of mice were killed at different time-points and the lungs were examined to determine bacilli colony forming units (CFU), cytokine/chemokine gene expression, and CD4/CD8 subpopulations, and also subjected to automated histomorphometry. In comparison with the control group, after 2 weeks of treatment and during the next 6 months, AdIFNgamma-treated animals infected with either the H37Rv strain or the MDR strain showed significantly lower bacilli loads and tissue damage (pneumonia), higher expressions of IFN-gamma, tumor necrosis factor (TNF), and inducible nitric oxide synthase (iNOS), and bigger granulomas. When compared with the results from conventional chemotherapy or AdIFNgamma treatment alone, the combined treatment with AdIFNgamma plus conventional chemotherapy shortened the time taken for reduction of bacillary load. This shows that gene therapy with AdIFNgamma efficiently reconstituted the protective immune response and controlled the progress of pulmonary TB produced by MDR or non-MDR strains.
Collapse
Affiliation(s)
- Dulce A Mata-Espinosa
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
47
|
Torchilin V. Intracellular delivery of protein and peptide therapeutics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2008; 5:e95-e103. [PMID: 24981097 DOI: 10.1016/j.ddtec.2009.01.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Many proteins and peptides are used as highly specific and effective therapeutic agents. Their use is, however, complicated by their instability and side effects. Because many protein and peptide drugs have their therapeutic targets inside cells, there is also an important task to bring these drugs into target cells without subjecting them to the lysosomal degradation. This review describes current approaches to the intracellular delivery of protein and peptide drugs. Various drug delivery systems and methods are considered allowing for safe and effective transport of protein and peptide drugs into the cell cytoplasm.:
Collapse
Affiliation(s)
- Vladimir Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Wong JB, Grosse S, Tabor AB, Hart SL, Hailes HC. Acid cleavable PEG-lipids for applications in a ternary gene delivery vector. MOLECULAR BIOSYSTEMS 2008; 4:532-41. [DOI: 10.1039/b719782a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Hurley CA, Wong JB, Ho J, Writer M, Irvine SA, Lawrence MJ, Hart SL, Tabor AB, Hailes HC. Mono- and dicationic short PEG and methylene dioxyalkylglycerols for use in synthetic gene delivery systems. Org Biomol Chem 2008; 6:2554-9. [DOI: 10.1039/b719702k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Gilbert PA, Kamen A, Bernier A, Garnier A. A simple macroscopic model for the diffusion and adsorption kinetics of r-adenovirus. Biotechnol Bioeng 2007; 98:239-51. [PMID: 17597100 DOI: 10.1002/bit.21340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The diffusion of viruses toward cells is a limiting step of the infection process. To be modeled correctly, this step must be evaluated in combination with the adsorption of the virus to the cell surface, which is a rapid but reversible step. In this paper, the recombinant adenovirus (rAd) diffusion and its adsorption to 293S cells in suspension were both measured and modeled. First, equilibrium experiments permitted to determine the number of receptors on the surface of 293S (R(T) = 3,500 cell(-1)) and the association constant (K(A) = 1.9 x 10(11) M(-1)) for rAd on these cells based on a simple monovalent adsorption model. Non-specific binding of the virus to the cell surface was not found to be significant. Second, total virus particle degradation rates between 5.2 x 10(-3) and 4.0 x 10(-2) min(-1) were measured at 37 degrees C in culture medium, but no significant virus degradation was observed at 4 degrees C. Third, free viral particle disappearance rates from a mixed suspension of virus and cells were measured at different virus concentrations. Experimental data were compared to a phenomenological dynamic model comprising both the diffusion and the adsorption steps. The diffusion to adsorption ratio, a fitted parameter, confirmed that the contact process of a virus with a cell is indeed diffusion controlled. However, the characteristic diffusion time constants obtained, based on a reversible adsorption model, were eightfolds smaller than those reported in the literature, based on diffusion models that assume irreversible adsorption.
Collapse
Affiliation(s)
- Philippe-Alexandre Gilbert
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | |
Collapse
|