1
|
Xiao S, Cui J, Yang J, Hou H, Yao J, Ma X, Zheng L, Zhao F, Liu X, Liu D, Zhou Z, Wang P. Systematic health risks assessment of chiral fungicide famoxadone: Stereoselectivities in ferroptosis-mediated cytotoxicity and metabolic behavior. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135199. [PMID: 39053069 DOI: 10.1016/j.jhazmat.2024.135199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Famoxadone is a chiral fungicide frequently found in the environment and agricultural products. However, the health risks of famoxadone enantiomers are not well understood. This study investigated the stereoselective cytotoxicity and metabolic behavior of famoxadone enantiomers in mammals. Results showed that R-famoxadone was 1.5 times more toxic to HepG2 cells than S-famoxadone. R-famoxadone induced more pronounced ferroptosis compared to S-famoxadone. It caused greater upregulation of genes related to iron transport and lipid peroxidation, and greater downregulation of genes related to peroxide clearance. Furthermore, R-famoxadone induced more severe lipid peroxidation and reactive oxygen species (ROS) accumulation through ACSL4 activation and GPX4 inhibition. Additionally, the bioavailability of R-famoxadone in mice was six times higher than that of S-famoxadone. Liver microsome assays, cytochrome P450 (CYP450) inhibition assays, human recombinant CYP450 assays, and molecular docking suggested that the lower binding affinities of CYP2C8, CYP2C19, and CYP2E1 for R-famoxadone caused its preferential accumulation. Overall, R-famoxadone poses a higher risk than S-famoxadone due to its greater cytotoxicity and persistence. This study provides the first evidence of ferroptosis-induced stereoselective toxicity, offering insights for the comprehensive health risk assessment of chiral famoxadone and valuable references for the application of high-efficiency, low-risk pesticide enantiomers.
Collapse
Affiliation(s)
- Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jiaxing Yang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Haonan Hou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jianing Yao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xiaoran Ma
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Li Zheng
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Fanrong Zhao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
2
|
Jin DJ, Yang ZH, Qiu YG, Zheng YM, Cui ZN, Gu W. Design, synthesis, antifungal evaluation and mechanism study of novel norbornene derivatives as potential laccase inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:4273-4285. [PMID: 38625031 DOI: 10.1002/ps.8133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND To discover novel fungicide candidates, five series of novel norbornene hydrazide, bishydrazide, oxadiazole, carboxamide and acylthiourea derivatives (2a-2t, 3a-3f, 4a-4f, 5a-5f and 7a-7f) were designed, synthesized and assayed for their antifungal activity toward seven representative plant fungal pathogens. RESULTS In the in vitro antifungal assay, some title norbornene derivatives presented good antifungal activity against Botryosphaeria dothidea, Sclerotinia sclerotiorum and Fusarium graminearum. Especially, compound 2b exhibited the best inhibitory activity toward B. dothidea with the median effective concentration (EC50) of 0.17 mg L-1, substantially stronger than those of the reference fungicides boscalid and carbendazim. The in vivo antifungal assay on apples revealed that 2b had significant curative and protective effects, both of which were superior to boscalid. In the preliminary antifungal mechanism study, 2b was able to injure the surface morphology of hyphae, destroy the cell membrane integrity and increase the intracellular reactive oxygen species (ROS) level of B. dothidea. In addition, 2b could considerably inhibit the laccase activity with the median inhibitory concentration (IC50) of 1.02 μM, much stronger than that of positive control cysteine (IC50 = 35.50 μM). The binding affinity and interaction mode of 2b with laccase were also confirmed by molecular docking. CONCLUSION This study presented a promising lead compound for the study of novel laccase inhibitors as fungicidal agrochemicals, which demonstrate significant anti-B. dothidea activity and laccase inhibitory activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dao-Jun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zi-Hui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yi-Gui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yi-Ming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhen-Nan Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Chen H, Jiang Z, Tong H, Mai Z, Kong R, Zhang W, Zhang MZ, Chen K, Zhu Y. Discovery of Novel Acethydrazide-Containing Flavonol Derivatives as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17229-17239. [PMID: 39052285 DOI: 10.1021/acs.jafc.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this study, a series of novel hydrazide-containing flavonol derivatives was designed, synthesized, and evaluated for antifungal activity. In the in vitro antifungal assay, most of the target compounds exhibited potent antifungal activity against seven tested phytopathogenic fungi. In particular, compound C32 showed the best antifungal activity against Rhizoctonia solani (EC50 = 0.170 μg/mL), outperforming carbendazim (EC50 = 0.360 μg/mL) and boscalid (EC50 = 1.36 μg/mL). Compound C24 exhibited excellent antifungal activity against Valsa mali, Botrytis cinerea, and Alternaria alternata with EC50 values of 0.590, 0.870, and 1.71 μg/mL, respectively. The in vivo experiments revealed that compounds C32 and C24 were potential novel agricultural antifungals. 3D quantitative structure-activity relationship (3D-QSAR) models were used to analyze the structure-activity relationships of these compounds. The analysis results indicated that introducing appropriate electronegative groups at position 4 of a benzene ring could effectively improve the anti-R. solani activity. In the antifungal mechanism study, scanning electron microscopy and transmission electron microscopy analyses revealed that C32 disrupted the normal growth of hyphae by affecting the structural integrity of the cell membrane and cellular respiration. Furthermore, compound C32 exhibited potent succinate dehydrogenase (SDH) inhibitory activity (IC50 = 8.42 μM), surpassing that of the SDH fungicide boscalid (IC50 = 15.6 μM). The molecular dynamics simulations and docking experiments suggested that compound C32 can occupy the active site and form strong interactions with the key residues of SDH. Our findings have great potential for aiding future research on plant disease control in agriculture.
Collapse
Affiliation(s)
- Hongyi Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zunyun Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - He Tong
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyun Mai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Tortora F, Guerrera V, Lettieri G, Febbraio F, Piscopo M. Prediction of Pesticide Interactions with Proteins Involved in Human Reproduction by Using a Virtual Screening Approach: A Case Study of Famoxadone Binding CRBP-III and Izumo. Int J Mol Sci 2024; 25:5790. [PMID: 38891976 PMCID: PMC11171824 DOI: 10.3390/ijms25115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, the awareness that pesticides can have other effects apart from generic toxicity is growing. In particular, several pieces of evidence highlight their influence on human fertility. In this study, we investigated, by a virtual screening approach, the binding between pesticides and proteins present in human gametes or associated with reproduction, in order to identify new interactions that could affect human fertility. To this aim, we prepared ligand (pesticides) and receptor (proteins) 3D structure datasets from online structural databases (such as PubChem and RCSB), and performed a virtual screening analysis using Autodock Vina. In the comparison of the predicted interactions, we found that famoxadone was predicted to bind Cellular Retinol Binding Protein-III in the retinol-binding site with a better minimum energy value of -10.4 Kcal/mol and an RMSD of 3.77 with respect to retinol (-7.1 Kcal/mol). In addition to a similar network of interactions, famoxadone binding is more stabilized by additional hydrophobic patches including L20, V29, A33, F57, L117, and L118 amino acid residues and hydrogen bonds with Y19 and K40. These results support a possible competitive effect of famoxadone on retinol binding with impacts on the ability of developing the cardiac tissue, in accordance with the literature data on zebrafish embryos. Moreover, famoxadone binds, with a minimum energy value between -8.3 and -8.0 Kcal/mol, to the IZUMO Sperm-Egg Fusion Protein, interacting with a network of polar and hydrophobic amino acid residues in the cavity between the 4HB and Ig-like domains. This binding is more stabilized by a predicted hydrogen bond with the N185 residue of the protein. A hindrance in this position can probably affect the conformational change for JUNO binding, avoiding the gamete membrane fusion to form the zygote. This work opens new interesting perspectives of study on the effects of pesticides on fertility, extending the knowledge to other typologies of interaction which can affect different steps of the reproductive process.
Collapse
Affiliation(s)
- Fabiana Tortora
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Valentina Guerrera
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy (M.P.)
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy (M.P.)
| |
Collapse
|
5
|
Esser L, Xia D. Mitochondrial Cytochrome bc1 Complex as Validated Drug Target: A Structural Perspective. Trop Med Infect Dis 2024; 9:39. [PMID: 38393128 PMCID: PMC10892539 DOI: 10.3390/tropicalmed9020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial respiratory chain Complex III, also known as cytochrome bc1 complex or cyt bc1, is a validated target not only for antibiotics but also for pesticides and anti-parasitic drugs. Although significant progress has been made in understanding the mechanisms of cyt bc1 function and inhibition by using various natural and synthetic compounds, important issues remain in overcoming drug resistance in agriculture and in evading cytotoxicity in medicine. In this review, we look at these issues from a structural perspective. After a brief description of the essential and common structural features, we point out the differences among various cyt bc1 complexes of different organisms, whose structures have been determined to atomic resolution. We use a few examples of cyt bc1 structures determined via bound inhibitors to illustrate both conformational changes observed and implications to the Q-cycle mechanism of cyt bc1 function. These structures not only offer views of atomic interactions between cyt bc1 complexes and inhibitors, but they also provide explanations for drug resistance when structural details are coupled to sequence changes. Examples are provided for exploiting structural differences in evolutionarily conserved enzymes to develop antifungal drugs for selectivity enhancement, which offer a unique perspective on differential interactions that can be exploited to overcome cytotoxicity in treating human infections.
Collapse
Affiliation(s)
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2122C, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Xiao S, Cui J, Chen A, Hou H, Yao J, Cao Y, Fang Y, Liu X, Zhou Z, Liu D, Wang P. Thyroid Dysfunction Induced by Fungicide Famoxadone Exposure Contributes to Nonalcoholic Fatty Liver Disease in Male Mice: In Vivo, In Vitro, and In Silico Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14881-14891. [PMID: 37749806 DOI: 10.1021/acs.est.3c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Thyroid dysfunction has become a serious public health problem, which is considered a trigger of nonalcoholic fatty liver disease (NAFLD). Pesticide exposure could contribute to thyroid dysfunction and NAFLD, but the relationship between these factors remains unclear. In this study, the effects of subchronic famoxadone exposure on thyroid and liver at no observed adverse effect level (NOEL) related concentrations were investigated using in vivo, in vitro, and in silico models. Famoxadone caused hepatic steatosis, lipid metabolism disorder, and liver oxidative stress and induced NAFLD in male mice. The suppression of hepatic fatty acid β-oxidation was the key factor of NAFLD, which was highly associated with hypothalamic-pituitary-thyroid (HPT) axis hormones disorder. Famoxadone disrupted thyroid hormone biosynthesis by causing thyroid follicle aberrations and abnormal HPT axis-related gene expression. In vitro studies confirmed that famoxadone inhibited the transport of thyroxine (T4) into hepatocytes and the conversion of T4 to triiodothyronine (T3). In silico studies verified that famoxadone interfered with the binding of thyroid hormones to proteins mediating thyroid hormone transport, conversion, and activation. This study comprehensively reported the association between NAFLD and thyroid dysfunction caused by famoxadone, providing new perspectives for the health risk evaluation of pesticides with a similar structure in mammals.
Collapse
Affiliation(s)
- Shouchun Xiao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Jingna Cui
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Aisong Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Haonan Hou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Jianing Yao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Yue Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Yaofeng Fang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P. R. China
| |
Collapse
|
7
|
Yang Z, Sun X, Qiu Y, Jin D, Zheng Y, Li J, Gu W. Design, Synthesis, and Biological Evaluation of Novel Camphor-Based Hydrazide and Sulfonamide Derivatives as Laccase Inhibitors against Plant Pathogenic Fungi/Oomycetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14151-14163. [PMID: 37748922 DOI: 10.1021/acs.jafc.3c02966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
To discover novel natural product-based fungicidal agrochemicals, 41 novel camphanic acid hydrazide and camphor sulfonamide derivatives were designed, synthesized, and tested for their antifungal profile against four plant pathogenic fungi and three oomycetes. As a result, some derivatives presented pronounced inhibitory activities toward Botryosphaeria dothidea, Fusarium graminearum, Phytophthora capsici, and Phytophthora nicotianae. Especially, compound 4b demonstrated the most potent anti-B. dothidea activity (EC50 = 1.28 mg/L), much stronger than positive control chlorthalonil. The in vivo assay showed that 4b displayed significant protective and curative effects on apple fruits infected by B. dothidea. The primary antifungal mechanism study revealed that 4b could obviously enhance the cell membrane permeability, destroy the mycelial surface morphology and the cell ultrastructure, and reduce the ergosterol and exopolysaccharide contents of B. dothidea. Further, 4b showed potent laccase inhibitory activity in vitro with an IC50 value of 11.3 μM, superior to positive control cysteine. The molecular docking study revealed that 4b could dock well into the active site of laccase by forming multiple interactions with the key residues in the pocket. The acute oral toxicity test in rats presented that 4b had slight toxicity with an LD50 value of 849.1 mg/kg bw (95% confidence limit: 403.9-1785.3 mg/kg bw). This research identified that the camphanic acid hydrazide derivatives could be promising leads for the development of novel laccase-targeting fungicides.
Collapse
Affiliation(s)
- Zihui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuebao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yigui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Daojun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Liu Y, Esser L, Bai H, Fu B, Xia D, Zhou Y, Hong S, Yang S, Xiao Y, Qin Z. Synthesis and Antiphytopathogenic Activity of Novel Oxazolidine-2,4-diones Bearing Phenoxypyridine Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14199-14210. [PMID: 37728976 DOI: 10.1021/acs.jafc.3c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In the present study, we conducted optimization of pyramoxadone and synthesized a series of novel oxazolidinediones. Antifungal assays showed that these compounds exhibited moderate to excellent antifungal activity against various pathogens. Further SAR analysis revealed that the introduction of substituents to the benzene ring of the phenoxy group or the inclusion of bulky groups, such as tert-butyl, on the aniline moiety, had a detrimental effect on the activity. However, the inclusion of fluorine atoms in the aniline moiety significantly enhanced the antifungal efficacy. Notably, compound 2-4 displayed significantly higher activity compared to both pyramoxadone and famoxadone against R. solani, B. cinerea, S. sclerotiorum, and P. oryzae, where it demonstrated EC50 values of 1.78, 2.47, 2.33, and 2.23 μg/mL, respectively. Furthermore, compound 2-4 exhibited potent protective and curative effects against the tomato gray mold in vivo. A mechanistic investigation revealed that compound 2-4 significantly impacted the mycelial morphology, inhibited spore germination, and impeded mycelial respiration, ultimately leading to the inhibition of pathogenic fungus growth. These findings indicate that compound 2-4 has the potential to serve as a cyt bc1 inhibitor and should be further investigated for development.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lothar Esser
- Structural Biology Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Hui Bai
- College of Science, China Agricultural University, Beijing 100193, China
| | - Bin Fu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Di Xia
- Structural Biology Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Yihui Zhou
- College of Science, China Agricultural University, Beijing 100193, China
| | - Sai Hong
- College of Science, China Agricultural University, Beijing 100193, China
| | - Sihan Yang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Qiu YG, Yang ZH, Sun XB, Jin DJ, Zheng YM, Li J, Gu W. Synthesis and Antifungal Activity of Novel L-Menthol Hydrazide Derivatives as Potential Laccase Inhibitors. Chem Biodivers 2023; 20:e202300539. [PMID: 37317940 DOI: 10.1002/cbdv.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/16/2023]
Abstract
To discover novel laccase inhibitors as potential fungicides, twenty-six novel L-menthol hydrazide derivatives were designed and synthesized. In the in vitro antifungal assay, most of the target compounds displayed pronounced antifungal activity against Sclerotinia sclerotiorum, Fusarium graminearum, and Botryosphaeria dothidea. Especially, the EC50 of compounds 3 b and 3 q against B. dothidea was 0.465 and 0.622 mg/L, which was close to the positive compound fluxapyroxad (EC50 =0.322 mg/L). Scanning electron microscopy (SEM) analysis showed that compound 3 b could significantly damage the mycelial morphology of B. dothidea. In vivo antifungal experiments on apple fruits showed that 3 b exhibited excellent protective and curative effects. Furthermore, in the in vitro laccase inhibition assay, 3 b showed outstanding inhibitory activity with the IC50 value of 2.08 μM, which is much stronger than positive control cysteine and PMDD-5Y. These results indicated that this class of L-menthol derivatives could be promising leads for the discovery of laccase-targeting fungicides.
Collapse
Affiliation(s)
- Yi-Gui Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Hui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xue-Bao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dao-Jun Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yi-Ming Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Li
- School of Foreign Languages, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
10
|
Sun XB, Yang ZH, Jin DJ, Qiu YG, Gu W. Design, synthesis and antifungal evaluation of novel nopol derivatives as potent laccase inhibitors. PEST MANAGEMENT SCIENCE 2023; 79:2469-2481. [PMID: 36827223 DOI: 10.1002/ps.7426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND To explore further potential natural product-based antifungal agents, a series of novel nopol-based carboxamide and hydrazide derivatives containing a natural pinene structure were designed, synthesized, and evaluated for their inhibitory activities against seven phytopathogenic fungi and oomycetes. RESULTS The bioassay results indicated that some compounds exhibited good inhibitory activities against Gibberella zeae, Sclerotinia sclerotiorum, and Phytophthora capsici. Among them, compound 3h displayed excellent in vitro activities against G. zeae, with EC50 values of 1.09 mg L-1 , which was comparable with the commercial fungicides bixafen and carbendazim (median effective concentration [EC50 ] = 1.21 and 0.89 mg L-1 , respectively). Notably, in vivo bioassay results suggested that compound 3h also showed prominent protective and curative effects (95.6% and 94.2%) at 200 mg L-1 against G. zeae. The scanning electron microscopy study indicated that compound 3h could destroy the morphological integrity of G. zeae hyphae. The in vitro enzyme inhibitory bioassay revealed that compound 3h exhibited potent inhibitory activity against laccase with median inhibitory concentration (IC50 ) values of 4.93 μm, superior to positive control cysteine (IC50 = 35.50 μm), and its binding modes with laccase were elucidated by molecular docking study. In addition, the fluorescent imaging of the dansylamide-labeled derivatives 8 on wheat leaf epidermal cells and the hyphae of G. zeae revealed that this class of hydrazide derivatives could readily permeate into wheat leaves and reached the laccase target in fungal cells. CONCLUSION Some nopol-based hydrazide derivatives exhibited excellent anti-G. zeae activity and laccase inhibitory activity, which merits further development as a new fungicide candidate for controlling Fusarium head blight. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue-Bao Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zi-Hui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dao-Jun Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yi-Gui Qiu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Lamberth C. The power of cross-indication testing: agrochemicals originally stemming from a different indication. PEST MANAGEMENT SCIENCE 2022; 78:4438-4445. [PMID: 35906817 DOI: 10.1002/ps.7100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Cross-indication testing is the assaying of final compounds, but also their intermediates or side products, from one agrochemical indication against target species of other product lines. This approach has proven to be a highly successful source of lead compounds, which led to several important crop protection products. This review article describes, which herbicides came from fungicides and insecticides, how fungicides have been obtained from herbicide and insecticide leads and which insecticides have their roots in herbicide and fungicide chemistry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Research Chemistry, Stein, Switzerland
| |
Collapse
|
12
|
Wang X, Wang M, Han L, Jin F, Jiao J, Chen M, Yang C, Xue W. Novel Pyrazole-4-acetohydrazide Derivatives Potentially Targeting Fungal Succinate Dehydrogenase: Design, Synthesis, Three-Dimensional Quantitative Structure-Activity Relationship, and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9557-9570. [PMID: 34382800 DOI: 10.1021/acs.jafc.1c03399] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have emerged in fungicide markets as one of the fastest-growing categories that are widely applied in agricultural production for crop protection. Currently, the structural modification focusing on the flexible amide link of SDHI molecules is being gradually identified as one of the innovative strategies for developing novel highly efficient and broad-spectrum fungicides. Based on the above structural features, a series of pyrazole-4-acetohydrazide derivatives potentially targeting fungal SDH were constructed and evaluated for their antifungal effects against Rhizoctonia solani, Fusarium graminearum, and Botrytis cinerea. Strikingly, the in vitro EC50 values of constructed pyrazole-4-acetohydrazides 6w against R. solani, 6c against F. graminearum, and 6f against B. cinerea were, respectively, determined as 0.27, 1.94, and 1.93 μg/mL, which were obviously superior to that of boscalid against R. solani (0.94 μg/mL), fluopyram against F. graminearum (9.37 μg/mL), and B. cinerea (1.94 μg/mL). Concurrently, the effects of the substituent steric, electrostatic, hydrophobic, and hydrogen-bond fields on structure-activity relationships were elaborated by the reliable comparative molecular field analysis and comparative molecular similarity index analysis models. Subsequently, the practical value of pyrazole-4-acetohydrazide derivative 6w as a potential SDHI was ascertained by the relative surveys on the in vivo anti-R. solani preventative efficacy, inhibitory effects against fungal SDH, and molecular docking studies. The present results provide an indispensable complement for the structural optimization of antifungal leads potentially targeting SDH.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Mengqi Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Han
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Xu G, Jia X, Wu C, Liu X, Dong F. Chiral Fungicide Famoxadone: Stereoselective Bioactivity, Aquatic Toxicity, and Environmental Behavior in Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8530-8535. [PMID: 34313440 DOI: 10.1021/acs.jafc.1c00825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, the stereoselective bioactivity, acute toxicity, and environmental fate for famoxadone enantiomers were reported for the first time. Five representative pathogens (e.g., Alternaria solani) were used to investigate enantioselective activity, and three non-target organisms (e.g., Selenastrum bibraianum) were used to evaluate acute toxicity. S-Famoxadone was 3.00-6.59 times more effective than R-famoxadone. R-Famoxadone also showed 1.80-6.40 times more toxicity than S-famoxadone toward S. bibraianum and Daphnia magna. The toxicity of R-famoxadone was 100 times more toxic than S-famoxadone toward Danio rerio. Under aerobic conditions, the half-life (t1/2) for famoxadone enantiomer degradation was 46.2-126 days in different soils and the enantiomeric fraction (EF) ranged from 0.435 to 0.470 after 120 days. R-Famoxadone preferentially degraded in three soils, resulting in an enrichment of S-famoxadone. Under anaerobic conditions, t1/2 of famoxadone enantiomers was 62.4-147 days in different soils and the EF ranged from 0.489 to 0.495, indicating that famoxadone enantiomers were not enantioselective. This study will be useful for the environmental and health risk assessments for famoxadone enantiomers.
Collapse
Affiliation(s)
- Guofeng Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, People's Republic of China
| | - Xiaohui Jia
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, People's Republic of China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
14
|
Wang M, Ji Z, Xu J, Zhang C, Yang Y, Liang X, Zhang Y. Study on stereoselective bioactivity, acute toxicity, and degradation in cucurbits and soil of chiral fungicide famoxadone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15947-15953. [PMID: 33245543 DOI: 10.1007/s11356-020-11810-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/23/2020] [Indexed: 06/11/2023]
Abstract
The chiral pesticide famoxadone is mainly applied to control fungal diseases on fruiting vegetables. The fungicidal activity, ecotoxicological effects, and degradation behavior of famoxadone enantiomers are less well known. In this study, a systemic assessment of the stereoselectivity of famoxadone was performed in cucurbits and soil. Famoxadone enantiomers presented distinct inhibitory activities among different fungal species. The bioactivities of R-(-)-famoxadone were 2.7-178 times higher than S-(+)-famoxadone toward five phytopathogens. Based on the obtained LC50 values, famoxadone was super toxic to Eisenia foetida (E. foetida). Moreover, the acute toxicity of R-(-)-famoxadone presented 167 times greater to E. foetida than that of S-(+)-famoxadone, indicating that R-(-)-famoxadone showed higher bioactivity toward target organisms and non-target organisms than S-(+)-famoxadone. In addition, a simple high-performance liquid chromatography (HPLC) method was established to determine the stereoselective degradation of famoxadone in two species of cucurbits (cucumber and chieh-qua) and in field soil. The half-life values of famoxadone degradation were from 5.4 to 14.1 days, indicating that famoxadone was easily degraded. Additionally, no stereoselective degradation was found in cucurbits and soil. The results may provide promising implications for comprehensive environmental and ecological risk assessments of famoxadone.
Collapse
Affiliation(s)
- Meng Wang
- College of Plant Protection, Hainan University, Haikou, 570228, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, Haikou, China
| | - Zerong Ji
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Jiabin Xu
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Chenghui Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, Haikou, China
- College of Food science and Engineering, Hainan University, Haikou, 570228, China
| | - Ye Yang
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Xiaoyu Liang
- College of Plant Protection, Hainan University, Haikou, 570228, China.
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, Haikou, China.
| | - Yu Zhang
- College of Plant Protection, Hainan University, Haikou, 570228, China.
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Haikou), Ministry of Agriculture, Haikou, China.
| |
Collapse
|
15
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
16
|
Xu G, Jia X, Li J, Kuang L, Li H, Dong F. Enantioselective fate of famoxadone during processing of apple cider and grape wine. Chirality 2021; 33:134-142. [PMID: 33460199 DOI: 10.1002/chir.23296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 11/08/2022]
Abstract
Famoxadone enantiomers were separated on Lux Amylose-1 chiral column and determined by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The half-lives of R-(-)-famoxadone and S-(+)-famoxadone were 69.3 and 86.6 h in apple cider, 231.0 and 346.5 h in apple pomace, 69.3 and 77.0 h in grape wine, and 231.0 and 346.5 h in grape pomace, respectively. The enantiomeric fraction (EF) values decreased gradually from 0.498, 0.499, and 0.500 (0 h) to 0.404, 0.374, and 0.427 (144 h) and then increased gradually to 0.474, 0.427, and 0.422 (312 h) in apple cider, grape wine, and grape pomace. The EF value in apple pomace decreased gradually from 0.499 (0 h) to 0.450 (168 h) and then increased gradually to 0.482 (312 h). The processing factors (PFs) for famoxadone ranged from 0.014 to 0.024 in the overall process. The residue of famoxadone reduced 94.7-97.4% after the fermentation process.
Collapse
Affiliation(s)
- Guofeng Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Xiaohui Jia
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Lixue Kuang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Haifei Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
|
18
|
Huang D, Zheng S, Cheng YX. Design, Synthesis and Biological Evaluation of N-((2-phenyloxazol-4-yl)methyl) Pyrimidine Carboxamide Derivatives as Potential Fungicidal Agents. HETEROCYCL COMMUN 2020. [DOI: 10.1515/hc-2020-0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Twelve N-((2-phenyloxazol-4-yl)methyl) pyrimidine carboxamide derivatives were designed, synthesized, and characterized by 1H NMR, 13C NMR, and HRMS. The fungicidal activities of these new compounds against Sclerotinia sclerotiorum, Botrytis cinereal, and Colletotrichum fragariae were evaluated. The results indicated that compounds 5b, 5f, and 5g displayed potential fungicidal activities against tested fungi, especially 5f exhibited IC50 value of 28.9 mg/L against S. sclerotiorum. Moreover, the compounds 5f and 5g showed IC50 values of 54.8 mg/L and 62.2 mg/L against C. fragariae respectively, which shows that they were more active than the commercial fungicide hymexazol. The superficial structure-activity relationships were discussed, which may be of benefit for the development of fungicides and discovery of novel fungicides.
Collapse
Affiliation(s)
- Danling Huang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center , Shenzhen , China
| | - Shumin Zheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center , Shenzhen , China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center , Shenzhen , China
| |
Collapse
|
19
|
Wang X, Wang A, Qiu L, Chen M, Lu A, Li G, Yang C, Xue W. Expedient Discovery for Novel Antifungal Leads Targeting Succinate Dehydrogenase: Pyrazole-4-formylhydrazide Derivatives Bearing a Diphenyl Ether Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14426-14437. [PMID: 33216530 DOI: 10.1021/acs.jafc.0c03736] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pyrazole-4-carboxamide scaffold containing a flexible amide chain has emerged as the molecular skeleton of highly efficient agricultural fungicides targeting succinate dehydrogenase (SDH). Based on the above vital structural features of succinate dehydrogenase inhibitors (SDHI), three types of novel pyrazole-4-formylhydrazine derivatives bearing a diphenyl ether moiety were rationally conceived under the guidance of a virtual docking comparison between bioactive molecules and SDH. Consistent with the virtual verification results of a molecular docking comparison, the in vitro antifungal bioassays indicated that the skeleton structure of title compounds should be optimized as an N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide scaffold. Strikingly, N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide derivatives 11o against Rhizoctonia solani, 11m against Fusarium graminearum, and 11g against Botrytis cinerea exhibited excellent antifungal effects, with corresponding EC50 values of 0.14, 0.27, and 0.52 μg/mL, which were obviously better than carbendazim against R. solani (0.34 μg/mL) and F. graminearum (0.57 μg/mL) as well as penthiopyrad against B. cinerea (0.83 μg/mL). The relative studies on an in vivo bioassay against R. solani, bioactive evaluation against SDH, and molecular docking were further explored to ascertain the practical value of compound 11o as a potential fungicide targeting SDH. The present work provided a non-negligible complement for the structural optimization of antifungal leads targeting SDH.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingling Qiu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Aimin Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
20
|
Cheng B, Zhang H, Hu J, Peng Y, Yang J, Liao X, Liu F, Guo J, Hu C, Lu H. The immunotoxicity and neurobehavioral toxicity of zebrafish induced by famoxadone-cymoxanil. CHEMOSPHERE 2020; 247:125870. [PMID: 31931321 DOI: 10.1016/j.chemosphere.2020.125870] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
As a new protective and therapeutic fungicide, studies on famoxadone-cymoxanil are rare, and its toxicity to aquatic organisms has not been reported. In the present study, zabrafish embryos were exposed to several concentrations of famoxadone-cymoxanil at 10 hpf. Then, the changes of their shape, heart rate, development and function of innate and adaptive immune cells, oxidative stress, apoptosis, the expression of apoptosis-related genes and immune-related genes, the locomotor behavior were observed and detected in acute toxicity of famoxadone-cymoxanil. Our studies showed that, after exposure to famoxadone-cymoxanil, zebrafish embryos had decreased heart rate, shortened body length, swollen yolk sac. Secondly, the number of innate and adaptive immune cells was significantly reduced; and neutrophil migration and retention at the injury area were inhibited, indicating the developmental toxicity and immunotoxicity of famoxadone-cymoxanil on the zebrafish. We also found that the oxidative stress related indicators of embryos were changed significantly, and apoptosis were substantially increased. Further investigation of changes of some key genes in TLR signaling including TLR4, MYD88 and NF-κB p65 revealed that the mRNA expression of these genes was up-regulated. Meanwhile, the mRNA expression of some proinflammatory cytokines such as TNF-α, IFN-γ, IL6 and IL-1β was also up-regulated. In addition, the activity, the total distance, time and average speed were decreased along with the increase of exposure concentration. The absolute turn angle, sinuosity and the enzymatic activity of acetylcholinesterase (AChE) were also increased. These results suggested that famoxadone-cymoxanil can induce developmental toxicity, immunotoxicity and neurobehavioral toxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Hua Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jihuan Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yuyang Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatology Hospital of Nan Chang University, Nanchang, 330031, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Nan Chang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
21
|
Hu HR, Wang A, Qiu LL, Wang XB, Chen M, Lu AM, Yang CL. Novel pyrrolidine-2,4-dione derivatives containing pharmacophores of both hydrazine and diphenyl ether as potential antifungal agents: design, synthesis, biological evaluation, and 3D-QSAR study. NEW J CHEM 2020. [DOI: 10.1039/d0nj04551a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel pyrrolidine-2,4-dione derivatives were designed based on natural products. Some synthesized compounds showed excellent antifungal activity. Scanning electron microscopy was used to observe mycelium morphology. 3D-QSAR was also studied.
Collapse
Affiliation(s)
- Hao-Ran Hu
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Ling-Ling Qiu
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Xiao-Bin Wang
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
- Department of Chemistry, College of Sciences
| | - Ai-Min Lu
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
- Department of Chemistry, College of Sciences
| | - Chun-Long Yang
- Jiangsu Key Laboratory of Pesticide Science
- Nanjing Agricultural University
- Nanjing
- P. R. China
- Department of Chemistry, College of Sciences
| |
Collapse
|
22
|
Ziane S, Mazari MM, Safer AM, Sad El Hachemi Amar A, Ruchaud S, Baratte B, Bach S. Comparison between Conventional and Nonconventional Methods for the Synthesis of Some 2-Oxazolidinone Derivatives and Preliminary Investigation of Their Inhibitory Activity Against Certain Protein Kinases. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019070248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Solvent-Mediated Polymorphic Transformation of Famoxadone from Form II to Form I in Several Mixed Solvent Systems. CRYSTALS 2019. [DOI: 10.3390/cryst9030161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper discloses six polymorphs of famoxadone obtained from polymorph screening, which were characterized by XRPD, DSC, and SEM. A study of solvent-mediated polymorphic transformation (SMPT) of famoxadone from the metastable Form II to the stable Form I in several mixed solvent systems at the temperature of 30 °C was also conducted. The transformation process was monitored by Process Analytical Technologies. It was confirmed that the Form II to Form I polymorphic transformation is controlled by the Form I growth process. The transformation rate constants depended linearly on the solubility difference value between Form I and Form II. Furthermore, the hydrogen-bond-donation/acceptance ability and dipolar polarizability also had an effect on the rate of solvent-mediated polymorphic transformation.
Collapse
|
24
|
Costil R, Fernández-Nieto F, Atkinson RC, Clayden J. α-Methyl phenylglycines by asymmetric α-arylation of alanine and their effect on the conformational preference of helical Aib foldamers. Org Biomol Chem 2019; 16:2757-2761. [PMID: 29595846 DOI: 10.1039/c8ob00551f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
α-Arylated alanine derivatives were made enantioselectively by migratory rearrangement of a urea derivative using (R,R)-pseudoephedrine as a chiral auxiliary. Incorporation of a single residue of the product α-methyl phenylglycine into an otherwise achiral oligomer of aminoisobutyric acid oligomer induced a preferred screw sense, detectable by a NMR reporter located at the remote terminus of the oligomer. The magnitude of the screw sense induction was greater when the chiral residue was located at the N-terminus of the foldamer, and in some cases the sense of induction was opposite to that of related α-methylated amino acids with α-substituents other than aryl.
Collapse
Affiliation(s)
- Romain Costil
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | | | | | |
Collapse
|
25
|
Wang W, Cheng L, Peng H, Yao W, Zhang R, Chen C, Cheng H. Synthesis and Biological Activities of New 4-PhenylanilinesContaining the Diphenyl Ether Moiety. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201904049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Xu G, Jia X, Wu X, Xu J, Liu X, Pan X, Li R, Li X, Dong F. Enantioselective monitoring of chiral fungicide famoxadone enantiomers in tomato, apple, and grape by chiral liquid chromatography with tandem mass spectrometry. J Sep Sci 2018; 41:3871-3880. [DOI: 10.1002/jssc.201800681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Guofeng Xu
- College of Plant Protection; Shenyang Agricultural University; Shenyang P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing P. R. China
- Research Institute of Pomology; Chinese Academy of Agricultural Sciences; Xingcheng P. R. China
| | - Xiaohui Jia
- College of Plant Protection; Shenyang Agricultural University; Shenyang P. R. China
- Research Institute of Pomology; Chinese Academy of Agricultural Sciences; Xingcheng P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Xinghai Li
- College of Plant Protection; Shenyang Agricultural University; Shenyang P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| |
Collapse
|
27
|
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG; Chemical Research; Schaffhauserstrasse 101 Stein CH-4332 Switzerland
| |
Collapse
|
28
|
Huang D, Liu A, Liu W, Liu X, Ren Y, Zheng X, Pei H, Xiang J, Huang M, Wang X. Synthesis and insecticidal activities of novel 1H-pyrazole-5-carboxylic acid derivatives. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractFourteen 1
Collapse
|
29
|
Synthesis of (1,2,3-thiadiazolyl)imidazolidine-2,4-diones by microwave irradiation and characterization of their biological activity. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-1986-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Affiliation(s)
- Ikuya Shibata
- Research Center for Environmental Preservation, Osaka University
| |
Collapse
|
31
|
Esser L, Zhou F, Zhou Y, Xiao Y, Tang WK, Yu CA, Qin Z, Xia D. Hydrogen Bonding to the Substrate Is Not Required for Rieske Iron-Sulfur Protein Docking to the Quinol Oxidation Site of Complex III. J Biol Chem 2016; 291:25019-25031. [PMID: 27758861 DOI: 10.1074/jbc.m116.744391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Indexed: 11/06/2022] Open
Abstract
Complex III or the cytochrome (cyt) bc1 complex constitutes an integral part of the respiratory chain of most aerobic organisms and of the photosynthetic apparatus of anoxygenic purple bacteria. The function of cyt bc1 is to couple the reaction of electron transfer from ubiquinol to cytochrome c to proton pumping across the membrane. Mechanistically, the electron transfer reaction requires docking of its Rieske iron-sulfur protein (ISP) subunit to the quinol oxidation site (QP) of the complex. Formation of an H-bond between the ISP and the bound substrate was proposed to mediate the docking. Here we show that the binding of oxazolidinedione-type inhibitors famoxadone, jg144, and fenamidone induces docking of the ISP to the QP site in the absence of the H-bond formation both in mitochondrial and bacterial cyt bc1 complexes, demonstrating that ISP docking is independent of the proposed direct ISP-inhibitor interaction. The binding of oxazolidinedione-type inhibitors to cyt bc1 of different species reveals a toxophore that appears to interact optimally with residues in the QP site. The effect of modifications or additions to the toxophore on the binding to cyt bc1 from different species could not be predicted from structure-based sequence alignments, as demonstrated by the altered binding mode of famoxadone to bacterial cyt bc1.
Collapse
Affiliation(s)
- Lothar Esser
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Fei Zhou
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yihui Zhou
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.,the College of Science, China Agricultural University, Beijing 100193, China, and
| | - Yumei Xiao
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.,the College of Science, China Agricultural University, Beijing 100193, China, and
| | - Wai-Kwan Tang
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Chang-An Yu
- the Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Zhaohai Qin
- the College of Science, China Agricultural University, Beijing 100193, China, and
| | - Di Xia
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
32
|
Vincent-Rocan JF, Ivanovich RA, Clavette C, Leckett K, Bejjani J, Beauchemin AM. Cascade reactions of nitrogen-substituted isocyanates: a new tool in heterocyclic chemistry. Chem Sci 2016; 7:315-328. [PMID: 29861985 PMCID: PMC5952554 DOI: 10.1039/c5sc03197d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022] Open
Abstract
In contrast to normal C-substituted isocyanates, nitrogen-substituted isocyanates (N-isocyanates) are rare. Their high reactivity and amphoteric/ambident nature has prevented the scientific community from exploiting their synthetic potential. Recently, we have developed an in situ formation approach using a reversible equilibrium, which allows controlled generation and reactivity of N-isocyanates and prevents the dimerization that is typically observed with these intermediates. This blocked (masked) N-isocyanate approach enables the use of various N-isocyanate precursors to assemble heterocycles possessing the N-N-C[double bond, length as m-dash]O motif, which is often found in agrochemicals and pharmaceuticals. Cascade reactions for the rapid assembly of several valuable 5- and 6-membered heterocycles are reported, including amino-hydantoins, acyl-pyrazoles, acyl-phthalazinones and azauracils. Over 100 different compounds were synthesized using amino-, imino- and amido-substituted N-isocyanates, demonstrating their potential as powerful intermediates in heterocyclic synthesis. Their reactivity also enables access to unprecedented bicyclic derivatives and to substitution patterns of azauracils that are difficult to access using known methods, illustrating that controlled reactivity of N-isocyanates provides new disconnections, and a new tool to assemble complex N-N-C[double bond, length as m-dash]O containing motifs.
Collapse
Affiliation(s)
- Jean-François Vincent-Rocan
- Centre for Catalysis Research and Innovation , Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie-Curie , Ottawa , ON K1N 6N5 , Canada .
| | - Ryan A Ivanovich
- Centre for Catalysis Research and Innovation , Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie-Curie , Ottawa , ON K1N 6N5 , Canada .
| | - Christian Clavette
- Centre for Catalysis Research and Innovation , Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie-Curie , Ottawa , ON K1N 6N5 , Canada .
| | - Kyle Leckett
- Centre for Catalysis Research and Innovation , Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie-Curie , Ottawa , ON K1N 6N5 , Canada .
| | - Julien Bejjani
- Centre for Catalysis Research and Innovation , Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie-Curie , Ottawa , ON K1N 6N5 , Canada .
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation , Department of Chemistry and Biomolecular Sciences , University of Ottawa , 10 Marie-Curie , Ottawa , ON K1N 6N5 , Canada .
| |
Collapse
|
33
|
A Cascade Synthesis of Aminohydantoins Using In Situ-GeneratedN-Substituted Isocyanates. Chemistry 2015; 21:3886-90. [DOI: 10.1002/chem.201405648] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 11/07/2022]
|
34
|
Yu SJ, Zhu C, Bian Q, Cui C, Du XJ, Li ZM, Zhao WG. Novel ultrasound-promoted parallel synthesis of trifluoroatrolactamide library via a one-pot Passerini/hydrolysis reaction sequence and their fungicidal activities. ACS COMBINATORIAL SCIENCE 2014; 16:17-23. [PMID: 24147887 DOI: 10.1021/co400111r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An ultrasound-promoted one-pot Passerini/hydrolysis reaction sequence has been developed for the synthesis of trifluoroatrolactamide derivatives using a diverse range of trifluoroacetophenones and isonitriles in acetic acid. Parallel synthesis in a centrifuge tube using a noncontact ultrasonic cell crusher was used in this study as an efficient method for the rapid generation of combinatorial trifluoroatrolactamide libraries, and subsequent biochemical evaluation of the resulting compounds indicated that they possessed excellent broad-spectrum fungicidal activities. N-(4-chlorophenyl)-2-(4-ethylphenyl)-3,3,3-trifluoro-2-hydroxypropanamide and N-(4-chlorophenyl)-3,3,3-trifluoro-2-hydroxy-2-(4-methoxyphenyl)propanamide, in particular, showed significant fungicidal activities against all of the fungal species tested in the current study.
Collapse
Affiliation(s)
- Shu-Jing Yu
- State
Key Laboratory of Elemento-Organic Chemistry and ‡National Pesticide Engineering
Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Cong Zhu
- State
Key Laboratory of Elemento-Organic Chemistry and ‡National Pesticide Engineering
Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Qiang Bian
- State
Key Laboratory of Elemento-Organic Chemistry and ‡National Pesticide Engineering
Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Can Cui
- State
Key Laboratory of Elemento-Organic Chemistry and ‡National Pesticide Engineering
Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Xiu-Jiang Du
- State
Key Laboratory of Elemento-Organic Chemistry and ‡National Pesticide Engineering
Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Zheng-Ming Li
- State
Key Laboratory of Elemento-Organic Chemistry and ‡National Pesticide Engineering
Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Wei-Guang Zhao
- State
Key Laboratory of Elemento-Organic Chemistry and ‡National Pesticide Engineering
Research Center (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Synthesis and evaluation of some novel precursors of oxazolidinone analogues of chloroquinoline for their antimicrobial and cytotoxic potential. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Lamberth C. Heterocyclic chemistry in crop protection. PEST MANAGEMENT SCIENCE 2013; 69:1106-1114. [PMID: 23908156 DOI: 10.1002/ps.3615] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/01/2013] [Indexed: 06/02/2023]
Abstract
An overview is given of the significance of heterocycles in crop protection chemistry, which is enormous as more than two-thirds of all agrochemicals launched to the market within the last 20 years belong to this huge group of chemicals. This review focuses on two important aspects of heterocyclic agrochemistry: the different roles of heterocyclic scaffolds in crop protection agents and the major possibilities for their synthesis.
Collapse
Affiliation(s)
- Clemens Lamberth
- Department of Research Chemistry, Syngenta Crop Protection AG, Stein, Switzerland.
| |
Collapse
|
37
|
Lamberth C, Jeanmart S, Luksch T, Plant A. Current Challenges and Trends in the Discovery of Agrochemicals. Science 2013; 341:742-6. [DOI: 10.1126/science.1237227] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Crop protection chemistry has come a long way from its “alchemic” beginnings in the late 19th century to a high-tech science that supports the sustainable production of food, feed, and fiber for a rapidly growing population. Cutting-edge developments in the design and synthesis of agrochemicals help to tackle today’s challenges of weed and pest resistance, higher regulatory safety margins, and higher cost of goods with the invention of selective, environmentally benign, low use rate, and cost-effective active ingredients.
Collapse
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Stephane Jeanmart
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Torsten Luksch
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Andrew Plant
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|
38
|
Pandit N, Singla RK, Shrivastava B. Current updates on oxazolidinone and its significance. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2012; 2012:159285. [PMID: 25954524 PMCID: PMC4412212 DOI: 10.1155/2012/159285] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/16/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Oxazolidinone is a five-member heterocyclic ring exhibiting potential medicinal properties with preferential antibacterial activity. Scientists reported various synthetic procedures for this heterocyclic structure. Current review articles tried to cover each and every potential aspect of oxazolidinone like synthetic routes, pharmacological mechanism of action, medicinal properties, and current research activities.
Collapse
Affiliation(s)
- Neha Pandit
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Jaipur National University, Jagatpura-Jaipur, Rajasthan 302025, India
| | - Rajeev K. Singla
- Sadbhavna College of Management & Technology, Jalaldiwal, Ludhiana-Barnala State Highway-13, Raikot (Ludhiana), Punjab, India
| | - Birendra Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Jaipur National University, Jagatpura-Jaipur, Rajasthan 302025, India
| |
Collapse
|
39
|
Tsunoi S, Takahashi H, Takano Y, Okamura A, Shibata I. Catalytic conversion of lactide to optically pure heterocycles. RSC Adv 2012. [DOI: 10.1039/c2ra20831h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Design, syntheses, and kinetic evaluation of 3-(phenylamino)oxazolidine-2,4-diones as potent cytochrome bc1 complex inhibitors. Bioorg Med Chem 2011; 19:4608-15. [DOI: 10.1016/j.bmc.2011.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/02/2011] [Accepted: 06/02/2011] [Indexed: 11/23/2022]
|
41
|
Qian M, Wu L, Zhang H, Wang J, Li R, Wang X, Chen Z. Stereoselective determination of famoxadone enantiomers with HPLC-MS/MS and evaluation of their dissipation process in spinach. J Sep Sci 2011; 34:1236-43. [DOI: 10.1002/jssc.201000780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 11/05/2022]
|
42
|
|
43
|
Lee JY, Sherman DH, Hwang BK. In vitro antimicrobial and in vivo antioomycete activities of the novel antibiotic thiobutacin. PEST MANAGEMENT SCIENCE 2008; 64:172-177. [PMID: 18069650 DOI: 10.1002/ps.1494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND A number of synthetic fungicides are not effective when confronted by oomycete pathogens because many fungicide targets are absent from oomycetes. Moreover, resistance to fungicides has already arisen in oomycete species, and thus development of new, effective and safe compounds for use in oomycete disease control is necessary. RESULTS Zoospore lysis began at 10 microg mL(-1) of thiobutacin, and most of the zoospores were collapsed at 50 microg mL(-1). Thiobutacin also revealed inhibitory activity against the cyst germination and hyphal growth of Phytophthora capsici at 50 microg mL(-1). Treatment with thiobutacin exhibited protective activity against development of Phytophthora disease on pepper plants. CONCLUSION The authors verified in vitro antioomycete activity of thiobutacin against P. capsici and its control efficacy against Phytophthora blight in vivo. This is the first report to demonstrate in vivo antioomycete activity of the novel antibiotic thiobutacin against P. capsici infection.
Collapse
Affiliation(s)
- Jung Yeop Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | | | | |
Collapse
|
44
|
Zheng YJ. Molecular basis for the enantioselective binding of a novel class of cytochrome bc1 complex inhibitors. J Mol Graph Model 2005; 25:71-6. [PMID: 16368254 DOI: 10.1016/j.jmgm.2005.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 11/10/2005] [Accepted: 11/10/2005] [Indexed: 11/16/2022]
Abstract
The recently solved co-crystal structures of mitochondrial cytochrome bc1 complex with inhibitors have provided an important structural framework for the elucidation of modes of binding of various bc1 complex inhibitors. N-Phenyl triazolones, a novel class of bc1 complex ubiquinol oxidation (Qo)-site inhibitors, were found to exhibit atropisomerism; in few cases, the atropisomers were resolved and shown to express different biological activities. However, the underlying mechanism for such differential binding of the enantiomers to bc1 complex is unknown. Here molecular docking is used to examine the binding modes of the N-phenyl triazolones fungicides. Our docking studies allow the molecular basis for the enantioselective binding of atropisomeric triazolones to be elucidated. Furthermore, the mode of binding of azoxystrobin has also been clarified.
Collapse
Affiliation(s)
- Ya-Jun Zheng
- DuPont Crop Protection, Stine-Haskell Research Center, P.O. Box 30, Newark, DE 19714, USA.
| |
Collapse
|
45
|
Zheng YJ, Kleier DA. Conformational flexibility of antifungal atropisomeric strobilurin analogues: a quantum mechanical investigation. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Avila-Adame C, Köller W. Impact of alternative respiration and target-site mutations on responses of germinating conidia of Magnaporthe grisea to Qo-inhibiting fungicides. PEST MANAGEMENT SCIENCE 2003; 59:303-309. [PMID: 12639047 DOI: 10.1002/ps.638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Qo-inhibiting fungicides act as respiration inhibitors by binding to the Qo center of cytochrome b. Sensitivities of fungi to Qo inhibitors can be influenced by the induction of alternative respiration or by mutational changes of the cytochrome b target site. Previous studies on both mechanisms in Magnaporthe grisea (Hebert) Barr were focused on the mycelial stage of the pathogen. The present study describes the expression and impact of both resistance mechanisms during the stage of conidia germination. In the absence of a host, alternative respiration provided a >500-fold rescue from azoxystrobin during the germination of conidia derived from four wild-type isolates of M. grisea. This rescue potential during conidia gemination was substantially more pronounced than for mycelial growth. However, the pronounced effectiveness of alternative respiration during conidia germination was not apparent when barley leaves were protected with azoxystrobin prior to inoculation with conidia. In a comparison of a wild-type strain and an alternative respiration-deficient mutant, azoxystrobin efficacies in suppressing symptom development differed by a factor of two, with full disease control achieved for both genotypes at 1 microg ml(-1) azoxystrobin. In contrast, conidia derived from two QoI-resistant target site mutants were highly resistant to azoxystrobin and trifloxystrobin and fully capable of infecting leaf surfaces protected with 10 microg ml(-1) of azoxystrobin. Both target-site mutants had emerged spontaneously in the presence of high azoxystrobin doses when residual mycelial growth was supported by alternative respiration. The effective silencing of alternative respiration in protective applications of Qo-inhibiting fungicides might constitute a strategy of slowing the emergence of highly resistant target site mutants.
Collapse
Affiliation(s)
- Cruz Avila-Adame
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | | |
Collapse
|
47
|
Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. The strobilurin fungicides. PEST MANAGEMENT SCIENCE 2002; 58:649-62. [PMID: 12146165 DOI: 10.1002/ps.520] [Citation(s) in RCA: 755] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Strobilurins are one of the most important classes of agricultural fungicide. Their invention was inspired by a group of fungicidally active natural products. The outstanding benefits they deliver are currently being utilised in a wide range of crops throughout the world. First launched in 1996, the strobilurins now include the world's biggest selling fungicide, azoxystrobin. By 2002 there will be six strobilurin active ingredients commercially available for agricultural use. This review describes in detail the properties of these active ingredients--their synthesis, biochemical mode of action, biokinetics, fungicidal activity, yield and quality benefits, resistance risk and human and environmental safety. It also describes the clear technical differences that exist between these active ingredients, particularly in the areas of fungicidal activity and biokinetics.
Collapse
Affiliation(s)
- Dave W Bartlett
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | | | | | | | | | | |
Collapse
|
48
|
Cheng S, Comer DD. An alumina-catalyzed Michael addition of mercaptans to N -anilinomaleimides and its application to the solution-phase parallel synthesis of libraries. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(01)02401-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|