1
|
Etemad L, Moshiri M, Balali-Mood M. Advances in treatment of acute sulfur mustard poisoning - a critical review. Crit Rev Toxicol 2020; 49:191-214. [PMID: 31576778 DOI: 10.1080/10408444.2019.1579779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfur mustard (SM) is a blistering chemical warfare agent that was used during the World War I and in the Iraq-Iran conflict. The aim of this paper is to discuss and critically review the published results of experiments on the treatment of SM poisoning based on our clinical and research experience. The victims must remove from the contaminated zone immediately. The best solution for decontamination is large amounts of water, using neutral soap and 0.5% sodium hypochlorite. Severely intoxicated patients should be treated according to advanced life support protocols and intensive care therapy for respiratory disorders and the chemical burn. Sodium thiosulfate infusion (100-500 mg/kg/min) should be started up to 60 min after SM exposure. However, N-acetyle cysteine (NAC) is recommended, none of them acts as specific or effective antidote. The important protective and conservative treatment of SM-induced pulmonary injuries include humidified oxygen, bronchodilators, NAC as muculytic, rehydration, mechanical ventilation, appropriate antibiotics and respiratory physiotherapy as clinically indicated. Treatment of acute SM ocular lesions start with topical antibiotics; preferably sulfacetamide eye drop, continue with lubricants, and artificial tears. Treatment for cutaneous injuries include: moist dressing; preferably with silver sulfadiazine cream, analgesic, anti-pruritic, physically debridement, debridase, Laser debridement, followed by skin autologous split-thickness therapy as clinically indicated. The new suggested medications and therapeutic approaches include: anti-inflammatory agents, Niacinamide, Silibinin, Calmodulin antagonists, Clobetasol, full-thickness skin grafting for skin injuries; Doxycycline; Bevacizumab, and Colchicine for ocular injuries. Recommended compounds based on animal studies include Niacinamide, Aprotinin, des-aspartate-angiotensin-I, Gamma-glutamyltransferase, vitamin E, and vitamin D. In vitro studies revealed that Dimethylthiourea, L-nitroarginine, Methyl-ester, Sodium pyruvate, Butylated hydroxyanisole, ethacrynic acid, and macrolide antibiotics are effective. However, none of them, except macrolide antibiotics have been proved clinically. Avoidance of inappropriate polypharmacy is advisable.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences , Birjand , Iran
| |
Collapse
|
2
|
Achanta S, Chintagari NR, Brackmann M, Balakrishna S, Jordt SE. TRPA1 and CGRP antagonists counteract vesicant-induced skin injury and inflammation. Toxicol Lett 2018. [PMID: 29535050 DOI: 10.1016/j.toxlet.2018.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The skin is highly sensitive to the chemical warfare agent in mustard gas, sulfur mustard (SM) that initiates a delayed injury response characterized by erythema, inflammation and severe vesication (blistering). Although SM poses a continuing threat, used as recently as in the Syrian conflict, no mechanism-based antidotes against SM are available. Recent studies demonstrated that Transient Receptor Potential Ankyrin 1 (TRPA1), a chemosensory cation channel in sensory nerves innervating the skin, is activated by SM and 2-chloroethyl ethyl sulfide (CEES), an SM analog, in vitro, suggesting it may promote vesicant injury. Here, we investigated the effects of TRPA1 inhibitors, and an inhibitor of Calcitonin Gene Related Peptide (CGRP), a neurogenic inflammatory peptide released upon TRPA1 activation, in a CEES-induced mouse ear vesicant model (CEES-MEVM). TRPA1 inhibitors (HC-030031 and A-967079) and a CGRP inhibitor (MK-8825) reduced skin edema, pro-inflammatory cytokines (IL-1β, CXCL1/KC), MMP-9, a protease implicated in skin damage, and improved histopathological outcomes. These findings suggest that TRPA1 and neurogenic inflammation contribute to the deleterious effects of vesicants in vivo, activated either directly by alkylation, or indirectly, by reactive intermediates or pro-inflammatory mediators. TRPA1 and CGRP inhibitors represent new leads that could be considered for validation and further development in other vesicant injury models.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Marian Brackmann
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shrilatha Balakrishna
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Dermostyx (IB1) – High efficacy and safe topical skin protectant against percutaneous toxic agents. Chem Biol Interact 2017; 267:25-32. [DOI: 10.1016/j.cbi.2016.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/04/2016] [Accepted: 07/10/2016] [Indexed: 11/22/2022]
|
4
|
Lacey CJ, Wohlman I, Guillon C, Saxena J, Fianu-Velgus C, Aponte E, Young SC, Heck DE, Joseph LB, Laskin JD, Heindel ND. Multi-inhibitor prodrug constructs for simultaneous delivery of anti-inflammatory agents to mustard-induced skin injury. Ann N Y Acad Sci 2016; 1378:174-179. [PMID: 27505078 DOI: 10.1111/nyas.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
The molecular pathology of sulfur mustard injury is complex, with at least nine inflammation-related enzymes and receptors upregulated in the zone of the insult. A new approach wherein inhibitors of these targets have been linked by hydrolyzable bonds, either one to one or via separate preattachment to a carrier molecule, has been shown to significantly enhance the therapeutic response compared with the individual agents. This article reviews the published work of the authors in this drug development domain over the last 8 years.
Collapse
Affiliation(s)
- Carl J Lacey
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Irene Wohlman
- Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, New Jersey
| | | | - Jaya Saxena
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | | | - Erik Aponte
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, New York
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
5
|
Wohlman IM, Composto GM, Heck DE, Heindel ND, Lacey CJ, Guillon CD, Casillas RP, Croutch CR, Gerecke DR, Laskin DL, Joseph LB, Laskin JD. Mustard vesicants alter expression of the endocannabinoid system in mouse skin. Toxicol Appl Pharmacol 2016; 303:30-44. [PMID: 27125198 DOI: 10.1016/j.taap.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Abstract
Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants.
Collapse
Affiliation(s)
- Irene M Wohlman
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Gabriella M Composto
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Diane E Heck
- Environmental Health Science, New York Medical College, Valhalla, NY, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - C Jeffrey Lacey
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | | | | | | | - Donald R Gerecke
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ, United States.
| |
Collapse
|
6
|
Liu F, Jiang N, Xiao ZY, Cheng JP, Mei YZ, Zheng P, Wang L, Zhang XR, Zhou XB, Zhou WX, Zhang YX. Effects of poly (ADP-ribose) polymerase-1 (PARP-1) inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo. PeerJ 2016; 4:e1890. [PMID: 27077006 PMCID: PMC4830333 DOI: 10.7717/peerj.1890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/14/2016] [Indexed: 01/13/2023] Open
Abstract
Early studies with first-generation poly (ADP-ribose) polymerase (PARP) inhibitors have already indicated some therapeutic potential for sulfur mustard (SM) injuries. The available novel and more potential PARP inhibitors, which are undergoing clinical trials as drugs for cancer treatment, bring it back to the centre of interest. However, the role of PARP-1 in SM-induced injury is not fully understood. In this study, we selected a high potent specific PARP inhibitor ABT-888 as an example to investigate the effect of PARP inhibitor in SM injury. The results showed that in both the mouse ear vesicant model (MEVM) and HaCaT cell model, PARP inhibitor ABT-888 can reduce cell damage induced by severe SM injury. ABT-888 significantly reduced SM induced edema and epidermal necrosis in MEVM. In the HaCaT cell model, ABT-888 can reduce SM-induced NAD(+)/ATP depletion and apoptosis/necrosis. Then, we studied the mechanism of PARP-1 in SM injury by knockdown of PARP-1 in HaCaT cells. Knockdown of PARP-1 protected cell viability and downregulated the apoptosis checkpoints, including p-JNK, p-p53, Caspase 9, Caspase 8, c-PARP and Caspase 3 following SM-induced injury. Furthermore, the activation of AKT can inhibit autophagy via the regulation of mTOR. Our results showed that SM exposure could significantly inhibit the activation of Akt/mTOR pathway. Knockdown of PARP-1 reversed the SM-induced suppression of the Akt/mTOR pathway. In summary, the results of our study indicated that the protective effects of downregulation of PARP-1 in SM injury may be due to the regulation of apoptosis, necrosis, energy crisis and autophagy. However, it should be noticed that PARP inhibitor ABT-888 further enhanced the phosphorylation of H2AX (S139) after SM exposure, which indicated that we should be very careful in the application of PARP inhibitors in SM injury treatment because of the enhancement of DNA damage.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Zhi-Yong Xiao
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Jun-Ping Cheng
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Yi-Zhou Mei
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Pan Zheng
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Li Wang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Xiao-Rui Zhang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Xin-Bo Zhou
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Wen-Xia Zhou
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Yong-Xiang Zhang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
7
|
Plahovinsak JL, Buccellato MA, Reid FM, Graham JS. Selection of non-steroidal anti-inflammatory drug and treatment regimen for sulfur mustard-induced cutaneous lesions. Cutan Ocul Toxicol 2015; 35:208-17. [DOI: 10.3109/15569527.2015.1076436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Chang YC, Wang JD, Hahn RA, Gordon MK, Joseph LB, Heck DE, Heindel ND, Young SC, Sinko PJ, Casillas RP, Laskin JD, Laskin DL, Gerecke DR. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard. Toxicol Appl Pharmacol 2014; 280:236-44. [PMID: 25127551 DOI: 10.1016/j.taap.2014.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 01/04/2023]
Abstract
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure.
Collapse
Affiliation(s)
- Yoke-Chen Chang
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - James D Wang
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Rita A Hahn
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Marion K Gordon
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Laurie B Joseph
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Diane E Heck
- Department of Environmental Science, New York Medical College, Valhalla, NY, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, Allentown, PA, United States
| | - Patrick J Sinko
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | | | - Jeffrey D Laskin
- Environmental & Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Donald R Gerecke
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
9
|
Treatment of sulphur mustard skin injury. Chem Biol Interact 2013; 206:491-5. [DOI: 10.1016/j.cbi.2013.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
|
10
|
The effects of sulfur mustard exposure and freezing on transdermal penetration of tritiated water through ex vivo pig skin. Toxicol In Vitro 2013; 27:79-83. [DOI: 10.1016/j.tiv.2012.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/21/2012] [Accepted: 09/24/2012] [Indexed: 11/21/2022]
|
11
|
Jankun J. Challenging delivery of VLHL NS plasminogen activator inhibitor-1 by osmotic pumps in diabetic mouse: A case report. Exp Ther Med 2012; 4:661-664. [PMID: 23170122 PMCID: PMC3501414 DOI: 10.3892/etm.2012.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/05/2012] [Indexed: 11/06/2022] Open
Abstract
ALZET(®) osmotic pumps are implantable devices used in animals for the continuous infusion of drugs or proteins at controlled rates from 1 day to 4 weeks. Pumps have been used successfully in a number of studies on the effects of controlled delivery of a wide range of experimental agents, independent of their properties. In the present study, use of these pumps was made in mice with diabetic nephropathy. Plasminogen activator inhibitor-1 (PAI-1) mediates diabetic nephropathy, which is characterized by the excessive accumulation of extracellular matrix (ECM) in the kidney. Disproportionate PAI-1 inactivates tissue plasminogen activator, which is one of the proteolytic enzymes in a cascade responsible for ECM remodeling in the kidney. The decrease of PAI-1 in the kidney has been shown to arrest the progression of nephropathy in experimental animals. This was achieved using inactive PAI-1R which increased the clearance of wild-type PAI-1 in order to protect net proteolytic activity and ECM clearance. However, this protein has a brief half-life in vivo, therefore, high and frequent doses are required. Thus, VLHL NS PAI-1 protein with a long half-life of over 700 h (Gln197Cys, Gly355Cys) inactivated by single point mutation (Arg369Ala) was used. Following the sacrifice of animals the tips of the flow moderators of the osmotic pumps in the treated animals were found to be clogged. In addition, from each pump from the treatment group, but not controls, we collected 50-150 μl of clear liquid containing VLHL NS PAI-1, cellular and serum proteins suggesting early pump sealing by cellular material. In conclusion, despite encouraging results obtained for the PAI-1R protein, the method of VLHL PAI-1 delivery should be ameliorated.
Collapse
Affiliation(s)
- Jerzy Jankun
- Urology Research Center, Department of Urology, Health Science Campus, University of Toledo, Toledo, OH, USA ; Department of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland ; Protein Research Chair, Biochemistry Department, College of Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Young SC, Fabio KM, Huang MT, Saxena J, Harman MP, Guillon CD, Vetrano AM, Heck DE, Flowers RA, Heindel ND, Laskin JD. Investigation of anticholinergic and non-steroidal anti-inflammatory prodrugs which reduce chemically induced skin inflammation. J Appl Toxicol 2011; 32:135-41. [PMID: 21319177 DOI: 10.1002/jat.1645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/08/2010] [Accepted: 11/22/2010] [Indexed: 12/28/2022]
Abstract
As part of a continuous effort to develop efficient counter measures against sulfur mustard injuries, several unique NSAID prodrugs have been developed and screened for anti-inflammatory properties. Presented herein are three classes of prodrugs which dually target inflammation and cholinergic dysfunction. Compounds 1-28 contain common NSAIDs linked either to choline bioisosteres or to structural analogs of acetylcholinesterase (AChE) inhibitors. These agents have shown utility as anti-vesicants and anti-inflammatory agents when screened in a mouse ear vesicant model (MEVM) against both 2-chloroethyl ethyl sulfide (CEES), a blistering agent, and 12-O-tetradecanoylphorbol-13-acetate (TPA), a common topical irritant. Many of the prodrugs have activity against CEES, with 5, 18, 22 and 27 reducing inflammation by more than 75% compared with a control. Compounds 12, 13, 15 and 22 show comparable activity against TPA. Promising activity in the MEVM is related to half-lives of NSAID release in plasma, moderate to high lipophilicity, and some degree of inhibition of AChE, a potential contributor to sulfur mustard-mediated tissue damage.
Collapse
Affiliation(s)
- Sherri C Young
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sunil VR, Patel-Vayas K, Shen J, Gow AJ, Laskin JD, Laskin DL. Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2011; 250:245-55. [PMID: 21070800 PMCID: PMC3520488 DOI: 10.1016/j.taap.2010.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/15/2010] [Accepted: 10/27/2010] [Indexed: 01/08/2023]
Abstract
Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNFα (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNFα mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNFα signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.
Collapse
Affiliation(s)
- Vasanthi R. Sunil
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kinal Patel-Vayas
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jianliang Shen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J. Gow
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D. Laskin
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Schussheim Y, Aschner M, Brodsky B, Proscura E, Erlanger-Rosengarten A, Feldman R, Shapira E, Wormser U. Anti-inflammatory effects of peptide fragments of H2A histone and Oryza Sativa Japonica protein. Peptides 2011; 32:125-30. [PMID: 21055433 DOI: 10.1016/j.peptides.2010.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Anti-inflammatory drugs are often of limited use due to low efficacy and toxic effects. The present study describes the anti-inflammatory effects of a novel nonapeptide termed IIIM1, using the mouse hind paw edema as an experimental model of inflammation. Multiple prophylactic injections of IIIM1 resulted in a significant reduction in carrageenan-induced foot pad swelling, both in mice and rats. A single prophylactic treatment of the peptide caused the maximal effect at 7-9 days between the initial peptide treatment and the subsequent carrageenan injection. A reduced inflammatory reaction was observed in transgenic mice constitutively expressing the peptide. A marked decrease in oxidative burst was observed in activated peritoneal macrophages obtained from peptide-treated mice. Furthermore, the sera of IIIM1-treated mice caused a significant decrease in the oxidative burst of macrophages. In addition, the reduction of hind paw swelling in mice injected with the sera of IIIM1-treated mice strongly suggests the presence of a circulating inducible factor responsible for the anti-inflammatory effect of the peptide. Previous LC/MS/MS analysis revealed the presence of a new peptide, termed RA1, in the sera of IIIM1-treated mice. RA1 was identified as a fragment of the Oryza Sativa Japonica protein. The anti-inflammatory effect of RA1 as evidenced by the reduction in carrageenan-induced hind paw swelling corresponded with the decrease in the oxidative burst of macrophages treated in vitro with this peptide. In conclusion, both IIIM1 and RA1 represent potential agents for the efficient treatment of inflammatory diseases that are currently incurable using presently available drugs.
Collapse
Affiliation(s)
- Yonatan Schussheim
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Black AT, Hayden PJ, Casillas RP, Heck DE, Gerecke DR, Sinko PJ, Laskin DL, Laskin JD. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2010; 249:178-87. [PMID: 20840853 DOI: 10.1016/j.taap.2010.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 12/20/2022]
Abstract
Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT™, a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE₂ synthases, leukotriene (LT) A₄ hydrolase and LTC₄ synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.
Collapse
Affiliation(s)
- Adrienne T Black
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Malaviya R, Sunil VR, Cervelli J, Anderson DR, Holmes WW, Conti ML, Gordon RE, Laskin JD, Laskin DL. Inflammatory effects of inhaled sulfur mustard in rat lung. Toxicol Appl Pharmacol 2010; 248:89-99. [PMID: 20659490 DOI: 10.1016/j.taap.2010.07.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 12/19/2022]
Abstract
Inhalation of sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating its cytotoxic effects are unknown and were investigated in the present studies. Male rats Crl:CD(SD) were anesthetized, and then intratracheally intubated and exposed to 0.7-1.4mg/kg SM by vapor inhalation. Animals were euthanized 6, 24, 48h or 7days post-exposure and bronchoalveolar lavage fluid (BAL) and lung tissue collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including focal ulceration and detachment of the trachea and bronchial epithelia from underlying mucosa, thickening of alveolar septal walls and increased numbers of inflammatory cells in the tissue. There was also evidence of autophagy and apoptosis in the tissue. This was correlated with increased BAL protein content, a marker of injury to the alveolar epithelial lining. SM exposure also resulted in increased expression of markers of inflammation including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNFα), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9), each of which has been implicated in pulmonary toxicity. Whereas COX-2, TNFα and iNOS were mainly localized in alveolar regions, MMP-9 was prominent in bronchial epithelium. In contrast, expression of the anti-oxidant hemeoxygenase, and the anti-inflammatory collectin, surfactant protein-D, decreased in the lung after SM exposure. These data demonstrate that SM-induced oxidative stress and injury are associated with the generation of cytotoxic inflammatory proteins which may contribute to the pathogenic response to this vesicant.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dachir S, Cohen M, Fishbeine E, Sahar R, Brandies R, Horwitz V, Kadar T. Characterization of acute and long-term sulfur mustard-induced skin injuries in hairless guinea-pigs using non-invasive methods. Skin Res Technol 2010; 16:114-24. [PMID: 20384890 DOI: 10.1111/j.1600-0846.2009.00409.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND/PURPOSE Skin exposure to sulfur mustard (HD) results in erythema, edema and severe injury, which take long time to heal and might impose a heavy burden on the health system. Despite many years of research, there is no treatment that prevents the development of the cytotoxic effects of HD causing acute and prolonged damage to the skin. Therefore, it is of great importance to develop treatments that will ameliorate the extent of injury and improve as well as shorten the healing process. The aim of the present study was to establish a small animal model for a long-term HD-induced skin injury using the hairless guinea-pig (HGP) and to further test the efficacy of anti-inflammatories in ameliorating the pathology. METHODS HGPs were exposed to HD vapor on four sites for various time durations (1, 5, 10, 15 and 30 min). Clinical evaluation was conducted using reflectance colorimetry, transepidermal water loss and wound-area measurements. Biochemical [prostaglandin (PGE) content and metalloproteinase-9 (MMP-9) activity] and histopathological evaluations were conducted up to 2 weeks post-exposure. RESULTS Typical symptoms of HD skin injury developed including erythema and edema and the extent of injury was closely related to the exposure duration. Histological evaluation revealed severe edema, infiltration of inflammatory cells, damage to basal cells and vesication. By 2 weeks, healing was not completed, impaired basement membrane and epithelial hyperplasia were observed. PGE content and MMP-9 activity increased at 2 h post-exposure; however, while PGE returned to baseline levels within 24 h, MMP-9 remained elevated at least up to 48 h. Furthermore, a short-term, topical, anti-inflammatory post-exposure treatment was effective in reducing the extent of the acute injury. CONCLUSION These results indicate that the effects of HD on HGP skin are similar to previously shown effects in the pig model and in humans and therefore support the use of the HGP as an animal model for long-term effects of HD on skin injury and for studying the efficacy of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Shlomit Dachir
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, Israel.
| | | | | | | | | | | | | |
Collapse
|
18
|
Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2010; 245:352-60. [PMID: 20382172 DOI: 10.1016/j.taap.2010.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
Abstract
Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 microM) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A(4) (LTA(4)) hydrolase and leukotriene C(4) (LTC(4)) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA(4) hydrolase and LTC(4) synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.
Collapse
|
19
|
Bhutia YD, Vijayaraghavan R, Pathak U. Analgesic and anti-inflammatory activity of amifostine, DRDE-07, and their analogs, in mice. Indian J Pharmacol 2010; 42:17-20. [PMID: 20606831 PMCID: PMC2885634 DOI: 10.4103/0253-7613.62401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/06/2009] [Accepted: 02/03/2010] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To find out the analgesic and anti-inflammatory activity, if any, of Amifostine [S-2(3 amino propyl amino) ethyl phosphorothioate], DRDE-07 [S-2(3 amino ethyl amino) ethyl phenyl sulphide] and their analogs DRDE-30 and DRDE-35, the probable prophylactic agent for sulphur mustard (SM). MATERIALS AND METHODS In order to find out the analgesic activities of the compounds two methods were employed, namely, acetic acid-induced writhing test and formalin-induced paw licking. The persistent pain model of formalin-induced hind paw licking was carried out to test the effect of the compounds on neurogenic pain or early phase (0 to 5 minutes) and on the peripheral pain or the late phase (15 to 30 minutes). To test the effect of the compound in acute inflammation, carrageenan-induced hind paw edema was carried out. This model of inflammation involves a variety of mediators of inflammation. RESULTS DRDE-07 (81.7%) and DRDE-30 (79.4%) showed significant reduction in the acetic acid-induced writhing test. DRDE-07 (93.1%), DRDE-30 (82%), and DRDE-35 (61.3%) showed significant reduction in the second or late phase of formalin-induced paw licking. All the analogs (more than 60%) including amifostine (43.9%) showed significant reduction of paw edema in the carrageenan-induced paw edema in mice. CONCLUSION The analgesic and anti-inflammatory activity of the antidotes were comparable with aspirin.
Collapse
Affiliation(s)
| | | | - Uma Pathak
- Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
20
|
Mishra NC, Rir-sima-ah J, March T, Weber W, Benson J, Jaramillo R, Seagrave JC, Schultz G, Grotendorst G, Sopori M. Sulfur mustard induces immune sensitization in hairless guinea pigs. Int Immunopharmacol 2009; 10:193-9. [PMID: 19887117 DOI: 10.1016/j.intimp.2009.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 11/25/2022]
Abstract
Sulfur mustard (SM, bis-(2-chloroethyl) sulfide) is a well known chemical warfare agent that may cause long-term debilitating injury. Because of the ease of production and storage, it has a strong potential for chemical terrorism; however, the mechanism by which SM causes chronic tissue damage is essentially unknown. SM is a potent protein alkylating agent, and we tested the possibility that SM modifies cellular antigens, leading to an immunological response to "altered self" and a potential long-term injury. To that end, in this communication, we show that dermal exposure of euthymic hairless guinea pigs induced infiltration of both CD4(+) and CD8(+) T cells into the SM-exposed skin and strong upregulated expression of proinflammatory cytokines and chemokines (TNF-alpha, IFN-gamma, and IL-8) in distal tissues such as the lung and the lymph nodes. Moreover, we present evidence for the first time that SM induces a specific delayed-type hypersensitivity response that is associated with splenomegaly, lymphadenopathy, and proliferation of cells in these tissues. These results clearly suggest that dermal exposure to SM leads to immune activation, infiltration of T cells into the SM-exposed skin, delayed-type hypersensitivity response, and molecular imprints of inflammation in tissues distal from the site of SM exposure. These immunological responses may contribute to the long-term sequelae of SM toxicity.
Collapse
Affiliation(s)
- Neerad C Mishra
- Lovelace CounterACT Research Center of Excellence, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shakarjian MP, Heck DE, Gray JP, Sinko PJ, Gordon MK, Casillas RP, Heindel ND, Gerecke DR, Laskin DL, Laskin JD. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol Sci 2009; 114:5-19. [PMID: 19833738 DOI: 10.1093/toxsci/kfp253] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Amitai G, Adani R, Fishbein E, Meshulam H, Laish I, Dachir S. Bifunctional compounds eliciting anti-inflammatory and anti-cholinesterase activity as potential treatment of nerve and blister chemical agents poisoning. J Appl Toxicol 2006; 26:81-7. [PMID: 16167317 DOI: 10.1002/jat.1111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Certain organophosphorus (OP) nerve agents (e.g. soman) induce neuroinflammatory processes during acute poisoning. An increased level of typical inflammation markers was also observed in poisoning by alkylating agents such as sulfur mustard (HD). The therapeutic potential of new bifunctional compounds was investigated, eliciting activity of non-steroidal anti-inflammatory drug (NSAID) and anti-cholinesterase (anti-ChE) activity, as an antidotal treatment for both soman and HD poisoning in mice. Three bifunctional compounds were used that include the ChE inhibitor pyridostigmine (PYR) coupled to either ibuprofen (IBU) or diclofenac (DICLO) through an eight (octyl) or ten (decyl) hydrocarbon chain spacer: IBU-PO, IBU-PD and DICLO-PD. These compounds are 15-25 fold less toxic than PYR in mice and exert peripheral and central anti-inflammatory and anti-ChE activity in vivo. IBU-PO (4 mg kg(-1), i.p.), IBU-PD (4 mg kg(-1), i.p.) and PYR (0.13 mg kg(-1), i.p.) reduced to control levels the brain edema in soman-poisoned mice (1.1 LD50, s.c.). Pre-treatment with IBU-PO, IBU-PD and DICLO-PD 4-5 h before soman challenge (2.2-2.3 LD50, s.c.) combined with antidotal treatment (atropine, 11 mg kg(-1), 2-PAM-Cl, 25 mg kg(-1), i.m.) afforded a longer 24 h survival rate (SR) than with PYR pre-treatment. DICLO-PD exhibited the largest protection efficacy (SR = 70% vs 17% with PYR). These results indicate a longer duration of action of bifunctional compounds compared with PYR. DICLO-PD (5% in propyleneglycol) reduced significantly the HD-induced edema in mouse ear-skin (51% increase in biopsy weight compared with 100% without treatment). Quantitative evaluation of ear-skin sections showed that only following DICLO-PD treatment was there a marked decrease in edema. DICLO-PD also elicited a significant decrease in HD-induced vesication as displayed by the reduced sub-epidermal blister level. The data indicate possible use of NSAID-ChEI bifunctional compounds for the medical treatment of both nerve and alkylating chemical agents.
Collapse
Affiliation(s)
- Gabi Amitai
- Division of Medicinal Chemistry, Israel Institute for Biological Research, PO Box 19, Ness Ziona 74100, Israel.
| | | | | | | | | | | |
Collapse
|
23
|
Guignabert C, Taysse L, Calvet JH, Planus E, Delamanche S, Galiacy S, d'Ortho MP. Effect of doxycycline on sulfur mustard-induced respiratory lesions in guinea pigs. Am J Physiol Lung Cell Mol Physiol 2005; 289:L67-74. [PMID: 15778244 DOI: 10.1152/ajplung.00475.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory tract lesions induced by the chemical warfare agent sulfur mustard (SM) are characterized by epithelial damages associated with inflammatory cell infiltration. Here we evaluated the imbalance between gelatinase and tissue inhibitors of metalloproteinases (TIMPs), and we tested pretreatment with the protease inhibitor doxycycline. Guinea pigs were intoxicated intratracheally with SM and evaluated 24 h after exposure. Matrix metalloproteinase (MMP) gelatinase activity of bronchial lavage (BL) fluid from SM-exposed guinea pigs was high compared with controls, as shown by both zymography and biotinylated substrate degradation, whereas TIMP-1 and -2 levels by immunoblotting were similar. Extensive areas of lysis were evidenced by in situ zymography, indicating imbalance between gelatinases and inhibitors towards net proteolytic activity. Doxycycline pretreatment resulted in 1) decreased gelatinase activity (zymography, free gelatinase activity assay, and in situ zymography); 2) decreased inflammation (BL fluid cellularity and protein level); and 3) dramatic decrease in histological epithelial lesions. Our results suggest inadequate levels of TIMP to counteract increased gelatinase activity and further support a role for MMP gelatinases in SM-induced respiratory lesions. They also suggest that doxycycline may hold promise as a therapeutic tool.
Collapse
Affiliation(s)
- Christophe Guignabert
- Unité U492 de l'Institut National de la Santé et de la Recherche Médicale and Départment de Physiologie, Faculté de Médecine, Université Paris, Créteil, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Rogers JV, Choi YW, Kiser RC, Babin MC, Casillas RP, Schlager JJ, Sabourin CLK. Microarray analysis of gene expression in murine skin exposed to sulfur mustard. J Biochem Mol Toxicol 2005; 18:289-99. [PMID: 15674843 DOI: 10.1002/jbt.20043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The chemical warfare agent sulfur mustard [bis-(2-chloroethyl)-sulfide; SM] produces a delayed inflammatory response followed by blister formation in skin of exposed individuals. Studies are underway evaluating the efficacy of pharmacological compounds to protect against SM skin injury. Microarray analysis provides the opportunity to identify multiple transcriptional biomarkers associated with SM exposure. This study examined SM-induced changes in gene expression in skin from mice cutaneously exposed to SM using cDNA microarrays. Ear skin from five mice, paired as SM-exposed right ear and dichloromethane vehicle-exposed left ear at six dose levels (0.005, 0.01, 0.02, 0.04, 0.08, and 0.16 mg; 6 mM to 195 mM range), was harvested at 24 h post-exposure. SM-induced gene expression was analyzed using cDNA microarrays that included 1,176 genes. Genes were selected on the basis of all mice (N=5) in the same dose group demonstrating a > or =2-fold increase or decrease in gene expression for the SM-exposed tissue compared to the dichloromethane vehicle control ear tissue at all six SM doses. When skin exposed to all six concentrations of SM was compared to controls, a total of 19 genes within apoptosis, transcription factors, cell cycle, inflammation, and oncogenes and tumor suppressors categories were found to be upregulated; no genes were observed to be downregulated. Differences in the number and category of genes that were up- or down-regulated in skin exposed to low (0.005-0.01 mg) and high (0.08-0.16 mg) doses of SM were also observed. The results of this study provide a further understanding of the molecular responses to cutaneous SM exposure, and enable the identification of potential diagnostic markers and therapeutic targets for treating SM injury.
Collapse
Affiliation(s)
- James V Rogers
- Battelle Memorial Institute, Medical Research and Evaluation Facility, Columbus, OH 43201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Sabourin CLK, Rogers JV, Choi YW, Kiser RC, Casillas RP, Babin MC, Schlager JJ. Time- and dose-dependent analysis of gene expression using microarrays in sulfur mustard-exposed mice. J Biochem Mol Toxicol 2005; 18:300-12. [PMID: 15674844 DOI: 10.1002/jbt.20047] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The chemical warfare agent sulfur mustard (SM) produces blister formation with a severe inflammatory reaction in skin of exposed individuals. The development of efficacious countermeasures against SM vesication requires an understanding of the cellular and molecular mechanism of SM-induced tissue injury. This study examined SM-induced alterations in gene expression using Atlas Mouse 5K DNA microarrays (5002 genes) to identify transcriptional events associated with SM skin injury. Mice (N=3) were exposed topically to SM (0.04, 0.08, and 0.16 mg; 48.8, 97.5, and 195 mM) on the inner surface of the right ear and skin tissues were harvested at 1.5, 3, 6, and 12 h. Genes were selected based on the three mice in the same dose group demonstrating a > or =2-fold increase or decrease in gene expression for the SM-exposed tissue when compared to the dichloromethane vehicle control ear at all three doses and four time points. At the 0.04 mg SM dose, the genes observed were primarily involved in inflammation, apoptosis, and cell cycle regulation. Exposure to 0.08 mg SM increased the expression of genes related to inflammation and cell cycle regulation. Exposure to 0.16 mg SM led to a total of six genes that were changed at all observed time periods; however, these genes do not appear to be directly influential in biological mechanisms such as inflammation, apoptosis, and cell cycle regulation as was observed at the lower SM doses of 0.04 and 0.08 mg. These functional categories have been observed in previous studies utilizing both in vivo and in vitro model systems of SM-induced dermal injury, suggesting that molecular mechanisms associated with inflammation, apoptosis, and cell cycle regulation may be appropriate targets for developing prophylactic/therapeutic treatments for SM skin injury.
Collapse
Affiliation(s)
- Carol L K Sabourin
- Battelle Memorial Institute, Medical Research and Evaluation Facility, Columbus, OH 43201, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sabourin CLK, Rogers JV, Stonerock MK, Niemuth NA, Kiser RC, Casbohm SL, Babin MC, Schlager JJ, Casillas RP. Alterations of Gene Expression in Sulfur Mustard‐Exposed Skin Topically Treated with Vanilloids. ACTA ACUST UNITED AC 2004. [DOI: 10.1081/cus-200041508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Casbohm SL, Rogers JV, Stonerock MK, Martin JL, Ricketts-Kaminsky KM, Babin MC, Casillas RP, Sabourin CLK. Localization of substance P gene expression for evaluating protective countermeasures against sulfur mustard. Toxicology 2004; 204:229-39. [PMID: 15388249 DOI: 10.1016/j.tox.2004.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/22/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Sulfur mustard [bis(2-chloroethyl)sulfide; SM] is a chemical warfare agent that produces edema and blister formation with a severe inflammatory reaction. The mouse ear vesicant model for SM injury has been used to evaluate pharmacological agents for countering SM dermal injury. The vanilloid olvanil reduces SM-induced edema and mRNA expression of cytokines and chemokines, suggesting that blocking the inflammatory effects of neuropeptides, such as substance P (SP), may provide protection against SM-induced dermal injury. This study examined SP expression in mice exposed to SM (0.16 mg) on the inner surface of the right ear, with or without olvanil pretreatment at 1, 10, 30, 60, and 360 min following exposure. In naïve skin, SP mRNA localization was associated with blood vessels and sebaceous glands. In SM-exposed skin, SP mRNA was also detected in perivascular dermal cells. Immunohistochemical localization of SP protein was observed in the ear skin of naïve, SM-, olvanil/SM-, and vehicle-treated mice. Quantification of SP+ perivascular dermal cells revealed that SM exposure led to a significant increase (P < or = 0.05) in SP+ cells over the observed time period. Olvanil pretreatment significantly reduced (P < or = 0.05) the mean number of SP+ cells at 60 and 360 min. This study demonstrates that SP expression could provide an additional endpoint for evaluating the effectiveness of vanilloid drugs on SM-induced skin inflammation.
Collapse
Affiliation(s)
- Stacy L Casbohm
- Battelle Memorial Institute, Medical Research and Evaluation Facility, 505 King Avenue, JM-3, Columbus, OH 43201, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Stefanos N Kales
- Cambridge Health Alliance, Department of Medicine, Occupational and Environmental Health, Harvard Medical School, Cambridge, Mass 02139, USA.
| | | |
Collapse
|
29
|
Babin MC, Ricketts KM, Kiser RC, Gazaway MY, Krogel N, Mitcheltree LW, Moore DM, Skvorak K, Sweeney RE, Koplovitz I, Casillas RP. A 7‐Day Mouse Model to Assess Protection from Sulfur Mustard (SM) Skin Injury. ACTA ACUST UNITED AC 2003. [DOI: 10.1081/cus-120026302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Sabourin CLK, Danne MM, Buxton KL, Rogers JV, Niemuth NA, Blank JA, Babin MC, Casillas RP. Modulation Of Sulfur Mustard-induced Inflammation And Gene Expression By Olvanil In The Hairless Mouse Vesicant Model. ACTA ACUST UNITED AC 2003. [DOI: 10.1081/cus-120022753] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Sabourin CLK, Danne MM, Buxton KL, Casillas RP, Schlager JJ. Cytokine, chemokine, and matrix metalloproteinase response after sulfur mustard injury to weanling pig skin. J Biochem Mol Toxicol 2003; 16:263-72. [PMID: 12481301 DOI: 10.1002/jbt.10050] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cutaneous exposure to sulfur mustard [bis(2-chloroethyl) sulfide; SM] produces a delayed inflammatory skin response and severe tissue injury. Pig skin has organ similarities to human skin that is characterized by the content and types of epidermal lipids, the density of hair follicles and presence of sweat glands, which together afford penetration of topically applied compounds, complex inflammatory responses, and subsequent wound healing. The goal of this study was to identify in vivo proinflammatory biomarkers of the SM porcine skin injury within 72 h after SM challenge, using the weanling pig model. Changes in gene expression of inflammatory mediators were examined at 3, 6, 24, 48, and 72 h, using subtraction library analyses and by quantitation of selected transcripts by reverse transcription-polymerase chain reaction (RT-PCR). Sequence analysis of subtraction libraries identified up-regulation of IL-8 at 24, 48, and 72 h. No other specific proinflammatory gene transcripts were isolated from the libraries. Specific transcript RT-PCR analysis showed increased production of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), interleukin-8 (IL-8), and matrix metalloproteinase-9 (MMP-9, gelatinase B) mRNA levels in response to SM exposure. Tumor necrosis factor-alpha (TNF-alpha) expression was only slightly increased and no change in the levels of expression was observed for monocyte chemoattractant protein-1 and MMP-2. This study identifies the main proinflammatory mediators involved in SM-induced skin injury in a weanling pig model. The results suggest transcriptional activity in the inflammatory response proteins IL-8, IL-6, IL-1beta, and MMP-9 and modest changes in TNF-alpha that together produce inflammation and contribute to the pathogenesis of SM dermatotoxicity. Therefore, drugs preventing SM-induced inflammation should be prime candidates for medical intervention to lessen collateral inflammation associated with tissue destruction.
Collapse
Affiliation(s)
- Carol L K Sabourin
- Battelle Memorial Institute, Medical Research and Evaluation Facility, Columbus, OH 43201-2693, USA
| | | | | | | | | |
Collapse
|
32
|
Arroyo CM, Kan RK, Burman DL, Kahler DW, Nelson MR, Corun CM, Guzman JJ, Broomfield CA. Regulation of 1-alpha, 25-dihydroxyvitamin D3 on interleukin-6 and interleukin-8 induced by sulfur mustard (HD) on human skin cells. PHARMACOLOGY & TOXICOLOGY 2003; 92:204-13. [PMID: 12753408 DOI: 10.1034/j.1600-0773.2003.920503.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The regulatory effects of the active form of vitamin D, 1-alpha, 25-dihydroxyvitamin D3 (1-alpha, 25 (OH)2D3) were assessed on the cytokine and chemokine secretion induced by sulfur mustard on human skin fibroblasts and human epidermal keratinocytes. Stimulation of human skin fibroblasts with sulfur mustard (10(-4) M for 24 hr at 37 degrees ) resulted in approximately a 5 times increase in the secretion of interleukin-6 and over a 10 times increase for interleukin-8, which was inhibited by 1-alpha, 25 (OH)2D3, at <or=10(-9) M. 1-alpha, 25 (OH)2D3 also suppressed interleukin-8 secretion by 5 times and interleukin-6 by 4 times on sulfur mustard-stimulated human epidermal keratinocytes at concentrations <or= 10(-9) M. The effect of 1-alpha, 25 (OH)2D3 was dose-dependent for the suppression of interleukin-6 and interleukin-8 induced by sulfur mustard on human skin fibroblasts/human epidermal keratinocytes, apparent at nanomolar concentrations. Our results indicate that the suppression of these inflammatory mediators by 1-alpha, 25 (OH)2D3 is dependent on the source of the primary cultures, cell densities, and kinetics of pretreatments. In contrast to the inhibition of cytokine/chemokine production, cell proliferation was enhanced by almost 1.7 times on treated human epidermal keratinocytes with 1-alpha, 25 (OH)2D3 (1 x 10(-9) M) after sulfur mustard-stimulation (10(-4) M for 24 hr at 37 degrees C). The observed enhancement diversified based on cell density, and kinetics of pretreatment with a maximal synergism (s) observed at 1 x 10(-9) M. Photomicrographs show typical signs of cellular degeneration caused by sulfur mustard such as chromatin condensation. The observed cellular degeneration was lessened when human epidermal keratinocytes were treated with 1-alpha, 25 (OH)2D3 (2 x 10(-9) M). 1-alpha, 25(OH)2D3 could be an alternative treatment for cutaneous inflammation disorders caused by sulfur mustard because we have demonstrated its ability to suppress inflammatory mediators and enhanced cell proliferation in human skin cells stimulated with sulfur mustard.
Collapse
Affiliation(s)
- Carmen M Arroyo
- Drug Assessment Division, Comparative Medicine, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Levitt JM, Lodhi IJ, Nguyen PK, Ngo V, Clift R, Hinshaw DB, Sweeney JF. Low-dose sulfur mustard primes oxidative function and induces apoptosis in human polymorphonuclear leukocytes. Int Immunopharmacol 2003; 3:747-56. [PMID: 12757743 DOI: 10.1016/s1567-5769(03)00075-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although considerable work has focused on understanding the processes of direct tissue injury mediated by the chemical warfare vesicant, sulfur mustard (2,2'-bis-chloroethyl sulfide; SM), relatively little is known regarding the mechanisms of secondary injury caused potentially by the acute inflammatory response that follows SM exposure. Polymorphonuclear leukocytes (PMNs) play a central role in the initiation and propagation of inflammatory responses that, in some cases, result in autoimmune tissue damage. The potential for PMN-derived tissue damage following SM exposure may, in part, account for the protracted progression of the injury before it resolves. The current study was undertaken to evaluate the priming, oxidative function, and viability of PMN following exposure to low doses of SM such as those that might remain in tissues as a result of topical exposure. Our results demonstrate that doses of SM ranging from 25 to 100 microM primed PMN for oxidative burst in response to activation by fMLP, and that doses of SM ranging from 50 to 100 microM induced PMN apoptosis. Understanding the mechanisms through which SM directly affects PMN activation and apoptosis will be of critical value in developing novel treatments for inflammatory tissue injury following SM exposure.
Collapse
Affiliation(s)
- Jonathan M Levitt
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 6550 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|