1
|
Lee JM, Ko JY, Park JW, Lee WK, Song SU, Im GI. KLF10 is a modulatory factor of chondrocyte hypertrophy in developing skeleton. J Orthop Res 2020; 38:1987-1995. [PMID: 32144802 DOI: 10.1002/jor.24653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/17/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
To define the functional role of Krüppel-like factor (KLF) 10 as a modulator of chondrocyte hypertrophy in developing skeleton, the developmental features in the long bone of KLF10 knockout (KO) mice were investigated and the mesenchymal stem cells (MSCs) from KLF10 KO mice were characterized regarding chondrogenesis and osteogenesis. Delayed long bone growth and delayed formation of primary ossification center were observed in an early embryonic stage in KLF10 KO mouse along with very low Indian hedgehog expression in epiphyseal plate. While the chondrogenic potential of mouse MSCs from KLF10 KO mice appeared normal or slight decreased, hypertrophy and osteogenesis were extensively suppressed. These findings suggest that KLF10 is a mediator of chondrocyte hypertrophy in developing skeleton, and that suppression of KLF10 may be employed as a new strategy for preventing hypertrophy in cartilage regeneration using MSCs.
Collapse
Affiliation(s)
- Jong Min Lee
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea.,Bio Research Center, Lugen Sci Co, Bucheon, Republic of Korea
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Jeong-Won Park
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sun U Song
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
2
|
Kammoun M, Piquereau J, Nadal‐Desbarats L, Même S, Beuvin M, Bonne G, Veksler V, Le Fur Y, Pouletaut P, Même W, Szeremeta F, Constans J, Bruinsma ES, Nelson Holte MH, Najafova Z, Johnsen SA, Subramaniam M, Hawse JR, Bensamoun SF. Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities. Acta Physiol (Oxf) 2020; 228:e13394. [PMID: 31560161 DOI: 10.1111/apha.13394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
AIM Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.
Collapse
Affiliation(s)
- Malek Kammoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - Jerome Piquereau
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Sandra Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | - Maud Beuvin
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Gisèle Bonne
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Vladimir Veksler
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | - Yann Le Fur
- Aix‐Marseille University CNRS CRMBM Marseille France
| | - Philippe Pouletaut
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - William Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | | | - Jean‐Marc Constans
- Institut Faire Faces EA Chimère Imagerie et Radiologie Médicale CHU Amiens Amiens France
| | | | | | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | - Steven A. Johnsen
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| |
Collapse
|
3
|
Yang E, Mundy C, Rappaport EF, Pacifici M, Billings PC. Identification and characterization of a novel heparan sulfate-binding domain in Activin A longest variants and implications for function. PLoS One 2019; 14:e0222784. [PMID: 31536599 PMCID: PMC6752817 DOI: 10.1371/journal.pone.0222784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Activins regulate numerous processes including inflammation and are synthesized as precursors consisting of a long N-terminal pro-region and a mature protein. Genomic human databases currently list three activin A (Act A) variants termed X1, X2 and X3. The X3 variant is the shortest, lacks N-terminal segments present in X1 and X2, and has been the focus of most past literature. Here, we asked whether these variants are expressed by human cells and tissues and what structural features are contained within their pro-regions. Human monocytic-like cells THP1 and U937 expressed X1 and X2 variants after exposure to phorbol ester or granulocyte-macrophage colony-stimulating factor, while X2 transcripts were present in placenta. Expression vectors encoding full length X2 or X3 variants resulted in production and secretion of biologically active Act A from cultured cells. Previous studies reported a putative HS-binding domain (HBD) in the X3 pro-region. Here, we identified a novel HBD with consensus HS-binding motifs near the N-terminal end of X1 and X2 pro-regions. Peptides encompassing this new domain interacted with substrate-bound HS with nanomolar affinity, while peptides from putative X3 HBD did not. In good agreement, full length X2 pro-region interacted with heparin-agarose, while the X3 pro-region did not. In sum, our study reveals that Act A variants are expressed by inflammatory cells and placenta and yield biological activity. The high affinity HBD in X1 and X2 pro-region and its absence in X3 could greatly influence overall Act A distribution, availability and activity in physiological and pathological circumstances.
Collapse
Affiliation(s)
- Evan Yang
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Eric F. Rappaport
- Molecular Genetics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul C. Billings
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
4
|
Subramaniam M, Pitel KS, Bruinsma ES, Monroe DG, Hawse JR. TIEG and estrogen modulate SOST expression in the murine skeleton. J Cell Physiol 2017; 233:3540-3551. [PMID: 29044507 DOI: 10.1002/jcp.26211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/02/2023]
Abstract
TIEG knockout (KO) mice exhibit a female-specific osteopenic phenotype and altered expression of TIEG in humans is associated with osteoporosis. Gene expression profiling studies identified sclerostin as one of the most highly up-regulated transcripts in the long bones of TIEG KO mice relative to WT littermates suggesting that TIEG may regulate SOST expression. TIEG was shown to substantially suppress SOST promoter activity and the regulatory elements through which TIEG functions were identified using promoter deletion and chromatin immunoprecipitation assays. Knockdown of TIEG in IDG-SW3 osteocyte cells using shRNA and CRISPR-Cas9 technology resulted in increased SOST expression and delayed mineralization, mimicking the results obtained from TIEG KO mouse bones. Given that TIEG is an estrogen regulated gene, and as changes in the hormonal milieu affect SOST expression, we performed ovariectomy (OVX) and estrogen replacement therapy (ERT) studies in WT and TIEG KO mice followed by miRNA and mRNA sequencing of cortical and trabecular compartments of femurs. SOST expression levels were considerably higher in cortical bone compared to trabecular bone. In cortical bone, SOST expression was increased following OVX only in WT mice and was suppressed following ERT in both genotypes. In contrast, SOST expression in trabecular bone was decreased following OVX and significantly increased following ERT. Interestingly, a number of miRNAs that are predicted to target sclerostin exhibited inverse expression levels in response to OVX and ERT. These data implicate important roles for TIEG and estrogen-regulated miRNAs in modulating SOST expression in bone.
Collapse
Affiliation(s)
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - David G Monroe
- Robert and Arlene Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Subramaniam M, Cicek M, Pitel KS, Bruinsma ES, Nelson Holte MH, Withers SG, Rajamannan NM, Secreto FJ, Venuprasad K, Hawse JR. TIEG1 modulates β-catenin sub-cellular localization and enhances Wnt signaling in bone. Nucleic Acids Res 2017; 45:5170-5182. [PMID: 28201653 PMCID: PMC5435970 DOI: 10.1093/nar/gkx118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
We have previously demonstrated that TGFβ Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide evidence for the first time that TIEG1 is involved in regulating the canonical Wnt signaling pathway in bone through multiple mechanisms of action. Decreased Wnt signaling in the absence of TIEG1 expression is shown to be in part due to impaired β-catenin nuclear localization resulting from alterations in the activity of AKT and GSK-3β. We also provide evidence that TIEG1 interacts with, and serves as a transcriptional co-activator for, Lef1 and β-catenin. Changes in Wnt signaling in the setting of altered TIEG1 expression and/or activity may in part explain the observed osteopenic phenotype of TIEG1 KO mice as well as the known links between TIEG1 expression levels/allelic variations and patients with osteoporosis.
Collapse
Affiliation(s)
| | - Muzaffer Cicek
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Molly H Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah G Withers
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nalini M Rajamannan
- Division of Cardiology, Most Sacred Heart of Jesus Cardiology and Valvular Institute, Sheboygan, WI 53081, USA
| | - Frank J Secreto
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Zhang Y, Raychaudhuri S, Wildsoet CF. Imposed Optical Defocus Induces Isoform-Specific Up-Regulation of TGFβ Gene Expression in Chick Retinal Pigment Epithelium and Choroid but Not Neural Retina. PLoS One 2016; 11:e0155356. [PMID: 27214233 PMCID: PMC4877072 DOI: 10.1371/journal.pone.0155356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This study investigated the gene expression of TGFβ isoforms and their receptors in chick retina, retinal pigment epithelium (RPE), and choroid and the effects of short-term imposed optical defocus. METHODS The expression of TGFβ isoforms (TGF-β1, 2, 3) and TGFβ receptors (TGFBR1, 2, 3) was examined in the retina, RPE, and choroid of young White-Leghorn untreated chicks (19 days-old). The effects on the expression of the same genes of monocular +10 and -10 D defocusing lenses, worn for either 2 or 48 h by age-matched chicks, were also examined by comparing expression in treated and untreated fellow eyes. RNA was purified, characterized and then reverse transcribed to cDNA. Differential gene expression was quantified using real-time PCR. RESULTS All 3 isoforms of TGFβ and all 3 receptor subtypes were found to be expressed in all 3 ocular tissues, with apparent tissue-dependent differences in expression profiles. Data are reported as mean normalized expression relative to GAPDH. Sign-dependent optical defocus effects were also observed. Optical defocus did not affect retinal gene expression but in the RPE, TGF-β2 expression was significantly up-regulated with +10 D lenses, worn for either 2 h (349% increase ± 88%, p < 0.01) or 48 h (752% increase ± 166%, p < 0.001), and in the choroid, the expression of TGF-β3 was up-regulated with -10 D lenses, worn for 48 h (147% increase ± 9%, p < 0.01). CONCLUSIONS The effects of short term exposure to optical defocus on TGFβ gene expression in the RPE and choroid, which were sign-dependent and isoform specific, provide further supporting evidence for important roles of members of the TGFβ family and these two tissues in local signal cascades regulating ocular growth.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Eye Disease & Development, Vision Science Program & School of Optometry, University of California, Berkeley, California, United States of America
| | - Suravi Raychaudhuri
- Center for Eye Disease & Development, Vision Science Program & School of Optometry, University of California, Berkeley, California, United States of America
| | - Christine F. Wildsoet
- Center for Eye Disease & Development, Vision Science Program & School of Optometry, University of California, Berkeley, California, United States of America
| |
Collapse
|
7
|
Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes. Cell Tissue Res 2015; 363:385-98. [PMID: 26310138 DOI: 10.1007/s00441-015-2260-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 07/28/2015] [Indexed: 01/31/2023]
Abstract
Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription.
Collapse
|
8
|
Gale Z, Cooper PR, Scheven BA. Glial cell line-derived neurotrophic factor influences proliferation of osteoblastic cells. Cytokine 2012; 57:276-81. [DOI: 10.1016/j.cyto.2011.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/28/2011] [Accepted: 10/22/2011] [Indexed: 01/20/2023]
|
9
|
Taguchi M, Moran SL, Zobitz ME, Zhao C, Subramaniam M, Spelsberg TC, Amadio PC. WOUND-HEALING PROPERTIES OF TRANSFORMING GROWTH FACTOR β (TGF-β) INDUCIBLE EARLY GENE 1 (TIEG1) KNOCKOUT MICE. ACTA ACUST UNITED AC 2011; 11:63-69. [PMID: 20016760 DOI: 10.1142/s0218957708002012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transforming growth factor beta (TGF-β) has a broad effect on wound healing, but many questions remain about the regulation of TGF-β during the healing process. TGF-β inducible early gene 1 (TIEG1) is a primary response gene for TGF-β that controls the activities of the TGF-β/Smad pathway, the primary TGF-β signaling pathway. The purpose of this study was to investigate the role of TIEG1 in cutaneous wound healing using TIEG1 knockout mice. The wound healing in TIEG1 knockout mice and wild-type controls was evaluated by wound breaking strength, Western blot, and histology at postoperative days 3, 7, and 14. Although re-epithelialization of both groups was similarly complete at day 7, the TIEG1 knockout mice had a significantly lower wound breaking strength than the controls at postoperative day 14. These results suggest that TIEG1 expression may be an important factor involved in the initiation and support of normal cutaneous wound healing.
Collapse
Affiliation(s)
- Manabu Taguchi
- Orthopedic Biomechanical Laboratory, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Klf10 and Klf11 as mediators of TGF-beta superfamily signaling. Cell Tissue Res 2011; 347:65-72. [PMID: 21574058 DOI: 10.1007/s00441-011-1186-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/27/2011] [Indexed: 12/19/2022]
Abstract
Klf10 and Klf11 belong to the family of Sp1/Krüppel-like zinc finger transcription factors that play important roles in a variety of cell types and tissues. Although Klf10 and Klf11 were initially introduced as transforming growth factor-beta (TGF-beta)-inducible genes, several studies have described their upregulation by a plethora of growth factors, cytokines and hormones. Here, we review the current knowledge of the inductive cues for Klf10 and Klf11 and focus on their transcriptional regulation by members of the TGF-beta superfamily. We further summarize their involvement in the regulation of the TGF-beta signaling pathway and discuss their possible role as molecules mediating crosstalk between various signaling pathways. Finally, we provide an overview of the pro-apoptotic and anti-proliferative functions of Klf10 and Klf11.
Collapse
|
11
|
Guerra-Crespo M, Pérez-Monter C, Janga SC, Castillo-Ramírez S, Gutiérrez-Rios RM, Joseph-Bravo P, Pérez-Martínez L, Charli JL. Transcriptional profiling of fetal hypothalamic TRH neurons. BMC Genomics 2011; 12:222. [PMID: 21569245 PMCID: PMC3126781 DOI: 10.1186/1471-2164-12-222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/10/2011] [Indexed: 01/08/2023] Open
Abstract
Background During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. Results In primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. Conclusion To our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons.
Collapse
Affiliation(s)
- Magdalena Guerra-Crespo
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hawse JR, Cicek M, Grygo SB, Bruinsma ES, Rajamannan NM, van Wijnen AJ, Lian JB, Stein GS, Oursler MJ, Subramaniam M, Spelsberg TC. TIEG1/KLF10 modulates Runx2 expression and activity in osteoblasts. PLoS One 2011; 6:e19429. [PMID: 21559363 PMCID: PMC3084845 DOI: 10.1371/journal.pone.0019429] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/31/2011] [Indexed: 12/21/2022] Open
Abstract
Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFβ1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype.
Collapse
Affiliation(s)
- John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
14
|
Spittau G, Happel N, Behrendt M, Chao TI, Krieglstein K, Spittau B. Tieg1/Klf10 is upregulated by NGF and attenuates cell cycle progression in the pheochromocytoma cell line PC12. J Neurosci Res 2010; 88:2017-25. [PMID: 20155803 DOI: 10.1002/jnr.22364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The transcription factor Tieg1/Klf10 belongs to a family of Sp1/Klf proteins that have been shown to play important roles during development and maintenance of various tissues and cell types. Upregulation of Tieg1/Klf10 has been reported for TGF-beta, BMP2, BMP4, ActivinA and GDNF as members of the TGF-beta superfamily. Moreover, estrogen, the cytostatic drugs homoharringtonine and velcade as well as nitric oxide are also able to trigger Tieg1/Klf10 transcription. Recent studies suggest a role for members of the neurotrophin family in regulating Tieg1/Klf10 transcriptional upregulation. Using semi-quantitative RT-PCR and immunoblotting, we present data describing that nerve growth factor (NGF) regulates the expression of Tieg1/Klf10 in the pheochromocytoma cell line PC12 in a TrkA-dependent manner. Moreover, we provide evidence for the existence of NGF-responsive elements in the 5'-regulatory region of Tieg1/Klf10 that contain binding sites for the transcription factors Sp1 and CREB. After treatment with NGF PC12 cells exit the cell cycle and start to differentiate towards a neuron-like phenotype indicated by neurite outgrowth. Using flow cytometry and differentiation assays we demonstrate that Tieg1/Klf10 reduces cell cycle progression in PC12 cells but fails to promote their terminal differentiation. Together, our results identify Tieg1/Klf10 as a new NGF target gene and substantiate its anti-proliferative function in the NGF signaling pathway in PC12 cells.
Collapse
Affiliation(s)
- Gabriele Spittau
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, 17, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Jiang L, Chen Y, Chan CY, Lu G, Wang H, Li JC, Kung HF. Dynamic transcriptional changes of TIEG1 and TIEG2 during mouse tissue development. Anat Rec (Hoboken) 2010; 293:858-64. [PMID: 20201061 DOI: 10.1002/ar.21108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TGF-beta-inducible early-response gene (TIEG) is a family of primary response genes induced by TGF-beta, which are well recognized in regulating cellular proliferation and apoptosis. However, their expression profile has never been investigated during embryogenesis in different organs. In this study, we aimed to investigate the transcriptional level of both TIEG1 and TIEG2 during development in various mice organs, including the brain cortex, cerebellum and stem, brain striatum, muscle, heart, liver, kidney, and lung. Quantitative real-time PCR was used to profile the change of transcriptional level of the two TIEG members in the mice tissues at six developmental stages. Taken together, the expression of TIEG1 and TIEG2 was specific in different organs yet varied with different developmental time points. Their dynamic changes were moderately consistent in most organs including the brain cortex, striatum, liver, kidney, and lung. However, their mRNA expression in both the heart and muscle was significantly different at all developmental stages, which might propose a compensation of functions in the TIEG family. Nevertheless, our data indicate that both the TIEG genes are essential in regulating the normal organ development and functioning in murine model, as their expressions were ubiquitous and tissue specific at various developmental stages.
Collapse
Affiliation(s)
- Lei Jiang
- Institute of Cell Biology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Christensen KV, Leffers H, Watson WP, Sánchez C, Kallunki P, Egebjerg J. Levetiracetam attenuates hippocampal expression of synaptic plasticity-related immediate early and late response genes in amygdala-kindled rats. BMC Neurosci 2010; 11:9. [PMID: 20105316 PMCID: PMC2848232 DOI: 10.1186/1471-2202-11-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 01/27/2010] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The amygdala-kindled rat is a model for human temporal lobe epilepsy and activity-dependent synaptic plasticity. Hippocampal RNA isolated from amygdala-kindled rats at different kindling stages was analyzed to identify kindling-induced genes. Furthermore, effects of the anti-epileptic drug levetiracetam on kindling-induced gene expression were examined. RESULTS Cyclooxygenase-2 (Cox-2), Protocadherin-8 (Pcdh8) and TGF-beta-inducible early response gene-1 (TIEG1) were identified and verified as differentially expressed transcripts in the hippocampus of kindled rats by in situ hybridization and quantitative RT-PCR. In addition, we identified a panel of 16 additional transcripts which included Arc, Egr3/Pilot, Homer1a, Ania-3, MMP9, Narp, c-fos, NGF, BDNF, NT-3, Synaptopodin, Pim1 kinase, TNF-alpha, RGS2, Egr2/krox-20 and beta-A activin that were differentially expressed in the hippocampus of amygdala-kindled rats. The list consists of many synaptic plasticity-related immediate early genes (IEGs) as well as some late response genes encoding transcription factors, neurotrophic factors and proteins that are known to regulate synaptic remodelling. In the hippocampus, induction of IEG expression was dependent on the afterdischarge (AD) duration. Levetiracetam, 40 mg/kg, suppressed the development of kindling measured as severity of seizures and AD duration. In addition, single animal profiling also showed that levetiracetam attenuated the observed kindling-induced IEG expression; an effect that paralleled the anti-epileptic effect of the drug on AD duration. CONCLUSIONS The present study provides mRNA expression data that suggest that levetiracetam attenuates expression of genes known to regulate synaptic remodelling. In the kindled rat, levetiracetam does so by shortening the AD duration thereby reducing the seizure-induced changes in mRNA expression in the hippocampus.
Collapse
Affiliation(s)
- Kenneth V Christensen
- Dept. of Molecular Biology, Discovery Biology Research, H, Lundbeck A/S, DK-2500 Valby, Denmark.
| | | | | | | | | | | |
Collapse
|
17
|
Miyoshi K, Nagata H, Horiguchi T, Abe K, Arie Wahyudi I, Baba Y, Harada H, Noma T. BMP2-induced gene profiling in dental epithelial cell line. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 55:216-26. [PMID: 18797134 DOI: 10.2152/jmi.55.216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tooth development is regulated by epithelial-mesenchymal interactions and their reciprocal molecular signaling. Bone morphogenetic protein 2 (BMP2) is known as one of the inducers for tooth development. To analyze the molecular mechanisms of BMP2 on ameloblast differentiation (amelogenesis), we performed microarray analyses using rat dental epithelial cell line, HAT-7. After confirming that BMP2 could activate the canonical BMP-Smads signaling in HAT-7 cells, we analyzed the effects of BMP2 on 14,815 gene expressions and profiled them. Seventy-three genes were up-regulated and 28 genes were down-regulated by BMP2 treatment for 24 hours in HAT-7 cells. Functional classification revealed that 18% of up-regulated genes were ECM/adhesion molecules present in the enamel organ. Furthermore, we examined the expression of several differentiation markers in dental epithelial four cell-lineages including inner enamel epithelium (ameloblasts), stratum intermedium, stratum reticulum, and outer enamel epithelium. The results indicated that BMP2 might induce at least two different cell-lineage markers including a BMP antagonist expressed in HAT-7 cells, suggesting that BMP2 could accelerate amelogenesis via BMP signaling.
Collapse
Affiliation(s)
- Keiko Miyoshi
- Department of Molecular Biology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Døsen-Dahl G, Munthe E, Nygren MK, Stubberud H, Hystad ME, Rian E. Bone marrow stroma cells regulate TIEG1 expression in acute lymphoblastic leukemia cells: Role of TGFβ/BMP-6 and TIEG1 in chemotherapy escape. Int J Cancer 2008; 123:2759-66. [DOI: 10.1002/ijc.23833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Venuprasad K, Huang H, Harada Y, Elly C, Subramaniam M, Spelsberg T, Su J, Liu YC. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 2008; 9:245-53. [PMID: 18278048 DOI: 10.1038/ni1564] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 01/11/2008] [Indexed: 01/26/2023]
Abstract
Transforming growth factor-beta (TGF-beta) signaling in naive T cells induces expression of the transcription factor Foxp3, a 'master' regulator of regulatory T cells (T(reg) cells). However, the molecular mechanisms leading to Foxp3 induction remain unclear. Here we show that Itch-/- T cells were resistant to TGF-beta treatment and had less Foxp3 expression. The E3 ubiquitin ligase Itch associated with and promoted conjugation of ubiquitin to the transcription factor TIEG1. Itch cooperated with TIEG1 to induce Foxp3 expression, which was reversed by TIEG1 deficiency. Functionally, 'TGF-beta-converted' T(reg) cells generated from TIEG1-deficient mice were unable to suppress airway inflammation in vivo. These results suggest TIEG and Itch contribute to a ubiquitin-dependent nonproteolytic pathway that regulates inducible Foxp3 expression and the control of allergic responses.
Collapse
Affiliation(s)
- K Venuprasad
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gohla G, Krieglstein K, Spittau B. Tieg3/Klf11 induces apoptosis in OLI-neu cells and enhances the TGF-β signaling pathway by transcriptional repression of Smad7. J Cell Biochem 2008; 104:850-61. [DOI: 10.1002/jcb.21669] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Alvarez-Rodríguez R, Barzi M, Berenguer J, Pons S. Bone morphogenetic protein 2 opposes Shh-mediated proliferation in cerebellar granule cells through a TIEG-1-based regulation of Nmyc. J Biol Chem 2007; 282:37170-80. [PMID: 17951258 DOI: 10.1074/jbc.m705414200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nmyc is a potent regulator of cell cycle in cerebellar granular neuron precursors (CGNPs) and has been proposed to be the main effector of Shh (Sonic hedgehog) proliferative activity. Nmyc ectopic expression is sufficient to promote cell autonomous proliferation and can lead to tumorigenesis. Bone morphogenetic protein 2 (BMP2) antagonizes Shh proliferative effect by promoting cell cycle exit and differentiation in CGNPs. Here we report that BMP2 opposes Shh mitogenic activity by blocking Nmyc expression. We have identified TIEG-1 (KLF10) as the intermediary factor that blocks Nmyc expression through the occupancy of the Sp1 sites present in its promoter. We also demonstrate that TIEG-1 ectopic expression in CGNPs induces cell cycle arrest that can lead to apoptosis but fails to promote differentiation. Moreover, TIEG-1 synergizes with BMP2 activity to terminally differentiate CGNPs and independent differentiator signals such as dibutyryl cAMP and prevents apoptosis in TIEG-1 arrested cells. All together, these data strongly suggest that the BMP2 pathway triggers cell cycle exit and differentiation as two separated but coordinated processes, where TIEG-1 acts as a mediator of the cell cycle arrest.
Collapse
Affiliation(s)
- Rubén Alvarez-Rodríguez
- Department of Cell Death and Proliferation, Institute for Biomedical Research of Barcelona, IIBB-CSIC-IDIBAPS, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
22
|
Zheng H, Martin JA, Duwayri Y, Falcon G, Buckwalter JA. Impact of aging on rat bone marrow-derived stem cell chondrogenesis. J Gerontol A Biol Sci Med Sci 2007; 62:136-48. [PMID: 17339639 DOI: 10.1093/gerona/62.2.136] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Damaged articular cartilage rarely heals or regenerates in middle-aged and elderly adults, suggesting that the chondrogenic potential of mesenchymal stem cells declines with age. To test this hypothesis, we measured the responses of rat bone marrow-derived mesenchymal stem cells (BMSCs) to chondrogenic induction in vitro. BMSCs from immature rats (1 week old), young adult rats (12 weeks old), and old adult rats (1 year old) were analyzed for cartilage extracellular matrix (ECM) production. Histologic analysis showed strong cartilage ECM formation by BMSCs from 1-week-old rats, but not by BMSCs from 12-week-old or 1-year-old rats. Real-time polymerase chain reaction revealed age-related declines in messenger RNA encoding type II collagen, aggrecan, and link protein, three major cartilage ECM components. Microarray analysis indicated significant age-related differences in the expression of genes that influence cartilage ECM formation. These findings support the hypothesis that the chondrogenic potential of mesenchymal stem cells declines with age.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedics, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
23
|
Wang Z, Spittau B, Behrendt M, Peters B, Krieglstein K. Human TIEG2/KLF11 induces oligodendroglial cell death by downregulation of Bcl-XL expression. J Neural Transm (Vienna) 2007; 114:867-75. [PMID: 17308981 DOI: 10.1007/s00702-007-0635-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 01/11/2007] [Indexed: 01/22/2023]
Abstract
TGF-beta-induced apoptosis is essential for embryonic development and mainteanance of adult tissues. Impairment of the apoptotic pathway, regulated by TGF-beta, plays a center role in tumorigenesis and manifestations of different diseases. TIEG2/KLF11 is a recently identified human TGF-beta-inducible zinc finger protein belonging to the family of Sp1/KLF-like transcription factors. In human and murine tissues it has been shown that TIEG1 and TIEG2 induce apoptosis and inhibit cell growth. Since TGF-beta and Tieg1 are able to induce apoptosis in the oligodendroglial cell line OLI-neu, we analysed the ability of TIEG2 to mimic the effects observed after treatment with TGF-beta and overexpression of Tieg1. Herein we report that TIEG2 induces Caspase3-dependent apoptosis in murine OLI-neu cells. Furthermore, we could demonstrate that TIEG2 decreases the levels of the anti-apoptotic protein Bcl-X(L) and inhibits transcription driven by the Bcl-X(L) promoter. These data suggest that TIEG2 serves as a downstream mediator of TGF-beta, bridging TGF-beta-dependent signaling to the intracellular pathway of apoptosis.
Collapse
Affiliation(s)
- Z Wang
- Center of Anatomy, Department of Neuroanatomy, University of Goettingen, Goettingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Rajamannan NM, Subramaniam M, Abraham TP, Vasile VC, Ackerman MJ, Monroe DG, Chew TL, Spelsberg TC. TGFbeta inducible early gene-1 (TIEG1) and cardiac hypertrophy: Discovery and characterization of a novel signaling pathway. J Cell Biochem 2007; 100:315-25. [PMID: 16888812 PMCID: PMC3927779 DOI: 10.1002/jcb.21049] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular mechanisms causing cardiac hypertrophy are currently under intense investigation. We report a novel finding in the TGFbeta inducible early gene (TIEG) null mouse implicating TIEG1 in cardiac hypertrophy. The TIEG(-/-) knock-out mouse was studied. Male mice age 4-16 months were characterized (N = 86 total) using echocardiography, transcript profiling by gene microarray, and immunohistochemistry localized upregulated genes for determination of cellular mechanism. The female mice (N = 40) did not develop hypertrophy or fibrosis. The TIEG(-/-) knock-out mouse developed features of cardiac hypertrophy including asymmetric septal hypertrophy, an increase in ventricular size at age 16 months, an increase (214%) in mouse heart/weight body weight ratio TIEG(-/-), and an increase in wall thickness in TIEG(-/-) mice of (1.85 +/- 0.21 mm), compared to the control (1.13 +/- 0.15 mm, P < 0.04). Masson Trichrome staining demonstrated evidence of myocyte disarray and myofibroblast fibrosis. Microarray analysis of the left ventricles demonstrated that TIEG(-/-) heart tissues expressed a 13.81-fold increase in pituitary tumor-transforming gene-1 (Pttg1). An increase in Pttg1 and histone H3 protein levels were confirmed in the TIEG(-/-) mice hearts tissues. We present evidence implicating TIEG and possibly its target gene, Pttg1, in the development of cardiac hypertrophy in the TIEG null mouse.
Collapse
Affiliation(s)
- Nalini M Rajamannan
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Franke AG, Gubbe C, Beier M, Duenker N. Transforming growth factor-β and bone morphogenetic proteins: Cooperative players in chick and murine programmed retinal cell death. J Comp Neurol 2006; 495:263-78. [PMID: 16440295 DOI: 10.1002/cne.20869] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) are extracellular molecules known to mediate programmed cell death (PCD) in the developing retina. In the present study, we investigated the expression profiles and activity levels of ligands and receptors of the TGF-beta and BMP4 family during the physiological PCD periods of the developing chick and mouse retina and possible interactions of both proapoptotic molecules in mediating apoptosis in chick and murine retinal whole-mount cultures. Immunocytochemical double-labeling studies with the established ganglion cell marker Islet revealed overlapping expression patterns for TGF-beta and BMP4 ligands and receptors on the surface of retinal ganglion cells. The biphasic peak of activity and expression levels of TGF-beta and BMP4 ligands and receptors, revealed by Western blots and mink lung epithelial cell (MLEC) assays, coincided with the two main periods of retinal chick and murine PCD. In organotypic retinal cultures, we were able to increase apoptosis over basal levels by application of recombinant TGF-beta or BMP4. Double-factor treatment induced an additional increase of apoptosis, suggesting a cooperation of both proapoptotic pathways. A significant increase in the number of apoptotic cells in the ganglion cell layer was observed in a TUNEL staining of retinal whole mounts treated with recombinant TGF-beta or BMP4, suggesting a concerted action of both factors in triggering ganglion cell death. Blockage experiments revealed that both pathways do not interact at the ligand, receptor, or Smad protein level but converge at the transcriptional level of the TGF-beta immediate-early response gene TIEG and the transcriptional coactivator Gcn5.
Collapse
Affiliation(s)
- Andreas G Franke
- Department of Neuroanatomy, Center of Anatomy, University of Goettingen, 37075 Goettingen, Germany
| | | | | | | |
Collapse
|
26
|
Zamurovic N, Cappellen D, Rohner D, Susa M. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 2004; 279:37704-15. [PMID: 15178686 DOI: 10.1074/jbc.m403813200] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To examine early events in osteoblast differentiation, we analyzed the expression of about 9,400 genes in the murine MC3T3 cell line, whose robust differentiation was documented cytochemically and molecularly. The cells were stimulated for 1 and 3 days with the osteogenic stimulus containing bone morphogenic protein 2. Total RNA was extracted and analyzed by Affymetrix GeneChip oligonucleotide arrays. A regulated expression of 394 known genes and 295 expressed sequence tags was detected. The sensitivity and reliability of detection by microarrays was shown by confirming the expression pattern for 20 genes by radioactive quantitative reverse transcription-PCR. Functional classification of regulated genes was performed, defining the groups of regulated growth factors, receptors, and transcription factors. The most interesting finding was concomitant activation of transforming growth factor-beta, Wnt, and Notch signaling pathways, confirmed by strong up-regulation of their target genes by PCR. The transforming growth factor-beta pathway is activated by stimulated production of the growth factor itself, while the exact mechanism of Wnt and Notch activation remains elusive. We showed that bone morphogenic protein 2 stimulated expression of Hey1, a direct Notch target gene, in mouse MC3T3 and C2C12 cells, in human mesenchymal cells, and in mouse calvaria. Small interfering RNA-mediated inhibition of Hey1 induction led to an increase in osteoblast matrix mineralization, suggesting that Hey1 is a negative regulator of osteoblast maturation. This negative regulation is apparently achieved via interaction with Runx2: Hey1 completely abrogated Runx2 transcriptional activity. These findings identify the Notch-Hey1 pathway as a negative regulator of osteoblast differentiation/maturation, which is a completely novel aspect of osteogenesis and could point to possible new targets for bone anabolic agents.
Collapse
Affiliation(s)
- Natasa Zamurovic
- Arthritis and Bone Metabolism/Gastrointestinal Disease Area, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
27
|
Podrabsky JE, Somero GN. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 2004; 207:2237-54. [PMID: 15159429 DOI: 10.1242/jeb.01016] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Eurythermal ectotherms commonly thrive in environments that expose them to large variations in temperature on daily and seasonal bases. The roles played by alterations in gene expression in enabling eurytherms to adjust to these two temporally distinct patterns of thermal stress are poorly understood. We used cDNA microarray analysis to examine changes in gene expression in a eurythermal fish, Austrofundulus limnaeus, subjected to long-term acclimation to constant temperatures of 20, 26 and 37°C and to environmentally realistic daily fluctuations in temperature between 20°C and 37°C. Our data reveal major differences between the transcriptional responses in the liver made during acclimation to constant temperatures and in response to daily temperature fluctuations. Control of cell growth and proliferation appears to be an important part of the response to change in temperature, based on large-scale changes in mRNA transcript levels for several key regulators of these pathways. However, cell growth and proliferation appear to be regulated by different genes in constant versus fluctuating temperature regimes. The gene expression response of molecular chaperones is also different between constant and fluctuating temperatures. Small heat shock proteins appear to play an important role in response to fluctuating temperatures whereas larger molecular mass chaperones such as Hsp70 and Hsp90 respond more strongly to chronic high temperatures. A number of transcripts that encode for enzymes involved in the biosynthesis of nitrogen-containing organic osmolytes have gene expression patterns that indicate a possible role for these `chemical chaperones' during acclimation to chronic high temperatures and daily temperature cycling. Genes important for the maintenance of membrane integrity are highly responsive to temperature change. Changes in fatty acid saturation may be important in long-term acclimation and in response to fluctuating temperatures; however cholesterol metabolism may be most critical for short-term acclimation to fluctuating temperatures. The variable effect of temperature on the expression of genes with daily rhythms of expression indicates that there is a complex interaction between the temperature cycle and daily rhythmicity in gene expression. A number of new hypotheses concerning temperature acclimation in fish have been generated as a result of this study. The most notable of these hypotheses is the possibility that the high mobility group b1 (HMGB1) protein, which plays key roles in the assembly of transcription initiation and enhanceosome complexes, may act as a compensatory modulator of transcription in response to temperature, and thus as a global gene expression temperature sensor. This study illustrates the utility of cDNA microarray approaches in both hypothesis-driven and `discovery-based' investigations of environmental effects on organisms.
Collapse
Affiliation(s)
- Jason E Podrabsky
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950-3094, USA.
| | | |
Collapse
|
28
|
Wang Z, Peters B, Klussmann S, Bender H, Herb A, Krieglstein K. Gene structure and evolution of Tieg3, a new member of the Tieg family of proteins. Gene 2004; 325:25-34. [PMID: 14697507 DOI: 10.1016/j.gene.2003.09.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
TGF beta-inducible immediate early gene, Tieg, belongs to the superfamily of Sp1-like transcription factors containing three C(2)H(2)-zinc finger DNA binding motifs close to the C-terminus. So far, Tieg1 and Tieg2 have been identified in human and mouse. We identified Tieg3, a new member of the Tieg protein family by screening a mouse cDNA library. Tieg3 has almost all the known features of the Tieg protein family: it shares a highly conserved C(2)H(2) zinc finger DNA binding domain and is 96% identical to Tieg2 and 86% to Tieg1, respectively. In addition, the three repression domains at the N-terminus, R1, R2 and R3 are conserved in all the Tiegs. Similar to Tieg1 and Tieg2, Tieg3 mRNA is up-regulated in response to TGF beta 1 treatment and can perform the Sp1 sites mediated repression of transcription. A 4 kilobase (kb) long transcript of mouse Tieg3 can be detected using Northern-blot analysis. The gene of mouse Tieg3 contains four exons. Due to the amino acid sequence similarity, mouse Tieg2 is regarded as an orthologue of human Tieg2. However, the mouse Tieg3 gene is localized in a conserved segment on mouse chromosome 12 corresponding to human Tieg2 on chromosome 2 with the same gene order. An interesting explanation for this apparent contradiction might be a homologous recombination leading to loci exchange between the mouse Tieg3 and Tieg2.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Apoptosis Regulatory Proteins
- Base Sequence
- Cell Cycle Proteins/genetics
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Mammalian/genetics
- Cloning, Molecular
- DNA/genetics
- DNA/metabolism
- DNA Restriction Enzymes/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Early Growth Response Transcription Factors
- Evolution, Molecular
- Exons
- Gene Expression Regulation/drug effects
- Genes/genetics
- Humans
- Introns
- Kruppel-Like Transcription Factors
- Mice
- Molecular Sequence Data
- Multigene Family/genetics
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Poly A/genetics
- Polymorphism, Restriction Fragment Length
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repressor Proteins/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Synteny
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Ziyuan Wang
- Center of Anatomy, Department of Neuroanatomy, University of Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Abbud RA, Kelleher R, Melmed S. Cell-specific pituitary gene expression profiles after treatment with leukemia inhibitory factor reveal novel modulators for proopiomelanocortin expression. Endocrinology 2004; 145:867-80. [PMID: 14576184 DOI: 10.1210/en.2003-0897] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukemia inhibitory factor (LIF) mediates the hypothalamo-pituitary-adrenal stress response. Transgenic mice overexpressing LIF in the developing pituitary have altered pituitary differentiation with expansion of corticotropes, maintenance of Rathke's cleft cysts, and suppression of all other pituitary cell types. Affymetrix GeneChips were used to identify modulators of LIF effects in corticotrope (AtT-20) and somatolactotrope (GH(3)) cells. In addition to genes known to respond to LIF in corticotrope cells [e.g. suppressor of cytokine signaling-3 (SOCS-3), signal transducer and activator of transcription-3, SH2 domain-containing tyrosine phosphatase-1, and proopiomelanocortin (POMC)], corticotrope-specific changes were also observed for genes involved in glycolysis and gluconeogenesis, transcription factors, signaling molecules, and expressed sequence tags. Two transcription factors identified, CCAAT/enhancer-binding protein beta (C/EBPbeta) and glial cell-derived neurotrophic factor (GDNF)-inducible factor (GIF), dose-dependently induced expression of the rat POMC promoter when overexpressed in AtT-20 cells. LIF further induced POMC transcription with C/EBPbeta, but not with GIF. C/EBPbeta also induced expression of the SOCS-3 promoter that was further enhanced by cotreatment with LIF. However, GIF did not affect SOCS-3 expression. These results indicate that C/EBPbeta and GIF are downstream effectors of LIF corticotrope action. LIF also stimulates the expression of inhibitors of its actions, such as SOCS-3 and SH2 domain-containing tyrosine phosphatase-1. alpha(2)-HS-glycoprotein (AHSG)/fetuin, a secreted protein that antagonizes bone TGFbeta/bone morphogenic protein signaling, was induced by LIF in a signal transducer and activator of transcription-3-dependent fashion. Pretreatment with AHSG/fetuin blocked LIF-induced expression of the POMC promoter independently of SOCS-3. Thus, using GeneChips, C/EBPbeta and GIF have been identified as novel mediators and AHSG/fetuin as an inhibitor of LIF action in corticotropes.
Collapse
Affiliation(s)
- Rula A Abbud
- Division of Endocrinology, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
30
|
Partin JV, Anglin IE, Kyprianou N. Quinazoline-based alpha 1-adrenoceptor antagonists induce prostate cancer cell apoptosis via TGF-beta signalling and I kappa B alpha induction. Br J Cancer 2003; 88:1615-21. [PMID: 12771931 PMCID: PMC2377124 DOI: 10.1038/sj.bjc.6600961] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous studies documented the ability of quinazoline-based alpha1-adrenoceptor antagonists to induce apoptosis in prostate cancer cells via an alpha 1-adrenoceptor-independent mechanism. In this study we investigated the molecular events initiating this apoptotic effect. Since transforming growth factor-beta 1 (TGF-beta 1) mediates prostate epithelial cell apoptosis, we hypothesised that the activation of the TGF-beta 1 pathway underlies the quinazoline-based apoptotic effect in prostate cancer cells. Treatment of the androgen-independent human prostate cancer cells PC-3 with doxazosin resulted in a strong caspase-3 activation within 24 h, whereas tamsulosin, a sulphonamide-based alpha 1-adrenoceptor antagonist, had no significant apoptotic effect against prostate cancer cells. To identify the molecular components involved in this quinazoline-mediated apoptosis, cDNA microarray analysis of PC-3 prostate cancer cells treated with doxazosin (3 h) was performed. Induced expression of several genes was observed including p21(WAF-1) and I kappa B alpha (inhibitor of NF-kappa B alpha). Relative quantitative reverse transcription-polymerase chain reaction analysis revealed induction of several TGF-beta1 signalling effectors: Induction of mRNA for Smad4 and the TGF-beta1-regulated apoptosis-inducing transcription factor TGF-beta1-inducible early gene (TIEG1) was detected within the first 6 h of doxazosin treatment. Upregulation of I kappa B alpha at both the mRNA and protein level was also detected after 6 h of treatment. Furthermore, doxazosin resulted in a considerable elevation in Smad4 and TIEG protein expression (6 h). A 'latent' increase in TGF-beta mRNA expression was detected after 48 h of treatment. These findings suggest that the quinazoline-based doxazosin mediates prostate cancer apoptosis by initially inducing the expression of TGF-beta1 signalling effectors and subsequently I kappa B alpha. The present study provides an initial insight into the molecular targets of the apoptotic action of quinazolines against prostate cancer cells.
Collapse
Affiliation(s)
- J V Partin
- Division of Urology, Department of Surgery, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - I E Anglin
- Division of Urology, Department of Surgery, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - N Kyprianou
- Division of Urology, Department of Surgery, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Department of Molecular Biochemistry, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Division of Urology, University of Kentucky Medical Center, Combs Research Building, R. 306, 800, Rose Street, Lexington, KY 40536, USA. E-mail:
| |
Collapse
|
31
|
de Jong DS, van Zoelen EJJ, Bauerschmidt S, Olijve W, Steegenga WT. Microarray analysis of bone morphogenetic protein, transforming growth factor beta, and activin early response genes during osteoblastic cell differentiation. J Bone Miner Res 2002; 17:2119-29. [PMID: 12469906 DOI: 10.1359/jbmr.2002.17.12.2119] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein (BMP) 2, a member of the transforming growth factor (TGF) beta family, is a potent regulator of osteoblast differentiation. In addition, both TGF-beta and activin A can either induce bone formation or inhibit bone formation depending on cell type and differentiation status. Although much is known about the receptors and intracellular second messengers involved in the action of TGF-beta family members, little is known about how selectivity in the biological response of individual family members is controlled. In this study, we have investigated selective gene induction by BMP-2, TGF-beta1 and activin A in relation to their ability to control differentiation of mouse mesenchymal precursor cells C2C12 into osteoblastic cells. TGF-beta1 can inhibit BMP-2-induced differentiation of these cells, whereas activin A was found to be without morphogenetic effect. Using a gene expression microarray approach covering 8636 sequences, we have identified a total of 57 established genes and expressed sequence tags (ESTs) that were either up-regulated or down-regulated 2 h after treatment with at least one of these three stimuli. With respect to the established genes, 15 new target genes for TGF-beta family members thus were identified. Furthermore, a set of transcripts was identified, which was oppositely regulated by TGF-beta1 and BMP-2. Based on the inverse biological effects of TGF-beta1 and BMP-2 on C2C12 cells, these genes are important candidates for controlling the process of growth factor-induced osteoblast differentiation.
Collapse
Affiliation(s)
- Diana S de Jong
- Department of Applied Biology, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Ganss B, Kobayashi H. The zinc finger transcription factor Zfp60 is a negative regulator of cartilage differentiation. J Bone Miner Res 2002; 17:2151-60. [PMID: 12469909 DOI: 10.1359/jbmr.2002.17.12.2151] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The differentiation of many mesenchyme-derived cells, including cells that form bone and cartilage, is regulated at the level of gene transcription, but many of the factors involved in this regulation remain to be identified. In this study, a modified RNA fingerprinting technique was used to identify the KRAB domain zinc finger transcription factor Zfp60 as a candidate regulator of cell differentiation in mouse calvaria primary cultures. The highest expression of Zfp60 mRNA in vivo was found between embryonic day 11 (E11) and E15 during mouse embryonic development, coinciding with stages of active organ formation. The expression of Zfp60 mRNA and protein was analyzed further in mouse embryos during skeletal development. The most prominent expression was found in prehypertrophic chondrocytes, where it coincides with the expression of key regulators of chondrocyte maturation, Indian hedgehog (Ihh), and the parathyroid hormone-related peptide (PTHrP) receptor. Zfp60 mRNA was also found transiently expressed during chondrogenesis of C1 cells in vitro, preceding collagen type X expression and cellular hypertrophy. Overexpression of Zfp60 inhibited cartilage differentiation in the chondrogenic ATDC5 cell line. These results suggest a role for Zfp60 as a negative regulator of gene transcription, specifically during the development and/or differentiation of chondrocytes.
Collapse
Affiliation(s)
- Bernhard Ganss
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Antonello D, Moore PS, Zamboni G, Falconi M, Scarpa A. Absence of mutations in the transforming growth factor-beta inducible early gene 1, TIEG1, in pancreatic cancer. Cancer Lett 2002; 183:179-83. [PMID: 12065093 DOI: 10.1016/s0304-3835(01)00802-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pancreatic cancers frequently have defects in components of the transforming growth factor-beta (TGF-beta) signaling pathway. TIEG1 (TGF-beta inducible early gene) is a recently characterized transcription factor regulated by TGF-beta that induces apoptosis when overexpressed in pancreatic adenocarcinoma cell lines. Alterations on chromosome 8q, where TIEG1 is located, are also relatively frequent in pancreatic cancers. To determine if TIEG1 may be involved in the tumorigenesis of pancreatic cancer, we performed mutational screening of this gene in 22 pancreatic cancer cell lines. No sequence alterations were observed. Reverse transcription-polymerase chain reaction analysis was also performed to rule out the possibility that the expression of the gene is altered by genetic events other than mutation. Likewise, no alterations in expression were found. Thus, an essential role of TIEG1 in pancreatic cancer can be excluded.
Collapse
Affiliation(s)
- Davide Antonello
- Department of Pathology, Università di Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | | | | | | |
Collapse
|
34
|
Johnsen SA, Subramaniam M, Monroe DG, Janknecht R, Spelsberg TC. Modulation of transforming growth factor beta (TGFbeta)/Smad transcriptional responses through targeted degradation of TGFbeta-inducible early gene-1 by human seven in absentia homologue. J Biol Chem 2002; 277:30754-9. [PMID: 12072443 DOI: 10.1074/jbc.m204812200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor beta (TGFbeta)-inducible early gene-1 (TIEG1) is a Krüppel-like transcription factor that is rapidly induced upon TGFbeta treatment. TIEG1 promotes TGFbeta/Smad signaling by down-regulating negative feedback through the inhibitory Smad7. In this report, we describe the identification of an E3 ubiquitin ligase, Seven in Absentia homologue-1 (SIAH1), as a TIEG1-interacting protein. We show that TIEG1 and SIAH1 interact through an amino-terminal domain of TIEG1. Co-expression of SIAH1 results in proteasomal degradation of TIEG1 but not of the related factor TIEG2. Importantly, co-expression of SIAH1 completely reverses repression of Smad7 promoter activity by TIEG1. Furthermore, overexpression of a dominant negative SIAH1 stabilizes TIEG1 and synergizes with TIEG1 to enhance TGFbeta/Smad-dependent transcriptional activation. These findings suggest a novel mechanism whereby the ability of TGFbeta to modulate gene transcription may be regulated by proteasomal degradation of the downstream effector TIEG1 through the SIAH pathway. In this manner, turnover of TIEG1 may serve to limit the duration and/or magnitude of TGFbeta responses.
Collapse
Affiliation(s)
- Steven A Johnsen
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
35
|
Wikman H, Kettunen E, Seppänen JK, Karjalainen A, Hollmén J, Anttila S, Knuutila S. Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene 2002; 21:5804-13. [PMID: 12173052 DOI: 10.1038/sj.onc.1205726] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 06/03/2002] [Accepted: 06/10/2002] [Indexed: 01/02/2023]
Abstract
No clear patterns in molecular changes underlying the malignant processes in lung cancer of different histological types have been found so far. To identify critical genes in lung cancer progression we compared the expression profile of cancer related genes in 14 pulmonary adenocarcinoma patients with normal lung tissue by using the cDNA array technique. Principal component analyses (PCA) and permutation test were used to detect the differentially expressed genes. The expression profiles of 10 genes were confirmed by semi-quantitative real-time RT-PCR. In tumour samples, as compared to normal lung tissue, the up-regulated genes included such known tumour markers as CCNB1, PLK, tenascin, KRT8, KRT19 and TOP2A. The down-regulated genes included caveolin 1 and 2, and TIMP3. We also describe, for the first time, down-regulation of the interesting SOCS2 and 3, DOC2 and gravin. We show that silencing of SOCS2 is not caused by methylation of exon 1 of the gene. In conclusion, by using the cDNA array technique we were able to reveal marked differences in the gene expression level between normal lung and tumour tissue and find possible new tumour markers for pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Harriet Wikman
- Department of Medical Genetics, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
36
|
Bodine PVN, Komm BS. Tissue culture models for studies of hormone and vitamin action in bone cells. VITAMINS AND HORMONES 2002; 64:101-51. [PMID: 11898390 DOI: 10.1016/s0083-6729(02)64004-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Osteoporosis is a major health care concern and levies a serious financial burden on the world health care system. For this reason, many physicians and scientists are engaged in research to better understand and treat this disease. To this end, numerous in vitro bone cell models have been developed to explore the cellular and molecular mechanisms of skeletal biology and for the identification and characterization of new drug targets and therapies. In this chapter, we review many of these cellular models as tools to study the hormonal regulation of bone metabolism. In particular, we pay special attention to new human bone cell models, since these have the greatest relevance to osteoporosis research and drug discovery. These new models include (1) the use of peripheral blood mononuclear cells as progenitors of osteoclasts and primary cultures of mesenchymal stem cells as precursors of osteoblasts; (2) the development of conditionally immortalized preosteoclastic and osteoblastic cell lines using temperature-sensitive large T-antigens; and (3) the establishment of the first osteocytic cell lines. Thus, we now have at our disposal many good in vitro models to investigate the regulation of bone resorption and formation by hormones, vitamins and drugs. These models should accelerate our understanding of bone physiology and pathophysiology as well as our ability to develop important new therapies to prevent and treat skeletal diseases.
Collapse
Affiliation(s)
- Peter V N Bodine
- Women's Health Research Institute, Wyeth-Ayerst Research, Collegeville, Pennsylvania 19426, USA
| | | |
Collapse
|