1
|
Gawde S, Siebert N, Ruprecht K, Kumar G, Ko RM, Massey K, Guthridge JM, Mao-Draayer Y, Schindler P, Hastermann M, Pardo G, Paul F, Axtell RC. Serum Proteomics Distinguish Subtypes of NMO Spectrum Disorder and MOG Antibody-Associated Disease and Highlight Effects of B-Cell Depletion. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200268. [PMID: 38885457 PMCID: PMC11186702 DOI: 10.1212/nxi.0000000000200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND AND OBJECTIVES AQP4 antibody-positive NMOSD (AQP4-NMOSD), MOG antibody-associated disease (MOGAD), and seronegative NMOSD (SN-NMOSD) are neuroautoimmune conditions that have overlapping clinical manifestations. Yet, important differences exist in these diseases, particularly in B-cell depletion (BCD) efficacy. Yet, the biology driving these differences remains unclear. Our study aims to clarify biological pathways distinguishing these diseases beyond autoantibodies and investigate variable BCD effects through proteomic comparisons. METHODS In a retrospective study, 1,463 serum proteins were measured in 53 AQP4-NMOSD, 25 MOGAD, 18 SN-NMOSD, and 49 healthy individuals. To identify disease subtype-associated signatures, we examined serum proteins in patients without anti-CD20 B-cell depletion (NoBCD). We then assessed the effect of BCD treatment within each subtype by comparing proteins between BCD-treated and NoBCD-treated patients. RESULTS In NoBCD-treated patients, serum profiles distinguished the 3 diseases. AQP4-NMOSD showed elevated type I interferon-induced chemokines (CXCL9 and CXCL10) and TFH chemokine (CXCL13). MOGAD exhibited increased cytotoxic T-cell proteases (granzyme B and granzyme H), while SN-NMOSD displayed elevated Wnt inhibitory factor 1, a marker for nerve injury. Across all subtypes, BCD-treated patients showed reduction of B-cell-associated proteins. In AQP4-NMOSD, BCD led to a decrease in several inflammatory pathways, including IL-17 signaling, cytokine storm, and macrophage activation. By contrast, BCD elevated these pathways in patients with MOGAD. BCD had no effect on these pathways in SN-NMOSD. DISCUSSION Proteomic profiles show unique biological pathways that distinguish AQP4-NMOSD, MOGAD, or SN-NMOSD. Furthermore, BCD uniquely affects inflammatory pathways in each disease type, providing an explanation for the disparate therapeutic response in AQP4-NMOSD and MOGAD.
Collapse
Affiliation(s)
- Saurabh Gawde
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Nadja Siebert
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Klemens Ruprecht
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Gaurav Kumar
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Rose M Ko
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Kaylea Massey
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Joel M Guthridge
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Yang Mao-Draayer
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Patrick Schindler
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Maria Hastermann
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Gabriel Pardo
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Friedemann Paul
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Robert C Axtell
- From the Arthritis and Clinical Immunology Research Program (S.G., G.K., R.M.K., K.M., J.M.G., Y.M.-D., G.P., R.C.A.), Oklahoma Medical Research Foundation; Department of Microbiology and Immunology (S.G., R.C.A.), Oklahoma University Health Science Center; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (N.S., K.R., P.S., M.H., F.P.), Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin; and Department of Neurology (N.S., K.R., P.S., M.H., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
2
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
3
|
Yu Q, Xie T, Zhang Y, Pan T, Tan Y, Qin H, Yan S. Exploration of SERPINA family functions and prognostic value in breast cancer based on transcriptome and in vitro analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1951-1967. [PMID: 38069587 DOI: 10.1002/tox.24079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
Breast cancer poses a significant risk to women worldwide, yet specific role of SERPINA gene family in breast cancer remains unclarified. Data were collected from online databases. SERPINA family gene expression was presented, and prognosis value was evaluated. Multi-omics methods were employed to explore the SERPINA-related biological processes, followed by comprehensive analyses of their roles in breast cancer. Single-cell data were analyzed to characterize the SERPINA family gene expression in different cell clusters. We selected SERPINA5 as the target gene. Via pan-cancer analysis, SERPINA5 was also investigated in various cancers. The experimental validation was conducted in MDA-MB-231 cell line eventually. SERPINA family showed differential expression in breast cancer, which were mainly expressed in myeloid cells, epithelial cells, and dendritic cells. SERPINA5 expression was upregulated in breast cancer, which was associated with a better prognosis. Immune infiltration illustrated the positive correlativity between SERPINA5 intensity and eosinophilic recruitment. Pan-cancer analysis indicated the function of SERPINA5 as a potential biomarker in other cancers. Finally, experimental validation demonstrated that SERPINA5 contributes to lower invasion and metastatic potential of breast cancer cells. With bioinformatics analysis, the significant role SERPINA family genes functioned in breast cancer was comprehensively explored, with SERPINA5 emerging as a key gene in suppressing breast cancer progression.
Collapse
Affiliation(s)
- Qiyi Yu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yidong Zhang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyue Pan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongmei Tan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Simin Yan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Nakkala S, Modak C, Bathula R, Lanka G, Somadi G, Sreekanth S, Jain A, Potlapally SR. Identification of new anti-cancer agents against CENTERIN: Structure-based virtual screening, AutoDock and binding free energy studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Zhang QY, Ye XP, Zhou Z, Zhu CF, Li R, Fang Y, Zhang RJ, Li L, Liu W, Wang Z, Song SY, Lu SY, Zhao SX, Lin JN, Song HD. Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto's thyroiditis. Nat Commun 2022; 13:775. [PMID: 35140214 PMCID: PMC8828859 DOI: 10.1038/s41467-022-28120-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is the most common autoimmune disease characterized by lymphocytic infiltration and thyrocyte destruction. Dissection of the interaction between the thyroidal stromal microenvironment and the infiltrating immune cells might lead to a better understanding of HT pathogenesis. Here we show, using single-cell RNA-sequencing, that three thyroidal stromal cell subsets, ACKR1+ endothelial cells and CCL21+ myofibroblasts and CCL21+ fibroblasts, contribute to the thyroidal tissue microenvironment in HT. These cell types occupy distinct histological locations within the thyroid gland. Our experiments suggest that they might facilitate lymphocyte trafficking from the blood to thyroid tissues, and T cell zone CCL21+ fibroblasts may also promote the formation of tertiary lymphoid organs characteristic to HT. Our study also demonstrates the presence of inflammatory macrophages and dendritic cells expressing high levels of IL-1β in the thyroid, which may contribute to thyrocyte destruction in HT patients. Our findings thus provide a deeper insight into the cellular interactions that might prompt the pathogenesis of HT.
Collapse
Affiliation(s)
- Qian-Yue Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiao-Ping Ye
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zheng Zhou
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Department of geriatric endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen-Fang Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Discipline Construction Research Center of China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Rui Li
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ya Fang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lu Li
- Department of Endocrinology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Liu
- Department of Endocrinology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Wang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shi-Yang Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Sang-Yu Lu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jian-Nan Lin
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Department of Endocrinology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
6
|
Granados-Montiel J, Cruz-Lemini M, Rangel-Escareño C, Martinez-Nava G, Landa-Solis C, Gomez-Garcia R, Lopez-Reyes A, Espinosa-Gutierrez A, Ibarra C. SERPINA9 and SERPINB2: Novel Cartilage Lineage Differentiation Markers of Human Mesenchymal Stem Cells with Kartogenin. Cartilage 2021; 12:102-111. [PMID: 30373376 PMCID: PMC7755963 DOI: 10.1177/1947603518809403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Human mesenchymal stem cells (hMSCs) are a promising source for regenerative medicine, especially mesodermal lineages. Clinical applications require an understanding of the mechanisms for transcriptional control to maintain the desired cell type. The aim of this study was to identify novel markers for differentiation of hMSCs into bone or cartilage with the use of Kartogenin, by RNA analysis using microarray technology, and explore the role of RhoA-Rho associated protein kinase (ROCK) inhibition in these. METHODS Commercial human bone marrow derived primary mesenchymal stem cells were purchased from ATCC. Cells were differentiated in vitro in 2-dimensional cultures using Kartogenin as the main cartilage inducer and bone morphogenetic protein 2 for bone differentiation; cells were cultured with and without ROCK inhibitor Y-27632. After 21 days of culture, whole RNA was extracted and analyzed via Affimetrix microarrays. The most significant hits were validated by quantitative polymerase chain reaction. RESULTS We found a total of 1,757 genes that were either up- or downregulated on differentiation, when compared to P1 hMSC (control) at day 0 of differentiation. Two members of the Serpin superfamily, SERPINA9 and SERPINB2, were significantly upregulated in the cartilage groups, whereas they were unchanged in the bone groups with and without ROCK inhibition. CONCLUSIONS SERPINA9 and SERPINB2 are novel differentiation markers, and molecular regulator candidates for hMSC lineage commitment toward bone and cartilage, providing a new tool for regenerative medicine. Our study highlights the roles of these 2 genes, with significant upregulation of both in cell cultures stimulated with Kartogenin.
Collapse
Affiliation(s)
- Julio Granados-Montiel
- Tissue Engineering, Cell Therapy and Regenerative Medicine Research Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico,Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, UK
| | - Monica Cruz-Lemini
- Fetal Medicine Mexico Foundation and Fetal Surgery Unit, Children and Women’s Specialty Hospital of Queretaro, Queretaro, Mexico
| | | | - Gabriela Martinez-Nava
- Synovioanalysis Molecular Laboratory, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Carlos Landa-Solis
- Tissue Engineering, Cell Therapy and Regenerative Medicine Research Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Ricardo Gomez-Garcia
- Tissue Engineering, Cell Therapy and Regenerative Medicine Research Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Alberto Lopez-Reyes
- Synovioanalysis Molecular Laboratory, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Alejandro Espinosa-Gutierrez
- Hand Surgery and Microsurgery Department, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Clemente Ibarra
- Tissue Engineering, Cell Therapy and Regenerative Medicine Research Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico,Clemente Ibarra, Tissue Engineering, Cell Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada Mexico-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico.
| |
Collapse
|
7
|
Stienen S, Ferreira JP, Kobayashi M, Preud'homme G, Dobre D, Machu JL, Duarte K, Bresso E, Devignes MD, López N, Girerd N, Aakhus S, Ambrosio G, Brunner-La Rocca HP, Fontes-Carvalho R, Fraser AG, van Heerebeek L, Heymans S, de Keulenaer G, Marino P, McDonald K, Mebazaa A, Papp Z, Raddino R, Tschöpe C, Paulus WJ, Zannad F, Rossignol P. Enhanced clinical phenotyping by mechanistic bioprofiling in heart failure with preserved ejection fraction: insights from the MEDIA-DHF study (The Metabolic Road to Diastolic Heart Failure). Biomarkers 2020; 25:201-211. [PMID: 32063068 DOI: 10.1080/1354750x.2020.1727015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome for which clear evidence of effective therapies is lacking. Understanding which factors determine this heterogeneity may be helped by better phenotyping. An unsupervised statistical approach applied to a large set of biomarkers may identify distinct HFpEF phenotypes.Methods: Relevant proteomic biomarkers were analyzed in 392 HFpEF patients included in Metabolic Road to Diastolic HF (MEDIA-DHF). We performed an unsupervised cluster analysis to define distinct phenotypes. Cluster characteristics were explored with logistic regression. The association between clusters and 1-year cardiovascular (CV) death and/or CV hospitalization was studied using Cox regression.Results: Based on 415 biomarkers, we identified 2 distinct clusters. Clinical variables associated with cluster 2 were diabetes, impaired renal function, loop diuretics and/or betablockers. In addition, 17 biomarkers were higher expressed in cluster 2 vs. 1. Patients in cluster 2 vs. those in 1 experienced higher rates of CV death/CV hospitalization (adj. HR 1.93, 95% CI 1.12-3.32, p = 0.017). Complex-network analyses linked these biomarkers to immune system activation, signal transduction cascades, cell interactions and metabolism.Conclusion: Unsupervised machine-learning algorithms applied to a wide range of biomarkers identified 2 HFpEF clusters with different CV phenotypes and outcomes. The identified pathways may provide a basis for future research.Clinical significanceMore insight is obtained in the mechanisms related to poor outcome in HFpEF patients since it was demonstrated that biomarkers associated with the high-risk cluster were related to the immune system, signal transduction cascades, cell interactions and metabolismBiomarkers (and pathways) identified in this study may help select high-risk HFpEF patients which could be helpful for the inclusion/exclusion of patients in future trials.Our findings may be the basis of investigating therapies specifically targeting these pathways and the potential use of corresponding markers potentially identifying patients with distinct mechanistic bioprofiles most likely to respond to the selected mechanistically targeted therapies.
Collapse
Affiliation(s)
- Susan Stienen
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - João Pedro Ferreira
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France.,Department of Physiology and Cardiothoracic Surgery, Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Masatake Kobayashi
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Gregoire Preud'homme
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Daniela Dobre
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France.,Clinical research and Investigation Unit, Psychotherapeutic Center of Nancy, Laxou, France
| | - Jean-Loup Machu
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Kevin Duarte
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Emmanuel Bresso
- Equipe CAPSID, LORIA (CNRS, Inria NGE, Université de Lorraine), Vandoeuvre-lès-Nancy, France
| | | | - Natalia López
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Nicolas Girerd
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Svend Aakhus
- Department of Cardiology and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,ISB, Norwegian University of Science and Technology, Trondheim, Norway
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, Perugia, Italy
| | | | - Ricardo Fontes-Carvalho
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alan G Fraser
- Wales Heart Research Institute, Cardiff University, Cardiff, UK
| | - Loek van Heerebeek
- Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium.,William Harvey Research Institute, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Gilles de Keulenaer
- Laboratory of Physiopharmacology, Antwerp University, and ZNA Hartcentrum, Antwerp, Belgium
| | - Paolo Marino
- Clinical Cardiology, Università del Piemonte Orientale, Department of Translational Medicine, Azienda Ospedaliero Universitaria "Maggiore della Carità", Novara, Italy
| | - Kenneth McDonald
- School of Medicine and Medical Sciences, St Michael's Hospital Dun Laoghaire Co. Dublin, Dublin, Ireland
| | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, Saint Louis and Lariboisière University Hospitals and INSERM UMR-S 942, Paris, France
| | - Zoltàn Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Riccardo Raddino
- Department of Cardiology, Spedali Civili di Brescia, Brescia, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow-Klinikum, C, Harite Universitaetsmedizin Berlin, Berlin Institute of Health - Center for Regenerative Therapies (BIH-BCRT), and the German Center for Cardiovascular Research (DZHK; Berlin partner site), Berlin, Germany
| | - Walter J Paulus
- Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Faiez Zannad
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Patrick Rossignol
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| |
Collapse
|
8
|
Ancient admixture from an extinct ape lineage into bonobos. Nat Ecol Evol 2019; 3:957-965. [PMID: 31036897 DOI: 10.1038/s41559-019-0881-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/21/2019] [Indexed: 01/28/2023]
Abstract
Admixture is a recurrent phenomenon in humans and other great ape populations. Genetic information from extinct hominins allows us to study historical interactions with modern humans and discover adaptive functions of gene flow. Here, we investigate whole genomes from bonobo and chimpanzee populations for signatures of gene flow from unknown archaic populations, finding evidence for an ancient admixture event between bonobos and a divergent lineage. This result reveals a complex population history in our closest living relatives, probably several hundred thousand years ago. We reconstruct up to 4.8% of the genome of this 'ghost' ape, which represents genomic data of an extinct great ape population. Genes contained in archaic fragments might confer functional consequences for the immunity, behaviour and physiology of bonobos. Finally, comparing the landscapes of introgressed regions in humans and bonobos, we find that a recurrent depletion of introgression is rare, suggesting that genomic incompatibilities arose seldom in these lineages.
Collapse
|
9
|
Dzinic SH, Bernardo MM, Oliveira DSM, Wahba M, Sakr W, Sheng S. Tumor suppressor maspin as a modulator of host immune response to cancer. Bosn J Basic Med Sci 2015; 15:1-6. [PMID: 26614844 DOI: 10.17305/bjbms.2015.783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023] Open
Abstract
Despite the promising clinical outcome, the primary challenge of the curative cancer immunotherapy is to overcome the dichotomy of the immune response: tumor-evoked immunostimulatory versus tumor-induced immunosuppressive. The goal needs to be two-fold, to re-establish sustainable antitumor-cancer immunity and to eliminate immunosuppression. The successful elimination of cancer cells by immunosurveillance requires the antigenic presentation of the tumor cells or tumor-associated antigens and the expression of immunostimulatory cytokines and chemokines by cancer and immune cells. Tumors are heterogeneous and as such, some of the tumor cells are thought to have stem cell characteristics that enable them to suppress or desensitize the host immunity due to acquired epigenetic changes. A central mechanism underlying tumor epigenetic instability is the increased histone deacetylase (HDAC)-mediated repression of HDAC-target genes regulating homeostasis and differentiation. It was noted that pharmacological HDAC inhibitors are not effective in eliminating tumor cells partly because they may induce immunosuppression. We have shown that epithelial-specific tumor suppressor maspin, an ovalbumin-like non-inhibitory serine protease inhibitor, reprograms tumor cells toward better differentiated phenotypes by inhibiting HDAC1. Recently, we uncovered a novel function of maspin in directing host immunity towards tumor elimination. In this review, we discuss the maspin and maspin/HDAC1 interplay in tumor biology and immunology. We propose that maspin based therapies may eradicate cancer.
Collapse
Affiliation(s)
- Sijana H Dzinic
- 1Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.
| | | | | | | | | | | |
Collapse
|
10
|
Petri A, Dybkær K, Bøgsted M, Thrue CA, Hagedorn PH, Schmitz A, Bødker JS, Johnsen HE, Kauppinen S. Long Noncoding RNA Expression during Human B-Cell Development. PLoS One 2015; 10:e0138236. [PMID: 26394393 PMCID: PMC4578992 DOI: 10.1371/journal.pone.0138236] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular processes, but their roles in the developing immune system are poorly understood. In this study, we analysed lncRNA expression during human B-cell development by array-based expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n = 6), respectively. A remapping strategy was used to assign the array probes to 37630 gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases, which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 antisense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first step towards inferring the functions of the identified lncRNAs in developing B-cells, we analysed their co-expression with well-characterized protein-coding genes, a method known as “guilt by association”. By using weighted gene co-expression network analysis, we identified 272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven sub-networks associated with distinct stages of B-cell development, such as early B-cell development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation. These data provide an important resource for future studies on the functions of lncRNAs in development of the adaptive immune response, and the pathogenesis of B-cell malignancies that originate from distinct B-cell subpopulations.
Collapse
Affiliation(s)
- Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Charlotte Albæk Thrue
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Peter H. Hagedorn
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
11
|
Diagnostic Utility of the Germinal Center–associated Markers GCET1, HGAL, and LMO2 in Hematolymphoid Neoplasms. Appl Immunohistochem Mol Morphol 2015; 23:491-8. [DOI: 10.1097/pai.0000000000000107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Olsson M, Tengvall K, Frankowiack M, Kierczak M, Bergvall K, Axelsson E, Tintle L, Marti E, Roosje P, Leeb T, Hedhammar Å, Hammarström L, Lindblad-Toh K. Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency. PLoS One 2015. [PMID: 26225558 PMCID: PMC4520476 DOI: 10.1371/journal.pone.0133844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.
Collapse
Affiliation(s)
- Mia Olsson
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden
- * E-mail: (KT); (MO); (KLT)
| | - Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (KT); (MO); (KLT)
| | - Marcel Frankowiack
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden
| | - Marcin Kierczak
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Linda Tintle
- Wurtsboro Veterinary Clinic, Wurtsboro, New York, United States of America
| | - Eliane Marti
- Department of Clinical Veterinary Medicine, Division of Clinical Dermatology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern Switzerland
| | - Petra Roosje
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern Switzerland
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (KT); (MO); (KLT)
| |
Collapse
|
13
|
Khodabakhshi AH, Morin RD, Fejes AP, Mungall AJ, Mungall KL, Bolger-Munro M, Johnson NA, Connors JM, Gascoyne RD, Marra MA, Birol I, Jones SJM. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 2013; 3:1308-19. [PMID: 23131835 PMCID: PMC3717795 DOI: 10.18632/oncotarget.653] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Somatic hypermutation (SHM) in the variable region of immunoglobulin genes (IGV) naturally occurs in a narrow window of B cell development to provide high-affinity antibodies. However, SHM can also aberrantly target proto-oncogenes and cause genome instability. The role of aberrant SHM (aSHM) has been widely studied in various non-Hodgkin's lymphoma particularly in diffuse large B-cell lymphoma (DLBCL). Although, it has been speculated that aSHM targets a wide range of genome loci so far only twelve genes have been identified as targets of aSHM through the targeted sequencing of selected genes. A genome-wide study aiming at identifying a comprehensive set of aSHM targets recurrently occurring in DLBCL has not been previously undertaken. Here, we present a comprehensive assessment of the somatic hypermutated genes in DLBCL identified through an analysis of genomic and transcriptome data derived from 40 DLBCL patients. Our analysis verifies that there are indeed many genes that are recurrently affected by aSHM. In particular, we have identified 32 novel targets that show same or higher level of aSHM activity than genes previously reported. Amongst these novel targets, 22 genes showed a significant correlation between mRNA abundance and aSHM.
Collapse
|
14
|
Visco C, Li Y, Xu-Monette ZY, Miranda RN, Green TM, Li Y, Tzankov A, Wen W, Liu WM, Kahl BS, d'Amore ESG, Montes-Moreno S, Dybkær K, Chiu A, Tam W, Orazi A, Zu Y, Bhagat G, Winter JN, Wang HY, O'Neill S, Dunphy CH, Hsi ED, Zhao XF, Go RS, Choi WWL, Zhou F, Czader M, Tong J, Zhao X, van Krieken JH, Huang Q, Ai W, Etzell J, Ponzoni M, Ferreri AJM, Piris MA, Møller MB, Bueso-Ramos CE, Medeiros LJ, Wu L, Young KH. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia 2012; 26:2103-13. [PMID: 22437443 DOI: 10.1038/leu.2012.83] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development-namely germinal center B-cell like and activated B-cell like. This classification has prognostic significance, but GEP is expensive and not readily applicable into daily practice, which has lead to immunohistochemical algorithms proposed as a surrogate for GEP analysis. We assembled tissue microarrays from 475 de novo DLBCL patients who were treated with rituximab-CHOP chemotherapy. All cases were successfully profiled by GEP on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1 and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B cells. Cutoffs for each marker were obtained using receiver-operating characteristic curves, obviating the need for any arbitrary method. An algorithm based on the expression of CD10, FOXP1 and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP. In multivariate analysis, both the International Prognostic Index and our proposed algorithm were significant independent predictors of progression-free and overall survival. In conclusion, this algorithm effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy.
Collapse
Affiliation(s)
- C Visco
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Choi WWL, Weisenburger DD, Greiner TC, Piris MA, Banham AH, Delabie J, Braziel RM, Geng H, Iqbal J, Lenz G, Vose JM, Hans CP, Fu K, Smith LM, Li M, Liu Z, Gascoyne RD, Rosenwald A, Ott G, Rimsza LM, Campo E, Jaffe ES, Jaye DL, Staudt LM, Chan WC. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res 2009; 15:5494-502. [PMID: 19706817 DOI: 10.1158/1078-0432.ccr-09-0113] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hans and coworkers previously developed an immunohistochemical algorithm with approximately 80% concordance with the gene expression profiling (GEP) classification of diffuse large B-cell lymphoma (DLBCL) into the germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes. Since then, new antibodies specific to germinal center B-cells have been developed, which might improve the performance of an immunostain algorithm. EXPERIMENTAL DESIGN We studied 84 cases of cyclophosphamide-doxorubicin-vincristine-prednisone (CHOP)-treated DLBCL (47 GCB, 37 ABC) with GCET1, CD10, BCL6, MUM1, FOXP1, BCL2, MTA3, and cyclin D2 immunostains, and compared different combinations of the immunostaining results with the GEP classification. A perturbation analysis was also applied to eliminate the possible effects of interobserver or intraobserver variations. A separate set of 63 DLBCL cases treated with rituximab plus CHOP (37 GCB, 26 ABC) was used to validate the new algorithm. RESULTS A new algorithm using GCET1, CD10, BCL6, MUM1, and FOXP1 was derived that closely approximated the GEP classification with 93% concordance. Perturbation analysis indicated that the algorithm was robust within the range of observer variance. The new algorithm predicted 3-year overall survival of the validation set [GCB (87%) versus ABC (44%); P < 0.001], simulating the predictive power of the GEP classification. For a group of seven primary mediastinal large B-cell lymphoma, the new algorithm is a better prognostic classifier (all "GCB") than the Hans' algorithm (two GCB, five non-GCB). CONCLUSION Our new algorithm is significantly more accurate than the Hans' algorithm and will facilitate risk stratification of DLBCL patients and future DLBCL research using archival materials.
Collapse
Affiliation(s)
- William W L Choi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Pascual V, Roberts WC. Virginia Pascual, MD: a conversation with the editor. Proc AMIA Symp 2008; 21:57-67. [PMID: 18209757 PMCID: PMC2190553 DOI: 10.1080/08998280.2008.11928360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Virginia Pascual
- Baylor Institute for Immunology Research, Baylor University Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
18
|
Affiliation(s)
- Stephen M Jackson
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
19
|
Montes-Moreno S, Roncador G, Maestre L, Martínez N, Sanchez-Verde L, Camacho FI, Cannata J, Martinez-Torrecuadrada JL, Shen Y, Chan WC, Piris MA. Gcet1 (centerin), a highly restricted marker for a subset of germinal center-derived lymphomas. Blood 2007; 111:351-8. [PMID: 17898315 DOI: 10.1182/blood-2007-06-094151] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GCET1 (germinal center B cell-expressed transcript-1) gene codes for a serpin expressed in germinal center (GC) B cells. Following the observation that follicular lymphoma cases exhibit an increased level of Gcet1 expression, compared with follicular hyperplasia, we have characterized Gcet1 protein expression in human tissues, cell lines, and a large series of lymphomas. To this end, we have performed immunohistochemical and Western blot analyses using a newly generated monoclonal antibody that is reactive in paraffin-embedded tissues. Our results demonstrate that Gcet1 is expressed exclusively by neoplasms hypothetically to be arrested at the GC stage of differentiation, including follicular lymphoma, nodular lymphocyte predominant Hodgkin lymphoma, and a subset of diffuse large B-cell lymphoma, T-cell/histiocyte rich B-cell lymphoma, and Burkitt lymphoma. Within these tumors, Gcet-1 protein expression is restricted to a subset of GC B cells, establishing the existence of a distinct heterogeneity among normal and neoplastic GC B cells. None of the other B-cell lymphomas, that is, chronic lymphocytic leukemia, splenic marginal zone lymphoma, and mantle cell lymphoma, was Gcet1(+), which underlines the potential utility of Gcet1 expression in lymphoma diagnosis. The results of RNA and protein expression should prompt further investigation into the role of Gcet1 in regulating B-cell survival.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Germinal Center/pathology
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Humans
- Immunoenzyme Techniques
- Lymphoma/genetics
- Lymphoma/metabolism
- Lymphoma/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Follicular/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Serpins/genetics
- Serpins/metabolism
Collapse
|
20
|
Paterson M, Horvath A, Pike R, Coughlin P. Molecular characterization of centerin, a germinal centre cell serpin. Biochem J 2007; 405:489-94. [PMID: 17447896 PMCID: PMC2267310 DOI: 10.1042/bj20070174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Centerin [SERPINA9/GCET1 (germinal centre B-cell-expressed transcript 1)] is a serpin (serine protease inhibitor) whose expression is restricted to germinal centre B-cells and lymphoid malignancies with germinal centre B-cell maturation. Expression of centerin, together with bcl-6 and GCET2, constitutes a germinal centre B-cell signature, which is associated with a good prognosis in diffuse large B-cell lymphomas, but the molecular basis for this remains to be elucidated. We report here the cloning, expression and molecular characterization of bacterial recombinant centerin. Biophysical studies demonstrated that centerin was able to undergo the 'stressed to relaxed' conformational change which is an absolute requirement for protease inhibitory activity. Kinetic analysis showed that centerin rapidly inhibited the serine protease trypsin (k(a)=1.9x10(5) M(-1) x s(-1)) and also demonstrated measurable inhibition of thrombin (k(a)=1.17x10(3) M(-1) x s(-1)) and plasmin (k(a)=1.92x10(3) M(-1) x s(-1)). Centerin also bound DNA and unfractionated heparin, although there was no functionally significant impact on the rate of inhibition. These results suggest that centerin is likely to function in vivo in the germinal centre as an efficient inhibitor of a trypsin-like protease.
Collapse
Affiliation(s)
- Melinda A. Paterson
- *Australian Centre for Blood Diseases, Monash University, Level 6 Burnet Tower, 89 Commercial Road, Melbourne 3004, VIC, Australia
| | - Anita J. Horvath
- *Australian Centre for Blood Diseases, Monash University, Level 6 Burnet Tower, 89 Commercial Road, Melbourne 3004, VIC, Australia
| | - Robert N. Pike
- †Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, VIC, Australia
| | - Paul B. Coughlin
- *Australian Centre for Blood Diseases, Monash University, Level 6 Burnet Tower, 89 Commercial Road, Melbourne 3004, VIC, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Law RHP, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC. An overview of the serpin superfamily. Genome Biol 2006; 7:216. [PMID: 16737556 PMCID: PMC1779521 DOI: 10.1186/gb-2006-7-5-216] [Citation(s) in RCA: 489] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serpins are a broadly distributed family of protease inhibitors that use a conformational change to inhibit target enzymes. They are central in controlling many important proteolytic cascades, including the mammalian coagulation pathways. Serpins are conformationally labile and many of the disease-linked mutations of serpins result in misfolding or in pathogenic, inactive polymers.
Collapse
Affiliation(s)
- Ruby HP Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Qingwei Zhang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Sheena McGowan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Gary A Silverman
- Magee-Womens Research Institute, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wilson Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Carlos J Rosado
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Chris G Langendorf
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Rob N Pike
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Philip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Magee-Womens Research Institute, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
van Gent D, Sharp P, Morgan K, Kalsheker N. Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol 2003; 35:1536-47. [PMID: 12824063 DOI: 10.1016/s1357-2725(03)00134-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The superfamily of serine proteinase inhibitors (serpins) are involved in a number of fundamental biological processes such as blood coagulation, complement activation, fibrinolysis, angiogenesis, inflammation and tumor suppression and are expressed in a cell-specific manner. The average protein size of a serpin family member is 350-400 amino acids, but gene structure varies in terms of number and size of exons and introns. Previous studies of all known serpins identified 16 clades and 10 orphan sequences. Vertebrate serpins can be conveniently classified into six sub-groups. We provide additional data that updates the phylogenetic analysis in the context of structural and functional properties of the proteins. From these, we can conclude that the functional classification of serpins relies on their protein structure and not on sequence similarity.
Collapse
Affiliation(s)
- Diana van Gent
- Division of Clinical Chemistry, Institute of Genetics, Queen's Medical Centre, University of Nottingham, NG7 2UH Nottingham, UK
| | | | | | | |
Collapse
|
23
|
Pan Z, Shen Y, Du C, Zhou G, Rosenwald A, Staudt LM, Greiner TC, McKeithan TW, Chan WC. Two newly characterized germinal center B-cell-associated genes, GCET1 and GCET2, have differential expression in normal and neoplastic B cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:135-44. [PMID: 12819018 PMCID: PMC1868163 DOI: 10.1016/s0002-9440(10)63637-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A group of genes are highly expressed in normal germinal center (GC) B cells and GC B-cell-derived malignancies based on cDNA microarray analysis. Two new genes, GCET1 (germinal center B-cell expressed transcript 1) and GCET2, were cloned from selected expressed sequence tags (IMAGE clone 1334260 and 814622, respectively). GCET1 is located on chromosome 14q32 and has four splicing isoforms, of which the longest one is 1787 bp and encodes a 435-amino acid protein. GCET2 is located on 3q13.13, and the cloned fragment is 3270 bp, which encodes a protein of 178 amino acids. Blast search showed that GCET1 has a highly conserved serine proteinase inhibitor (SERPIN) domain and is located on a chromosomal locus containing seven other SERPIN family members. GCET2 is a likely homologue of the mouse gene M17, a GC-expressed transcript. Analysis of the GCET2 protein sequence indicated that it may be involved in signal transduction in the cytoplasm. Northern blot and real-time polymerase chain reaction analyses confirmed that GCET1 is highly restricted to normal GC B cells and GCB-cell-derived cell lines. Although GCET2 is also a useful marker for normal and neoplastic GC B cells, it has a wider range of expression including immature B and T cells. Real-time polymerase chain reaction assay showed that both GCET1 and GCET2 are preferentially expressed in follicular lymphoma and diffuse large B-cell lymphoma with GC B-cell differentiation, confirming previous microarray gene expression analysis, but neither one is entirely specific. Multiple markers are necessary to differentiate the GCB from the activated B-cell type of diffuse large B-cell lymphoma with a high degree of accuracy.
Collapse
Affiliation(s)
- Zenggang Pan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska and The Metabolism Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Forsyth S, Horvath A, Coughlin P. A review and comparison of the murine alpha1-antitrypsin and alpha1-antichymotrypsin multigene clusters with the human clade A serpins. Genomics 2003; 81:336-45. [PMID: 12659817 DOI: 10.1016/s0888-7543(02)00041-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The major human plasma protease inhibitors, alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, are each encoded by a single gene, whereas in the mouse they are represented by clusters of 5 and 14 genes, respectively. Although there is a high degree of overall sequence similarity within these groupings, the reactive-center loop (RCL) domain, which determines target protease specificity, is markedly divergent. The literature dealing with members of these mouse serine protease inhibitor (serpin) clusters has been complicated by inconsistent nomenclature. Furthermore, some investigators, unaware of the complexity of the family, have failed to distinguish between closely related genes when measuring expression levels or functional activity. We have reviewed the literature dealing with the mouse equivalents of human alpha(1)-antitrypsin and alpha(1)-antichymotrypsin and made use of the recently completed mouse genome sequence to propose a systematic nomenclature. We have also examined the extended mouse clade "a" serpin cluster at chromosome 12F1 and compared it with the syntenic region at human chromosome 14q32. In summarizing the literature and suggesting a standardized nomenclature, we aim to provide a logical structure on which future research may be based.
Collapse
Affiliation(s)
- Sharon Forsyth
- Department of Medicine, Monash University, Melbourne 3128, Australia
| | | | | |
Collapse
|
25
|
Gupta-Rossi N, Storck S, Griebel PJ, Reynaud CA, Weill JC, Dahan A. Specific over-expression of deltex and a new Kelch-like protein in human germinal center B cells. Mol Immunol 2003; 39:791-9. [PMID: 12617994 DOI: 10.1016/s0161-5890(03)00002-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ig gene hypermutation was originally described as the molecular process underlying B cell affinity maturation following a T-dependent immune response. Somatic hypermutation is also used in some species such as sheep, to generate diversity during formation of the primary antibody repertoire. In sheep, B cells mutate their Ig receptor during antigen-independent development in the lymphoid follicles of ileal Peyer's patches, but this process is arrested when these same B cells are cultured in vitro. We have used these differences between in vivo and in vitro B cell development to perform a cDNA subtraction between these two cell populations, in order to search for genes that might be involved in the hypermutation process. We describe in this paper the characterization of two genes, highly expressed in sheep ileal Peyer's patch B cells and also in centroblasts of human tonsils: deltex (Drosophila) homolog 1 (DTX1), which is related to the Notch pathway and a new Kelch-like protein, KLHL6. The putative role of these proteins, which are more likely involved in the germinal center B cell differentiation pathway than in the hypermutation mechanism per se, is discussed.
Collapse
Affiliation(s)
- Neetu Gupta-Rossi
- INSERM U373, Faculté de Médecine Necker-Enfants Malades, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
26
|
Jayakumar A, Kang Y, Frederick MJ, Pak SC, Henderson Y, Holton PR, Mitsudo K, Silverman GA, EL-Naggar AK, Brömme D, Clayman GL. Inhibition of the cysteine proteinases cathepsins K and L by the serpin headpin (SERPINB13): a kinetic analysis. Arch Biochem Biophys 2003; 409:367-74. [PMID: 12504904 DOI: 10.1016/s0003-9861(02)00635-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Headpin (SERPINB13) is a novel member of the serine proteinase inhibitor (Serpin) gene family that was originally cloned from a keratinocyte cDNA library. Western blot analysis using a headpin-specific antiserum recognized a protein with the predicted M(r) of 44kDa in lysates derived from a transformed keratinocyte cell line known to express headpin mRNA. Similarity of the reactive-site loop (RSL) domain of headpin, notably at the P1-P1(') residues, with other serpins that inhibit cysteine and serine proteinases suggests that headpin may inhibit similar proteinases. This study demonstrates that recombinant headpin indeed inhibits cathepsins K and L, but not chymotrypsin, elastase, trypsin, subtilisin A, urokinase-type plasminogen activator, plasmin, or thrombin. The second-order rate constants (k(a)) for the inhibitory reactions of rHeadpin with cathepsins K and L were 5.1+/-0.6x10(4) and 4.1+/-0.8x10(4)M(-1)s(-1), respectively. Headpin formed SDS-stable complexes with cathepsins K and L, a characteristic property of inhibitory serpins. Interactions of the RSL domain of headpin with cathepsins K and L were indicated by cleavage of headpin near the predicted P1-P1(') residues by these proteinases. These results demonstrate that the serpin headpin possesses specificity for inhibiting lysosomal cysteine proteinases.
Collapse
Affiliation(s)
- Arumugam Jayakumar
- Department of Head and Neck Surgery, M.D. Anderson Cancer Center, The University of Texas, 1515 Holcombe Blvd., Houston, TX 77030-4095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Peter G W Gettins
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, M/C 536, 1819-53 West Polk Street, Chicago, Illinois 60612, USA.
| |
Collapse
|
28
|
Abstract
The major lymphoid inhabitant of the follicular mantle is the mantle cell, an immunologically naïve B cell. It is the putative cell of origin of mantle cell lymphoma (MCL), the cells of which have similar morphologic, immunophenotypic, and molecular characteristics to the normal B lymphocytes of the mantle zone. In the past year a number of advances have been made in the biology of the normal mantle cell, its interactions with the other constituents of the follicular and mantle zone microenvironments, and the development of neoplasia in this cell population. In addition, new developments in diagnostic molecular pathology have been used to more readily identify cases of MCL. The authors summarize these new advances in the understanding of the biology of the mantle cell and newer ancillary techniques in the diagnosis of lymphomas arising from this cell type.
Collapse
Affiliation(s)
- John L Frater
- Department of Pathology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | | |
Collapse
|
29
|
Arce E, Jackson DG, Gill MA, Bennett LB, Banchereau J, Pascual V. Increased frequency of pre-germinal center B cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2361-9. [PMID: 11490026 DOI: 10.4049/jimmunol.167.4.2361] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have analyzed the blood B cell subpopulations of children with systemic lupus erythematosus (SLE) and healthy controls. We found that the normal recirculating mature B cell pool is composed of four subsets: conventional naive and memory B cells, a novel B cell subset with pregerminal center phenotype (IgD(+)CD38(+)centerin(+)), and a plasma cell precursor subset (CD20(-)CD19(+/low)CD27(+/++) CD38(++)). In SLE patients, naive and memory B cells (CD20(+)CD38(-)) are approximately 90% reduced, whereas oligoclonal plasma cell precursors are 3-fold expanded, independently of disease activity and modality of therapy. Pregerminal center cells in SLE are decreased to a lesser extent than conventional B cells, and therefore represent the predominant blood B cell subset in a number of patients. Thus, SLE is associated with major blood B cell subset alterations.
Collapse
Affiliation(s)
- E Arce
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | | | | | | | |
Collapse
|