1
|
Szabó GV, Szigetváry C, Turan C, Engh MA, Terebessy T, Fazekas A, Farkas N, Hegyi P, Molnár Z. Fluid resuscitation with balanced electrolyte solutions results in faster resolution of diabetic ketoacidosis than with 0.9% saline in adults - A systematic review and meta-analysis. Diabetes Metab Res Rev 2024; 40:e3831. [PMID: 38925619 DOI: 10.1002/dmrr.3831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Fluid resuscitation during diabetic ketoacidosis (DKA) is most frequently performed with 0.9% saline despite its high chloride and sodium concentration. Balanced Electrolyte Solutions (BES) may prove a more physiological alternative, but convincing evidence is missing. We aimed to compare the efficacy of 0.9% saline to BES in DKA management. MEDLINE, Cochrane Library, and Embase databases were searched for relevant studies using predefined keywords (from inception to 27 November 2021). Relevant studies were those in which 0.9% saline (Saline-group) was compared to BES (BES-group) in adults admitted with DKA. Two reviewers independently extracted data and assessed the risk of bias. The primary outcome was time to DKA resolution (defined by each study individually), while the main secondary outcomes were changes in laboratory values, duration of insulin infusion, and mortality. We included seven randomized controlled trials and three observational studies with 1006 participants. The primary outcome was reported for 316 patients, and we found that BES resolves DKA faster than 0.9% saline with a mean difference (MD) of -5.36 [95% CI: -10.46, -0.26] hours. Post-resuscitation chloride (MD: -4.26 [-6.97, -1.54] mmoL/L) and sodium (MD: -1.38 [-2.14, -0.62] mmoL/L) levels were significantly lower. In contrast, levels of post-resuscitation bicarbonate (MD: 1.82 [0.75, 2.89] mmoL/L) were significantly elevated in the BES-group compared to the Saline-group. There was no statistically significant difference between the groups regarding the duration of parenteral insulin administration (MD: 0.16 [-3.03, 3.35] hours) or mortality (OR: -0.67 [0.12, 3.68]). Studies showed some concern or a high risk of bias, and the level of evidence for most outcomes was low. This meta-analysis indicates that the use of BES resolves DKA faster than 0.9% saline. Therefore, DKA guidelines should consider BES instead of 0.9% saline as the first choice during fluid resuscitation.
Collapse
Affiliation(s)
- Gergő Vilmos Szabó
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Emergency Department, Szent György University Teaching Hospital of Fejér County, Székesfehérvár, Hungary
- National Ambulance Service, Budapest, Hungary
- Hungarian Air Ambulance Nonprofit Ltd., Budaörs, Hungary
| | - Csenge Szigetváry
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Caner Turan
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Terebessy
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Orthopaedics, Semmelweis University, Budapest, Hungary
| | - Alíz Fazekas
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University, Poznan, Poland
| |
Collapse
|
2
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society. Neurocrit Care 2024; 40:1-37. [PMID: 38040992 PMCID: PMC10861627 DOI: 10.1007/s12028-023-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 12/03/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
Affiliation(s)
| | | | - Edilberto Amorim
- San Francisco-Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Mary Kay Bader
- Providence Mission Hospital Nursing Center of Excellence/Critical Care Services, Mission Viejo, USA
| | | | | | | | | | | | | | - Karl B Kern
- Sarver Heart Center, University of Arizona, Tucson, USA
| | | | | | | | - Jerry P Nolan
- Warwick Medical School, University of Warwick, Coventry, UK
- Royal United Hospital, Bath, UK
| | - Mauro Oddo
- CHUV-Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | | - Anezi Uzendu
- St. Luke's Mid America Heart Institute, Kansas City, USA
| | - Brian Walsh
- University of Texas Medical Branch School of Health Sciences, Galveston, USA
| | | | | |
Collapse
|
3
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement From the American Heart Association and Neurocritical Care Society. Circulation 2024; 149:e168-e200. [PMID: 38014539 PMCID: PMC10775969 DOI: 10.1161/cir.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
|
4
|
Lee H, Kim JT. Pediatric perioperative fluid management. Korean J Anesthesiol 2023; 76:519-530. [PMID: 37073521 PMCID: PMC10718623 DOI: 10.4097/kja.23128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
The purpose of perioperative fluid management in children is to maintain adequate volume status, electrolyte level, and endocrine system homeostasis during the perioperative period. Although hypotonic solutions containing glucose have traditionally been used as pediatric maintenance fluids, recent studies have shown that isotonic balanced crystalloid solutions lower the risk of hyponatremia and metabolic acidosis perioperatively. Isotonic balanced solutions have been found to exhibit safer and more physiologically appropriate characteristics for perioperative fluid maintenance and replacement. Additionally, adding 1-2.5% glucose to the maintenance fluid can help prevent children from developing hypoglycemia as well as lipid mobilization, ketosis, and hyperglycemia. The fasting time should be as short as possible without compromising safety; recent guidelines have recommended that the duration of clear fluid fasting be reduced to 1 h. The ongoing loss of fluid and blood as well as the free water retention induced by antidiuretic hormone secretion are unique characteristics of postoperative fluid management that must be considered. Reducing the infusion rate of the isotonic balanced solution may be necessary to avoid dilutional hyponatremia during the postoperative period. In summary, perioperative fluid management in pediatric patients requires careful attention because of the limited reserve capacity in this population. Isotonic balanced solutions appear to be the safest and most beneficial choice for most pediatric patients, considering their physiology and safety concerns.
Collapse
Affiliation(s)
- Hyungmook Lee
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Tae Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Florez ID, Sierra J, Pérez-Gaxiola G. Balanced crystalloid solutions versus 0.9% saline for treating acute diarrhoea and severe dehydration in children. Cochrane Database Syst Rev 2023; 5:CD013640. [PMID: 37196992 PMCID: PMC10192509 DOI: 10.1002/14651858.cd013640.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND Although acute diarrhoea is a self-limiting disease, dehydration may occur in some children. Dehydration is the consequence of an increased loss of water and electrolytes (sodium, chloride, potassium, and bicarbonate) in liquid stools. When these losses are high and not replaced adequately, severe dehydration appears. Severe dehydration is corrected with intravenous solutions. The most frequently used solution for this purpose is 0.9% saline. Balanced solutions (e.g. Ringer's lactate) are alternatives to 0.9% saline and have been associated with fewer days of hospitalization and better biochemical outcomes. Available guidelines provide conflicting recommendations. It is unclear whether 0.9% saline or balanced intravenous fluids are most effective for rehydrating children with severe dehydration due to diarrhoea. OBJECTIVES To evaluate the benefits and harms of balanced solutions for the rapid rehydration of children with severe dehydration due to acute diarrhoea, in terms of time in hospital and mortality compared to 0.9% saline. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 4 May 2022. SELECTION CRITERIA We included randomized controlled trials in children with severe dehydration due to acute diarrhoea comparing balanced solutions, such as Ringer's lactate or Plasma-Lyte with 0.9% saline solution, for rapid rehydration. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. time in hospital and 2. MORTALITY Our secondary outcomes were 3. need for additional fluids, 4. total amount of fluids received, 5. time to resolution of metabolic acidosis, 6. change in and the final values of biochemical measures (pH, bicarbonate, sodium, chloride, potassium, and creatinine), 7. incidence of acute kidney injury, and 8. ADVERSE EVENTS We used GRADE to assess the certainty of the evidence. MAIN RESULTS Characteristics of the included studies We included five studies with 465 children. Data for meta-analysis were available from 441 children. Four studies were conducted in low- and middle-income countries and one study in two high-income countries. Four studies evaluated Ringer's lactate, and one study evaluated Plasma-Lyte. Two studies reported the time in hospital, and only one study reported mortality as an outcome. Four studies reported final pH and five studies reported bicarbonate levels. Adverse events reported were hyponatremia and hypokalaemia in two studies each. Risk of bias All studies had at least one domain at high or unclear risk of bias. The risk of bias assessment informed the GRADE assessments. Primary outcomes Compared to 0.9% saline, the balanced solutions likely result in a slight reduction of the time in hospital (mean difference (MD) -0.35 days, 95% confidence interval (CI) -0.60 to -0.10; 2 studies; moderate-certainty evidence). However, the evidence is very uncertain about the effect of the balanced solutions on mortality during hospitalization in severely dehydrated children (risk ratio (RR) 0.33, 95% CI 0.02 to 7.39; 1 study, 22 children; very low-certainty evidence). Secondary outcomes Balanced solutions probably produce a higher increase in blood pH (MD 0.06, 95% CI 0.03 to 0.09; 4 studies, 366 children; low-certainty evidence) and bicarbonate levels (MD 2.44 mEq/L, 95% CI 0.92 to 3.97; 443 children, four studies; low-certainty evidence). Furthermore, balanced solutions likely reduces the risk of hypokalaemia after the intravenous correction (RR 0.54, 95% CI 0.31 to 0.96; 2 studies, 147 children; moderate-certainty evidence). Nonetheless, the evidence suggests that balanced solutions may result in no difference in the need for additional intravenous fluids after the initial correction; in the amount of fluids administered; or in the mean change of sodium, chloride, potassium, and creatinine levels. AUTHORS' CONCLUSIONS The evidence is very uncertain about the effect of balanced solutions on mortality during hospitalization in severely dehydrated children. However, balanced solutions likely result in a slight reduction of the time in the hospital compared to 0.9% saline. Also, balanced solutions likely reduce the risk of hypokalaemia after intravenous correction. Furthermore, the evidence suggests that balanced solutions compared to 0.9% saline probably produce no changes in the need for additional intravenous fluids or in other biochemical measures such as sodium, chloride, potassium, and creatinine levels. Last, there may be no difference between balanced solutions and 0.9% saline in the incidence of hyponatraemia.
Collapse
Affiliation(s)
- Ivan D Florez
- Department of Pediatrics, University of Antioquia, Medellin, Colombia
- Paediatric Intensive Care Unit, Clínica Las Américas-AUNA, Medellin, Colombia
- School of Rehabilitation Science, McMaster University, Hamilton, Canada
| | - Javier Sierra
- Department of Pediatrics, University of Antioquia, Medellin, Colombia
- Emergency Department, Hospital General de Medellin, Medellin, Colombia
| | | |
Collapse
|
6
|
Rossaint R, Afshari A, Bouillon B, Cerny V, Cimpoesu D, Curry N, Duranteau J, Filipescu D, Grottke O, Grønlykke L, Harrois A, Hunt BJ, Kaserer A, Komadina R, Madsen MH, Maegele M, Mora L, Riddez L, Romero CS, Samama CM, Vincent JL, Wiberg S, Spahn DR. The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition. Crit Care 2023; 27:80. [PMID: 36859355 PMCID: PMC9977110 DOI: 10.1186/s13054-023-04327-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Severe trauma represents a major global public health burden and the management of post-traumatic bleeding continues to challenge healthcare systems around the world. Post-traumatic bleeding and associated traumatic coagulopathy remain leading causes of potentially preventable multiorgan failure and death if not diagnosed and managed in an appropriate and timely manner. This sixth edition of the European guideline on the management of major bleeding and coagulopathy following traumatic injury aims to advise clinicians who care for the bleeding trauma patient during the initial diagnostic and therapeutic phases of patient management. METHODS The pan-European, multidisciplinary Task Force for Advanced Bleeding Care in Trauma included representatives from six European professional societies and convened to assess and update the previous version of this guideline using a structured, evidence-based consensus approach. Structured literature searches covered the period since the last edition of the guideline, but considered evidence cited previously. The format of this edition has been adjusted to reflect the trend towards concise guideline documents that cite only the highest-quality studies and most relevant literature rather than attempting to provide a comprehensive literature review to accompany each recommendation. RESULTS This guideline comprises 39 clinical practice recommendations that follow an approximate temporal path for management of the bleeding trauma patient, with recommendations grouped behind key decision points. While approximately one-third of patients who have experienced severe trauma arrive in hospital in a coagulopathic state, a systematic diagnostic and therapeutic approach has been shown to reduce the number of preventable deaths attributable to traumatic injury. CONCLUSION A multidisciplinary approach and adherence to evidence-based guidelines are pillars of best practice in the management of severely injured trauma patients. Further improvement in outcomes will be achieved by optimising and standardising trauma care in line with the available evidence across Europe and beyond.
Collapse
Affiliation(s)
- Rolf Rossaint
- Department of Anaesthesiology, University Hospital Aachen, RWTH, Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| | - Arash Afshari
- grid.5254.60000 0001 0674 042XDepartment of Paediatric and Obstetric Anaesthesia, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Bertil Bouillon
- grid.412581.b0000 0000 9024 6397Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Centre (CMMC), University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109 Cologne, Germany
| | - Vladimir Cerny
- grid.424917.d0000 0001 1379 0994Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University, Socialni pece 3316/12A, CZ-40113 Usti nad Labem, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Anaesthesiology and Intensive Care Medicine, Charles University Faculty of Medicine, Simkova 870, CZ-50003 Hradec Králové, Czech Republic
| | - Diana Cimpoesu
- grid.411038.f0000 0001 0685 1605Department of Emergency Medicine, Emergency County Hospital “Sf. Spiridon” Iasi, University of Medicine and Pharmacy ”Grigore T. Popa” Iasi, Blvd. Independentei 1, RO-700111 Iasi, Romania
| | - Nicola Curry
- grid.410556.30000 0001 0440 1440Oxford Haemophilia and Thrombosis Centre, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Windmill Road, Oxford, OX3 7HE UK ,grid.4991.50000 0004 1936 8948Radcliffe Department of Medicine, Oxford University, Oxford, UK
| | - Jacques Duranteau
- grid.460789.40000 0004 4910 6535Department of Anesthesiology, Intensive Care and Perioperative Medicine, Assistance Publique Hôpitaux de Paris, Paris Saclay University, 78 rue du Général Leclerc, F-94275 Le Kremlin-Bicêtre Cedex, France
| | - Daniela Filipescu
- grid.8194.40000 0000 9828 7548Department of Cardiac Anaesthesia and Intensive Care, “Prof. Dr. C. C. Iliescu” Emergency Institute of Cardiovascular Diseases, Carol Davila University of Medicine and Pharmacy, Sos Fundeni 256-258, RO-022328 Bucharest, Romania
| | - Oliver Grottke
- grid.1957.a0000 0001 0728 696XDepartment of Anaesthesiology, University Hospital Aachen, RWTH, Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Lars Grønlykke
- grid.5254.60000 0001 0674 042XDepartment of Thoracic Anaesthesiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anatole Harrois
- grid.460789.40000 0004 4910 6535Department of Anesthesiology, Intensive Care and Perioperative Medicine, Assistance Publique Hôpitaux de Paris, Paris Saclay University, 78 rue du Général Leclerc, F-94275 Le Kremlin-Bicêtre Cedex, France
| | - Beverley J. Hunt
- grid.420545.20000 0004 0489 3985Thrombosis and Haemophilia Centre, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH UK
| | - Alexander Kaserer
- grid.412004.30000 0004 0478 9977Institute of Anaesthesiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Radko Komadina
- grid.8954.00000 0001 0721 6013Department of Traumatology, General and Teaching Hospital Celje, Medical Faculty, Ljubljana University, Oblakova ulica 5, SI-3000 Celje, Slovenia
| | - Mikkel Herold Madsen
- grid.5254.60000 0001 0674 042XDepartment of Paediatric and Obstetric Anaesthesia, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Marc Maegele
- grid.412581.b0000 0000 9024 6397Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Centre (CMMC), Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109 Cologne, Germany
| | - Lidia Mora
- grid.7080.f0000 0001 2296 0625Department of Anaesthesiology, Intensive Care and Pain Clinic, Vall d’Hebron Trauma, Rehabilitation and Burns Hospital, Autonomous University of Barcelona, Passeig de la Vall d’Hebron 119-129, ES-08035 Barcelona, Spain
| | - Louis Riddez
- grid.24381.3c0000 0000 9241 5705Department of Surgery and Trauma, Karolinska University Hospital, S-171 76 Solna, Sweden
| | - Carolina S. Romero
- grid.106023.60000 0004 1770 977XDepartment of Anaesthesia, Intensive Care and Pain Therapy, Consorcio Hospital General Universitario de Valencia, Universidad Europea of Valencia Methodology Research Department, Avenida Tres Cruces 2, ES-46014 Valencia, Spain
| | - Charles-Marc Samama
- Department of Anaesthesia, Intensive Care and Perioperative Medicine, GHU AP-HP Centre - Université Paris Cité - Cochin Hospital, 27 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Jean-Louis Vincent
- grid.4989.c0000 0001 2348 0746Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Sebastian Wiberg
- grid.5254.60000 0001 0674 042XDepartment of Thoracic Anaesthesiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Donat R. Spahn
- grid.412004.30000 0004 0478 9977Institute of Anaesthesiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
7
|
Huet O, Chapalain X, Vermeersch V, Moyer JD, Lasocki S, Cohen B, Dahyot-Fizelier C, Chalard K, Seguin P, Hourmant Y, Asehnoune K, Roquilly A. Impact of continuous hypertonic (NaCl 20%) saline solution on renal outcomes after traumatic brain injury (TBI): a post hoc analysis of the COBI trial. Crit Care 2023; 27:42. [PMID: 36707841 PMCID: PMC9881296 DOI: 10.1186/s13054-023-04311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/07/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND To evaluate if the increase in chloride intake during a continuous infusion of 20% hypertonic saline solution (HSS) is associated with an increase in the incidence of acute kidney injury (AKI) compared to standard of care in traumatic brain injury patients. METHODS In this post hoc analysis of the COBI trial, 370 patients admitted for a moderate-to-severe TBI in the 9 participating ICUs were enrolled. The intervention consisted in a continuous infusion of HSS to maintain a blood sodium level between 150 and 155 mmol/L for at least 48 h. Patients enrolled in the control arm were treated as recommended by the latest Brain Trauma foundation guidelines. The primary outcome of this study was the occurrence of AKI within 28 days after enrollment. AKI was defined by stages 2 or 3 according to KDIGO criteria. RESULTS After exclusion of missing data, 322 patients were included in this post hoc analysis. The patients randomized in the intervention arm received a significantly higher amount of chloride during the first 4 days (intervention group: 97.3 ± 31.6 g vs. control group: 61.3 ± 38.1 g; p < 0.001) and had higher blood chloride levels at day 4 (117.9 ± 10.7 mmol/L vs. 111.6 ± 9 mmol/L, respectively, p < 0.001). The incidence of AKI was not statistically different between the intervention and the control group (24.5% vs. 28.9%, respectively; p = 0.45). CONCLUSIONS Despite a significant increase in chloride intake, a continuous infusion of HSS was not associated with AKI in moderate-to-severe TBI patients. Our study does not confirm the potentially detrimental effect of chloride load on kidney function in ICU patients. TRIAL REGISTRATION The COBI trial was registered on clinicaltrial.gov (Trial registration number: NCT03143751, date of registration: 8 May 2017).
Collapse
Affiliation(s)
- Olivier Huet
- Department of Anesthesiology and Surgical Intensive Care Unit, Brest University Hospital, Boulevard Tanguy Prigent, 29609, Brest, France.
| | - Xavier Chapalain
- Department of Anesthesiology and Surgical Intensive Care Unit, Brest University Hospital, Boulevard Tanguy Prigent, 29609, Brest, France
| | - Véronique Vermeersch
- Department of Anesthesiology and Surgical Intensive Care Unit, Brest University Hospital, Boulevard Tanguy Prigent, 29609, Brest, France
| | - Jean-Denis Moyer
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP Nord, Paris, France
| | - Sigismond Lasocki
- Department of Anesthesia and Intensive Care Unit, Angers Hospital, Angers, France
| | - Benjamin Cohen
- Department of Anesthesia and Intensive Care Unit, Tours Hospital, Tours, France
| | | | - Kevin Chalard
- Department of Anesthesia and Intensive Care Unit, Montpellier Hospital, Montpellier, France
| | - P Seguin
- Department of Anesthesia and Intensive Care Unit, Rennes Hospital, Rennes, France
| | - Y Hourmant
- Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Université de Nantes, CHU Nantes, Nantes, France
| | - Karim Asehnoune
- Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Université de Nantes, CHU Nantes, Nantes, France
| | - Antoine Roquilly
- Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Université de Nantes, CHU Nantes, Nantes, France
| |
Collapse
|
8
|
Hyperchloremia and association with acute kidney injury in critically ill children. Pediatr Nephrol 2022:10.1007/s00467-022-05823-8. [PMID: 36409366 DOI: 10.1007/s00467-022-05823-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hyperchloremia has been associated with acute kidney injury (AKI) in critically ill adult patients. Data is limited in pediatric patients. Our study sought to determine if an association exists between hyperchloremia and AKI in pediatric patients admitted to the intensive care unit (PICU). METHODS This is a single-center retrospective cohort study of pediatric patients admitted to the PICU for greater than 24 h and who received intravenous fluids. Patients were excluded if they had a diagnosis of kidney disease or required kidney replacement therapy (KRT) within 6 h of admission. Exposures were hyperchloremia (serum chloride ≥ 110 mmol/L) within the first 7 days of PICU admission. The primary outcome was the development of AKI using the Kidney Disease Improving Global Outcomes (KDIGO) criteria. Secondary outcomes included time on mechanical ventilation, new KRT, PICU length of stay, and mortality. Outcomes were analyzed using multivariate logistic regression. RESULTS There were 407 patients included in the study, 209 in the hyperchloremic group and 198 in the non-hyperchloremic group. Univariate analysis demonstrated 108 (51.7%) patients in the hyperchloremic group vs. 54 (27.3%) in the non-hyperchloremic group (p = < .001) with AKI. On multivariate analysis, the odds ratio of AKI with hyperchloremia was 2.24 (95% CI 1.39-3.61) (p = .001). Hyperchloremia was not associated with increased odds of mortality, need for KRT, time on mechanical ventilation, or length of stay. CONCLUSION Hyperchloremia was associated with AKI in critically ill pediatric patients. Further pediatric clinical trials are needed to determine the benefit of a chloride restrictive vs. liberal fluid strategy. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
|
9
|
Bledsoe J, Peltan ID, Bunnell RJ, Brown SM, Jephson A, Groat D, Levin NM, Wilson E, Newbold J, Fontaine GV, Frandsen J, Hasleton D, Krakovitz P, Brunisholz K, Allen T. Order Substitutions and Education for Balanced Crystalloid Solution Use in an Integrated Health Care System and Association With Major Adverse Kidney Events. JAMA Netw Open 2022; 5:e2210046. [PMID: 35503217 PMCID: PMC9066288 DOI: 10.1001/jamanetworkopen.2022.10046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/10/2022] [Indexed: 11/25/2022] Open
Abstract
Importance Trials comparing balanced crystalloids with normal saline have yielded mixed results regarding reductions in kidney complications and mortality for hospitalized patients receiving intravenous fluids. Objective To evaluate the association of a multifaceted implementation program encouraging the preferential use of lactated Ringer solution with patient outcomes and intravenous fluid-prescribing practices in a large, multilevel health care system. Design, Setting, and Participants This type 2 hybrid implementation and comparative effectiveness study enrolled all patients 18 years or older who received 1 L or more of intravenous fluids while admitted to an emergency department and/or inpatient unit at 1 of 22 hospitals in Idaho and Utah between November 1, 2018, and February 29, 2020. An interrupted time series analysis was used to assess study outcomes before and after interventions to encourage use of lactated Ringer solution. Exposures Implementation program combining order set modification, electronic order entry alerts, and sequential clinician-targeted education to encourage prescribing of lactated Ringer solution instead of normal saline. Main Outcomes and Measures The primary implementation outcome was the patient-level proportion of intravenous fluids that was balanced crystalloids. The primary effectiveness outcome was the incidence of major adverse kidney events (MAKE30)-a composite of new persistent kidney dysfunction, new initiation of dialysis, and death-at 30 days. Results Among 148 423 patients (median [IQR] age, 47 [30-67] years; 91 302 women [61%]), the proportion of total fluids received that was lactated Ringer solution increased from 28% to 75% in the first week vs the last week of the study (immediate implementation effect odds ratio [OR], 3.44; 95% CI, 2.79-4.24). The estimated MAKE30 absolute risk reduction was 2.2% (95% CI, 1.3%-3.3%) based on interrupted time series analysis showing a decrease in the week-on-week trend for MAKE30 (OR difference, 0.03; 95% CI, 0.03-0.03, P < .001). The immediate postimplementation OR for MAKE30 was 0.88 (95% CI, 0.76-1.01), with a decrease in persistent kidney dysfunction (OR, 0.80; 95% CI, 0.69-0.93) and mortality (OR, 0.78; 95% CI, 0.65-0.93) but not dialysis (OR, 1.00; 95% CI, 0.76-1.32). Conclusions and Relevance In this comparative effectiveness study, an implementation program was associated with an increase in the proportion of fluids administered as lactated Ringer solution compared with normal saline and was associated with a reduction in MAKE30 events among patients treated in a large integrated health care system.
Collapse
Affiliation(s)
- Joseph Bledsoe
- Department of Emergency Medicine, Intermountain Healthcare, Salt Lake City, Utah
- Department of Emergency Medicine, Stanford Medicine, Palo Alto, California
| | - Ithan D. Peltan
- Intermountain Medical Center, Salt Lake City, Utah
- Division of Pulmonary/Critical Care, Department of Medicine, University of Utah, Salt Lake City
| | - R. J. Bunnell
- Department of Medicine, Intermountain Healthcare, Salt Lake City, Utah
| | - Samuel M. Brown
- Intermountain Medical Center, Salt Lake City, Utah
- Division of Pulmonary/Critical Care, Department of Medicine, University of Utah, Salt Lake City
| | - Al Jephson
- Division of Emergency Medicine, Department of Surgery, University of Utah, Salt Lake City
| | - Danielle Groat
- Division of Emergency Medicine, Department of Surgery, University of Utah, Salt Lake City
| | - Nicholas M. Levin
- Division of Emergency Medicine, Department of Surgery, University of Utah, Salt Lake City
| | - Emily Wilson
- Divisions of Epidemiology and Infectious Disease, Department of Medicine, University of Utah School of Medicine, Salt Lake City
| | - Jon Newbold
- Department of Pharmacy, Intermountain Healthcare, Salt Lake City, Utah
| | | | - Joe Frandsen
- Care Transformation Information Services, Intermountain Healthcare, Salt Lake City, Utah
| | - David Hasleton
- Department of Emergency Medicine, Intermountain Healthcare, Salt Lake City, Utah
- Specialty Based Care, Intermountain Healthcare, Salt Lake City, Utah
| | - Paul Krakovitz
- Specialty Based Care, Intermountain Healthcare, Salt Lake City, Utah
| | - Kim Brunisholz
- Healthcare Delivery Institute, Intermountain Healthcare, Salt Lake City, Utah
| | - Todd Allen
- Office of Quality and Patient Safety, The Queens Healthcare Systems, Honolulu, Hawaii
| |
Collapse
|
10
|
Ahmadi O, Nasr-Esfahani M, Azimi Meibody A, Ebrahimi M, Maghami-Mehr A. COVID-19 management in the emergency ward. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:86. [PMID: 34760003 PMCID: PMC8548900 DOI: 10.4103/jrms.jrms_551_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
The confirmed and suspected cases of the 2019 novel coronavirus disease (COVID-19) have increased in the entire world. There is still no vaccine or definitive treatment for this virus due to its unknown pathogenesis and proliferation pathways. Optimized supportive care remains the main therapy, and the clinical efficacy for the subsequent agents is still under investigation. Enormous demand for handling the COVID-19 outbreak challenged both the health-care personnel and medical supply system. As outbreaks of COVID-19 develop, prehospital workers, emergency medical services personnel, and other emergency responders are potentially asked to follow specific practice guidelines to mitigate the effects of an escalating pandemic. In this article, we have summarized the current guidance on potential COVID-19 management options. The recent experience with COVID-19 provided lessons on strategy and policymaking that the government and ministry of health should be on the alert and concentrate more on capacity to manage an outbreak like COVID-19. It is important to consider the new data that emerge daily regarding clinical characteristics, treatment options, and outcomes for COVID-19.
Collapse
Affiliation(s)
- Omid Ahmadi
- Department of Emergency Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azita Azimi Meibody
- Department of Emergency Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Azita Azimi Meibody, Department of Emergency Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Mehdi Ebrahimi
- Department of Emergency Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
11
|
Van de Voorde P, Turner NM, Djakow J, de Lucas N, Martinez-Mejias A, Biarent D, Bingham R, Brissaud O, Hoffmann F, Johannesdottir GB, Lauritsen T, Maconochie I. [Paediatric Life Support]. Notf Rett Med 2021; 24:650-719. [PMID: 34093080 PMCID: PMC8170638 DOI: 10.1007/s10049-021-00887-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
The European Resuscitation Council (ERC) Paediatric Life Support (PLS) guidelines are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations of the International Liaison Committee on Resuscitation (ILCOR). This section provides guidelines on the management of critically ill or injured infants, children and adolescents before, during and after respiratory/cardiac arrest.
Collapse
Affiliation(s)
- Patrick Van de Voorde
- Department of Emergency Medicine, Faculty of Medicine UG, Ghent University Hospital, Gent, Belgien
- Federal Department of Health, EMS Dispatch Center, East & West Flanders, Brüssel, Belgien
| | - Nigel M. Turner
- Paediatric Cardiac Anesthesiology, Wilhelmina Children’s Hospital, University Medical Center, Utrecht, Niederlande
| | - Jana Djakow
- Paediatric Intensive Care Unit, NH Hospital, Hořovice, Tschechien
- Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Medical Faculty of Masaryk University, Brno, Tschechien
| | | | - Abel Martinez-Mejias
- Department of Paediatrics and Emergency Medicine, Hospital de Terassa, Consorci Sanitari de Terrassa, Barcelona, Spanien
| | - Dominique Biarent
- Paediatric Intensive Care & Emergency Department, Hôpital Universitaire des Enfants, Université Libre de Bruxelles, Brüssel, Belgien
| | - Robert Bingham
- Hon. Consultant Paediatric Anaesthetist, Great Ormond Street Hospital for Children, London, Großbritannien
| | - Olivier Brissaud
- Réanimation et Surveillance Continue Pédiatriques et Néonatales, CHU Pellegrin – Hôpital des Enfants de Bordeaux, Université de Bordeaux, Bordeaux, Frankreich
| | - Florian Hoffmann
- Pädiatrische Intensiv- und Notfallmedizin, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Ludwig-Maximilians-Universität, München, Deutschland
| | | | - Torsten Lauritsen
- Paediatric Anaesthesia, The Juliane Marie Centre, University Hospital of Copenhagen, Kopenhagen, Dänemark
| | - Ian Maconochie
- Paediatric Emergency Medicine, Faculty of Medicine Imperial College, Imperial College Healthcare Trust NHS, London, Großbritannien
| |
Collapse
|
12
|
Crabtree NE, Epstein KL. Current Concepts in Fluid Therapy in Horses. Front Vet Sci 2021; 8:648774. [PMID: 33855057 PMCID: PMC8039297 DOI: 10.3389/fvets.2021.648774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the frequent inclusion of fluid therapy in the treatment of many conditions in horses, there are limited studies available to provide evidenced-based, species-specific recommendations. Thus, equine fluid therapy is based on the application of physiology and extrapolation from evidence in other veterinary species and human medicine. The physiologic principles that underly the use of fluids in medicine are, at first glance, straightforward and simple to understand. However, in the past 20 years, multiple studies in human medicine have shown that creating recommendations based on theory in combination with experimental and/or small clinical studies does not consistently result in best practice. As a result, there are ongoing controversies in human medicine over fluid types, volumes, and routes of administration. For example, the use of 0.9% NaCl as the replacement fluid of choice is being questioned, and the theoretical benefits of colloids have not translated to clinical cases and negative effects are greater than predicted. In this review, the current body of equine research in fluid therapy will be reviewed, connections to the controversies in human medicine and other veterinary species will be explored and, where appropriate, recommendations for fluid therapy in the adult horse will be made based on the available evidence. This review is focused on the decisions surrounding developing a fluid plan involving crystalloids, synthetic colloids, and plasma.
Collapse
Affiliation(s)
- Naomi E Crabtree
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Kira L Epstein
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
13
|
Lat I, Coopersmith CM, De Backer D, Coopersmith CM. The surviving sepsis campaign: fluid resuscitation and vasopressor therapy research priorities in adult patients. Intensive Care Med Exp 2021; 9:10. [PMID: 33644843 PMCID: PMC7917035 DOI: 10.1186/s40635-021-00369-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To expand upon the priorities of fluid resuscitation and vasopressor therapy research priorities identified by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. DATA SOURCES Original paper and literature search. STUDY SELECTION Several members of the original task force with expertise specific to the area of fluid resuscitation and vasopressor therapy. DATA EXTRACTION None. DATA SYNTHESIS None. CONCLUSION In the second of a series of manuscripts subsequent to the original paper, members with expertise in the subjects expound upon the three identified priorities related to fluid resuscitation and vasopressor therapies. This analysis summarizes what is known and what were identified as ongoing and future research.
Collapse
Affiliation(s)
- Ishaq Lat
- Department of Pharmacy, Shirley Ryan Abilitylab, Chicago, IL, USA.
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | - Daniel De Backer
- Department of Intensive Care, Chirec Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
14
|
Affiliation(s)
- H.D. O'Reilly
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - K. Menon
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
15
|
Nadim MK, Forni LG, Mehta RL, Connor MJ, Liu KD, Ostermann M, Rimmelé T, Zarbock A, Bell S, Bihorac A, Cantaluppi V, Hoste E, Husain-Syed F, Germain MJ, Goldstein SL, Gupta S, Joannidis M, Kashani K, Koyner JL, Legrand M, Lumlertgul N, Mohan S, Pannu N, Peng Z, Perez-Fernandez XL, Pickkers P, Prowle J, Reis T, Srisawat N, Tolwani A, Vijayan A, Villa G, Yang L, Ronco C, Kellum JA. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. NATURE REVIEWS. NEPHROLOGY 2020. [PMID: 33060844 DOI: 10.37473/fic/10.1038/s41581-020-00372-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Kidney involvement in patients with coronavirus disease 2019 (COVID-19) is common, and can range from the presence of proteinuria and haematuria to acute kidney injury (AKI) requiring renal replacement therapy (RRT; also known as kidney replacement therapy). COVID-19-associated AKI (COVID-19 AKI) is associated with high mortality and serves as an independent risk factor for all-cause in-hospital death in patients with COVID-19. The pathophysiology and mechanisms of AKI in patients with COVID-19 have not been fully elucidated and seem to be multifactorial, in keeping with the pathophysiology of AKI in other patients who are critically ill. Little is known about the prevention and management of COVID-19 AKI. The emergence of regional 'surges' in COVID-19 cases can limit hospital resources, including dialysis availability and supplies; thus, careful daily assessment of available resources is needed. In this Consensus Statement, the Acute Disease Quality Initiative provides recommendations for the diagnosis, prevention and management of COVID-19 AKI based on current literature. We also make recommendations for areas of future research, which are aimed at improving understanding of the underlying processes and improving outcomes for patients with COVID-19 AKI.
Collapse
Affiliation(s)
- Mitra K Nadim
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lui G Forni
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, University of Surrey, Guildford, UK.,Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Ravindra L Mehta
- Division of Nephrology, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael J Connor
- Divisions of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathleen D Liu
- Divisions of Nephrology and Critical Care Medicine, Departments of Medicine and Anesthesia, University of California, San Francisco, CA, USA
| | - Marlies Ostermann
- Department of Intensive Care, Guy's & St Thomas' NHS Foundation Hospital, London, UK
| | - Thomas Rimmelé
- Department of Anesthesiology and Intensive Care Medicine, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Samira Bell
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Eric Hoste
- Intensive Care Unit, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Faeq Husain-Syed
- Division of Nephrology, Pulmonology and Critical Care Medicine, Department of Medicine II, University Hospital Giessen and Marburg, Giessen, Germany
| | - Michael J Germain
- Division of Nephrology, Renal Transplant Associates of New England, Baystate Medical Center U Mass Medical School, Springfield, MA, USA
| | - Stuart L Goldstein
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shruti Gupta
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay L Koyner
- Division of Nephrology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matthieu Legrand
- Department of Anesthesiology and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Nuttha Lumlertgul
- Department of Intensive Care, Guy's & St Thomas' NHS Foundation Hospital, London, UK.,Division of Nephrology, Excellence Center for Critical Care Nephrology, Critical Care Nephrology Research Unit, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Sumit Mohan
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons and New York Presbyterian Hospital, New York, NY, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Neesh Pannu
- Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zhiyong Peng
- Division of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xose L Perez-Fernandez
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands
| | - John Prowle
- Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Thiago Reis
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, International Renal Research Institute of Vicenza, Vicenza, Italy.,Department of Nephrology, Clínica de Doenças Renais de Brasília, Brasília, Brazil
| | - Nattachai Srisawat
- Division of Nephrology, Excellence Center for Critical Care Nephrology, Critical Care Nephrology Research Unit, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand.,Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ashita Tolwani
- Division of Nephrology, Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Anitha Vijayan
- Division of Nephrology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gianluca Villa
- Section of Anaesthesiology and Intensive Care, Department of Health Science, University of Florence, Florence, Italy
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, China
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, International Renal Research Institute of Vicenza, Vicenza, Italy.,Department of Medicine, University of Padova, Padova, Italy
| | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Nadim MK, Forni LG, Mehta RL, Connor MJ, Liu KD, Ostermann M, Rimmelé T, Zarbock A, Bell S, Bihorac A, Cantaluppi V, Hoste E, Husain-Syed F, Germain MJ, Goldstein SL, Gupta S, Joannidis M, Kashani K, Koyner JL, Legrand M, Lumlertgul N, Mohan S, Pannu N, Peng Z, Perez-Fernandez XL, Pickkers P, Prowle J, Reis T, Srisawat N, Tolwani A, Vijayan A, Villa G, Yang L, Ronco C, Kellum JA. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol 2020; 16:747-764. [PMID: 33060844 PMCID: PMC7561246 DOI: 10.1038/s41581-020-00356-5] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
Kidney involvement in patients with coronavirus disease 2019 (COVID-19) is common, and can range from the presence of proteinuria and haematuria to acute kidney injury (AKI) requiring renal replacement therapy (RRT; also known as kidney replacement therapy). COVID-19-associated AKI (COVID-19 AKI) is associated with high mortality and serves as an independent risk factor for all-cause in-hospital death in patients with COVID-19. The pathophysiology and mechanisms of AKI in patients with COVID-19 have not been fully elucidated and seem to be multifactorial, in keeping with the pathophysiology of AKI in other patients who are critically ill. Little is known about the prevention and management of COVID-19 AKI. The emergence of regional 'surges' in COVID-19 cases can limit hospital resources, including dialysis availability and supplies; thus, careful daily assessment of available resources is needed. In this Consensus Statement, the Acute Disease Quality Initiative provides recommendations for the diagnosis, prevention and management of COVID-19 AKI based on current literature. We also make recommendations for areas of future research, which are aimed at improving understanding of the underlying processes and improving outcomes for patients with COVID-19 AKI.
Collapse
Affiliation(s)
- Mitra K Nadim
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lui G Forni
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, University of Surrey, Guildford, UK
- Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Ravindra L Mehta
- Division of Nephrology, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael J Connor
- Divisions of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathleen D Liu
- Divisions of Nephrology and Critical Care Medicine, Departments of Medicine and Anesthesia, University of California, San Francisco, CA, USA
| | - Marlies Ostermann
- Department of Intensive Care, Guy's & St Thomas' NHS Foundation Hospital, London, UK
| | - Thomas Rimmelé
- Department of Anesthesiology and Intensive Care Medicine, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Samira Bell
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Eric Hoste
- Intensive Care Unit, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Faeq Husain-Syed
- Division of Nephrology, Pulmonology and Critical Care Medicine, Department of Medicine II, University Hospital Giessen and Marburg, Giessen, Germany
| | - Michael J Germain
- Division of Nephrology, Renal Transplant Associates of New England, Baystate Medical Center U Mass Medical School, Springfield, MA, USA
| | - Stuart L Goldstein
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shruti Gupta
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay L Koyner
- Division of Nephrology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matthieu Legrand
- Department of Anesthesiology and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Nuttha Lumlertgul
- Department of Intensive Care, Guy's & St Thomas' NHS Foundation Hospital, London, UK
- Division of Nephrology, Excellence Center for Critical Care Nephrology, Critical Care Nephrology Research Unit, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Sumit Mohan
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons and New York Presbyterian Hospital, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Neesh Pannu
- Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zhiyong Peng
- Division of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xose L Perez-Fernandez
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands
| | - John Prowle
- Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Thiago Reis
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, International Renal Research Institute of Vicenza, Vicenza, Italy
- Department of Nephrology, Clínica de Doenças Renais de Brasília, Brasília, Brazil
| | - Nattachai Srisawat
- Division of Nephrology, Excellence Center for Critical Care Nephrology, Critical Care Nephrology Research Unit, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ashita Tolwani
- Division of Nephrology, Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Anitha Vijayan
- Division of Nephrology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gianluca Villa
- Section of Anaesthesiology and Intensive Care, Department of Health Science, University of Florence, Florence, Italy
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, China
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, International Renal Research Institute of Vicenza, Vicenza, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Florez ID, Sierra J, Pérez-Gaxiola G. Balanced crystalloid solutions versus 0.9% saline for treating acute diarrhoea and severe dehydration in children. Hippokratia 2020. [DOI: 10.1002/14651858.cd013640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ivan D Florez
- Department of Pediatrics; University of Antioquia; Medellin Colombia
| | - Javier Sierra
- Department of Pediatrics; University of Antioquia; Medellin Colombia
| | | |
Collapse
|
18
|
Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, Oczkowski S, Levy MM, Derde L, Dzierba A, Du B, Aboodi M, Wunsch H, Cecconi M, Koh Y, Chertow DS, Maitland K, Alshamsi F, Belley-Cote E, Greco M, Laundy M, Morgan JS, Kesecioglu J, McGeer A, Mermel L, Mammen MJ, Alexander PE, Arrington A, Centofanti JE, Citerio G, Baw B, Memish ZA, Hammond N, Hayden FG, Evans L, Rhodes A. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med 2020; 48:e440-e469. [PMID: 32224769 PMCID: PMC7176264 DOI: 10.1097/ccm.0000000000004363] [Citation(s) in RCA: 620] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, Coronavirus Disease 2019 (COVID-19), affecting thousands of people around the world. Urgent guidance for clinicians caring for the sickest of these patients is needed. METHODS We formed a panel of 36 experts from 12 countries. All panel members completed the World Health Organization conflict of interest disclosure form. The panel proposed 53 questions that are relevant to the management of COVID-19 in the ICU. We searched the literature for direct and indirect evidence on the management of COVID-19 in critically ill patients in the ICU. We identified relevant and recent systematic reviews on most questions relating to supportive care. We assessed the certainty in the evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach, then generated recommendations based on the balance between benefit and harm, resource and cost implications, equity, and feasibility. Recommendations were either strong or weak, or in the form of best practice recommendations. RESULTS The Surviving Sepsis Campaign COVID-19 panel issued 54 statements, of which four are best practice statements, nine are strong recommendations, and 35 are weak recommendations. No recommendation was provided for six questions. The topics were: 1) infection control, 2) laboratory diagnosis and specimens, 3) hemodynamic support, 4) ventilatory support, and 5) COVID-19 therapy. CONCLUSION The Surviving Sepsis Campaign COVID-19 panel issued several recommendations to help support healthcare workers caring for critically ill ICU patients with COVID-19. When available, we will provide new evidence in further releases of these guidelines.
Collapse
Affiliation(s)
- Waleed Alhazzani
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| | - Morten Hylander Møller
- Copenhagen University Hospital Rigshospitalet, Department of Intensive Care, Copenhagen, Denmark
- Scandinavian Society of Anaesthesiology and Intensive Care Medicine (SSAI)
| | - Yaseen M Arabi
- Intensive Care Department, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Mark Loeb
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| | - Michelle Ng Gong
- Division of Critical Care Medicine, Division of Pulmonary Medicine, Department of Medicine, Montefiore Healthcare System/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine and the Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Simon Oczkowski
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| | - Mitchell M Levy
- Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, USA
- Rhode Island Hospital, Providence, Rhode Island, USA
| | - Lennie Derde
- Department of Intensive Care Medicine, University medical Center Utrecht, Utrecht University, the Netherlands
- Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| | - Amy Dzierba
- Department of Pharmacy, New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, New York, USA
| | - Bin Du
- Medical ICU, Peking Union Medical College Hospital, Beijing
| | - Michael Aboodi
- Division of Critical Care Medicine, Division of Pulmonary Medicine, Department of Medicine, Montefiore Healthcare System/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hannah Wunsch
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Anesthesia and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maurizio Cecconi
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Daniel S Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center and Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, USA
| | | | - Fayez Alshamsi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Emilie Belley-Cote
- Department of Medicine, McMaster University, Hamilton, Canada
- Population Health Research Institute, Hamilton, Canada
| | - Massimiliano Greco
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Matthew Laundy
- Microbiology and Infection control, St George's University Hospitals NHS Foundation Trust & St George's University of London, London, UK
| | | | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University medical Center Utrecht, Utrecht University, the Netherlands
| | - Allison McGeer
- Division of Infectious Diseases, University of Toronto, Toronto, Canada
| | - Leonard Mermel
- Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, USA
| | - Manoj J Mammen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul E Alexander
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
- GUIDE Research Methods Group, Hamilton, Canada (https://guidecanada.org)
| | - Amy Arrington
- Houston Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | | | - Giuseppe Citerio
- Department of Medicine and Surgery, Milano-Bicocca University, Milano, Italy
- ASST-Monza, Desio and San Gerardo Hospital, Monza, Italy
| | - Bandar Baw
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Emergency Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Director, Research & Innovation Centre, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Naomi Hammond
- Critical Care Division, The George Institute for Global Health and UNSW Sydney, Australia
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, Sydney, Australia
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of, Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Laura Evans
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, USA
| | - Andrew Rhodes
- Adult Critical Care, St George's University Hospitals NHS Foundation Trust & St George's University of London, London, UK
| |
Collapse
|
19
|
Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, Oczkowski S, Levy MM, Derde L, Dzierba A, Du B, Aboodi M, Wunsch H, Cecconi M, Koh Y, Chertow DS, Maitland K, Alshamsi F, Belley-Cote E, Greco M, Laundy M, Morgan JS, Kesecioglu J, McGeer A, Mermel L, Mammen MJ, Alexander PE, Arrington A, Centofanti JE, Citerio G, Baw B, Memish ZA, Hammond N, Hayden FG, Evans L, Rhodes A. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 2020; 46:854-887. [PMID: 32222812 PMCID: PMC7101866 DOI: 10.1007/s00134-020-06022-5] [Citation(s) in RCA: 1338] [Impact Index Per Article: 267.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, Coronavirus Disease 2019 (COVID-19), affecting thousands of people around the world. Urgent guidance for clinicians caring for the sickest of these patients is needed. METHODS We formed a panel of 36 experts from 12 countries. All panel members completed the World Health Organization conflict of interest disclosure form. The panel proposed 53 questions that are relevant to the management of COVID-19 in the ICU. We searched the literature for direct and indirect evidence on the management of COVID-19 in critically ill patients in the ICU. We identified relevant and recent systematic reviews on most questions relating to supportive care. We assessed the certainty in the evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach, then generated recommendations based on the balance between benefit and harm, resource and cost implications, equity, and feasibility. Recommendations were either strong or weak, or in the form of best practice recommendations. RESULTS The Surviving Sepsis Campaign COVID-19 panel issued 54 statements, of which 4 are best practice statements, 9 are strong recommendations, and 35 are weak recommendations. No recommendation was provided for 6 questions. The topics were: (1) infection control, (2) laboratory diagnosis and specimens, (3) hemodynamic support, (4) ventilatory support, and (5) COVID-19 therapy. CONCLUSION The Surviving Sepsis Campaign COVID-19 panel issued several recommendations to help support healthcare workers caring for critically ill ICU patients with COVID-19. When available, we will provide new recommendations in further releases of these guidelines.
Collapse
Affiliation(s)
- Waleed Alhazzani
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Morten Hylander Møller
- Department of Intensive Care, Copenhagen University Hospital Rigshospitalet, 4131, Copenhagen, Denmark
- Scandinavian Society of Anaesthesiology and Intensive Care Medicine (SSAI), Copenhagen, Denmark
| | - Yaseen M Arabi
- Intensive Care Department, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Mark Loeb
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Michelle Ng Gong
- Division of Critical Care Medicine, Division of Pulmonary Medicine, Department of Medicine, Montefiore Healthcare System/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Simon Oczkowski
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Mitchell M Levy
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA
- Rhode Island Hospital, Providence, RI, USA
| | - Lennie Derde
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| | - Amy Dzierba
- Department of Pharmacy, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | - Bin Du
- Medical ICU, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing, 100730, China
| | - Michael Aboodi
- Division of Critical Care Medicine, Division of Pulmonary Medicine, Department of Medicine, Montefiore Healthcare System/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hannah Wunsch
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Anesthesia and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Maurizio Cecconi
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Daniel S Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center and Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Baltimore, USA
| | | | - Fayez Alshamsi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Emilie Belley-Cote
- Department of Medicine, McMaster University, Hamilton, Canada
- Population Health Research Institute, Hamilton, Canada
| | - Massimiliano Greco
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Matthew Laundy
- Microbiology and Infection Control, St George's University Hospitals NHS Foundation Trust & St George's University of London, London, UK
| | | | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Allison McGeer
- Division of Infectious Diseases, University of Toronto, Toronto, Canada
| | - Leonard Mermel
- Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Manoj J Mammen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, USA
| | - Paul E Alexander
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- GUIDE Research Methods Group, Hamilton, Canada
| | - Amy Arrington
- Houston Children's Hospital, Baylor College of Medicine, Houston, USA
| | | | - Giuseppe Citerio
- Department of Medicine and Surgery, Milano-Bicocca University, Milan, Italy
- ASST-Monza, Desio and San Gerardo Hospital, Monza, Italy
| | - Bandar Baw
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Emergency Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Director, Research and Innovation Centre, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Naomi Hammond
- Critical Care Division, The George Institute for Global Health and UNSW, Sydney, Australia
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, Sydney, Australia
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University, of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Laura Evans
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, USA
| | - Andrew Rhodes
- Adult Critical Care, St George's University Hospitals NHS Foundation Trust & St George's University of London, London, UK.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW We aimed to summarize the most current evidence on the main aspects of the diarrheal diseases in children. The following key elements were addressed: definitions, etiology, pathogenesis, diagnosis, dietary management, pharmacological treatments, and prevention. We covered the following questions: What are the most important clinical and laboratory features of the disease? What are the best approaches for the dietary management? What is the best way to classify the hydration status, and to prevent and treat the dehydration? What are the most effective and safe interventions for reducing the diarrhea and vomiting? RECENT FINDINGS Diarrheal diseases are one of the most common diseases in childhood. The most common cause is rotavirus. A key element in the approach of a child with diarrhea is determining their hydration status, which determines the fluid management. Laboratory tests are nor routinely required, as most of the cases, they do not affect the management and it should be indicated only in selected cases. Several treatments have been studied to reduce the duration of the diarrhea. Only symbiotics and zinc have shown to be effective and safe with high certainty on the evidence. Rest of the interventions although seem to be effective have low to very low quality of the evidence. The only effective and safe antiemetic for controlling vomiting is ondansetron. A list of antimicrobials indications according to the identified microorganisms is provided. We summarized the most current evidence on diagnosis, management, and prevention of diarrhea in children. More research is needed in some areas such as dehydration scales, rehydration management, antidiarrheals, and antibiotic treatments.
Collapse
|
21
|
Khatua B, Yaron JR, El-Kurdi B, Kostenko S, Papachristou GI, Singh VP. Ringer's Lactate Prevents Early Organ Failure by Providing Extracellular Calcium. J Clin Med 2020; 9:E263. [PMID: 31963691 PMCID: PMC7019478 DOI: 10.3390/jcm9010263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Ringer's lactate may improve early systemic inflammation during critical illnesses like severe acute pancreatitis, which are associated with hypocalcemia. Ringer's lactate is buffered and contains lactate and calcium. We, thus analyzed extracellular calcium or lactate's effects on the mechanisms, intermediary markers, and organ failure in models mimicking human disease with nonesterified fatty acid (NEFA) elevation. METHODS Meta-analyses and experimental studies were performed. Experimentally, extracellular calcium and lactate were compared in their interaction with linoleic acid (LA; a NEFA increased in human severe pancreatitis), and its subsequent effects on mitochondrial depolarization and cytosolic calcium signaling resulting in cell injury. In vivo, the effect of LA was studied on organ failure, along with the effect of calcium or lactate (pH 7.4) on severe acute pancreatitis-associated organ failure. A meta-analysis of human randomized control trials comparing Ringer's lactate to normal saline was done, focusing on necrosis and organ failure. RESULTS Calcium reacted ionically with LA and reduced lipotoxic necrosis. In vivo, LA induced organ failure and hypocalcemia. During severe pancreatitis, calcium supplementation in saline pH 7.4, unlike lactate, prevented hypocalcemia, increased NEFA saponification, reduced circulating NEFA and C-reactive protein , reduced pancreatic necrosis adjacent to fat necrosis, and normalized shock (carotid pulse distension) and blood urea nitrogen elevation on day 1. This, however, did not prevent the later increase in serum NEFA which caused delayed organ failure. Meta-analysis showed Ringer's lactate reduced necrosis, but not organ failure, compared with normal saline. CONCLUSION Hypocalcemia occurs due to excess NEFA binding calcium during a critical illness. Ringer's lactate's early benefits in systemic inflammation are by the calcium it provides reacting ionically with NEFA. This, however, does not prevent later organ failure from sustained NEFA generation. Future studies comparing calcium supplemented saline resuscitation to Ringer's lactate may provide insights to this pathophysiology.
Collapse
Affiliation(s)
- Biswajit Khatua
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Jordan R. Yaron
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Bara El-Kurdi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Sergiy Kostenko
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | - Vijay P. Singh
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
22
|
Juneja D, Savio RD, Srinivasan S, Pandit RA, Ramasubban S, Reddy PK, Singh MK, Gopal PB, Chaudhry D, Govil D, Dixit SB, Samavedam S. Basic Critical Care for Management of COVID-19 Patients: Position Paper of the Indian Society of Critical Care Medicine, Part II. Indian J Crit Care Med 2020; 24:S254-S262. [PMID: 33354049 PMCID: PMC7724927 DOI: 10.5005/jp-journals-10071-23593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In a resource-limited country like India, rationing of scarce critical care resources might be required to ensure appropriate delivery of care to the critically ill patients suffering from COVID-19 infection. Most of these patients require critical care support because of respiratory failure or presence of multiorgan dysfunction syndrome. As there is no pharmacological therapy available, respiratory support in the form of supplemental oxygen, noninvasive ventilation, and invasive mechanical ventilation remains mainstay of care in intensive care units. As there is still dearth of direct evidence, most of the data are extrapolated from the experience gained from the management of general critical care patients. How to cite this article: Juneja D, Savio RD, Srinivasan S, Pandit RA, Ramasubban S, Reddy PK, et al. Basic Critical Care for Management of COVID-19 Patients: Position Paper of the Indian Society of Critical Care Medicine, Part II. Indian J Crit Care Med 2020;24(Suppl 5):S254–S262.
Collapse
Affiliation(s)
- Deven Juneja
- Institute of Critical Care Medicine, Max Super Speciality Hospital, New Delhi, India
| | - Raymond D Savio
- Department of Critical Care Medicine, Apollo Hospitals, Chennai, Tamil Nadu, India
| | | | - Rahul A Pandit
- Department of Intensive Care, Fortis Hospital, Mulund, Mumbai, Maharashtra, India
| | - Suresh Ramasubban
- Department of Critical Care, Apollo Gleneagles Hospital, Kolkata, West Bengal, India
| | - Pavan K Reddy
- Department of Critical Care, CARE-Banjara, Hyderabad, Telangana, India
| | - Manoj K Singh
- Department of Critical Care, Apollo Hospitals International Limited, Ahmedabad, Gujarat, India
| | - Palepu Bn Gopal
- Department of Critical Care, Continental Hospital, Hyderabad, Telangana, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Deepak Govil
- Institute of Critical Care and Anesthesia, Medanta: The Medicity, Gurugram, Haryana, India
| | - Subhal B Dixit
- Department of Critical Care Medicine, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Srinivas Samavedam
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| |
Collapse
|