1
|
Jalal CS, De-Regil LM, Pike V, Mithra P. Fortification of condiments and seasonings with iron for preventing anaemia and improving health. Cochrane Database Syst Rev 2023; 9:CD009604. [PMID: 37665781 PMCID: PMC10472972 DOI: 10.1002/14651858.cd009604.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
BACKGROUND Anaemia affects approximately 1.8 billion people worldwide; over 60% of anaemia cases globally are due to iron deficiency (ID). Iron deficiency and anaemia contribute to the global burden of disease and affect physical and cognitive development in children, and work productivity and economic well-being in adults. Fortification of food with iron, alone or in combination with other nutrients, is an effective intervention to control ID. Condiments and seasonings are ideal food vehicles for iron fortification in countries where they are commonly used. OBJECTIVES To determine the effects and safety of condiment and seasoning fortification with iron alone or iron plus other micronutrients on iron deficiency, anaemia, and health-related outcomes in the general population. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, and other databases up to 24 January 2023. We also searched the International clinical trials registry platform (ICTRP) for any ongoing trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) (randomisation at individual or cluster level), non-randomised controlled trials, interrupted time series with at least three measure points both before and after intervention, and controlled before-after studies. Participants were populations of any age (including pregnant women), from any country, excluding those with critical illness or severe co-morbidities. We included interventions in which condiments or seasonings have been fortified with any combination of iron and other vitamins and minerals, irrespective of the fortification technology used. DATA COLLECTION AND ANALYSIS Two review authors independently screened and assessed the eligibility of studies. Disagreements were resolved through discussion or input from a third review author. Two review authors extracted the data and assessed the risk of bias in all the included studies. We followed the methods laid out by Cochrane and used GRADE criteria for assessing certainty of the evidence. MAIN RESULTS Our search identified 15,902 records after removal of duplicates. We included 16 studies with 20,512 participants (18,410 participants after adjusting for clustering effects). They were all carried out in upper-middle- and lower-middle-income countries. Three studies were controlled before-after studies, one was non-randomised trial, and 12 were RCTs (including three cluster RCTs). Six studies took place in schools; seven in communities; and one each in a nursery/kindergarten, tea estate, and factory. Three studies involved only women, one study involved both women and their children, and all other studies focused on children and/or adolescents. Nine studies used salt as a vehicle for iron fortification, three used fish sauce, two used soy sauce, one used curry powder, and one a "seasoning powder". The dose of iron received by participants ranged from 4.4 mg to 55 mg/day. The sample sizes in the trials ranged from 123 to 14,398, and study durations ranged from three months to two years. Twelve RCTs contributed data for meta-analysis. Six trials compared iron-fortified condiments versus the unfortified condiment, and six trials provided data comparing iron fortification in combination with other micronutrients versus the same condiment with other micronutrients, but no added iron. In one trial, the fortificant contained micronutrients that may have affected the absorption of iron. Overall no studies were assessed as having a low risk of bias. All included studies were assessed to have a high overall risk of bias, with the most concerns being around allocation concealment, blinding, and random sequence generation. There was very high heterogeneity amongst studies in almost all examined outcomes. Condiments/seasonings fortified with iron versus unfortified condiments/seasonings We are uncertain about whether consuming condiments/seasonings fortified with iron in comparison to the same unfortified condiment reduces anaemia at the end of intervention (risk ratio (RR) 0.34, 95% confidence interval (CI) 0.18 to 0.65; 2328 participants; 4 studies; very low-certainty of evidence). We are uncertain about whether consuming iron-fortified condiments increases haemoglobin concentrations (mean difference (MD) 6.40 (g/L), 95% CI -0.62 to 13.41; 2808 participants; 5 studies; very low-certainty evidence). Fortification of condiments/seasonings with iron probably slightly reduces ID (RR 0.33, 95% CI 0.11 to 1.01; 391 participants; 2 studies; moderate-certainty evidence). We are uncertain about whether fortification with iron increases ferritin concentration (MD 14.81 (µg/L), 95% CI 5.14 to 24.48; 4459 participants; 6 studies; very low-certainty evidence). Condiments/seasonings fortified with iron plus other micronutrients versus condiments/seasonings fortified with other micronutrients except iron Consuming condiments/seasonings fortified with iron plus other micronutrients may reduce anaemia (RR 0.59, 95% CI 0.40 to 0.89; 1007 participants; 4 studies; low-certainty evidence). We are uncertain about whether fortification of condiments/seasonings with iron plus other micronutrients will improve haemoglobin concentration (MD 6.22 g/dL, 95% CI 1.60 to 10.83; 1270 participants; 5 studies; very low-certainty evidence). It may reduce ID (RR 0.36, 95% CI 0.19 to 0.69; 1154 participants; 4 studies; low-certainty evidence). We are uncertain about whether fortification with iron plus other micronutrients improves ferritin concentration (MD 10.63 µg/L, 95% CI 2.40 to 18.85; 1251 participants; 5 studies; very low -certainty evidence). Condiments/seasonings fortified with iron versus no intervention No trial reported data on this comparison. No studies reported adverse effects. Funding sources do not appear to have distorted the results in any of the assessed trials. AUTHORS' CONCLUSIONS We are uncertain whether consuming iron-fortified condiments/seasonings reduces anaemia, improves haemoglobin concentration, or improves ferritin concentration. It may reduce ID. Findings about ferritin should be interpreted with caution since its concentrations increase during inflammation. Consuming condiments/seasonings fortified with iron plus other micronutrients may reduce anaemia, and we are uncertain whether this will improve haemoglobin concentration or ferritin concentration. More studies are needed to determine the true effect of iron-fortified condiments/seasonings on preventing anaemia and improving health. The effects of this intervention on other health outcomes like malaria incidence, growth and development are unclear.
Collapse
Affiliation(s)
| | - Luz Maria De-Regil
- Department of Nutrition and Food Safety, World Health Organisation, Geneva, Switzerland
| | - Vanessa Pike
- Global Technical Services, Nutrition International, Ottawa, Canada
- Canadian Foodgrains Bank, Winnipeg, Canada
| | - Prasanna Mithra
- Department of Community Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Baxter JAB, Carducci B, Kamali M, Zlotkin SH, Bhutta ZA. Fortification of salt with iron and iodine versus fortification of salt with iodine alone for improving iron and iodine status. Cochrane Database Syst Rev 2022; 4:CD013463. [PMID: 35446435 PMCID: PMC9022669 DOI: 10.1002/14651858.cd013463.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Iron deficiency is an important micronutrient deficiency contributing to the global burden of disease, and particularly affects children, premenopausal women, and people in low-resource settings. Anaemia is a possible consequence of iron deficiency, although clinical and functional manifestations of anemia can occur without iron deficiency (e.g. from other nutritional deficiencies, inflammation, and parasitic infections). Direct nutritional interventions, such as large-scale food fortification, can improve micronutrient status, especially in vulnerable populations. Given the highly successful delivery of iodine through salt iodisation, fortifying salt with iodine and iron has been proposed as a method for preventing iron deficiency anaemia. Further investigation of the effect of double-fortified salt (i.e. with iron and iodine) on iron deficiency and related outcomes is warranted. OBJECTIVES: To assess the effect of double-fortified salt (DFS) compared to iodised salt (IS) on measures of iron and iodine status in all age groups. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, five other databases, and two trial registries up to April 2021. We also searched relevant websites, reference lists, and contacted the authors of included studies. SELECTION CRITERIA All prospective randomised controlled trials (RCTs), including cluster-randomised controlled trials (cRCTs), and controlled before-after (CBA) studies, comparing DFS with IS on measures of iron and iodine status were eligible, irrespective of language or publication status. Study reports published as abstracts were also eligible. DATA COLLECTION AND ANALYSIS Three review authors applied the study selection criteria, extracted data, and assessed risk of bias. Two review authors rated the certainty of the evidence using GRADE. When necessary, we contacted study authors for additional information. We assessed RCTs, cRCTs and CBA studies using the Cochrane RoB 1 tool and Cochrane Effective Practice and Organisation of Care (EPOC) tool across the following domains: random sequence generation; allocation concealment; blinding of participants and personnel; blinding of outcome assessment; incomplete outcome data; selective reporting; and other potential sources of bias due to similar baseline characteristics, similar baseline outcome assessments, and declarations of conflicts of interest and funding sources. We also assessed cRCTs for recruitment bias, baseline imbalance, loss of clusters, incorrect analysis, and comparability with individually randomised studies. We assigned studies an overall risk of bias judgement (low risk, high risk, or unclear). MAIN RESULTS: We included 18 studies (7 RCTs, 7 cRCTs, 4 CBA studies), involving over 8800 individuals from five countries. One study did not contribute to analyses. All studies used IS as the comparator and measured and reported outcomes at study endpoint. With regards to risk of bias, five RCTs had unclear risk of bias, with some concerns in random sequence generation and allocation concealment, while we assessed two RCTs to have a high risk of bias overall, whereby high risk was noted in at least one or more domain(s). Of the seven cRCTs, we assessed six at high risk of bias overall, with one or more domain(s) judged as high risk and one cRCT had an unclear risk of bias with concerns around allocation and blinding. The four CBA studies had high or unclear risk of bias for most domains. The RCT evidence suggested that, compared to IS, DFS may slightly improve haemoglobin concentration (mean difference (MD) 0.43 g/dL, 95% confidence interval (CI) 0.23 to 0.63; 13 studies, 4564 participants; low-certainty evidence), but DFS may reduce urinary iodine concentration compared to IS (MD -96.86 μg/L, 95% CI -164.99 to -28.73; 7 studies, 1594 participants; low-certainty evidence), although both salts increased mean urinary iodine concentration above the cut-off deficiency. For CBA studies, we found DFS made no difference in haemoglobin concentration (MD 0.26 g/dL, 95% CI -0.10 to 0.63; 4 studies, 1397 participants) or urinary iodine concentration (MD -17.27 µg/L, 95% CI -49.27 to 14.73; 3 studies, 1127 participants). No studies measured blood pressure. For secondary outcomes reported in RCTs, DFS may result in little to no difference in ferritin concentration (MD -3.94 µg/L, 95% CI -20.65 to 12.77; 5 studies, 1419 participants; low-certainty evidence) or transferrin receptor concentration (MD -4.68 mg/L, 95% CI -11.67 to 2.31; 5 studies, 1256 participants; low-certainty evidence) compared to IS. However, DFS may reduce zinc protoporphyrin concentration (MD -27.26 µmol/mol, 95% CI -47.49 to -7.03; 3 studies, 921 participants; low-certainty evidence) and result in a slight increase in body iron stores (MD 1.77 mg/kg, 95% CI 0.79 to 2.74; 4 studies, 847 participants; low-certainty evidence). In terms of prevalence of anaemia, DFS may reduce the risk of anaemia by 21% (risk ratio (RR) 0.79, 95% CI 0.66 to 0.94; P = 0.007; 8 studies, 2593 participants; moderate-certainty evidence). Likewise, DFS may reduce the risk of iron deficiency anaemia by 65% (RR 0.35, 95% CI 0.24 to 0.52; 5 studies, 1209 participants; low-certainty evidence). Four studies measured salt intake at endline, although only one study reported this for both groups. Two studies reported prevalence of goitre, while one CBA study measured and reported serum iron concentration. One study reported adverse effects. No studies measured hepcidin concentration. AUTHORS' CONCLUSIONS Our findings suggest DFS may have a small positive impact on haemoglobin concentration and the prevalence of anaemia compared to IS, particularly when considering efficacy studies. Future research should prioritise studies that incorporate robust study designs and outcome measures (e.g. anaemia, iron status measures) to better understand the effect of DFS provision to a free-living population (non-research population), where there could be an added cost to purchase double-fortified salt. Adequately measuring salt intake, both at baseline and endline, and adjusting for inflammation will be important to understanding the true effect on measures of iron status.
Collapse
Affiliation(s)
- Jo-Anna B Baxter
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Bianca Carducci
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Mahdis Kamali
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- Offord Centre for Child Studies, Hamilton, Canada
| | - Stanley H Zlotkin
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
- Munk School of Global Affairs and Public Policy, University of Toronto, Toronto, Canada
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
- Centre of Excellence in Women and Child Health, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
3
|
Field MS, Mithra P, Peña-Rosas JP. Wheat flour fortification with iron and other micronutrients for reducing anaemia and improving iron status in populations. Cochrane Database Syst Rev 2021; 1:CD011302. [PMID: 33461239 PMCID: PMC8407500 DOI: 10.1002/14651858.cd011302.pub3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Anaemia is a condition where the number of red blood cells (and consequently their oxygen-carrying capacity) is insufficient to meet the body's physiological needs. Fortification of wheat flour is deemed a useful strategy to reduce anaemia in populations. OBJECTIVES To determine the benefits and harms of wheat flour fortification with iron alone or with other vitamins and minerals on anaemia, iron status and health-related outcomes in populations over two years of age. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, 21 other databases and two trials registers up to 21 July 2020, together with contacting key organisations to identify additional studies. SELECTION CRITERIA We included cluster- or individually-randomised controlled trials (RCTs) carried out among the general population from any country, aged two years and above. The interventions were fortification of wheat flour with iron alone or in combination with other micronutrients. We included trials comparing any type of food item prepared from flour fortified with iron of any variety of wheat DATA COLLECTION AND ANALYSIS: Two review authors independently screened the search results and assessed the eligibility of studies for inclusion, extracted data from included studies and assessed risks of bias. We followed Cochrane methods in this review. MAIN RESULTS Our search identified 3538 records, after removing duplicates. We included 10 trials, involving 3319 participants, carried out in Bangladesh, Brazil, India, Kuwait, Philippines, South Africa and Sri Lanka. We identified two ongoing studies and one study is awaiting classification. The duration of interventions varied from 3 to 24 months. One study was carried out among adult women and one trial among both children and nonpregnant women. Most of the included trials were assessed as low or unclear risk of bias for key elements of selection, performance or reporting bias. Three trials used 41 mg to 60 mg iron/kg flour, three trials used less than 40 mg iron/kg and three trials used more than 60 mg iron/kg flour. One trial used various iron levels based on type of iron used: 80 mg/kg for electrolytic and reduced iron and 40 mg/kg for ferrous fumarate. All included studies contributed data for the meta-analyses. Iron-fortified wheat flour with or without other micronutrients added versus wheat flour (no added iron) with the same other micronutrients added Iron-fortified wheat flour with or without other micronutrients added versus wheat flour (no added iron) with the same other micronutrients added may reduce by 27% the risk of anaemia in populations (risk ratio (RR) 0.73, 95% confidence interval (CI) 0.55 to 0.97; 5 studies, 2315 participants; low-certainty evidence). It is uncertain whether iron-fortified wheat flour with or without other micronutrients reduces iron deficiency (RR 0.46, 95% CI 0.20 to 1.04; 3 studies, 748 participants; very low-certainty evidence) or increases haemoglobin concentrations (in g/L) (mean difference MD 2.75, 95% CI 0.71 to 4.80; 8 studies, 2831 participants; very low-certainty evidence). No trials reported data on adverse effects in children (including constipation, nausea, vomiting, heartburn or diarrhoea), except for risk of infection or inflammation at the individual level. The intervention probably makes little or no difference to the risk of Infection or inflammation at individual level as measured by C-reactive protein (CRP) (mean difference (MD) 0.04, 95% CI -0.02 to 0.11; 2 studies, 558 participants; moderate-certainty evidence). Iron-fortified wheat flour with other micronutrients added versus unfortified wheat flour (nil micronutrients added) It is unclear whether wheat flour fortified with iron, in combination with other micronutrients decreases anaemia (RR 0.77, 95% CI 0.41 to 1.46; 2 studies, 317 participants; very low-certainty evidence). The intervention probably reduces the risk of iron deficiency (RR 0.73, 95% CI 0.54 to 0.99; 3 studies, 382 participants; moderate-certainty evidence) and it is unclear whether it increases average haemoglobin concentrations (MD 2.53, 95% CI -0.39 to 5.45; 4 studies, 532 participants; very low-certainty evidence). No trials reported data on adverse effects in children. Nine out of 10 trials reported sources of funding, with most having multiple sources. Funding source does not appear to have distorted the results in any of the assessed trials. AUTHORS' CONCLUSIONS Fortification of wheat flour with iron (in comparison to unfortified flour, or where both groups received the same other micronutrients) may reduce anaemia in the general population above two years of age, but its effects on other outcomes are uncertain. Iron-fortified wheat flour in combination with other micronutrients, in comparison with unfortified flour, probably reduces iron deficiency, but its effects on other outcomes are uncertain. None of the included trials reported data on adverse side effects except for risk of infection or inflammation at the individual level. The effects of this intervention on other health outcomes are unclear. Future studies at low risk of bias should aim to measure all important outcomes, and to further investigate which variants of fortification, including the role of other micronutrients as well as types of iron fortification, are more effective, and for whom.
Collapse
Affiliation(s)
- Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Prasanna Mithra
- Department of Community Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Juan Pablo Peña-Rosas
- Department of Nutrition and Food Safety, World Health Organization, Geneva, Switzerland
| |
Collapse
|
4
|
Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, Spieldenner J. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev 2017; 75:49-60. [PMID: 27974599 PMCID: PMC5155616 DOI: 10.1093/nutrit/nuw055] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In light of evidence that high-dose iron supplements lead to a range of adverse events in low-income settings, the safety and efficacy of lower doses of iron provided through biological or industrial fortification of foodstuffs is reviewed. First, strategies for point-of-manufacture chemical fortification are compared with biofortification achieved through plant breeding. Recent insights into the mechanisms of human iron absorption and regulation, the mechanisms by which iron can promote malaria and bacterial infections, and the role of iron in modifying the gut microbiota are summarized. There is strong evidence that supplemental iron given in nonphysiological amounts can increase the risk of bacterial and protozoal infections (especially malaria), but the use of lower quantities of iron provided within a food matrix, ie, fortified food, should be safer in most cases and represents a more logical strategy for a sustained reduction of the risk of deficiency by providing the best balance of risk and benefits. Further research into iron compounds that would minimize the availability of unabsorbed iron to the gut microbiota is warranted.
Collapse
Affiliation(s)
- Andrew M Prentice
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| | - Yery A Mendoza
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Dora Pereira
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Carla Cerami
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rita Wegmuller
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne Constable
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jörg Spieldenner
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Low MSY, Speedy J, Styles CE, De‐Regil LM, Pasricha S. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. Cochrane Database Syst Rev 2016; 4:CD009747. [PMID: 27087396 PMCID: PMC10182438 DOI: 10.1002/14651858.cd009747.pub2] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Iron-deficiency anaemia is highly prevalent among non-pregnant women of reproductive age (menstruating women) worldwide, although the prevalence is highest in lower-income settings. Iron-deficiency anaemia has been associated with a range of adverse health outcomes, which restitution of iron stores using iron supplementation has been considered likely to resolve. Although there have been many trials reporting effects of iron in non-pregnant women, these trials have never been synthesised in a systematic review. OBJECTIVES To establish the evidence for effects of daily supplementation with iron on anaemia and iron status, as well as on physical, psychological and neurocognitive health, in menstruating women. SEARCH METHODS In November 2015 we searched CENTRAL, Ovid MEDLINE, EMBASE, and nine other databases, as well as four digital thesis repositories. In addition, we searched the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) and reference lists of relevant reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs comparing daily oral iron supplementation with or without a cointervention (folic acid or vitamin C), for at least five days per week at any dose, to control or placebo using either individual- or cluster-randomisation. Inclusion criteria were menstruating women (or women aged 12 to 50 years) reporting on predefined primary (anaemia, haemoglobin concentration, iron deficiency, iron-deficiency anaemia, all-cause mortality, adverse effects, and cognitive function) or secondary (iron status measured by iron indices, physical exercise performance, psychological health, adherence, anthropometric measures, serum/plasma zinc levels, vitamin A status, and red cell folate) outcomes. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures of Cochrane. MAIN RESULTS The search strategy identified 31,767 records; after screening, 90 full-text reports were assessed for eligibility. We included 67 trials (from 76 reports), recruiting 8506 women; the number of women included in analyses varied greatly between outcomes, with endpoint haemoglobin concentration being the outcome with the largest number of participants analysed (6861 women). Only 10 studies were considered at low overall risk of bias, with most studies presenting insufficient details about trial quality.Women receiving iron were significantly less likely to be anaemic at the end of intervention compared to women receiving control (risk ratio (RR) 0.39 (95% confidence interval (CI) 0.25 to 0.60, 10 studies, 3273 women, moderate quality evidence). Women receiving iron had a higher haemoglobin concentration at the end of intervention compared to women receiving control (mean difference (MD) 5.30, 95% CI 4.14 to 6.45, 51 studies, 6861 women, high quality evidence). Women receiving iron had a reduced risk of iron deficiency compared to women receiving control (RR 0.62, 95% CI 0.50 to 0.76, 7 studies, 1088 women, moderate quality evidence). Only one study (55 women) specifically reported iron-deficiency anaemia and no studies reported mortality. Seven trials recruiting 901 women reported on 'any side effect' and did not identify an overall increased prevalence of side effects from iron supplements (RR 2.14, 95% CI 0.94 to 4.86, low quality evidence). Five studies recruiting 521 women identified an increased prevalence of gastrointestinal side effects in women taking iron (RR 1.99, 95% CI 1.26 to 3.12, low quality evidence). Six studies recruiting 604 women identified an increased prevalence of loose stools/diarrhoea (RR 2.13, 95% CI 1.10, 4.11, high quality evidence); eight studies recruiting 1036 women identified an increased prevalence of hard stools/constipation (RR 2.07, 95% CI 1.35 to 3.17, high quality evidence). Seven studies recruiting 1190 women identified evidence of an increased prevalence of abdominal pain among women randomised to iron (RR 1.55, 95% CI 0.99 to 2.41, low quality evidence). Eight studies recruiting 1214 women did not find any evidence of an increased prevalence of nausea among women randomised to iron (RR 1.19, 95% CI 0.78 to 1.82). Evidence that iron supplementation improves cognitive performance in women is uncertain, as studies could not be meta-analysed and individual studies reported conflicting results. Iron supplementation improved maximal and submaximal exercise performance, and appears to reduce symptomatic fatigue. Although adherence could not be formally meta-analysed due to differences in reporting, there was no evident difference in adherence between women randomised to iron and control. AUTHORS' CONCLUSIONS Daily iron supplementation effectively reduces the prevalence of anaemia and iron deficiency, raises haemoglobin and iron stores, improves exercise performance and reduces symptomatic fatigue. These benefits come at the expense of increased gastrointestinal symptomatic side effects.
Collapse
Affiliation(s)
- Michael Sze Yuan Low
- Walter & Eliza Hall Institute of Medical ResearchDepartment of Immunology1G Royal ParadeParkvilleVictoriaAustralia3006
- Monash HealthDepartment of Clinical Haematology246 Clayton RoadClaytonVictoriaAustralia3168
| | - Joanna Speedy
- Australian Red Cross Blood ServiceClinical Services and Research297 Pirie StreetAdelaideSouth AustraliaAustralia5000
| | - Claire E Styles
- Australian Red Cross Blood ServiceClinical Services and ResearchLevel 1, 69 Walters DriveOsborne ParkPerthWestern AustraliaAustralia6017
| | - Luz Maria De‐Regil
- Micronutrient InitiativeResearch and Evaluation180 Elgin Street, Suite 1000OttawaONCanadaK2P 2K3
| | - Sant‐Rayn Pasricha
- MRC Weatherall Institute of Molecular Medicine, University of OxfordMRC Human Immunology UnitOxfordOxfordshireUKOX3 9DS
| | | |
Collapse
|
6
|
Pasricha SR, De-Regil LM, Garcia-Casal MN, Burford BJ, Gwirtz JA, Peña-Rosas JP. Fortification of maize flour with iron for preventing anaemia and iron deficiency in populations. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2012. [DOI: 10.1002/14651858.cd010187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sant-Rayn Pasricha
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne; Nossal Institute for Global Health; Melbourne VIC Australia 3010
| | - Luz Maria De-Regil
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; 20 Avenue Appia Geneva Switzerland 1211
| | - Maria N Garcia-Casal
- Instituto Venezolano de Investigaciones Cientificas; Centro de Medicina Experimental, Laboratorio de Fisiopatología.; Carretera Panamericana Km 11 Caracas Caracas Venezuela 20853
| | - Belinda J Burford
- The University of Melbourne; The McCaughey Centre, Melbourne School of Population Health; Level 5/207 Bouverie Street Parkville VIC Australia 3052
| | - Jeffrey A Gwirtz
- Kansas State University; Department of Grain Science and Industry; Manhattan Kansas USA 66502
| | - Juan Pablo Peña-Rosas
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; 20 Avenue Appia Geneva Switzerland 1211
| |
Collapse
|