1
|
Zhang Y, Cao KX, Niu QJ, Deng J, Zhao L, Khalil MM, Karrow NA, Kuča K, Sun LH. Alpha-class glutathione S-transferases involved in the detoxification of aflatoxin B 1 in ducklings. Food Chem Toxicol 2023; 174:113682. [PMID: 36813151 DOI: 10.1016/j.fct.2023.113682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The objective of this study was to identify the key glutathione S-transferase (GST) isozymes involved in the detoxification of Aflatoxin B1 (AFB1) in ducks' primary hepatocytes. The full-length cDNA encoding the 10 GST isozymes (GST, GST3, GSTM3, MGST1, MGST2, MGST3, GSTK1, GSTT1, GSTO1 and GSTZ1) were isolated/synthesized from ducks' liver and cloned into the pcDNA3.1(+) vector. The results showed that pcDNA3.1(+)-GSTs plasmids were successfully transferred into the ducks' primary hepatocytes and the mRNA of the 10 GST isozymes were overexpressed by 1.9-3274.7 times. Compared to the control, 75 μg/L (IC30) or 150 μg/L (IC50) AFB1 treatment reduced the cell viability by 30.0-50.0% and increased the LDH activity by 19.8-58.2% in the ducks' primary hepatocytes. Notably, the AFB1-induced changes in cell viability and LDH activity were mitigated by overexpression of GST and GST3. Compared to the cells treated with AFB1, exo-AFB1-8,9-epoxide (AFBO)-GSH, as the major detoxified product of AFB1, was increased in the cells overexpression of GST and GST3. Moreover, the sequences, phylogenetic and domain analysis revealed that the GST and GST3 were orthologous to Meleagris gallopavo GSTA3 and GSTA4. In conclusion, this study found that the ducks' GST and GST3 were orthologous to Meleagris gallopavo GSTA3 and GSTA4, which were involved in the detoxification of AFB1 in ducks' primary hepatocytes.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Newhope Liuhe Co. Ltd., Beijing, 100102, China
| | - Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qin-Jian Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mahmoud Mohamed Khalil
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | | | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Zhao D, Xie H, Gao L, Zhang J, Li Y, Mao G, Zhang H, Wang F, Lam SS, Song A. Detoxication and bioconversion of aflatoxin B 1 by yellow mealworms (Tenebrio molitor): A sustainable approach for valuable larval protein production from contaminated grain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113935. [PMID: 35999758 DOI: 10.1016/j.ecoenv.2022.113935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Yellow mealworm (Tenebrio molitor) is a supplementary protein source for food and feed and represents a promising solution to manage grain contaminated with Aflatoxin B1 (AFB1). In this study, AFB1 present in different concentrations in wheat bran was treated and removed via bioconversion by yellow mealworm of different instars, with emphasis on the bioconversion performance and metabolism of AFB1. Upon application of wheat bran spiked with 100 μg/kg AFB1 to 5th-6th instar yellow mealworms, the conversion rate of AFB1 was up to 87.85 %. Low level of AFB1 (< 2 μg/kg) was accumulated in the larval bodies, and the survival rate, development and nutrition contents of yellow mealworm were not significantly affected. It was revealed that 1 kg of wheat bran contaminated with AFB1 increased the weight of yellow mealworms from 138 g to 469 g, containing approximately 103 g of protein. The bioconversion of AFB1 by yellow mealworms led to generation of 13 metabolites in the frass and 3 metabolites in the larvae. AFB1 was detoxicated and removed via phase I metabolism comprising reduction, dehydrogenation, hydration, demethylation, hydroxylation, decarbonylation and ketoreduction, followed by phase II metabolism involving conjugation of amino acid, glucoside and glutathione (GSH). The toxicity of AFB1 metabolites was deemed lower than that of AFB1 according to their structures. This study provides a sustainable approach and theoretical foundation on using yellow mealworms for cleaner grain contamination management and valuable larval protein production via bioconversion of food and feed contaminated by AFB1.
Collapse
Affiliation(s)
- Dandan Zhao
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hui Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Lei Gao
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jian Zhang
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Guotao Mao
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hongsen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fengqin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Andong Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
3
|
Evans NM, Shao S. Mycotoxin Metabolism by Edible Insects. Toxins (Basel) 2022; 14:toxins14030217. [PMID: 35324714 PMCID: PMC8949902 DOI: 10.3390/toxins14030217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mycotoxins are a group of toxic secondary metabolites produced in the food chain by fungi through the infection of crops both before and after harvest. Mycotoxins are one of the most important food safety concerns due to their severe poisonous and carcinogenic effects on humans and animals upon ingestion. In the last decade, insects have received wide attention as a highly nutritious, efficient and sustainable source of animal-derived protein and caloric energy for feed and food purposes. Many insects have been used to convert food waste into animal feed. As food waste might contain mycotoxins, research has been conducted on the metabolism and detoxification of mycotoxins by edible insects. The mycotoxins that have been studied include aflatoxins, fumonisins, zearalenone (ZEN), vomitoxin or deoxynivalenol (DON), and ochratoxins (OTAs). Aflatoxin metabolism is proved through the production of hydroxylated metabolites by NADPH-dependent reductases and hydroxylases by different insects. ZEN can be metabolized into α- and β-zearalenol. Three DON metabolites, 3-, 15-acetyl-DON, and DON-3-glucoside, have been identified in the insect DON metabolites. Unfortunately, the resulting metabolites, involved enzymes, and detoxification mechanisms of OTAs and fumonisins within insects have yet to be identified. Previous studies have been focused on the insect tolerance to mycotoxins and the produced metabolites; further research needs to be conducted to understand the exact enzymes and pathways that are involved.
Collapse
|
4
|
Cao W, Yu P, Yang K, Cao D. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods 2021; 32:395-419. [PMID: 34930097 DOI: 10.1080/15376516.2021.2021339] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.
Collapse
Affiliation(s)
- Weiya Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Pan Yu
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - KePeng Yang
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Dongli Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
5
|
Niermans K, Meyer AM, den Hil EFHV, van Loon JJA, van der Fels-Klerx HJ. A systematic literature review on the effects of mycotoxin exposure on insects and on mycotoxin accumulation and biotransformation. Mycotoxin Res 2021; 37:279-295. [PMID: 34618340 PMCID: PMC8571154 DOI: 10.1007/s12550-021-00441-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/27/2022]
Abstract
Novel protein sources for animal feed are needed, and the use of insects as feed ingredient is explored. The insect production sector offers opportunities for a circular and sustainable approach to feed production by upgrading waste or side streams into high-quality proteins. However, potential food or feed safety issues should be studied in advance. Mycotoxins, such as aflatoxin B1, are natural contaminants commonly found in agricultural crops and have proven to be detrimental to the agricultural industry, livestock, and human health. This systematic review aims to provide a comprehensive overview of the published evidence on effects of mycotoxin exposure on insect growth and survival, mycotoxin accumulation within the insect body, and metabolization of various mycotoxins by insects. The review includes 54 scientific articles published in the past 55 years, in total covering 32 insect species. The main findings are the following: (1) Insects of the order Coleoptera show lower mortality after exposure to aflatoxin B1 when compared to Lepidoptera and Diptera; (2) effects of mycotoxins on larval growth and survival are less detrimental in later larval stages; (3) accumulation of mycotoxins was low in most insect species; (4) mycotoxins are metabolized within the insect body, the degree of which depends on the particular mycotoxin and insect species; (5) cytochrome P450s are the main family of enzymes involved in biotransformation of mycotoxins in some insect species. Results of this review support an optimistic outlook for the use of mycotoxin-contaminated waste streams as substrate for insect rearing.
Collapse
Affiliation(s)
- K Niermans
- Department of Plant Sciences, Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.,Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - A M Meyer
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - E F Hoek-van den Hil
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - J J A van Loon
- Department of Plant Sciences, Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
6
|
Berenbaum MR, Bush DS, Liao LH. Cytochrome P450-mediated mycotoxin metabolism by plant-feeding insects. CURRENT OPINION IN INSECT SCIENCE 2021; 43:85-91. [PMID: 33264684 DOI: 10.1016/j.cois.2020.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
Mycotoxins are secondary metabolites produced primarily by filamentous fungi that when consumed cause pathological responses in animal hosts or consumers. Defined functionally rather than structurally, mycotoxins derive from numerous primary metabolic pathways. Through opportunistic or mutualistic associations, insect herbivores inflict damage that can predispose plants to infection by mycotoxin-producing phytopathogens, resulting in economically significant contamination. The few cytochrome P450 subfamilies implicated in mycotoxin detoxification by insects, including CYP6 and CYP9, are also known to detoxify phytochemicals. Some insect P450s bioactivate, rather than detoxify, mycotoxins, suggestive of an 'escalation' in arms-race interactions between these herbivores and fungi. Characterizing insect P450s that detoxify mycotoxins can be useful for developing biological remediation technologies and for ensuring the safety of insects reared for human or livestock consumption.
Collapse
Affiliation(s)
- May R Berenbaum
- Dept. Entomology, 320 Morrill Hall, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3795, USA.
| | - Daniel S Bush
- Dept. Entomology, 320 Morrill Hall, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3795, USA
| | - Ling-Hsiu Liao
- Dept. Entomology, 320 Morrill Hall, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3795, USA
| |
Collapse
|
7
|
Pfliegler WP, Pócsi I, Győri Z, Pusztahelyi T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front Microbiol 2020; 10:2921. [PMID: 32117074 PMCID: PMC7029702 DOI: 10.3389/fmicb.2019.02921] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature. However, to understand the factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal interactions into account. The Aspergilli may switch between saprophytic and pathogenic lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary according to these fungal ways of life. Recent studies highlighted the complex ecological network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions with the soil microbiota and soil macro-organisms determine the role of secondary metabolite production to a great extent. While, upon infection of plants, metabolic communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. In this review, the role of mycotoxin producing Aspergillus species and their interactions in the ecosystem are discussed. We intend to highlight the complexity of the roles of the main toxic secondary metabolites as well as their fate in natural environments and agriculture, a field that still has important knowledge gaps.
Collapse
Affiliation(s)
- Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Aflatoxin B 1 Conversion by Black Soldier Fly ( Hermetia illucens) Larval Enzyme Extracts. Toxins (Basel) 2019; 11:toxins11090532. [PMID: 31547476 PMCID: PMC6784232 DOI: 10.3390/toxins11090532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022] Open
Abstract
The larvae of the black soldier fly (Hermetia illucens L., BSFL) have received increased industrial interest as a novel protein source for food and feed. Previous research has found that insects, including BSFL, are capable of metabolically converting aflatoxin B1 (AFB1), but recovery of total AFB1 is less than 20% when accounting for its conversion to most known metabolites. The aim of this study was to examine the conversion of AFB1 by S9 extracts of BSFL reared on substrates with or without AFB1. Liver S9 of Aroclor-induced rats was used as a reference. To investigate whether cytochrome P450 enzymes are involved in the conversion of AFB1, the inhibitor piperonyl butoxide (PBO) was tested in a number of treatments. The results showed that approximately 60% of AFB1 was converted to aflatoxicol and aflatoxin P1. The remaining 40% of AFB1 was not converted. Cytochrome P450s were indeed responsible for metabolic conversion of AFB1 into AFP1, and a cytoplasmic reductase was most likely responsible for conversion of AFB1 into aflatoxicol.
Collapse
|
9
|
Schrögel P, Wätjen W. Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals. Foods 2019; 8:E288. [PMID: 31357435 PMCID: PMC6724024 DOI: 10.3390/foods8080288] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Edible insects as an alternative source of protein are discussed as an important contribution to future feed and food security. However, it has to be ensured that the consumption is non-hazardous. This systematic review summarizes findings concerning contaminations of insects with mycotoxins and heavy metal ions (SciFinder, Pubmed, until 26 June 2019). Both kinds of contaminants were reported to reduce growth performance and increase mortality in insects. There was no evidence for accumulation of various mycotoxins analyzed in distinct insect species. However, further research is necessary due to limitation of data. Since the gut content contributes relevantly to the total body burden of contaminants in insects, a starving period before harvesting is recommended. Contrary, accumulation of heavy metal ions occurred to a varying extent dependent on metal type, insect species, and developmental stage. Examples are the accumulation of cadmium (black soldier fly) and arsenic (yellow mealworm). The reported species-specific accumulation and metabolism patterns of contaminants emphasize the importance to assess potential safety hazards in a case-by-case approach. Subject to regular monitoring of contaminants, the general ban in the European Union to use waste in animal feed should also be questioned regarding insect farming.
Collapse
Affiliation(s)
- Pamela Schrögel
- Postgraduate Course for Toxicology and Environmental Toxicology, Institute for Legal Medicine, University of Leipzig, Johannisallee 28, 04103 Leipzig, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany.
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
10
|
Abdallah MF, Girgin G, Baydar T, Krska R, Sulyok M. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4419-4428. [PMID: 28244108 DOI: 10.1002/jsfa.8293] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/25/2017] [Accepted: 02/22/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND The present study aimed to investigate the occurrence of multiple toxic fungal and bacterial metabolites in 156 animal feed (n = 77) and maize (n = 79) samples collected from three regions in Upper Egypt. The target analytes were quantified using the 'dilute and shoot' approach, followed by a liquid chromatography tandem mass spectrometry analysis. RESULTS In total, 115 fungal and bacterial metabolites were detected in both matrices, including the regulated mycotoxins in the European Union, in addition to the modified forms such as deoxynivalenol-3-glucosid. Furthermore, some Fusarium, Alternaria, Aspergillus and Penicillum metabolites beside other fungal and bacterial metabolites were detected for the first time in Egypt. All of the samples were contaminated with at least four toxins. On average, 26 different metabolites were detected per sample with a trend of more metabolites in feed than in maize. The maximum number of analytes observed per samples was 54 analytes at maximum concentrations ranging from 0.04 µg kg-1 for tentoxin to 25 040 µg kg-1 for kojic acid. CONCLUSION According to the international standards, the contamination rates in the investigated regions were not alarming, except for AFB1 in maize. The necessity of further and continuous monitoring is highly recommended to establish a database for mycotoxin occurrence. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed F Abdallah
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, (BOKU), Tulln, Austria
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gözde Girgin
- Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Terken Baydar
- Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, (BOKU), Tulln, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, (BOKU), Tulln, Austria
| |
Collapse
|
11
|
Trienens M, Kraaijeveld K, Wertheim B. Defensive repertoire of Drosophila larvae in response to toxic fungi. Mol Ecol 2017; 26:5043-5057. [PMID: 28746736 DOI: 10.1111/mec.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Chemical warfare including insecticidal secondary metabolites is a well-known strategy for environmental microbes to monopolize a food source. Insects in turn have evolved behavioural and physiological defences to eradicate or neutralize the harmful microorganisms. We studied the defensive repertoire of insects in this interference competition by combining behavioural and developmental assays with whole-transcriptome time-series analysis. Confrontation with the toxic filamentous fungus Aspergillus nidulans severely reduced the survival of Drosophila melanogaster larvae. Nonetheless, the larvae did not behaviourally avoid the fungus, but aggregated at it. Confrontation with fungi strongly affected larval gene expression, including many genes involved in detoxification (e.g., CYP, GST and UGT genes) and the formation of the insect cuticle (e.g., Tweedle genes). The most strongly upregulated genes were several members of the insect-specific gene family Osiris, and CHK-kinase-like domains were over-represented. Immune responses were not activated, reflecting the competitive rather than pathogenic nature of the antagonistic interaction. While internal microbes are widely acknowledged as important, our study emphasizes the underappreciated role of environmental microbes as fierce competitors.
Collapse
Affiliation(s)
- Monika Trienens
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Ken Kraaijeveld
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Aflatoxin B1 Tolerance and Accumulation in Black Soldier Fly Larvae (Hermetia illucens) and Yellow Mealworms (Tenebrio molitor). Toxins (Basel) 2017; 9:toxins9060185. [PMID: 28574433 PMCID: PMC5488035 DOI: 10.3390/toxins9060185] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 11/16/2022] Open
Abstract
Crops contaminated with fungal mycotoxins such as aflatoxin B1 (AFB1) are often downgraded or removed from the food chain. This study aimed to evaluate the tolerance and accumulation of AFB1 in two insect species to determine whether they could be used to retain condemned mycotoxin contaminated crops in the food chain. First, instar black soldier fly larvae (Hermetia illucens, BSF) and yellow mealworm (Tenebrio molitor, YMW) were fed poultry feed spiked with AFB1 and formulated to contain levels of 0.01, 0.025, 0.05, 0.10, 0.25, and up to 0.5 mg/kg dry feed. Poultry feed without any additions and feed with only the solvent added served as controls. The AFB1 in the feed did not affect survival and body weight in the BSF and YMW larvae (p > 0.10), indicating a high tolerance to aflatoxin B1 in both species. Furthermore, AFB1 and aflatoxin M1 (AFM1) were below the detection limit (0.10 µg/kg) in BSF larvae, whereas the YMW had AFB1 levels that were approximately 10% of the European Union's legal limit for feed materials and excreted AFM1. It is concluded that both BSF larvae and YMW have a high AFB1 tolerance and do not accumulate AFB1.
Collapse
|
13
|
Bagchi VA, Siegel JP, Demkovich MR, Zehr LN, Berenbaum MR. Impact of Pesticide Resistance on Toxicity and Tolerance of Hostplant Phytochemicals in Amyelois Transitella (Lepidoptera: Pyralidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew063. [PMID: 27620560 PMCID: PMC5019020 DOI: 10.1093/jisesa/iew063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/24/2016] [Indexed: 05/08/2023]
Abstract
For some polyphagous insects, adaptation to phytochemically novel plants can enhance resistance to certain pesticides, but whether pesticide resistance expands tolerance to phytochemicals has not been examined. Amyelois transitella Walker (navel orangeworm) is an important polyphagous pest of nut and fruit tree crops in California. Bifenthrin resistance, partially attributable to enhanced cytochrome P450 (P450)-mediated detoxification, has been reported in an almond-infesting population exposed to intense pesticide selection. We compared the toxicity of bifenthrin and three phytochemicals-chlorogenic acid, and the furanocoumarins xanthotoxin and bergapten-to three strains of A. transitella: pyrethroid-resistant R347 (maintained in the laboratory for ∼10 generations), fig-derived FIG (in the laboratory for ∼25 generations), and CPQ-a laboratory strain derived from almonds ∼40 years ago). Whereas both Ficus carica (fig) and Prunus dulcis (almond) contain chlorogenic acid, furanocoumarins occur only in figs. Both R347 and FIG exhibited 2-fold greater resistance to the three phytochemicals compared with CPQ; surprisingly, bifenthrin resistance was highest in FIG. Piperonyl butoxide, a P450 synergist, increased toxicity of all three phytochemicals only in CPQ, implicating alternate tolerance mechanisms in R347 and FIG. To test the ability of the strains to utilize novel hostplants directly, we compared survival on diets containing seeds of Wisteria sinensis and Prosopis pallida, two non-host Fabaceae species; survival of FIG was highest and survival of R347 was lowest. Our results suggest that, while P450-mediated pesticide resistance enhances tolerance of certain phytochemicals in this species, it is only one of multiple biochemical adaptations associated with acquiring novel hostplants.
Collapse
Affiliation(s)
- Vikram A Bagchi
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joel P Siegel
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| | - Mark R Demkovich
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Luke N Zehr
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Demkovich M, Dana CE, Siegel JP, Berenbaum MR. Effect of Piperonyl Butoxide on the Toxicity of Four Classes of Insecticides to Navel Orangeworm (Amyelois transitella) (Lepidoptera: Pyralidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2753-2760. [PMID: 26470383 DOI: 10.1093/jee/tov237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
Amyelois transitella (Walker) (Lepidoptera: Pyralidae), the navel orangeworm, is a highly polyphagous economic pest of almond, pistachio, and walnut crops in California. Increasing demand for these crops and their rising economic value has resulted in substantial increases of insecticide applications to reduce damage to acceptable levels. The effects of piperonyl butoxide (PBO), a methylenedioxyphenyl compound that can act as a synergist by inhibiting cytochrome P450-mediated detoxification on insecticide metabolism by A. transitella, were examined in a series of feeding bioassays with first-instar A. transitella larvae from a laboratory strain. PBO, however, can have a variety of effects on metabolism, including inhibition of glutathione-S-transferases and esterases and induction of P450s. In our study, PBO synergized the toxicity of acetamiprid, λ-cyhalothrin, and spinosad, suggesting possible involvement of P450s in their detoxification. In contrast, PBO interacted antagonistically with the organophosphate insecticide chlorpyrifos, reducing its toxicity, an effect consistent with inhibition of P450-mediated bioactivation of this pesticide. The toxicity of the anthranilic diamide insecticide chlorantraniliprole was not altered by PBO, suggestive of little or no involvement of P450-mediated metabolism in its detoxification. Because a population of navel orangeworm in Kern County, CA, has already acquired resistance to the pyrethroid insecticide bifenthrin through enhanced P450 activity, determining the effect of adding a synergist such as PBO on detoxification of all insecticide classes registered for use in navel orangeworm management can help to develop rotation practices that may delay resistance acquisition or to implement alternative management practices where resistance is likely to evolve.
Collapse
Affiliation(s)
- Mark Demkovich
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801.
| | - Catherine E Dana
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Joel P Siegel
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|
15
|
Light DM, Ovchinnikova I, Jackson ES, Haff RP. Effects of X-Ray Irradiation on Male Navel Orangeworm Moths (Lepidoptera: Pyralidae) on Mating, Fecundity, Fertility, and Inherited Sterility. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2200-2212. [PMID: 26453709 DOI: 10.1093/jee/tov201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 06/05/2023]
Abstract
Male adult navel orangeworm, Amyelois transitella (Walker), were irradiated using a laboratory scale x-ray irradiation unit to determine the required dose for complete egg sterility of mated female moths and inherited sterility of F1 and F2 generations. Adult male A. transitella were irradiated in two separate experiments at 100-300 Gy and 50-175 Gy. Mating frequency, fecundity, and fertility of normal females crossed with irradiated parental males was compared with the mating of nonirradiated moths. Mating frequency was 100% for females crossed with nonirradiated control males. At male treatment doses of ≥150 Gy the percentage of females found unmated increased, while multiple-mated females decreased. Female fecundity was not affected while fertility was affected in a dose-dependent relationship to exposure of parental males to x-ray irradiation. Embryonic development of eggs to the prehatch stage and egg eclosion did not occur at radiation doses ≥125 Gy. Emergence of F1 adults was low and occurred only for progeny of parental males exposed to doses ≤100 Gy, with no emergence at ≥125 Gy. Though fecundity appeared similar for control and irradiated F1 females, no F2 eggs hatched for the test exposures of 50-100 Gy. Based on our results, a dose of ≥125 Gy had efficacy in inducing both primary parental sterility in treated male moths and inherited sterility in F1 male and female moths. Results suggest that A. transitella might be considered a candidate for the sterile insect technique using adults irradiated at these relatively low x-ray exposure doses.
Collapse
Affiliation(s)
- Douglas M Light
- Western Regional Research Center, Agricultural Research Service, USDA, 800 Buchanan St., Albany, CA 94710.
| | - Inna Ovchinnikova
- Western Regional Research Center, Agricultural Research Service, USDA, 800 Buchanan St., Albany, CA 94710
| | - Eric S Jackson
- Western Regional Research Center, Agricultural Research Service, USDA, 800 Buchanan St., Albany, CA 94710
| | - Ronald P Haff
- Western Regional Research Center, Agricultural Research Service, USDA, 800 Buchanan St., Albany, CA 94710
| |
Collapse
|
16
|
Matumba L, Sulyok M, Monjerezi M, Biswick T, Krska R. Fungal metabolites diversity in maize and associated human dietary exposures relate to micro-climatic patterns in Malawi. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1773] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the diversity of fungal metabolites in maize across four agro-ecological zones of Malawi. A total of 90 maize samples (for human consumption), collected from farmsteads, were analysed for 235 fungal metabolites using liquid chromatography-tandem mass spectrometry. A total of 65 metabolites were found in the samples. 75% of samples from the hottest agro-ecological zone contained either aflatoxins, fumonisins, deoxynivalenol, zearalenone; or a combination thereof in levels exceeding European Union (EU) maximum levels, whereas the related fraction was only 17% in the cool temperature zone. Aflatoxins, citrinin, 3-nitropropionic acid, monocerin and equisetin were most prevalent and in higher levels in samples from hot agro-ecological zones, whereas deoxynivalenol, nivalenol, zearalenone and aurofusarin were most prevalent in cool agro-ecologies. On the basis of per-capita maize consumption, estimated daily intakes for all samples from hot ecologies were well above the JECFA's provisional maximum tolerable daily intake (PMTDI) of 2.0 μg/kg body weight (bw)/day for fumonisins, whereas the PMTDI of 1.0 μg/kg bw/day for deoxynivalenol was exceeded in relatively more (90%) samples from the cool highlands than the other zones. These results demonstrate the influence of micro-climatic conditions on mycotoxin prevalence patterns and underscores the need for development of agro-ecological specific mycotoxin dietary exposure management strategies.
Collapse
Affiliation(s)
- L. Matumba
- Department of Agricultural Research Services, Chitedze Station, P.O. Box 158, Lilongwe, Malawi
| | - M. Sulyok
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - M. Monjerezi
- Chancellor College, Department of Chemistry, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - T. Biswick
- Chancellor College, Department of Chemistry, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| |
Collapse
|
17
|
Mencarelli M, Accinelli C, Vicari A. Implications of European corn borer, Ostrinia nubilalis, infestation in an Aspergillus flavus-biocontrolled corn agroecosystem. PEST MANAGEMENT SCIENCE 2013; 69:1085-1091. [PMID: 23436551 DOI: 10.1002/ps.3472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/15/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND A novel biocontrol strategy consisting of field application of bioplastic-based granules inoculated with a non-toxigenic Aspergillus flavus L. strain has recently been shown to be effective for reducing aflatoxin contamination in corn. This study focused on other factors that may affect the feasibility of this biocontrol technique, and more specifically the role of the European corn borer (ECB), Ostrinia nubilalis H., in the dispersal and infestation of A. flavus in corn and its impact on crop yield. RESULTS In spite of the high percentage of corn ears showing larval feeding damage, ECB-bored kernels accounted for only 3 and 4% in 2009 and 2010 respectively. Most of the damaged kernels were localised in the ear tip or immediately below. More precisely, the average incidence of ECB-bored kernels in the upper end of the ear was 32%. However, less than 5% of kernels from the central body of the ear, which includes the majority of kernels, were injured by ECB. CONCLUSIONS Although ECB larvae showed a high tolerance to aflatoxin B1 and thus had the potential to serve as vectors of the mould, fungal infection of kernels was poorly associated with insect damage. ECB infestation resulted in grain yield losses not exceeding 2.5%.
Collapse
Affiliation(s)
- Mariangela Mencarelli
- Department of Agro-Environmental Science and Technology, University of Bologna, Italy
| | | | | |
Collapse
|
18
|
Zeng RS, Wen Z, Niu G, Berenbaum MR. Aflatoxin B1: toxicity, bioactivation and detoxification in the polyphagous caterpillar Trichoplusia ni. INSECT SCIENCE 2013; 20:318-328. [PMID: 23955884 DOI: 10.1111/1744-7917.12007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2012] [Indexed: 06/02/2023]
Abstract
Trichoplusia ni caterpillars are polyphagous foliage-feeders and rarely likely to encounter aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus and A. parasiticus, in their host plants. To determine how T. ni copes with AFB1, we evaluated the toxicity of AFB1 to T. ni caterpillars at different developmental stages and found that AFB1 tolerance significantly increases with larval development. Diet incorporation of AFB1 at 1 μg/g completely inhibited larval growth and pupation of newly hatched larvae, but 3 μg/g AFB1 did not have apparent toxic effects on larval growth and pupation of caterpillars that first consume this compound 10 days after hatching. Piperonyl butoxide, a general inhibitor of cytochrome P450 monooxygenases (P450s), reduced the toxicity of AFB1, suggesting that AFB1 is bioactivated in T. ni and this bioactivation is mediated by P450s. Some plant allelochemicals, including flavonoids such as flavones, furanocoumarins such as xanthotoxin and imperatorin, and furanochromones such as visnagin, that induce P450s in other lepidopteran larvae ameliorated AFB1 toxicity, suggesting that P450s are also involved in AFB1 detoxification in T. ni.
Collapse
Affiliation(s)
- Ren Sen Zeng
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Bio-resources, South China Agricultural University, Guangzhou, China.
| | | | | | | |
Collapse
|
19
|
Niu G, Pollock HS, Lawrance A, Siegel JP, Berenbaum MR. Effects of a naturally occurring and a synthetic synergist on toxicity of three insecticides and a phytochemical to navel orangeworm (Lepidoptera: Pyralidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:410-417. [PMID: 22606811 DOI: 10.1603/ec10194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is the most destructive lepidopteran pest of almonds [Prunus dulcis (Mill.) D.A.Webb] and pistachios (Pistacia vera L.) in California and is a serious problem in figs (Ficus carica L.) and walnuts (Juglans spp.). In addition to direct damage, larval feeding leaves nuts vulnerable to infection by Aspergillus spp., fungi that produce toxic aflatoxins. A potentially safe and sustainable approach for managing navel orangeworm in orchards may be to use natural essential oil synergists to interfere with this insect's ability to detoxify insecticides and phytochemicals. We tested the effects of a naturally occurring plant-derived chemical, myristicin, and a synthetic inhibitor of cytochrome P450 monooxygenases (P450s), piperonyl butoxide, on the toxicity of three insecticides (alpha-cypermethrin, tau-fluvalinate, and methoxyfenozide [Intrepid]) and a phytochemical (xanthotoxin) to A. transitella. Piperonyl butoxide significantly synergized alpha-cypermethrin and tau-fluvalinate, whereas myristicin synergized only alpha-cypermethrin. Piperonyl butoxide synergized the toxicity of xanthotoxin as early as 72 h after exposure, whereas myristicin synergized xanthotoxin after 120 h. In view of these findings and the limited availability of environmentally safe synthetic insecticides for sustainable management, particularly in organic orchards, myristicin is a potential field treatment in combination with insecticides to reduce both navel orangeworm survival and aflatoxin contamination of nuts. In addition, this study demonstrates that in A. transitella the insect growth regulator methoxyfenozide is not detoxified by P450s.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
20
|
Siegel JP, Bas Kuenen LPS. Variable developmental rate and survival of navel orangeworm (Lepidoptera: Pyralidae) on pistachio. JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:532-539. [PMID: 21510201 DOI: 10.1603/ec10177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A series of laboratory and field studies were conducted using two lines of navel orangeworm, reared on different stages of new crop and mummy pistachios, Pistacia vera L. This study demonstrated the potential importance of malformed pistachios (pea splits) to the population dynamics of navel orangeworm, because these nuts, which are available as early as two months before mature nuts, supported navel orangeworm development and survival. Overall, the developmental rate on new crop pistachios is fastest on mature nuts, 422.3 +/- 123 degree-days (DD, degrees C), but other factors such as exposure to insecticide residue also sped development, although survival decreased. Development took the longest on unharvested nuts (mummies) dried at 90 degrees C for 24 h, 2664.7 +/- 131.4 DD. In most trials development was variable and two generations could develop at the fastest rate before the slowest individual completed development, which in turn calls into question the concept of discrete generations. Generally, survival was highest on mature pistachios and other stages of new crop nut and lowest on mummies collected in May. Survival was also higher on the new varieties 'Lost Hills' and 'Golden Hills' (24.7 and 32.0%, respectively) than on the most extensively planted variety 'Kerman' (13.3%). In our trials, both the rate of development and survival were dependent on nut stage, age, variety, and quality, indicating that pistachios, like almonds, Prunus dulcis (Mill.) D. A. Webb, are a dynamic rather than a static nutrient source for navel orangeworm.
Collapse
Affiliation(s)
- Joel P Siegel
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Commodity Protection and Quality Unit, Parlier, CA 93648, USA.
| | | |
Collapse
|
21
|
Niu G, Rupasinghe SG, Zangerl AR, Siegel JP, Schuler MA, Berenbaum MR. A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:244-253. [PMID: 21220011 DOI: 10.1016/j.ibmb.2010.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 05/30/2023]
Abstract
The navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae) is a serious pest of many tree crops in California orchards, including almonds, pistachios, walnuts and figs. To understand the molecular mechanisms underlying detoxification of phytochemicals, insecticides and mycotoxins by this species, full-length CYP6AB11 cDNA was isolated from larval midguts using RACE PCR. Phylogenetic analysis of this insect cytochrome P450 monooxygenase established its evolutionary relationship to a P450 that selectively metabolizes imperatorin (a linear furanocoumarin) and myristicin (a natural methylenedioxyphenyl compound) in another lepidopteran species. Metabolic assays conducted with baculovirus-expressed P450 protein, P450 reductase and cytochrome b(5) on 16 compounds, including phytochemicals, mycotoxins, and synthetic pesticides, indicated that CYP6AB11 efficiently metabolizes imperatorin (0.88 pmol/min/pmol P450) and slowly metabolizes piperonyl butoxide (0.11 pmol/min/pmol P450). LC-MS analysis indicated that the imperatorin metabolite is an epoxide generated by oxidation of the double bond in its extended isoprenyl side chain. Predictive structures for CYP6AB11 suggested that its catalytic site contains a doughnut-like constriction over the heme that excludes aromatic rings on substrates and allows only their extended side chains to access the catalytic site. CYP6AB11 can also metabolize the principal insecticide synergist piperonyl butoxide (PBO), a synthetic methylenedioxyphenyl compound, albeit slowly, which raises the possibility that resistance may evolve in this species after exposure to synergists under field conditions.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Entomology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
22
|
Siegel JP, Kuenen LPSB, Ledbetter C. Variable development rate and survival of navel orangeworm (Lepidoptera: Pyralidae) on wheat bran diet and almonds. JOURNAL OF ECONOMIC ENTOMOLOGY 2010; 103:1250-1257. [PMID: 20857734 DOI: 10.1603/ec09309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A series of laboratory and field studies were conducted using three lines of navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), reared on wheat bran diet and almonds, Prunus dulcis (Mill.) D.A.Webb, at constant and fluctuating temperature. The duration of development on wheat bran diet at constant temperature differed significantly among the three lines. Development was as much as 40% faster at constant temperature than at fluctuating temperatures, consequently the developmental duration determined at constant temperature was not an absolute measure. When the maximum temperature in fluctuating regimes exceeded 43 degrees C, survival decreased by 50% compared with the constant temperature control. In almonds held at constant temperature, the developmental rate on new-crop nuts was variety-dependent and was fastest on 'Nonpareil' almonds and slowest on the experimental selection '23-122'. Development and survival were also variety-dependent on unharvested (mummy) almonds, and navel orangeworm average emergence was earliest from Nonpareil and latest from 'Carmel' nuts, differing by 529 degree-days, whereas survival was the highest on 'Butte', 35.7%, and the lowest on Carmel nuts, 7.2%. In our trials, both the speed of development and survival depended on host age, variety and quality, indicating that almonds were a dynamic rather than a static nutrient source for navel orangeworm. Identifying the factors responsible for variation in development and survival will give insight into improving control strategies.
Collapse
Affiliation(s)
- Joel P Siegel
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Commodity Protection and Quality Unit, Parlier, CA 93648, USA.
| | | | | |
Collapse
|
23
|
Trienens M, Keller NP, Rohlfs M. Fruit, flies and filamentous fungi - experimental analysis of animal-microbe competition using Drosophila melanogaster and Aspergillus mould as a model system. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.18088.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Comparative toxicity of mycotoxins to navel orangeworm (Amyelois transitella) and corn earworm (Helicoverpa zea). J Chem Ecol 2009; 35:951-7. [PMID: 19680726 DOI: 10.1007/s10886-009-9675-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/09/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
Mycotoxins, such as aflatoxins and ochratoxins, are widely distributed in nature and are frequently problematic crop contaminants that cause millions of dollars of annual losses in the United States. Insect infestations of crop plants significantly exacerbate mycotoxin contamination. Damage to a variety of nut species by Amyelois transitella Walker (navel orangeworm, NOW) is associated with infection by Aspergillus species and concomitant production of aflatoxins and ochratoxins. Resistance to aflatoxins in this lepidopteran is compared here with the levels of resistance in Helicoverpa zea (corn earworm, CEW), another lepidopteran that routinely encounters aflatoxins in its diet, albeit at lower levels. Measured as the developmental delay caused by aflatoxin B1 (AFB1), it is apparent that the LC(50) (defined as the concentration preventing 50% of newly hatched larvae from entering the 2nd instar within 48 h) for AFB1 is 100 times greater for A. transitella than for H. zea. Similarly, A. transitella 1st instars display substantially higher tolerance to ochratoxin A, another mycotoxin contaminant produced by Aspergillus species, than do H. zea. Our studies indicate that A. transitella, although a hostplant generalist, may well be highly specialized for mycotoxin detoxification.
Collapse
|
25
|
Wölfle S, Trienens M, Rohlfs M. Experimental evolution of resistance against a competing fungus in Drosophila melanogaster. Oecologia 2009; 161:781-90. [PMID: 19597847 DOI: 10.1007/s00442-009-1414-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/17/2009] [Indexed: 11/30/2022]
Abstract
Competition between microorganisms and arthropods has been shown to be an important ecological interaction determining animal development and spatial distribution patterns in saprophagous communities. In fruit-inhabiting Drosophila, variation in insect developmental success is not only determined by species-specific effects of various noxious filamentous fungi but, as suggested by an earlier study, also by additive genetic variation in the ability to successfully withstand the negative impact of the fungi. If this variation represents a direct adaptive response to the degree to which insect breeding substrates are infested with harmful fungi, genetic variation for successful development in the presence of fungi could be maintained by variation in infestation of resource patches with fungi. We selected for the ability to resist the negative influence of mould by maintaining replicated Drosophila melanogaster populations on substrates infested with Aspergillus nidulans. After five cycles of exposure to the fungus during the larval stage, the selected populations were compared with unselected control populations regarding adult survival and reproduction to reveal an evolved resistance against the fungal competitor. On fungus-infested larval feeding substrates, emerged adults from mould-selected populations had higher survival rates and higher early fecundity than the control populations. In the unselected populations, females had higher mortality rates than males, and a high proportion of both females and males appeared to be unable to lay eggs or fertilise eggs, respectively. When larvae developed on non-infested food we found indications of a loss of resistance to abiotic and starvation stress in the adult stage in flies from the selected populations. This suggests that there are costs associated with an increase in resistance against the microbial competitor. We discuss the underlying mechanisms that might have selected for increased resistance against harmful fungi.
Collapse
Affiliation(s)
- Susanne Wölfle
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098 Kiel, Germany
| | | | | |
Collapse
|
26
|
Niu G, Wen Z, Rupasinghe SG, Zeng RS, Berenbaum MR, Schuler MA. Aflatoxin B1 detoxification by CYP321A1 in Helicoverpa zea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:32-45. [PMID: 18615618 DOI: 10.1002/arch.20256] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The polyphagous corn earworm Helicoverpa zea frequently encounters aflatoxins, mycotoxins produced by the pathogens Aspergillus flavus and A. parasiticus, which infect many of this herbivore's host plants. While aflatoxin B1 metabolism by midgut enzymes isolated from fifth instars feeding on control diets was not detected, this compound was metabolized by midgut enzymes isolated from larvae consuming diets supplemented with xanthotoxin, coumarin, or indole-3-carbinol, phytochemicals that are likely to co-occur with aflatoxin in infected host plants. Of the two metabolites generated, the main derivative identified in midguts induced with these chemicals and in reactions containing heterologously expressed CYP321A1 was aflatoxin P1 (AFP1), an O-demethylated product of AFB1. RT-PCR gel blots indicated that the magnitude of CYP321A1 transcript induction by these chemicals is associated with the magnitude of increase in the metabolic activities of induced midgut enzymes (coumarin>xanthotoxin>indole 3-carbinol). These results indicate that induction of P450s, such as CYP321A1, plays an important role in reducing AFB1 toxicity to H. zea. Docking of AFB1 in the molecular models of CYP321A1 and CYP6B8 highlights differences in their proximal catalytic site volumes that allow only CYP321A1 to generate the AFP1 metabolite.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Entomology, University of Illinois, Urbana, Illinois 61801-3795, USA
| | | | | | | | | | | |
Collapse
|
27
|
Zeng RS, Zeng RSL, Niu G, Wen Z, Schuler MA, Berenbaum MR. Toxicity of aflatoxin B1 to Helicoverpa zea and bioactivation by cytochrome P450 monooxygenases. J Chem Ecol 2006; 32:1459-71. [PMID: 16830213 DOI: 10.1007/s10886-006-9062-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 02/13/2006] [Accepted: 02/18/2006] [Indexed: 11/28/2022]
Abstract
Infestation of corn (Zea mays) by corn earworm (Helicoverpa zea) predisposes the plant to infection by Aspergillus fungi and concomitant contamination with the carcinogenic mycotoxin aflatoxin B1 (AFB1). Although effects of ingesting AFB1 are well documented in livestock and humans, the effects on insects that naturally encounter this mycotoxin are not as well defined. Toxicity of AFB1 to different stages of H. zea (first, third, and fifth instars) was evaluated with artificial diets containing varying concentrations. Although not acutely toxic at low concentrations (1-20 ng/g), AFB1 had significant chronic effects, including protracted development, increased mortality, decreased pupation rate, and reduced pupal weight. Sensitivity varied with developmental stage; whereas intermediate concentrations (200 ng/g) caused complete mortality in first instars, this same concentration had no detectable adverse effects on larvae encountering AFB1 in fifth instar. Fifth instars consuming AFB1 at higher concentrations (1 microg/g), however, displayed morphological deformities at pupation. That cytochrome P450 monooxygenases (P450s) are involved in the bioactivation of aflatoxin in this species is evidenced by the effects of piperonyl butoxide (PBO), a known P450 inhibitor, on toxicity; whereas no fourth instars pupated in the presence of 1 mug/g AFB1 in the diet, the presence of 0.1% PBO increased the pupation rate to 71.7%. Pupation rates of both fourth and fifth instars on diets containing 1 mug/g AFB1 also increased significantly in the presence of PBO. Effects of phenobarbital, a P450 inducer, on AFB1 toxicity were less dramatic than those of PBO. Collectively, these findings indicate that, as in many other vertebrates and invertebrates, toxicity of AFB1 to H. zea results from P450-mediated metabolic bioactivation.
Collapse
Affiliation(s)
- Ren Sen Zeng
- Department of Entomology, University of Illinois, Urbana, 61801, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Lee SE, Campbell BC, Ok YS, Kim JH, Park BS, Liu N. Biochemical changes in dehydrogenase, hydroxylase and tyrosinase of a permethrin-resistant strain of housefly larvae, Musca domestica L. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 20:258-263. [PMID: 21783598 DOI: 10.1016/j.etap.2004.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 05/31/2023]
Abstract
In the present study, a permethrin-resistant strain (ALHF) of housefly was used to understand some enzymic changes in normal biosynthetic pathways after insecticide selection. Aflatoxin B(1) (AFB(1)) as a natural substrate was used to verify the changes on the level of cytochrome P450-dependent monooxygenases and oxido-reductase activities in the ALHF strain compared to an insecticide-susceptible strain, aabys. ALHF yielded three major biotransformation products: aflatoxin B(2a) (AFB(2a)), aflatoxin M(1) (AFM(1)), and aflatoxicol (AFL) by larvae. These principal products were also found in aabys. AFL production rate of ALHF larvae was 5-fold lower than that of aabys. Differences between ALHF larvae and aabys in AFM(1) production were found. ALHF did not differ significantly from aabys in AFB(2a) production. The levels of 17α- and β-hydroxysteroid dehydrogenase (17α- and β-HSD) were also determined to elucidate which type of dehydrogenase activities could be changed. The cytosolic fraction of ALHF larvae yielded about 2-fold higher 17α-estradiol than that of aabys larvae. In contrast, the microsomal fraction of ALHF larvae produced about 2-fold lower amount of 17α-estradiol than that of aabys larvae. The production rate of microsomal fraction of 17β-estradiol ALHF larvae yielded 3-fold lower than that of aabys larvae. Inhibition studies on 17α-HSD and 17β-HSD activities by pyrethroid insecticides showed that there was no inhibition by pyrethroids on the enzyme activity. Therefore, there seems to be no changes on the enzyme structures. Changes on enzyme expression may occur in ALHF larvae in relation to 17α- or β-HSD. To assess biochemical changes of the cuticle formation phenylalanine 4-hydroxylase and tyrosinase activities were determined. The production rate of tyrosine from phenylalanine in ALHF was about 2-fold higher for larvae than that in aabys. l-(dihydroxylphenyl)alanine (DOPA) content was determined in larvae and ALHF possessed 1.6-fold larger amounts of DOPA than aabys. Tyrosinase activity of ALHF larval preparations showed 1.6-fold higher than aabys. In summary, many enzymic changes were found in ALHF strain compared to aabys strain and these changes may be resulted from the permethrin selection.
Collapse
Affiliation(s)
- Sung-Eun Lee
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Campbell BC, Molyneux RJ, Schatzki TF. Current Research on Reducing Pre‐ and Post‐harvest Aflatoxin Contamination of U.S. Almond, Pistachio, and Walnut. ACTA ACUST UNITED AC 2003. [DOI: 10.1081/txr-120024093] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|