1
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Meléndez-Flórez MP, Valbuena DS, Cepeda S, Rangel N, Forero-Castro M, Martínez-Agüero M, Rondón-Lagos M. Profile of Chromosomal Alterations, Chromosomal Instability and Clonal Heterogeneity in Colombian Farmers Exposed to Pesticides. Front Genet 2022; 13:820209. [PMID: 35281828 PMCID: PMC8908452 DOI: 10.3389/fgene.2022.820209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Pesticides are a group of environmental pollutants widely used in agriculture to protect crops, and their indiscriminate use has led to a growing public awareness about the health hazards associated with exposure to these substances. In fact, exposure to pesticides has been associated with an increased risk of developing diseases, including cancer. In a study previously published by us, we observed the induction of specific chromosomal alterations and, in general, the deleterious effect of pesticides on the chromosomes of five individuals exposed to pesticides. Considering the importance of our previous findings and their implications in the identification of cytogenetic biomarkers for the monitoring of exposed populations, we decided to conduct a new study with a greater number of individuals exposed to pesticides. Considering the above, the aim of this study was to evaluate the type and frequency of chromosomal alterations, chromosomal variants, the level of chromosomal instability and the clonal heterogeneity in a group of thirty-four farmers occupationally exposed to pesticides in the town of Simijacá, Colombia, and in a control group of thirty-four unexposed individuals, by using Banding Cytogenetics and Molecular Cytogenetics (Fluorescence in situ hybridization). Our results showed that farmers exposed to pesticides had significantly increased frequencies of chromosomal alterations, chromosomal variants, chromosomal instability and clonal heterogeneity when compared with controls. Our results confirm the results previously reported by us, and indicate that occupational exposure to pesticides induces not only chromosomal instability but also clonal heterogeneity in the somatic cells of people exposed to pesticides. This study constitutes, to our knowledge, the first study that reports clonal heterogeneity associated with occupational exposure to pesticides. Chromosomal instability and clonal heterogeneity, in addition to reflecting the instability of the system, could predispose cells to acquire additional instability and, therefore, to an increased risk of developing diseases.
Collapse
Affiliation(s)
| | - Duvan Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Sebastián Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
3
|
Vargas-Rondón N, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Role of chromosomal instability and clonal heterogeneity in the therapy response of breast cancer cell lines. Cancer Biol Med 2020; 17:970-985. [PMID: 33299647 PMCID: PMC7721098 DOI: 10.20892/j.issn.2095-3941.2020.0028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Chromosomal instability (CIN) is a hallmark of cancer characterized by cell-to-cell variability in the number or structure of chromosomes, frequently observed in cancer cell populations and is associated with poor prognosis, metastasis, and therapeutic resistance. Breast cancer (BC) is characterized by unstable karyotypes and recent reports have indicated that CIN may influence the response of BC to chemotherapy regimens. However, paradoxical associations between extreme CIN and improved outcome have been observed. Methods This study aimed to 1) evaluate CIN levels and clonal heterogeneity (CH) in MCF7, ZR-751, MDA-MB468, BT474, and KPL4 BC cells treated with low doses of tamoxifen (TAM), docetaxel (DOC), doxorubicin (DOX), Herceptin (HT), and combined treatments (TAM/DOC, TAM/DOX, TAM/HT, HT/DOC, and HT/DOX) by using fluorescence in situ hybridization (FISH), and 2) examine the association with response to treatments by comparing FISH results with cell proliferation. Results Intermediate CIN was linked to drug sensitivity according to three characteristics: estrogen receptor α (ERα) and HER2 status, pre-existing CIN level in cancer cells, and the CIN induced by the treatments. ERα+/HER2- cells with intermediate CIN were sensitive to treatment with taxanes (DOC) and anthracyclines (DOX), while ERα-/HER2-, ERα+/HER2+, and ERα-/HER2+ cells with intermediate CIN were resistant to these treatments. Conclusions A greater understanding of CIN and CH in BC could assist in the optimization of existing therapeutic regimens and/or in supporting new strategies to improve cancer outcomes.
Collapse
Affiliation(s)
- Natalia Vargas-Rondón
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Erika Pérez-Mora
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Victoria E. Villegas
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
4
|
Cepeda S, Forero-Castro M, Cárdenas-Nieto D, Martínez-Agüero M, Rondón-Lagos M. Chromosomal Instability in Farmers Exposed to Pesticides: High Prevalence of Clonal and Non-Clonal Chromosomal Alterations. Risk Manag Healthc Policy 2020; 13:97-110. [PMID: 32104116 PMCID: PMC7024798 DOI: 10.2147/rmhp.s230953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction An important economic activity in Colombia is agricultural production and farmers are frequently exposed to pesticides. Occupational exposure to pesticides is associated with an increased incidence of various diseases, including cancer, Parkinson’s disease, Alzheimer’s disease, reproductive disorders, and birth defects. However, although high genotoxicity is associated with these chemicals, information about the type and frequency of specific chromosomal alterations (CAs) and the level of chromosomal instability (CIN) induced by exposure to pesticides is scarce or absent. Methods In this study, CAs and CIN were assessed in peripheral blood lymphocytes (PBLs) from five farmers occupationally exposed to pesticides and from five unexposed individuals using GTG-banding and molecular cytogenetic analysis. Results A significant increase in clonal and non-clonal chromosomal alterations was observed in pesticide-exposed individuals compared with unexposed individuals (510±12,2 vs 73±5,7, respectively; p<0.008). Among all CAs, monosomies and deletions were more frequently observed in the exposed group. Also, a high frequency of fragilities was observed in the exposed group. Conclusion Together, these findings suggest that exposure to pesticides could be associated with CIN in PBLs and indicate the need for the establishment of educational programs on safety precautions when handling pesticides, such as wearing gloves, masks and boots, changing clothes and maintaining proper hygiene, among others. Further evaluation in other similar studies that include a greater number of individuals exposed to pesticides is necessary.
Collapse
Affiliation(s)
- Sebastian Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Diana Cárdenas-Nieto
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - María Martínez-Agüero
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
5
|
Burbulis IE, Wierman MB, Wolpert M, Haakenson M, Lopes MB, Schiff D, Hicks J, Loe J, Ratan A, McConnell MJ. Improved molecular karyotyping in glioblastoma. Mutat Res 2018; 811:16-26. [PMID: 30055482 DOI: 10.1016/j.mrfmmm.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Uneven replication creates artifacts during whole genome amplification (WGA) that confound molecular karyotype assignment in single cells. Here, we present an improved WGA recipe that increased coverage and detection of copy number variants (CNVs) in single cells. We examined serial resections of glioblastoma (GBM) tumor from the same patient and found low-abundance clones containing CNVs in clinically relevant loci that were not observable using bulk DNA sequencing. We discovered extensive genomic variability in this class of tumor and provide a practical approach for investigating somatic mosaicism.
Collapse
Affiliation(s)
- Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Escuela de Medicina, Universidad San Sebastian, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Matt Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Mark Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - David Schiff
- Department of Neurology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - James Hicks
- Michelson Center, University of Southern California, Los Angeles, CA, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Justin Loe
- Full Genomes Corp, Inc., Rockville, MD, United States
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia, School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
6
|
Abstract
The ability of an organism to replicate and segregate its genome with high fidelity is vital to its survival and for the production of future generations. Errors in either of these steps (replication or segregation) can lead to a change in ploidy or chromosome number. While these drastic genome changes can be detrimental to the organism, resulting in decreased fitness, they can also provide increased fitness during periods of stress. A change in ploidy or chromosome number can fundamentally change how a cell senses and responds to its environment. Here, we discuss current ideas in fungal biology that illuminate how eukaryotic genome size variation can impact the organism at a cellular and evolutionary level. One of the most fascinating observations from the past 2 decades of research is that some fungi have evolved the ability to tolerate large genome size changes and generate vast genomic heterogeneity without undergoing canonical meiosis.
Collapse
|
7
|
Davis A, Gao R, Navin N. Tumor evolution: Linear, branching, neutral or punctuated? Biochim Biophys Acta Rev Cancer 2017; 1867:151-161. [PMID: 28110020 DOI: 10.1016/j.bbcan.2017.01.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 02/08/2023]
Abstract
Intratumor heterogeneity has been widely reported in human cancers, but our knowledge of how this genetic diversity emerges over time remains limited. A central challenge in studying tumor evolution is the difficulty in collecting longitudinal samples from cancer patients. Consequently, most studies have inferred tumor evolution from single time-point samples, providing very indirect information. These data have led to several competing models of tumor evolution: linear, branching, neutral and punctuated. Each model makes different assumptions regarding the timing of mutations and selection of clones, and therefore has different implications for the diagnosis and therapeutic treatment of cancer patients. Furthermore, emerging evidence suggests that models may change during tumor progression or operate concurrently for different classes of mutations. Finally, we discuss data that supports the theory that most human tumors evolve from a single cell in the normal tissue. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- Alexander Davis
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruli Gao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Abstract
Massively parallel DNA and RNA sequencing approaches have generated data on thousands of breast cancer genomes. In this review, we consider progress largely from the perspective of new concepts and hypotheses raised so far. These include challenges to the multistep model of breast carcinogenesis and the discovery of new defects in DNA repair through sequence analysis. Issues for functional genomics include the development of strategies to differentiate between mutations that are likely to drive carcinogenesis and bystander background mutations, as well as the importance of mechanistic studies that examine the role of mutations in genes with roles in splicing, histone methylation, and long non-coding RNA function. The application of genome-annotated patient-derived breast cancer xenografts as a potentially more reliable preclinical model is also discussed. Finally, we address the challenge of extracting medical value from genomic data. A weakness of many datasets is inadequate clinical annotation, which hampers the establishment of links between the mutation spectra and the efficacy of drugs or disease phenotypes. Tools such as dGene and the DGIdb are being developed to identify possible druggable mutations, but these programs are a work in progress since extensive molecular pharmacology is required to develop successful ‘genome-forward’ clinical trials. Examples are emerging, however, including targeting HER2 in HER2 mutant breast cancer and mutant ESR1 in ESR1 endocrine refractory luminal-type breast cancer. Finally, the integration of DNA- and RNA-based sequencing studies with mass spectrometry-based peptide sequencing and an unbiased determination of post-translational modifications promises a more complete view of the biochemistry of breast cancer cells and points toward a new discovery horizon in our understanding of the pathophysiology of this complex disease.
Collapse
Affiliation(s)
- Rodrigo Goncalves
- Breast Cancer Program, Department of Medical Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis 63110, MO, USA; Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave, St Louis 63110, MO, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, 320A Cullen MS600, Houston 77030, TX, USA
| | | | | | | |
Collapse
|
9
|
Roylance R, Endesfelder D, Jamal-Hanjani M, Burrell RA, Gorman P, Sander J, Murphy N, Birkbak NJ, Hanby AM, Speirs V, Johnston SRD, Kschischo M, Swanton C. Expression of regulators of mitotic fidelity are associated with intercellular heterogeneity and chromosomal instability in primary breast cancer. Breast Cancer Res Treat 2014; 148:221-9. [PMID: 25288231 DOI: 10.1007/s10549-014-3153-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023]
Abstract
Regulators of transition through mitosis such as SURVIVIN and Aurora kinase A (AURKA) have been previously implicated in the initiation of chromosomal instability (CIN), a driver of intratumour heterogeneity. We investigate the relationship between protein expression of these genes and directly quantified CIN, and their prognostic utility in breast cancer. The expression of SURVIVIN and AURKA was determined by immunohistochemistry in a cohort of 426 patients with primary breast cancer. The association between protein expression and histopathological characteristics, clinical outcome and CIN status, as determined by centromeric FISH and defined by modal centromere deviation, was analysed. Significantly poorer clinical outcome was observed in patients with high AURKA expression levels. Expression of SURVIVIN was elevated in ER-negative relative to ER-positive breast cancer. Both AURKA and SURVIVIN increased expression were significantly associated with breast cancer grade. There was a significant association between increased CIN and both increased AURKA and SURVIVIN expression. AURKA gene amplification was also associated with increased CIN. To our knowledge this is the largest study assessing CIN status in parallel with the expression of the mitotic regulators AURKA and SURVIVIN. These data suggest that elevated expression of AURKA and SURVIVIN, together with AURKA gene amplification, are associated with increased CIN in breast cancer, and may be used as a proxy for CIN in breast cancer samples in the absence of more advanced molecular measurements.
Collapse
Affiliation(s)
- Rebecca Roylance
- Cancer Research UK, London Research Institute, London, WC2A 3LY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The study of single cancer cells has transformed from qualitative microscopic images to quantitative genomic datasets. This paradigm shift has been fueled by the development of single-cell sequencing technologies, which provide a powerful new approach to study complex biological processes in human cancers.
Collapse
|
11
|
Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics 2013; 14:505. [PMID: 23885787 PMCID: PMC3727977 DOI: 10.1186/1471-2164-14-505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective. Results Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci. Conclusions The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics.
Collapse
|
12
|
HER2/neu gene amplification heterogeneity: the significance of cells with a 3:1 HER2/CEP17 ratio. Appl Immunohistochem Mol Morphol 2013; 20:543-9. [PMID: 22495367 DOI: 10.1097/pai.0b013e31824d04e8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
College of American Pathologists published guidelines for the assessment of HER2/neu genetic heterogeneity. When 20 cells are counted for evaluation of HER2/neu amplification, a single 3:1 HER2/CEP17 ratio cell characterizes the sample as heterogneous. Heterogeneity for HER2/neu amplification may indicate biologically important characteristics including likelihood of amplification in metastases. We performed fluorescence in situ hybridization on 1546 cases. For each case, 20 cells of invasive carcinoma were analyzed for HER2/CEP17 ratio. Cases were assessed as nonamplified (ratio<1.8), borderline amplified (1.8 ≤ ratio ≤ 2.2), or amplified (ratio>2.20). Heterogeneity was present when the percentage of cell with ratios >2.20 was ≥5% but <50%. Individual cells were typed by probe ratios and distribution of cell types determined. The distribution of HER2/CEP17 ratio was determined with the number of 3:1 HER2/CEP17 cells plotted against the number of amplified cells. 3:1 HER2/CEP17 ratio cells occur with low frequency (2.2%) but are the determining factor for heterogeneity in 46% of heterogenous cases. Thirty-five percent of heterogenous cases were due to a single 3:1 cell. Single 3:1 cells are a poor predictor for additional amplified cells. Inclusion of cells with a 3:1 HER2/CEP17 ratio in the definition of heterogeneity may be too broad as these cells are the determining factor in approximately one third of diagnoses of heterogeneity but are not strongly associated with other measures of amplification. Moreover, 3:1 HER2/CEP17 ratio cells are a poor predictor for the presence of additional amplified cells in a sample.
Collapse
|
13
|
Focken T, Steinemann D, Skawran B, Hofmann W, Ahrens P, Arnold N, Kroll P, Kreipe H, Schlegelberger B, Gadzicki D. Human BRCA1-associated breast cancer: no increase in numerical chromosomal instability compared to sporadic tumors. Cytogenet Genome Res 2011; 135:84-92. [PMID: 22024613 DOI: 10.1159/000332005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2011] [Indexed: 12/28/2022] Open
Abstract
BRCA1 is a major gatekeeper of genomic stability. Acting in multiple central processes like double-strand break repair, centrosome replication, and checkpoint control, BRCA1 participates in maintaining genomic integrity and protects the cell against genomic instability. Chromosomal instability (CIN) as part of genomic instability is an inherent characteristic of most solid tumors and is also involved in breast cancer development. In this study, we determined the extent of CIN in 32 breast cancer tumors of women with a BRCA1 germline mutation compared to 62 unselected breast cancers. We applied fluorescence in situ hybridization (FISH) with centromere-specific probes for the chromosomes 1, 7, 8, 10, 17, and X and locus-specific probes for 3q27 (BCL6), 5p15.2 (D5S23), 5q31 (EGR1), 10q23.3 (PTEN), and 14q32 (IGH@) on formalin-fixed paraffin-embedded tissue microarray sections. Our hypothesis of an increased level of CIN in BRCA1-associated breast cancer could not be confirmed by this approach. Surprisingly, we detected no significant difference in the extent of CIN in BRCA1-mutated versus sporadic tumors. The only exception was the CIN value for chromosome 1. Here, the extent of CIN was slightly higher in the group of sporadic tumors.
Collapse
Affiliation(s)
- T Focken
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Russnes HG, Navin N, Hicks J, Borresen-Dale AL. Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest 2011; 121:3810-8. [PMID: 21965338 DOI: 10.1172/jci57088] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rapid and sophisticated improvements in molecular analysis have allowed us to sequence whole human genomes as well as cancer genomes, and the findings suggest that we may be approaching the ability to individualize the diagnosis and treatment of cancer. This paradigmatic shift in approach will require clinicians and researchers to overcome several challenges including the huge spectrum of tumor types within a given cancer, as well as the cell-to-cell variations observed within tumors. This review discusses how next-generation sequencing of breast cancer genomes already reveals insight into tumor heterogeneity and how it can contribute to future breast cancer classification and management.
Collapse
Affiliation(s)
- Hege G Russnes
- Laboratory of Molecular Pathology, Division of Pathology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
15
|
Bartlett AI, Starcyznski J, Robson T, MacLellan A, Campbell FM, van de Velde CJH, Hasenburg A, Markopoulos C, Seynaeve C, Rea D, Bartlett JMS. Heterogeneous HER2 gene amplification: impact on patient outcome and a clinically relevant definition. Am J Clin Pathol 2011; 136:266-74. [PMID: 21757600 DOI: 10.1309/ajcp0en6aqmwetzz] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heterogeneous expression or amplification is a challenge to HER2 diagnostics. A guideline defines heterogeneity as the presence of between 5% and 50% cells with HER2/CEP17 ratios of more than 2.20. We audited the frequency of such cells and their clinical impact in the results from 2 pathology laboratories combined with data from the TEAM [Tamoxifen vs Exemestane Adjuvant Multicentre] pathology study. HER2 reports were scanned and the percentages of amplified cells reported. Of 6,461 eligible cases, 754 (11.7%) exhibited 50% or more cells with ratios of more than 2.20, which is "amplified" by College of American Pathologists guidelines. Of the cases, 2,166 (33.5%) exhibited more than 5% but less than 50% of cells with HER2/CEP17 ratios of more than 2.20, or "heterogeneous amplification." No prognostic impact was observed when fewer than 30% of cells exhibited ratios of more than 2.20. All amplified cases with 30% to 50% of cells with ratios more than 2.20 were identified as such by United Kingdom guidelines. The percentage of tumor cells with HER2/CEP17 ratios more than 2.20 does not identify cases with heterogeneous amplification or poor outcome. A modified approach for identification of true heterogeneous amplification is suggested.
Collapse
|
16
|
Roylance R, Endesfelder D, Gorman P, Burrell RA, Sander J, Tomlinson I, Hanby AM, Speirs V, Richardson AL, Birkbak NJ, Eklund AC, Downward J, Kschischo M, Szallasi Z, Swanton C. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prev 2011; 20:2183-94. [PMID: 21784954 DOI: 10.1158/1055-9965.epi-11-0343] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chromosomal instability (CIN) is thought to be associated with poor prognosis in solid tumors; however, evidence from preclinical and mouse tumor models suggest that CIN may paradoxically enhance or impair cancer cell fitness. Breast cancer prognostic expression signature sets, which reflect tumor CIN status, efficiently delineate outcome in estrogen receptor ER-positive breast cancer in contrast to ER-negative breast cancer, suggesting that the relationship of CIN with prognosis differs in these two breast cancer subtypes. METHODS Direct assessment of CIN requires single-cell analysis methods, such as centromeric FISH, aimed at determining the variation around the modal number of two or more chromosomes within individual tumor nuclei. Here, we document the frequency of tumor CIN by dual centromeric FISH analysis in a retrospective primary breast cancer cohort of 246 patients with survival outcome. RESULTS There was increased CIN and clonal heterogeneity in ER-negative compared with ER-positive breast cancer. Consistent with a negative impact of CIN on cellular fitness, extreme CIN in ER-negative breast cancer was an independent variable associated with improved long-term survival in multivariate analysis. In contrast, a linear relationship of increasing CIN with poorer prognosis in ER-positive breast cancer was observed, using three independent measures of CIN. CONCLUSIONS The paradoxical relationship between extreme CIN and cancer outcome in the ER-negative cohorts may explain why prognostic expression signatures, reflecting tumor CIN status, fail to predict outcome in this subgroup. IMPACT Assessment of tumor CIN status may support risk stratification in ER-negative breast cancer and requires prospective validation.
Collapse
Affiliation(s)
- Rebecca Roylance
- Cancer Research UK, London Research Institute, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Advances in whole genome amplification and next-generation sequencing methods have enabled genomic analyses of single cells, and these techniques are now beginning to be used to detect genomic lesions in individual cancer cells. Previous approaches have been unable to resolve genomic differences in complex mixtures of cells, such as heterogeneous tumors, despite the importance of characterizing such tumors for cancer treatment. Sequencing of single cells is likely to improve several aspects of medicine, including the early detection of rare tumor cells, monitoring of circulating tumor cells (CTCs), measuring intratumor heterogeneity, and guiding chemotherapy. In this review we discuss the challenges and technical aspects of single-cell sequencing, with a strong focus on genomic copy number, and discuss how this information can be used to diagnose and treat cancer patients.
Collapse
|
18
|
Tumour evolution inferred by single-cell sequencing. Nature 2011; 472:90-4. [PMID: 21399628 DOI: 10.1038/nature09807] [Citation(s) in RCA: 1863] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022]
Abstract
Genomic analysis provides insights into the role of copy number variation in disease, but most methods are not designed to resolve mixed populations of cells. In tumours, where genetic heterogeneity is common, very important information may be lost that would be useful for reconstructing evolutionary history. Here we show that with flow-sorted nuclei, whole genome amplification and next generation sequencing we can accurately quantify genomic copy number within an individual nucleus. We apply single-nucleus sequencing to investigate tumour population structure and evolution in two human breast cancer cases. Analysis of 100 single cells from a polygenomic tumour revealed three distinct clonal subpopulations that probably represent sequential clonal expansions. Additional analysis of 100 single cells from a monogenomic primary tumour and its liver metastasis indicated that a single clonal expansion formed the primary tumour and seeded the metastasis. In both primary tumours, we also identified an unexpectedly abundant subpopulation of genetically diverse 'pseudodiploid' cells that do not travel to the metastatic site. In contrast to gradual models of tumour progression, our data indicate that tumours grow by punctuated clonal expansions with few persistent intermediates.
Collapse
|
19
|
Clonal heterogeneity and chromosomal instability at disease presentation in high hyperdiploid acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2011; 203:209-14. [PMID: 21156235 DOI: 10.1016/j.cancergencyto.2010.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 11/22/2022]
Abstract
Although aneuploidy has many possible causes, it often results from underlying chromosomal instability (CIN) leading to an unstable karyotype with cell-to-cell variation and multiple subclones. To test for the presence of CIN in high hyperdiploid acute lymphoblastic leukemia (HeH ALL) at diagnosis, we investigated 20 patients (10 HeH ALL and 10 non-HeH ALL), using automated four-color interphase fluorescence in situ hybridization (I-FISH) with centromeric probes for chromosomes 4, 6, 10, and 17. In HeH ALL, the proportion of abnormal cells ranged from 36.3% to 92.4%, and a variety of aneuploid populations were identified. Compared with conventional cytogenetics, I-FISH revealed numerous additional clones, some of them very small. To investigate the nature and origin of this clonal heterogeneity, we determined average numerical CIN values for all four chromosomes together and for each chromosome and patient group. The CIN values in HeH ALL were relatively high (range, 22.2-44.7%), compared with those in non-HeH ALL (3.2-6.4%), thus accounting for the presence of numerical CIN in HeH ALL at diagnosis. We conclude that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by I-FISH in HeH ALL at presentation, which would corroborate the potential role of CIN in tumor pathogenesis.
Collapse
|
20
|
Swanton C, Caldas C. From genomic landscapes to personalized cancer management-is there a roadmap? Ann N Y Acad Sci 2010; 1210:34-44. [DOI: 10.1111/j.1749-6632.2010.05776.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, Möllerström E, Karlsson P, Helou K. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res 2010; 16:3860-74. [PMID: 20551037 DOI: 10.1158/1078-0432.ccr-10-0889] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulation of key cellular pathways is fundamental for the survival and expansion of neoplastic cells. In cancer, regulation of gene transcription can be mediated in a variety of ways. The purpose of this study was to assess the impact of gene dosage on gene expression patterns and the effect of other mechanisms on transcriptional levels, and to associate these genomic changes with clinicopathologic parameters. EXPERIMENTAL DESIGN We screened 97 invasive diploid breast tumors for DNA copy number alterations and changes in transcriptional levels using array comparative genomic hybridization and expression microarrays, respectively. RESULTS The integrative analysis identified an increase in the overall number of genetic alterations during tumor progression and 15 specific genomic regions with aberrant DNA copy numbers in at least 25% of the patient population, i.e., 1q22, 1q22-q23.1, 1q25.3, 1q32.1, 1q32.1-q32.2, 8q21.2-q21.3, 8q22.3, 8q24.3, and 16p11.2 were recurrently gained, whereas 11q25, 16q21, 16q23.3, and 17p12 were frequently lost (P < 0.01). An examination of the expression patterns of genes mapping within the detected genetic aberrations identified 47 unique genes and 1 Unigene cluster significantly correlated between the DNA and relative mRNA levels. In addition, more malignant tumors with normal gene dosage levels displayed a recurrent overexpression of UBE2C, S100A8, and CBX2, and downregulation of LOC389033, STC2, DNALI1, SCUBE2, NME5, SUSD3, SERPINA11, AZGP1, and PIP. CONCLUSIONS Taken together, our findings suggest that the dysregulated genes identified here are critical for breast cancer initiation and progression, and could be used as novel therapeutic targets for drug development to complement classical clinicopathologic features.
Collapse
Affiliation(s)
- Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, and Laboratory of Clinical Pathology and Cytology, Sahlgrenska Academy at University of Gothenburg, Gula stråket 2, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Navin NE, Hicks J. Tracing the tumor lineage. Mol Oncol 2010; 4:267-83. [PMID: 20537601 DOI: 10.1016/j.molonc.2010.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022] Open
Abstract
Defining the pathways through which tumors progress is critical to our understanding and treatment of cancer. We do not routinely sample patients at multiple time points during the progression of their disease, and thus our research is limited to inferring progression a posteriori from the examination of a single tumor sample. Despite this limitation, inferring progression is possible because the tumor genome contains a natural history of the mutations that occur during the formation of the tumor mass. There are two approaches to reconstructing a lineage of progression: (1) inter-tumor comparisons, and (2) intra-tumor comparisons. The inter-tumor approach consists of taking single samples from large collections of tumors and comparing the complexity of the genomes to identify early and late mutations. The intra-tumor approach involves taking multiple samples from individual heterogeneous tumors to compare divergent clones and reconstruct a phylogenetic lineage. Here we discuss how these approaches can be used to interpret the current models for tumor progression. We also compare data from primary and metastatic copy number profiles to shed light on the final steps of breast cancer progression. Finally, we discuss how recent technical advances in single cell genomics will herald a new era in understanding the fundamental basis of tumor heterogeneity and progression.
Collapse
Affiliation(s)
- Nicholas E Navin
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
23
|
Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling Y, Troge J, Grubor V, Levy D, Lundin P, Månér S, Zetterberg A, Hicks J, Wigler M. Inferring tumor progression from genomic heterogeneity. Genome Res 2009; 20:68-80. [PMID: 19903760 DOI: 10.1101/gr.099622.109] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer progression in humans is difficult to infer because we do not routinely sample patients at multiple stages of their disease. However, heterogeneous breast tumors provide a unique opportunity to study human tumor progression because they still contain evidence of early and intermediate subpopulations in the form of the phylogenetic relationships. We have developed a method we call Sector-Ploidy-Profiling (SPP) to study the clonal composition of breast tumors. SPP involves macro-dissecting tumors, flow-sorting genomic subpopulations by DNA content, and profiling genomes using comparative genomic hybridization (CGH). Breast carcinomas display two classes of genomic structural variation: (1) monogenomic and (2) polygenomic. Monogenomic tumors appear to contain a single major clonal subpopulation with a highly stable chromosome structure. Polygenomic tumors contain multiple clonal tumor subpopulations, which may occupy the same sectors, or separate anatomic locations. In polygenomic tumors, we show that heterogeneity can be ascribed to a few clonal subpopulations, rather than a series of gradual intermediates. By comparing multiple subpopulations from different anatomic locations, we have inferred pathways of cancer progression and the organization of tumor growth.
Collapse
Affiliation(s)
- Nicholas Navin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sudo H, Garbe J, Stampfer MR, Barcellos-Hoff MH, Kronenberg A. Karyotypic instability and centrosome aberrations in the progeny of finite life-span human mammary epithelial cells exposed to sparsely or densely ionizing radiation. Radiat Res 2008; 170:23-32. [PMID: 18582160 DOI: 10.1667/rr1317.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/04/2008] [Indexed: 11/03/2022]
Abstract
The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer.
Collapse
Affiliation(s)
- Hiroko Sudo
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
25
|
Schwarz S, Bier J, Driemel O, Reichert TE, Hauke S, Hartmann A, Brockhoff G. Losses of 3p14 and 9p21 as shown by fluorescence in situ hybridization are early events in tumorigenesis of oral squamous cell carcinoma and already occur in simple keratosis. Cytometry A 2008; 73:305-11. [PMID: 18163473 DOI: 10.1002/cyto.a.20504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumorigenesis of oral squamous cell carcinoma (OSCC) has been postulated to represent a multistep process driven by the accumulation of carcinogen-induced genetic changes. Alterations of the 3p14 fragile site containing the fragile histidine triade gene and of the 9p21 tumor suppressor locus containing methylthioadenosine phosphorylase, p16 and p15 characteristically occur in oral leukoplakia, a known precursor of OSCC, and are at present considered to indicate the transition from simple keratosis (hyperplasia) to dysplasia. The aim of the study was to evaluate the occurrence of losses of 3p14 and 9p21 and to evaluate polysomies 3 and 9 in leukoplakias using highly sensitive fluorescence in situ hybridization (FISH) probes. Examining 67 leukoplakias (24 hyperplasias, 33 dysplasias, 10 in situ carcinomas), control tissues of oral mucosa from infants and adults as well as invasive carcinomas and normal epithelia of tumor patients with locus specific FISH probes targeting 3p14 and 9p21, and centromeric probes for chromosomes 3 and 9 we could demonstrate that losses of these sites appeared very early in the tumorigenesis of OSCC and were already present in the great majority of simple keratoses. Polysomy 3 occurring more frequently than polysomy 9 was characteristic of dysplasia and in situ carcinomas and thus seems to follow losses of 3p14 and 9p21 during oral squamous cell carcinogenesis.
Collapse
Affiliation(s)
- Stephan Schwarz
- Department of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tibiletti MG. Interphase FISH as a new tool in tumor pathology. Cytogenet Genome Res 2007; 118:229-36. [PMID: 18000375 DOI: 10.1159/000108305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 01/05/2007] [Indexed: 11/19/2022] Open
Abstract
Interphase FISH (IFISH) analysis is an intriguing molecular cytogenetic approach to study chromosome abnormalities in cancer. IFISH is a high sensitivity technique because of its ability to identify aberrations on a cell-to-cell level. The possibility to perform IFISH on different types of nuclei obtained both from fresh and archived samples, makes this technique an advantageous method to identify specific chromosome aberrations in cancer and correlate them to prognosis and therapy. The aim of this review is to outline the technical aspects, the sensitivity and specificity and the current strategies for employment of IFISH in tumor pathology, and to discuss the enormous range of novel applications.
Collapse
Affiliation(s)
- M G Tibiletti
- Laboratorio di Anatomia Patologica, Ospedale di Circolo, Varese, Italy.
| |
Collapse
|
27
|
Scintu M, Vitale R, Prencipe M, Gallo AP, Bonghi L, Valori VM, Maiello E, Rinaldi M, Signori E, Rabitti C, Carella M, Dallapiccola B, Altomare V, Fazio VM, Parrella P. Genomic instability and increased expression of BUB1B and MAD2L1 genes in ductal breast carcinoma. Cancer Lett 2007; 254:298-307. [PMID: 17498870 DOI: 10.1016/j.canlet.2007.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 11/21/2022]
Abstract
In a series of invasive ductal breast carcinoma, we investigated the status of chromosomal and intrachromosomal instability by fluorescence in situ hybridisation and determined the level of mRNA expression for two genes involved in the mitotic spindle checkpoint pathway, BUB1B and MAD2L1. All breast cancers demonstrated higher chromosomal instability rates in tumor samples (average: 56.86%, range: 36.24-76.78%) than in controls (average: 11.54%, range: 9.91-14.84%) (P<0.0001). As well as intrachromosomal instability rates were elevated in tumor (average: 18.45% range: 8.34-35.8%) as compared with controls (average: 4.18% range: 3.47-4.81%) (P<0.0001). An increase in BUB1B and MAD2L1 transcripts was demonstrated in the majority of the tumor tested. BUB1B mRNA levels but not MAD2L1 levels correlated with intrachromosomal instability (r=0.722, P=0.018).
Collapse
MESH Headings
- Adult
- Aged
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Calcium-Binding Proteins/genetics
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/pathology
- Carcinoma, Ductal/surgery
- Cell Cycle Proteins/genetics
- Chromosomal Instability
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 8
- Female
- Gene Expression Regulation, Neoplastic
- Genomic Instability
- Humans
- In Situ Hybridization, Fluorescence
- Mad2 Proteins
- Middle Aged
- Protein Serine-Threonine Kinases/genetics
- RNA, Messenger/genetics
- Repressor Proteins/genetics
Collapse
Affiliation(s)
- Marina Scintu
- Laboratory of Oncology, Research Department, IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, San Giovanni Rotondo (FG) 71013, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bayani J, Squire JA. Application and interpretation of FISH in biomarker studies. Cancer Lett 2007; 249:97-109. [PMID: 17287077 DOI: 10.1016/j.canlet.2006.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 12/24/2022]
Abstract
Emerging genomic and proteomic data is creating new opportunities to identify novel biomarkers that will have pathway-specific therapeutic impact on cancer progression. Molecular cytogenetic and fluorescence in situ hybridization (FISH) methods have been primarily used in discovery genetic research laboratories until recently. New automated analytical platforms based on FISH technologies and tissue microarray methods are providing a rapid means to determine the impact of consistent genomic aberrations in clinical trials, and in studies designed to investigate differential chemotherapeutic response.
Collapse
Affiliation(s)
- Jane Bayani
- Division of Applied Molecular Oncology, Princess Margaret Hospital, University Health Network, 610 University Avenue, Room 9-717, Toronto, Ont., Canada M5G 2M9
| | | |
Collapse
|
29
|
Chang XZ, Wang ZM, Yu JM, Tian FG, Jin W, Zhang Y, Yu J, Li LF, Liu XF, Li ZW, Shao ZM. Isolation of a human gallbladder cancer cell clone with high invasive phenotype in vitro and metastatic potential in orthotopic model and inhibition of its invasiveness by heparanase antisense oligodeoxynucleotides. Clin Exp Metastasis 2007; 24:25-38. [PMID: 17260103 DOI: 10.1007/s10585-006-9053-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 12/01/2006] [Indexed: 01/22/2023]
Abstract
The mechanisms involved in gallbladder cancer metastasis still remain unclear to date. The poor understanding is due, in part, to the lack of ideal cell line and animal model for study. In the present study, 21 cell clones were isolated from the human gallbladder carcinoma cells GBC-SD and the cell clone GBC-SDH(i) with high invasive phenotype was fished out. The invasive phenotype and metastatic potential of GBC-SDH(i) were confirmed in a novel surgical orthotopic implantation model of gallbladder cancer in nude mice. Heparanase, an endoglycosidase that degrades heparan sulfate, is a critical mediator of tumor metastasis and angiogenesis. RT-PCR, real time RT-PCR and western blot showed that the expression levels of heparanase were significant difference between GBC-SDH(i) and its parent cells. After treated with antisense oligodeoxynucleotides, the heparanase mRNA and protein expression in GBC-SDH(i) cells were significantly decreased and its invasive potential in vitro was inhibited in a dose-dependent manner. The study provides a useful cell clone and a clinically relevant orthotopic tumor model for the metastatic study in human gallbladder cancer. The roles of heparanase in gallbladder cancer are also evaluated.
Collapse
Affiliation(s)
- Xin-Zhong Chang
- Central Laboratory, Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200032, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fiegl M. The utility of fluorescence in-situ hybridization in the diagnosis of malignant pleural effusion. Curr Opin Pulm Med 2005; 11:313-8. [PMID: 15928498 DOI: 10.1097/01.mcp.0000166491.92659.5e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Molecular tools are used to refine the diagnosis of malignancy in pleural fluids. This review discusses the rationale and recent findings of the application of one of these tools, fluorescence in-situ hybridization, in pleural effusions. RECENT FINDINGS Aneuploidy (i.e., pronounced numeric and structural chromosomal changes) is a recurrent finding in cells of solid tumors. Different methods attempt to detect tumor-associated aneuploidy to prove micrometastasis in different compartments, such as urine, cerebrospinal fluid, bone marrow, and body fluids. In recent years, fluorescence in-situ hybridization analysis has proved viable for detecting metastasis based on the observation of matching patterns of chromosomal aneusomies in primary tumors and corresponding metastasis. SUMMARY Fluorescence in-situ hybridization analysis using specific probes for visualizing numeric aberrations in a microscopic evaluation (thus complementing routine cytologic evaluation) has been shown to be relatively simple, very robust, and thus applicable in material of lesser quality and more sensitive than routine cytology. Remarkably, dual-color fluorescence in-situ hybridization analysis allows for an efficient analysis in effusions, and the approach presented in this review proved to be more specific than other molecular procedures applied in effusions to detect malignancy, such as polymerase chain reaction. Prospective studies are needed to demonstrate that refinement of staging by fluorescence in-situ hybridization or polymerase chain reaction ('molecular upstaging') will translate into meaningful therapeutic consequences.
Collapse
Affiliation(s)
- Michael Fiegl
- Department of Internal Medicine, Academic Natters Hospital, Natters/Tyrol, Austria.
| |
Collapse
|
31
|
Ota D, Kusama M, Kaise H, Nakayama S, Misaka T, Tsuchida A, Aoki T. Evaluation of sensitivity to 5-FU on the basis of thymidylate synthase (TS)/dihydropyrimidine dehydrogenase (DPD) activity and chromosomal analysis in micro tissue specimens of breast cancer. Breast Cancer 2005; 11:356-66. [PMID: 15604991 DOI: 10.1007/bf02968043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Preoperative assessment of the anticancer drug sensitivity of tumors plays an important role in the selection of therapy. If evaluation of the 5-FU sensitivity of microtissue specimens obtained by techniques such as core needle biopsy could be performed, the addition of fluorouracil to adriamycin and cyclophosphamide may further enhance response rates. In order to evaluate a simple sensitivity test for the anti-tumor agent 5-fluorouracil (5-FU), we examined whether an assay of a small sample could measure mRNA to predict the activities of thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD). In addition, gene abnormalities on chromosomes 1 and 18 corresponding to DPD, TS and the relationships between the gene abnormalities and the amount of mRNA and activity were examined. METHOD TS and DPD activity were measured using the fluorodeoxyuridine monophosphate ligand binding assay and radio enzymatic assay, respectively, while mRNA levels were assayed by real-time polymerase chain reaction. Chromosome 1 and 18 aberrations were investigated by fluorescence in situ hybridization (FISH) with centromere probes. RESULTS TS mRNA and TS activity showed a positive correlation (r=0.518, p=0.0017). TS activity and TS mRNA were significantly higher in the nuclear grade 3 group than in the other groups (p=0.04, p=0.0072, respectively). TS activity and mRNA in tumor tissue tended to decrease in the progesterone receptor positive groups (p=0.059, p=0.066, respectively). There was no correlation between DPD mRNA and DPD activity in tumor tissue (r=0.139, p=0.4423). DPD mRNA was measured as 282.88+/-170.68 copies/cell in tumor tissue and 635.88+/-310.04 copies/cell in normal tissue, and was thus significantly higher in normal tissue (p<0.001). CONCLUSIONS TS mRNA showed a positive correlation with TS activity, suggesting that this method of using small amounts of tissue can replace anti-cancer drug sensitivity tests.
Collapse
Affiliation(s)
- Daisuke Ota
- Third Department of Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Tibiletti MG. Specificity of interphase fluorescence in situ hybridization for detection of chromosome aberrations in tumor pathology. ACTA ACUST UNITED AC 2004; 155:143-8. [PMID: 15571800 DOI: 10.1016/j.cancergencyto.2004.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/04/2004] [Accepted: 03/09/2004] [Indexed: 11/23/2022]
Abstract
Interphase fluorescence in situ hybridization (IFISH) is an interesting and intriguing cytogenetic approach in the study of tumor chromosomal abnormalities when metaphases are not available. This technique can be applied to different types of tumor nuclei, including imprinted nuclei (IM), nuclei obtained from conventional cytogenetic procedures (PB), frozen nuclei, paraffin-embedded nuclei (PE), and nuclei extracted from paraffin-embedded sections (EX). IFISH is a high-sensitivity approach in tumor studies that can give evidence of genetic aberrations present in a small percentage of cells that are likely to escape detection if only molecular techniques are applied. Despite its high sensitivity and versatility, IFISH is an indirect cytogenetic method and needs controls to have adequate specificity. This study includes present data obtained in IFISH experiments using different types of probes (alpha-satellite and YAC clones) hybridized on different types of normal control nuclei, such as PB, IM, EX, and PE nuclei, to define the threshold level for monosomy and trisomy of different chromosomal regions. My findings demonstrate that the cut-off values depend both on the types of probes and on the types of target nuclei. Therefore, even if IFISH is a versatile, high-sensitivity technique for detecting chromosomal abnormalities, the lack of accurate controls may result in the misdiagnosis of some abnormalities.
Collapse
Affiliation(s)
- M G Tibiletti
- Laboratorio di Anatomia Patologica, Ospedale di Circolo, Viale Borri 57, Varese 21100, Italy.
| |
Collapse
|
33
|
Dalquen P, Kleiber B, Grilli B, Herzog M, Bubendorf L, Oberholzer M. DNA image cytometry and fluorescence in situ hybridization for noninvasive detection of urothelial tumors in voided urine. Cancer 2002; 96:374-9. [PMID: 12478686 DOI: 10.1002/cncr.10881] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cystoscopy and histologic examination remain the standard methods for initial tumor diagnosis and monitoring for early detection of recurrences, since the sensitivity of conventional urinary cytology for the detection of urothelial tumors in urinary specimens is low. DNA image cytometry (ICM) and fluorescence in situ hybridization (FISH) have been suggested as ancillary tools. The goal of the current study was to compare the diagnostic value of DNA image cytometry and FISH for the noninvasive detection of urothelial tumors in voided urine. METHODS Cytospin preparations were prepared from voided urine collected prior to the resection of 26 noninvasive (pTa) and 11 invasive (pT1-2) tumors. Specimens from 14 patients with benign prostatic hyperplasia were used as negative controls. DNA ICM was performed using the AUTOCYTE trade mark cell analytical system on Feulgen-stained cytospin specimens. The commercially available UroVysion trade mark FISH multiprobe was used to analyze chromosomes 3, 7, and 17, and 9p21. RESULTS The overall sensitivity of cytology improved from 24% to 54% and to 78% if supplemented by ICM or FISH, respectively. Image cytometry detected all invasive tumors (pT1-2), while FISH missed one; FISH identified 19 of 26 (73%) pTa tumors, while only 9 (35%) of these tumors were aneuploid by ICM. The results of ICM and FISH were concordant in 37 of 51 (72%) cases. CONCLUSIONS The current study shows that both FISH and ICM can successfully be used as supplementary methods to detect the clinically most relevant group of invasive bladder carcinomas. However, UroVysion FISH is more sensitive in the detection of pTa tumors than ICM, as it recognizes individual chromosomal alterations that frequently prevail in urothelial tumors.
Collapse
Affiliation(s)
- Peter Dalquen
- Institute for Pathology, University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Fehm T, Morrison L, Saboorian H, Hynan L, Tucker T, Uhr J. Patterns of aneusomy for three chromosomes in individual cells from breast cancer tumors. Breast Cancer Res Treat 2002; 75:227-39. [PMID: 12353812 DOI: 10.1023/a:1019901010758] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multi-color fluorescence in situ hybridization (FISH) can determine the changes in the copy numbers of several chromosomes simultaneously and can therefore be used to identify aneusomic patterns in individual cells. Aneusomic patterns may be useful for determining the malignant nature of rare epithelial cells in the blood of cancer patients. Touch preparations from 74 primary breast tumors were evaluated for aneusomy of chromosomes 1, 8 and 17 by tri-color-FISH. In the first part of the analysis, percentages of aneusomy for individual chromosomes and their combinations were determined. In the second part of the analysis, aneusomic patterns for these three chromosomes were analyzed in individual tumor cells and compared to aneusomic patterns observed in leukocytes and in individual cells from benign and normal breast tissue to determine aneusomic patterns indicative of malignancy. Ninety-two percentage of the primary breast carcinomas showed aneusomy for one or more enumerator probes. Comparison with benign breast tissue identified six aneusomic patterns in individual carcinoma cells indicative for malignancy by statistical analysis and not observed in leukocytes. Hence, certain patterns of aneusomy in individual cells involving chromosomes 1, 8 and 17 are indicative of malignancy in individual breast tumor cells and may be useful for determining malignancy of rare epithelial cells in the blood of breast cancer patients.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/pathology
- Aneuploidy
- Biomarkers, Tumor/genetics
- Biopsy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/pathology
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 8/genetics
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Incidence
- Interphase/genetics
- Leukocytes/metabolism
- Leukocytes/pathology
- Neoplasm Staging
- Neoplasms, Ductal, Lobular, and Medullary/genetics
- Neoplasms, Ductal, Lobular, and Medullary/pathology
Collapse
Affiliation(s)
- Tanja Fehm
- Cancer Immunobiology Center, UT Southwestern Medical Center, Dallas, TX 75390-8576, USA
| | | | | | | | | | | |
Collapse
|
35
|
Yoon DS, Wersto RP, Zhou W, Chrest FJ, Garrett ES, Kwon TK, Gabrielson E. Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:391-7. [PMID: 12163363 PMCID: PMC1850727 DOI: 10.1016/s0002-9440(10)64194-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytogenetic analyses have revealed that many aneuploid breast cancers have cell-to-cell variations of chromosome copy numbers, suggesting that these neoplasms have instability of chromosome numbers. To directly test for possible chromosomal instability in this disease, we used fluorescent in situ hybridization to monitor copy numbers of multiple chromosomes in cultures of replicating breast cancer-derived cell lines and nonmalignant breast epithelial cells. While most (7 of 9) breast cancer cell lines tested are highly unstable with regard to chromosome copy numbers, others (2 of 9 cell lines) have a moderate level of instability that is higher than the "background" level of normal mammary epithelial cells and MCF-10A cells, but significantly less than that seen in the highly unstable breast cancer cell lines. To evaluate the potential role of a defective mitotic spindle checkpoint as a cause of this chromosomal instability, we used flow cytometry to monitor the response of cells to nocodazole-induced mitotic spindle damage. All cell lines with high levels of chromosomal instability have defective mitotic spindle checkpoints, whereas the cell lines with moderate levels of chromosomal instability (and the stable normal mammary cells and MCF10A cells) arrest in G(2) when challenged with nocodazole. Notably, the extent of mitotic spindle checkpoint deficiency and chromosome numerical instability in these cells is unrelated to the presence or absence of p53 mutations. Our results provide direct evidence for chromosomal instability in breast cancer and show that this instability occurs at variable levels among cells from different cancers, perhaps reflecting different functional classes of chromosomal instability. High levels of chromosomal instability are likely related to defective mitotic checkpoints but not to p53 mutations.
Collapse
Affiliation(s)
- Dae-Sung Yoon
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL. Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A 2002; 99:1978-83. [PMID: 11830638 PMCID: PMC122305 DOI: 10.1073/pnas.032479999] [Citation(s) in RCA: 419] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Earlier studies of invasive breast tumors have shown that 60-80% are aneuploid and approximately 80% exhibit amplified centrosomes. In this study, we investigated the relationship of centrosome amplification with aneuploidy, chromosomal instability, p53 mutation, and loss of differentiation in human breast tumors. Twenty invasive breast tumors and seven normal breast tissues were analyzed by fluorescence in situ hybridization with centromeric probes to chromosomes 3, 7, and 17. We analyzed these tumors for both aneuploidy and unstable karyotypes as determined by chromosomal instability. The results were then tested for correlation with three measures of centrosome amplification: centrosome size, centrosome number, and centrosome microtubule nucleation capacity. Centrosome size and centrosome number both showed a positive, significant, linear correlation with aneuploidy and chromosomal instability. Microtubule nucleation capacity showed no such correlation, but did correlate significantly with loss of tissue differentiation. Centrosome amplification was detected in in situ ductal carcinomas, suggesting that centrosome amplification is an early event in these lesions. Centrosome amplification and chromosomal instability occurred independently of p53 mutation, whereas p53 mutation was associated with a significant increase in centrosome microtubule nucleation capacity. Together, these results demonstrate that independent aspects of centrosome amplification correlate with chromosomal instability and loss of tissue differentiation and may be involved in tumor development and progression. These results further suggest that aspects of centrosome amplification may have clinical diagnostic and/or prognostic value and that the centrosome may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Wilma L Lingle
- Division of Experimental Pathology, Tumor Biology Program, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, Chen J, Gao DM, Bao WH. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol 2001; 7:630-6. [PMID: 11819844 PMCID: PMC4695564 DOI: 10.3748/wjg.v7.i5.630] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish clone cells with different metastatic potential for the study of metastasis-related mechanisms.
METHODS: Cloning procedure was performed on parental hepatocellular carcinoma (HCC) cell line MHCC97, and biological characteristics of the target clones selected by in vivo screening were studied.
RESULTS: Two clones with high (MHCC97-H) and low (MHCC97-L) metastatic potential were isolated from the parent cell line. Compared with MHCC97-L, MHCC97-H had smaller cell size (average cell diameter 43 μm vs 50 μm) and faster in vitro and in vivo growth rate (tumor cell doubling time was 34.2 h vs 60.0 h). The main ranges of chromosomes were 55-58 in MHCC97-H and 57-62 in MHCC97-L. Boyden chamber in vitro invasion assay demonstrated that the number of penetrating cells through the artificial basement membrane was (37.5 ± 11.0) cells/field for MHCC97-H vs (17.7 ± 6.3)/field for MHCC97-L. The proportions of cells in G0-G1 phase, S phase, and G2-M phase for MHCC97-H/MHCC97-L were 0.56/0.65, 0.28/0.25 and 0.16/0.10, respectively, as measured by flow cytometry. The serum AFP levels in nude mice 5 wk after orthotopic implantation of tumor tissue were (246 ± 66) μg•L¯¹ for MHCC97-H and (91 ± 66) μg•L¯¹ for MHCC97-L. The pulmonary metastatic rate was 100% (10/10) vs 40% (4/10).
CONCLUSION: Two clones of the same genetic background but with different biological behaviors were established, which could be valuable models for investigation on HCC metastasis.
Collapse
Affiliation(s)
- Y Li
- Liver Cancer Institute & Zhongshan Hospital of Fudan University, 136 Yixueyuan Road, Shanghai 200032,China
| | | | | | | | | | | | | | | | | |
Collapse
|