1
|
Zhu Y, Tong X, Xue J, Qiu H, Zhang D, Zheng DQ, Tu ZC, Ye C. Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity. Nat Chem Biol 2025; 21:35-46. [PMID: 39060393 DOI: 10.1038/s41589-024-01689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.
Collapse
Affiliation(s)
- Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomeng Tong
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
2
|
Xia B, Zhao D, Hao Q, Yu J, Han Y, Ling L, Zhao R, Zhao J. Effects of fishing stress on fatty acid and amino acid composition and glycolipid metabolism in triploid rainbow trout. Food Chem 2024; 461:140904. [PMID: 39181054 DOI: 10.1016/j.foodchem.2024.140904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Triploid Oncorhynchus mykiss is an important economic fish worldwide. Fishing stress can affect its growth and meat quality. This study first explored the effects of fishing stress on fatty acid and amino acid in triploid O. mykiss. Results showed fishing stress significantly reduced the content of docosadienoic acid, Gly, Arg, and DAA (P < 0.05). Targeted lipidomics analysis furthered suggested that some lipid molecules belonging to TG, DG, PC, Cer, ChE, and So were significantly up-regulated; while some lipid molecules belonging to Cer, LPE, LPC, PS, PC, and SM were significantly down-regulated, suggesting an accelerated glycolipid metabolism. Eventually, the glycolipid metabolism-related enzyme activity and gene expressions were examined, and the results indicated that O. mykiss was anti-oxidative stress by affecting relevant glycolipid metabolism signaling pathways and participating in cellular redox homeostasis. Findings of this study provide a theoretical foundation for further investigation into the mechanisms through which fishing stress affects O. mykiss.
Collapse
Affiliation(s)
- Banghua Xia
- Northeast Agricultural University, Harbin 150030, China
| | - Dandan Zhao
- Northeast Agricultural University, Harbin 150030, China
| | - Qirui Hao
- Northeast Agricultural University, Harbin 150030, China; Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Junfei Yu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yue Han
- Liaoyang Development and Reform Service Center, Liaoyang 111001, China
| | - Ling Ling
- Northeast Agricultural University, Harbin 150030, China
| | - Rongwei Zhao
- Harbin Agricultural Technology Extension Master station, Harbin 150023, China
| | - Junwei Zhao
- Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Kelso C, Maccarone AT, de Kroon AIPM, Mitchell TW, Renne MF. Temperature adaptation of yeast phospholipid molecular species at the acyl chain positional level. FEBS Lett 2024. [PMID: 39673166 DOI: 10.1002/1873-3468.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 12/16/2024]
Abstract
Yeast is a poikilothermic organism and adapts its lipid composition to the environmental temperature to maintain membrane physical properties. Studies addressing temperature-dependent adaptation of the lipidome have described changes in the phospholipid composition at the level of sum composition (e.g. PC 32:1) and molecular composition (e.g. PC 16:0_16:1). However, there is little information at the level of positional isomers (e.g. PC 16:0/16:1 versus PC 16:1/16:0). Here, we used collision- and ozone-induced dissociation (CID/OzID) mass spectrometry to investigate homeoviscous adaptation of PC, PE and PS to determine the phospholipid acyl chains at the sn-1 and sn-2 position. Our data establish the sn-molecular species composition of PC, PE and PS in the lipidome of yeast cultured at different temperatures.
Collapse
Affiliation(s)
- Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
- Molecular Horizons Institute, University of Wollongong, Australia
| | - Alan T Maccarone
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
- Molecular Horizons Institute, University of Wollongong, Australia
| | - Anton I P M de Kroon
- Membrane Biochemistry & Biophysics, Department of Chemistry, Utrecht University, The Netherlands
| | - Todd W Mitchell
- Molecular Horizons Institute, University of Wollongong, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Australia
| | - Mike F Renne
- Membrane Biochemistry & Biophysics, Department of Chemistry, Utrecht University, The Netherlands
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
- Preclinical Center for Molecular Signalling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Liu L, Xiao C, Gao Y, Jiang T, Xu K, Chen J, Lin Z, Chen J, Tian S, Lu L. Inoculation of multi-metal-resistant Bacillus sp. to a hyperaccumulator plant Sedum alfredii for facilitating phytoextraction of heavy metals from contaminated soil. CHEMOSPHERE 2024; 366:143464. [PMID: 39368497 DOI: 10.1016/j.chemosphere.2024.143464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Co-contamination of soil by multiple heavy metals is a significant global challenge. An effective strategy to address this issue involves using hyperaccumulators such as Sedum alfredii (S. alfredii). The efficiency of phytoremediation can be improved by supplementing with plant growth-promoting bacteria (PGPB). However, bacteria resources of PGPB resistant to multi-heavy metal contamination are still lacking. This study focused nine different strains of Bacillus and screened for resistance to heavy metals including cadmium (Cd), zinc (Zn), copper (Cu), and lead (Pb). A superior strain, Bacillus subtilis PY79 (B. subtilis), showed tolerance for all tested metals. Inoculation with B. subtilis in the rhizosphere of S. alfredii increased the accumulation of Cd, Zn, Cu, and Pb by 88.02%, 58.99%, 90.22%, and 54.97% in the plant shoots after 30 days respectively. B. subtilis application lowered the pH of the rhizosphere soil, thereby increasing the bioavailability of nutrients and heavy metals. Furthermore, B. subtilis helped S. alfredii recruit PGPB and heavy metal-resistant bacteria such as Edaphobacter, Niastella, and Chitinophaga, enhancing the growth and phytoremediation efficiency. Moreover, inoculation with B. subtilis not only upregulated genes of the ABC, HMA, ZIP, and MTP families involved in the translocation and detoxification of heavy metals but also increased the secretion of antioxidants within the cells. These findings indicate that B. subtilis enhances the tolerance, uptake, and translocation of heavy metals in S. alfredii, offering valuable insights for the phytoremediation of multi-metal-contaminated soils.
Collapse
Affiliation(s)
- Lianghui Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Chun Xiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Gao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Tianchi Jiang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Kuan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Zhi Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jing Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
6
|
Suzawa T, Iwama R, Fukuda R, Horiuchi H. Phosphatidylcholine levels regulate hyphal elongation and differentiation in the filamentous fungus Aspergillus oryzae. Sci Rep 2024; 14:11729. [PMID: 38778216 PMCID: PMC11111764 DOI: 10.1038/s41598-024-62580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Filamentous fungi are eukaryotic microorganisms that differentiate into diverse cellular forms. Recent research demonstrated that phospholipid homeostasis is crucial for the morphogenesis of filamentous fungi. However, phospholipids involved in the morphological regulation are yet to be systematically analyzed. In this study, we artificially controlled the amount of phosphatidylcholine (PC), a primary membrane lipid in many eukaryotes, in a filamentous fungus Aspergillus oryzae, by deleting the genes involved in PC synthesis or by repressing their expression. Under the condition where only a small amount of PC was synthesized, A. oryzae hardly formed aerial hyphae, the basic structures for asexual development. In contrast, hyphae were formed on the surface or in the interior of agar media (we collectively called substrate hyphae) under the same conditions. Furthermore, we demonstrated that supplying sufficient choline to the media led to the formation of aerial hyphae from the substrate hyphae. We suggested that acyl chains in PC were shorter in the substrate hyphae than in the aerial hyphae by utilizing the strain in which intracellular PC levels were controlled. Our findings suggested that the PC levels regulate hyphal elongation and differentiation processes in A. oryzae and that phospholipid composition varied depending on the hyphal types.
Collapse
Affiliation(s)
- Tetsuki Suzawa
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
7
|
Ali B, Kumar M, Kumar P, Chauhan A, Usmani SA, Rudramurthy SM, Meis JF, Chakrabarti A, Singh A, Gaur NA, Mondal AK, Prasad R. Sphingolipid diversity in Candida auris: unraveling interclade and drug resistance fingerprints. FEMS Yeast Res 2024; 24:foae008. [PMID: 38444195 PMCID: PMC10941814 DOI: 10.1093/femsyr/foae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, we explored the sphingolipid (SL) landscape in Candida auris, which plays pivotal roles in fungal biology and drug susceptibility. The composition of SLs exhibited substantial variations at both the SL class and molecular species levels among clade isolates. Utilizing principal component analysis, we successfully differentiated the five clades based on their SL class composition. While phytoceramide (PCer) was uniformly the most abundant SL class in all the isolates, other classes showed significant variations. These variations were not limited to SL class level only as the proportion of different molecular species containing variable number of carbons in fatty acid chains also differed between the isolates. Also a comparative analysis revealed abundance of ceramides and glucosylceramides in fluconazole susceptible isolates. Furthermore, by comparing drug-resistant and susceptible isolates within clade IV, we uncovered significant intraclade differences in key SL classes such as high PCer and low long chain base (LCB) content in resistant strains, underscoring the impact of SL heterogeneity on drug resistance development in C. auris. These findings shed light on the multifaceted interplay between genomic diversity, SLs, and drug resistance in this emerging fungal pathogen.
Collapse
Affiliation(s)
- Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Praveen Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| | - Anshu Chauhan
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| | - Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, 226007 India
| | | | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, 50931 Germany
| | | | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, 226007 India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| |
Collapse
|
8
|
Joshi AR, Barvkar VT, Kashikar A, Gaikwad P, Ravikumar A. Dynamics of the lipid body lipidome in the oleaginous yeast Yarrowia sp. FEMS Yeast Res 2024; 24:foae021. [PMID: 39025792 PMCID: PMC11305267 DOI: 10.1093/femsyr/foae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024] Open
Abstract
Time-dependent changes in the lipid body (LB) lipidome of two oleaginous yeasts, Yarrowia lipolytica NCIM 3589 and Yarrowia bubula NCIM 3590 differing in growth temperature was investigated. LB size and lipid content were higher in Y. lipolytica based on microscopy, Feret, and integrated density analysis with lipid accumulation and mobilization occurring at 48 h in both strains. Variations in LB lipidome were reflected in interfacial tension (59.67 and 68.59 mN m-1) and phase transition temperatures (30°C-100°C and 60°C-100°C) for Y. lipolytica and Y. bubula, respectively. Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis revealed neutral lipids (NLs), phospholipids, sphingolipids, sterols, and fatty acids as the major classes present in both strains while fatty acid amides were seen only in Y. lipolytica. Amongst the lipid classes, a few species were present in abundance with a number of lipids being less dominant. Permutational multivariate analysis of variance (PERMANOVA) and Analysis of covariance (ANOCOVA) analysis suggest 22 lipids belonging to NLs, fatty acid amides, and free fatty acids were found to be statistically different between the two strains. Analysis of the ratios between different lipid components suggest changes in LB size and mobilization as a function of time. The results indicate influence of temperature and strain variation on the dynamics of LB lipidome in Yarrowia species.
Collapse
Affiliation(s)
- Apoorva Ravindra Joshi
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Akanksha Kashikar
- Department of Statistics, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Prashant Gaikwad
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Ameeta Ravikumar
- Department of Biotechnology, Institution of Bioinformatics and Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| |
Collapse
|
9
|
Aonofriesei F. Increased Absorption and Inhibitory Activity against Candida spp. of Imidazole Derivatives in Synergistic Association with a Surface Active Agent. Microorganisms 2023; 12:51. [PMID: 38257878 PMCID: PMC10819671 DOI: 10.3390/microorganisms12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
This paper's purpose was to evaluate the interaction between three imidazole derivatives, (2-methyl-1H-imidazol-1-yl)methanol (SAM3), 1,1'-methanediylbis(1H-benzimidazole (AM5) and (1H-benzo[d]imidazol-1-yl)methanol 1-hydroxymethylbenzimidazole (SAM5) on the one hand, and sodium dodecyl sulphate (SDS) on the other, as antifungal combinations against Candida spp. Inhibitory activity was assessed using the agar diffusion method and Minimal Inhibitory Concentration (MIC) and showed moderate inhibitory activity of single imidazole derivatives against Candida spp. The mean value of MIC ranged from 200 µg/mL (SAM3) to 312.5 µg/mL (SAM3), while for SDS the MIC was around 1000 µg/mL. When used in combination with SDS, the imidazole derivatives demonstrated an improvement in their antifungal activity. Their MIC decreased over five times for AM5 and over seven times for SAM3 and SAM5, respectively, and ranged from 26.56 µg/mL (SAM3) to 53.90 µg/mL (AM5). Most combinations displayed an additive effect while a clear synergistic effect was recorded in only a few cases. Thus, the FIC Index (FICI) with values between 0.311 and 0.375 showed a synergistic effect against Candida spp. when SDS was associated with SAM3 (three strains), SAM5 (two strains) and AM5 (one strain). The association of imidazole derivatives with SDS led to the increased release of cellular material as well as the intracellular influx of crystal violet (CV), which indicated an alteration of the membrane permeability of Candida spp. cells. This favored the synergistic effect via increasing the intracellular influx of imidazoles.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, "Ovidius" University of Constanța, 1 University Street, 900470 Constanța, Romania
| |
Collapse
|
10
|
Chen L, Ma X, Sun T, Zhu QH, Feng H, Li Y, Liu F, Zhang X, Sun J, Li Y. VdPT1 Encoding a Neutral Trehalase of Verticillium dahliae Is Required for Growth and Virulence of the Pathogen. Int J Mol Sci 2023; 25:294. [PMID: 38203466 PMCID: PMC10778863 DOI: 10.3390/ijms25010294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Verticillum dahliae is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease. We previously found a trehalase-encoding gene (VdPT1) in V. dahliae being significantly up-regulated after sensing root exudates from a susceptible cotton variety. In this study, we characterized the function of VdPT1 in the growth and virulence of V. dahliae using its deletion-mutant strains. The VdPT1 deletion mutants (ΔVdPT1) displayed slow colony expansion and mycelial growth, reduced conidial production and germination rate, and decreased mycelial penetration ability and virulence on cotton, but exhibited enhanced stress resistance, suggesting that VdPT1 is involved in the growth, pathogenesis, and stress resistance of V. dahliae. Host-induced silencing of VdPT1 in cotton reduced fungal biomass and enhanced cotton resistance against V. dahliae. Comparative transcriptome analysis between wild-type and mutant identified 1480 up-regulated and 1650 down-regulated genes in the ΔVdPT1 strain. Several down-regulated genes encode plant cell wall-degrading enzymes required for full virulence of V. dahliae to cotton, and down-regulated genes related to carbon metabolism, DNA replication, and amino acid biosynthesis seemed to be responsible for the decreased growth of the ΔVdPT1 strain. In contrast, up-regulation of several genes related to glycerophospholipid metabolism in the ΔVdPT1 strain enhanced the stress resistance of the mutated strain.
Collapse
Affiliation(s)
- Lihua Chen
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Xiaohu Ma
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Tiange Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia;
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Yongtai Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (L.C.); (X.M.); (T.S.); (Y.L.); (F.L.); (X.Z.)
| |
Collapse
|
11
|
Kotlova ER, Senik SV, Pozhvanov GA, Prokopiev IA, Boldyrev IA, Manzhieva BS, Amigud EY, Puzanskiy RK, Khakulova AA, Serebryakov EB. Uptake and Metabolic Conversion of Exogenous Phosphatidylcholines Depending on Their Acyl Chain Structure in Arabidopsis thaliana. Int J Mol Sci 2023; 25:89. [PMID: 38203257 PMCID: PMC10778594 DOI: 10.3390/ijms25010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Fungi and plants are not only capable of synthesizing the entire spectrum of lipids de novo but also possess a well-developed system that allows them to assimilate exogenous lipids. However, the role of structure in the ability of lipids to be absorbed and metabolized has not yet been characterized in detail. In the present work, targeted lipidomics of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs), in parallel with morphological phenotyping, allowed for the identification of differences in the effects of PC molecular species introduced into the growth medium, in particular, typical bacterial saturated (14:0/14:0, 16:0/16:0), monounsaturated (16:0/18:1), and typical for fungi and plants polyunsaturated (16:0/18:2, 18:2/18:2) species, on Arabidopsis thaliana. For comparison, the influence of an artificially synthesized (1,2-di-(3-(3-hexylcyclopentyl)-propanoate)-sn-glycero-3-phosphatidylcholine, which is close in structure to archaeal lipids, was studied. The phenotype deviations stimulated by exogenous lipids included changes in the length and morphology of both the roots and leaves of seedlings. According to lipidomics data, the main trends in response to exogenous lipid exposure were an increase in the proportion of endogenic 18:1/18:1 PC and 18:1_18:2 PC molecular species and a decrease in the relative content of species with C18:3, such as 18:3/18:3 PC and/or 16:0_18:3 PC, 16:1_18:3 PE. The obtained data indicate that exogenous lipid molecules affect plant morphology not only due to their physical properties, which are manifested during incorporation into the membrane, but also due to the participation of exogenous lipid molecules in the metabolism of plant cells. The results obtained open the way to the use of PCs of different structures as cellular regulators.
Collapse
Affiliation(s)
- Ekaterina R. Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Svetlana V. Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Gregory A. Pozhvanov
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
- Department of Botany and Ecology, Faculty of Biology, Herzen State Pedagogical University, 191186 Saint-Petersburg, Russia
| | - Ilya A. Prokopiev
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Ivan A. Boldyrev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Bairta S. Manzhieva
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Ekaterina Ya. Amigud
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
- Department of Botany and Ecology, Faculty of Biology, Herzen State Pedagogical University, 191186 Saint-Petersburg, Russia
| | - Roman K. Puzanskiy
- Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint-Petersburg, Russia; (S.V.S.); (G.A.P.); (I.A.P.); (B.S.M.); (E.Y.A.); (R.K.P.)
| | - Anna A. Khakulova
- Chemical Analysis and Materials Research Core Facility Center, Reseach Park, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.A.K.); (E.B.S.)
| | - Evgeny B. Serebryakov
- Chemical Analysis and Materials Research Core Facility Center, Reseach Park, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.A.K.); (E.B.S.)
| |
Collapse
|
12
|
Prasad SS, Taylor MC, Colombo V, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. INSECTS 2023; 14:873. [PMID: 37999072 PMCID: PMC10672513 DOI: 10.3390/insects14110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as Drosophila melanogaster. Here, we present the lipidome of adult males of another higher dipteran frugivore, Bactrocera tryoni. We describe 421 lipids across 15 classes of ester neutral lipids and phospholipids and ether neutral lipids and phospholipids. Most of the lipids are specified in terms of the carbon and double bond contents of each constituent hydrocarbon chain, and more ether lipids are specified to this degree than in any previous insect lipidomic analyses. Class-specific profiles of chain length and (un)saturation are broadly similar to those reported in D. melanogaster, although we found fewer medium-length chains in ether lipids. The high level of chain specification in our dataset also revealed widespread non-random combinations of different chain types in several ester lipid classes, including deficits of combinations involving chains of the same carbon and double bond contents among four phospholipid classes and excesses of combinations of dissimilar chains in several classes. Large differences were also found in the length and double bond profiles of the acyl vs. alkyl or alkenyl chains of the ether lipids. Work on other organisms suggests some of the differences observed will be functionally consequential and mediated, at least in part, by differences in substrate specificity among enzymes in lipid synthesis and remodelling pathways. Interrogation of the B. tryoni genome showed it has comparable levels of diversity overall in these enzymes but with some gene gain/loss differences and considerable sequence divergence from D. melanogaster.
Collapse
Affiliation(s)
- Shirleen S. Prasad
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Matthew C. Taylor
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Valentina Colombo
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Heng Lin Yeap
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Siu Fai Lee
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - John G. Oakeshott
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| |
Collapse
|
13
|
Renne MF, Ernst R. Membrane homeostasis beyond fluidity: control of membrane compressibility. Trends Biochem Sci 2023; 48:963-977. [PMID: 37652754 PMCID: PMC10580326 DOI: 10.1016/j.tibs.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
Biomembranes are complex materials composed of lipids and proteins that compartmentalize biochemistry. They are actively remodeled in response to physical and metabolic cues, as well as during cell differentiation and stress. The concept of homeoviscous adaptation has become a textbook example of membrane responsiveness. Here, we discuss limitations and common misconceptions revolving around it. By highlighting key moments in the life cycle of a transmembrane protein, we illustrate that membrane thickness and a finely regulated membrane compressibility are crucial to facilitate proper membrane protein insertion, function, sorting, and inheritance. We propose that the unfolded protein response (UPR) provides a mechanism for endoplasmic reticulum (ER) membrane homeostasis by sensing aberrant transverse membrane stiffening and triggering adaptive responses that re-establish membrane compressibility.
Collapse
Affiliation(s)
- Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany.
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany.
| |
Collapse
|
14
|
Iwama R, Okahashi N, Suzawa T, Yang C, Matsuda F, Horiuchi H. Comprehensive analysis of the composition of the major phospholipids during the asexual life cycle of the filamentous fungus Aspergillus nidulans. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159379. [PMID: 37659899 DOI: 10.1016/j.bbalip.2023.159379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
Filamentous fungi undergo significant cellular morphological changes during their life cycle. It has recently been reported that deletions of genes that are involved in phospholipid synthesis led to abnormal hyphal morphology and differentiation in filamentous fungi. Although these results suggest the importance of phospholipid balance in their life cycle, comprehensive analyses of cellular phospholipids are limited. Here, we performed lipidomic analysis of A. nidulans during morphological changes in a liquid medium and of colonies on a solid medium. We observed that the phospholipid composition and transcription of the genes involved in phospholipid synthesis changed dynamically during the life cycle. Specifically, the levels of phosphatidylethanolamine, and highly unsaturated phospholipids increased during the establishment of polarity. Furthermore, we demonstrated that the phospholipid composition in the hyphae at colony margins is similar to that during conidial germination. Furthermore, we demonstrated that common and characteristic phospholipid changes occurred during germination in A. nidulans and A. oryzae, and that species-specific changes also occurred. These results suggest that the exquisite regulation of phospholipid composition is crucial for the growth and differentiation of filamentous fungi.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobuyuki Okahashi
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuki Suzawa
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chuner Yang
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumio Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
15
|
Hrach VL, King WR, Nelson LD, Conklin S, Pollock JA, Patton-Vogt J. The acyltransferase Gpc1 is both a target and an effector of the unfolded protein response in Saccharomyces cerevisiae. J Biol Chem 2023; 299:104884. [PMID: 37269946 PMCID: PMC10331479 DOI: 10.1016/j.jbc.2023.104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
The unfolded protein response (UPR) is sensitive to proteotoxic and membrane bilayer stress, both of which are sensed by the ER protein Ire1. When activated, Ire1 splices HAC1 mRNA, producing a transcription factor that targets genes involved in proteostasis and lipid metabolism, among others. The major membrane lipid phosphatidylcholine (PC) is subject to phospholipase-mediated deacylation, producing glycerophosphocholine (GPC), followed by reacylation of GPC through the PC deacylation/reacylation pathway (PC-DRP). The reacylation events occur via a two-step process catalyzed first by the GPC acyltransferase Gpc1, followed by acylation of the lyso-PC molecule by Ale1. However, whether Gpc1 is critical for ER bilayer homeostasis is unclear. Using an improved method for C14-choline-GPC radiolabeling, we first show that loss of Gpc1 results in abrogation of PC synthesis through PC-DRP and that Gpc1 colocalizes with the ER. We then probe the role of Gpc1 as both a target and an effector of the UPR. Exposure to the UPR-inducing compounds tunicamycin, DTT, and canavanine results in a Hac1-dependent increase in GPC1 message. Further, cells lacking Gpc1 exhibit increased sensitivity to those proteotoxic stressors. Inositol limitation, known to induce the UPR via bilayer stress, also induces GPC1 expression. Finally, we show that loss of GPC1 induces the UPR. A gpc1Δ mutant displays upregulation of the UPR in strains expressing a mutant form of Ire1 that is unresponsive to unfolded proteins, indicating that bilayer stress is responsible for the observed upregulation. Collectively, our data indicate an important role for Gpc1 in yeast ER bilayer homeostasis.
Collapse
Affiliation(s)
- Victoria Lee Hrach
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - William R King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Laura D Nelson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Shane Conklin
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - John A Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
16
|
Wu CC, Honda K, Kazuhito F. Current advances in alteration of fatty acid profile in Rhodotorula toruloides: a mini-review. World J Microbiol Biotechnol 2023; 39:234. [PMID: 37358633 PMCID: PMC10293357 DOI: 10.1007/s11274-023-03595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/27/2023]
Abstract
Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries. Rhodotorula toruloides is an intriguing oleaginous yeast strain that can accumulate more than 70% of its dry biomass as lipid content. It can utilize a wide range of substrates, including low-cost sugars and industrial waste. It is also robust against various industrial inhibitors. However, precise control of the fatty acid profile of the lipids produced by R. toruloides is essential for broadening its biotechnological applications. This mini-review describes recent progress in identifying fatty synthesis pathways and consolidated strategies used for specific fatty acid-rich lipid production via metabolic engineering, strain domestication. In addition, this mini-review summarized the effects of culture conditions on fatty acid profiles in R. toruloides. The perspectives and constraints of harnessing R. toruloides for tailored lipid production are also discussed in this mini-review.
Collapse
Affiliation(s)
- Chih-Chan Wu
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fujiyama Kazuhito
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Chen L, Xu WY, Chen H, Han YQ, Zhang YT. Integrated Metabolomics and Network Pharmacology to Reveal the Mechanisms of Gandouling Tablets Against Copper-Overload-Induced Neuronal Injury in Rats with Wilson's Disease. Drug Des Devel Ther 2023; 17:1763-1782. [PMID: 37333964 PMCID: PMC10276572 DOI: 10.2147/dddt.s409691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose Gandouling Tablets (GDL), a proprietary Chinese medicine, have shown a preventive effect against Wilson's disease (WD)-induced neuronal damage in previous studies. However, the potential mechanisms need additional investigation. Combining metabonomics and network pharmacology revealed the GDL pathway against WD-induced neuronal damage. Methods The WD rat model with a high copper load was developed, and nerve damage was assessed. Total metabonomics was used to identify distinct hippocampus metabolites and enriched metabolic pathways in MetaboAnalyst. The GDL's possible targets against WD neuron damage were then determined by network pharmacology. Cytoscape constructed compound metabonomics and pharmacology networks. Moreover, molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) validated key targets. Results GDL reduced WD-induced neuronal injury. Twenty-nine GDL-induced metabolites may protect against WD neuron injury. According to network pharmacology, we identified three essential gene clusters, of which genes in cluster 2 had the most significant impact on the metabolic pathway. A comprehensive investigation identified six crucial targets, including UGT1A1, CYP3A4, CYP2E1, CYP1A2, PIK3CB, and LPL, and their associated core metabolites and processes. Four targets reacted strongly with GDL active components. GDL therapy improved five targets' expression. Conclusion This collaborative effort revealed the mechanisms of GDL against WD neuron damage and a way to investigate the potential pharmacological mechanisms of other Traditional Chinese Medicine (TCM).
Collapse
Affiliation(s)
- Li Chen
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Wang-Yang Xu
- The College of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Hao Chen
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Yan-Quan Han
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Yu-Ting Zhang
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
18
|
Greenwood BL, Luo Z, Ahmed T, Huang D, Stuart DT. Saccharomyces cerevisiae Δ9-desaturase Ole1 forms a supercomplex with Slc1 and Dga1. J Biol Chem 2023:104882. [PMID: 37269945 PMCID: PMC10302205 DOI: 10.1016/j.jbc.2023.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023] Open
Abstract
Biosynthesis of the various lipid species that compose cellular membranes and lipid droplets depends on the activity of multiple enzymes functioning in coordinated pathways. The flux of intermediates through lipid biosynthetic pathways is regulated to respond to nutritional and environmental demands placed on the cell necessitating that there be extensive flexibility in pathway activity and organization. This flexibility can in part be achieved through the organization of biosynthetic enzymes into metabolon supercomplexes. However, the composition and organization of such supercomplexes remains unclear. Here, we identified protein-protein interactions between acyltransferases Sct1, Gpt2, Slc1, Dga1 and the Δ9 acyl-CoA desaturase Ole1 in Saccharomyces cerevisiae. We further determined that a subset of these acyltransferases interact with each other without Ole1 acting as a scaffold. We show that truncated versions of Dga1 lacking the carboxyl-terminal 20 amino acid residues are non-functional and unable to bind Ole1. Furthermore, charged-to-alanine scanning mutagenesis revealed that a cluster of charged residues near the carboxyl-terminus were required for the interaction with Ole1. Mutation of these charged residues disrupted the interaction between Dga1 and Ole1, but allowed Dga1 to retain catalytic activity and to induce lipid droplet formation. These data support the formation of a complex of acyltransferases involved in lipid biosynthesis that interacts with Ole1, the sole acyl-CoA desaturase in S. cerevisiae, that can channel unsaturated acyl-chains toward phospholipid or triacylglycerol synthesis. This desaturasome complex may provide the architecture that allows for the necessary flux of de novo synthesized unsaturated acyl-CoA to phospholipid or triacylglycerol synthesis as demanded by cellular requirements.
Collapse
Affiliation(s)
- Brianna L Greenwood
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Zijun Luo
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Tareq Ahmed
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Daniel Huang
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - David T Stuart
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada.
| |
Collapse
|
19
|
Ruiz M, Devkota R, Kaper D, Ruhanen H, Busayavalasa K, Radović U, Henricsson M, Käkelä R, Borén J, Pilon M. AdipoR2 recruits protein interactors to promote fatty acid elongation and membrane fluidity. J Biol Chem 2023:104799. [PMID: 37164154 DOI: 10.1016/j.jbc.2023.104799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
The human AdipoR2 and its C. elegans homolog PAQR-2 are multi-pass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labelled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified co-immunoprecipitated proteins using mass spectroscopy. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation, and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Delaney Kaper
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science, Biocenter Finland, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Uroš Radović
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science, Biocenter Finland, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
20
|
Khadhraoui N, Prola A, Vandestienne A, Blondelle J, Guillaud L, Courtin G, Bodak M, Prost B, Huet H, Wintrebert M, Péchoux C, Solgadi A, Relaix F, Tiret L, Pilot-Storck F. Hacd2 deficiency in mice leads to an early and lethal mitochondrial disease. Mol Metab 2023; 69:101677. [PMID: 36693621 PMCID: PMC9986742 DOI: 10.1016/j.molmet.2023.101677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity. METHODS We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale. RESULTS Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin. CONCLUSIONS Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.
Collapse
Affiliation(s)
- Nahed Khadhraoui
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Alexandre Prola
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Jordan Blondelle
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Laurent Guillaud
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Guillaume Courtin
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Maxime Bodak
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Bastien Prost
- UMS IPSIT, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Hélène Huet
- Biopôle, École nationale vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Mélody Wintrebert
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Audrey Solgadi
- UMS IPSIT, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Frédéric Relaix
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France.
| | - Fanny Pilot-Storck
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France.
| |
Collapse
|
21
|
Liu Q, Lin J, Zhao W, Lei M, Yang J, Bai W. The dynamic changes of flavors and UPLC-Q-Exactive-Orbitrap-MS based lipidomics in mackerel (Scomberomorus niphonius) during dry-cured processing. Food Res Int 2023; 163:112273. [PMID: 36596184 DOI: 10.1016/j.foodres.2022.112273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Dry-cured mackerel is favored by consumers for its suitable salty flavor. Herein, the dynamic changes of volatile compounds and lipids in the mackerel, and the lipidomics based on UPLC-Orbitrap/MS technique during dry-cured processing were investigated. The results showed that endogenous lipases activities in dry-cured mackerel decreased. The dry-cured processing of mackerel had significant effects on its lipid classes and content. The contents of Arachidonic acid (C20:4n6), docosapentaenoic acid (C22:5n3), linoleic acid (LA, C18:2n6), alpha-linolenic acid (C18:3n3), eicosatrienoic acid (C20:3n3) and docosahexaenoic acid (DHA, C22:6n3) increased during dry-cured processing. A total of 38 kinds of volatile compounds were detected in the dry-cured mackerel, 12 of which were derived from fatty acid oxidation. Among 30 lipid metabolites (FC ≥ 2 and VIP > 2), phosphatidylethanolamine (PE, 19:0/22:6) accounted for the highest content, and its difference between three stages was the most obvious. Glycerophospholipid and sphingolipid metabolisms were the most important metabolic pathways involved in dry-cured processing.
Collapse
Affiliation(s)
- Qiaoyu Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Jianjun Lin
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Menglin Lei
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
22
|
Renne MF, Bao X, Hokken MWJ, Bierhuizen AS, Hermansson M, Sprenger RR, Ewing TA, Ma X, Cox RC, Brouwers JF, De Smet CH, Ejsing CS, de Kroon AIPM. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J 2022; 41:e106837. [PMID: 34873731 PMCID: PMC8762554 DOI: 10.15252/embj.2020106837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xue Bao
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Margriet WJ Hokken
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Adolf S Bierhuizen
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Martin Hermansson
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Tom A Ewing
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Wageningen Food & Biobased ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Xiao Ma
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ruud C Cox
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Jos F Brouwers
- Biochemistry and Cell BiologyDepartment of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Present address:
Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Christer S Ejsing
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Anton IPM de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
23
|
Morales-Palomo S, Liras M, González-Fernández C, Tomás-Pejó E. Key role of fluorescence quantum yield in Nile Red staining method for determining intracellular lipids in yeast strains. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:37. [PMID: 35440008 PMCID: PMC9019942 DOI: 10.1186/s13068-022-02135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
Abstract
Background Microbial lipids are found to be an interesting green alternative to expand available oil sources for the chemical industry. Yeasts are considered a promising platform for sustainable lipid production. Remarkably, some oleaginous yeasts have even shown the ability to grow and accumulate lipids using unusual carbon sources derived from organic wastes, such as volatile fatty acids. Recent research efforts have been focused on developing rapid and accurate fluorometric methods for the quantification of intracellular yeast lipids. Nevertheless, the current methods are often tedious and/or exhibit low reproducibility. Results This work evaluated the reliability of different fluorescence measurements (fluorescence intensity, total area and fluorescence quantum yield) using Nile Red as lipid dye in two yeast strains (Yarrowia lipolytica ACA-DC 50109 and Cutaneotrichosporon curvatum NRRL-Y-1511). Different standard curves were obtained for each yeast specie. Fermentation tests were carried with 6-month difference to evaluate the effect of the fluorometer lamp lifetime on lipid quantification. Conclusions Fluorescence quantum yield presented the most consistent measurements along time and the closer estimations when compared with lipids obtained by conventional methods (extraction and gravimetrical determination). The need of using fluorescence quantum yield to estimate intracellular lipids, which is not the common trend in studies focused on microbial lipid production, was stressed. The information here provided will surely enable more accurate results comparison. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02135-9.
Collapse
|
24
|
Liu S, Liu X, Shi Y, Zhuang S, Chen Q. RETRACTED: The adaptive mechanism of halophilic Brachybacterium muris in response to salt stress and its mitigation of copper toxicity in hydroponic plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120124. [PMID: 36089137 DOI: 10.1016/j.envpol.2022.120124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors who have indicated that there are significant errors with the scientific data upon which this study is based. Specifically, the authors have subsequently discovered that the 16S rDNA sequencing of Brachybacterium muris may not be reliable because of the limited identification methods from a few years ago. The authors are now repeating their experiments to reconfirm their data. The Authors take full responsibility for these errors and offer their sincere apologies.
Collapse
Affiliation(s)
- Siyu Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiayu Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 310000, China.
| |
Collapse
|
25
|
The Role of Transmembrane Proteins in Plant Growth, Development, and Stress Responses. Int J Mol Sci 2022; 23:ijms232113627. [PMID: 36362412 PMCID: PMC9655316 DOI: 10.3390/ijms232113627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Transmembrane proteins participate in various physiological activities in plants, including signal transduction, substance transport, and energy conversion. Although more than 20% of gene products are predicted to be transmembrane proteins in the genome era, due to the complexity of transmembrane domains they are difficult to reliably identify in the predicted protein, and they may have different overall three-dimensional structures. Therefore, it is challenging to study their biological function. In this review, we describe the typical structures of transmembrane proteins and their roles in plant growth, development, and stress responses. We propose a model illustrating the roles of transmembrane proteins during plant growth and response to various stresses, which will provide important references for crop breeding.
Collapse
|
26
|
Perczyk P, Młyńczak M, Wydro P, Broniatowski M. Persistent organic pollutants in model fungal membranes. Effects on the activity of phospholipases. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184018. [PMID: 35926566 DOI: 10.1016/j.bbamem.2022.184018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Soils are the final sink for multiple organic pollutants emitted to the environment. Some of these chemicals which are toxic, recalcitrant and can bioaccumulate in living organism and biomagnify in trophic chains are classified persistent organic pollutants (POP). Vast areas of arable land have been polluted by POPs and the only economically possible means of decontamination is bioremediation, that is the utilization of POP-degrading microbes. Especially useful can be non-ligninolytic fungi, as their fast-growing mycelia can reach POP molecules strongly bond to soil minerals or humus fraction inaccessible to bacteria. The mobilized POP molecules are incorporated into the fungal plasma membrane where their degradation begins. The presence of POP molecules in the membranes can change their physical properties and trigger toxic effects to the cell. To avoid these phenomena fungi can quickly remodel the phospholipid composition of their membrane with employing different phospholipases and acyltransferases. However, if the presence of POP downregulates the phospholipases, toxic effects and the final death of microbial cells are highly probable. In our studies we applied multicomponent Langmuir monolayers with their composition mimicking fungal plasma membranes and studied their interactions with two different microbial phospholipases: phospholipase C (α-toxin) and phospholipase A1 (Lecitase ultra). The model membranes were doped with selected POPs that are frequently found in contaminated soils. It turned out that most of the employed POPs do not downregulate considerably the activity of phospholipases, which is a good prognostics for the application of non-ligninolytic fungi in bioremediation.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Maja Młyńczak
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
27
|
Danilova OA, Ianutsevich EA, Bondarenko SA, Antropova AB, Tereshina VM. Membrane Lipids and Osmolytes Composition of Xerohalophilic Fungus Aspergillus penicillioides during Growth on High NaCl and Glycerol Media. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Li Y, Zhao F, Li C, Xie X, Ban X, Gu Z, Li Z. Short-clustered maltodextrin provides cryoprotection by maintaining cell membrane homeostasis of yeast during frozen storage. Food Chem 2022; 405:134729. [DOI: 10.1016/j.foodchem.2022.134729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022]
|
29
|
Renne MF, Corey RA, Ferreira JV, Stansfeld PJ, Carvalho P. Seipin concentrates distinct neutral lipids via interactions with their acyl chain carboxyl esters. J Cell Biol 2022; 221:e202112068. [PMID: 35938957 PMCID: PMC9365673 DOI: 10.1083/jcb.202112068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
Lipid droplets (LDs) are essential for cellular lipid homeostasis by storing diverse neutral lipids (NLs), such as triacylglycerol (TAG), steryl esters (SE), and retinyl esters (RE). A proper assembly of TAG-containing LDs at the ER requires Seipin, a conserved protein often mutated in lipodystrophies. Here, we show that the yeast Seipin Sei1 and its partner Ldb16 also promote the storage of other NL in LDs. Importantly, this role of Sei1/Ldb16 is evolutionarily conserved as expression of human-Seipin restored normal SE-containing LDs in yeast Seipin mutants. As in the case of TAG, the formation of SE-containing LDs requires interactions between hydroxyl-residues in human Seipin or yeast Ldb16 with NL carboxyl esters. These findings provide a universal mechanism for Seipin-mediated LD formation and suggest a model for how Seipin distinguishes NLs from aliphatic phospholipid acyl chains in the center of the membrane bilayer.
Collapse
Affiliation(s)
- Mike F. Renne
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin A. Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Wójcik A, Stephan M, Ryczek W, Olechowska K, Wydro P, Dimova R, Broniatowski M. Interactions of polycyclic aromatic hydrocarbons and their nitro derivatives with bilayer and monolayer models of fungal membranes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Ghosh S, Mishra P, Banerjee S, Maiti K, Khopade A, Misra A, Sawant K, Bhowmick S. Exploration of the cardinal formulation parameters influencing the encapsulation and physicochemical properties of co-loaded anticancer dual drug nanoliposomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Effect of Quinoline on the Phospholipid Profile of Curvularia lunata and Its Microbial Detoxification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072081. [PMID: 35408479 PMCID: PMC9000216 DOI: 10.3390/molecules27072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Quinoline is an N-heterocyclic compound commonly found in wastewater, especially that derived from coal processing, chemical, and pharmaceutical industries. In the present study, the microscopic fungus Curvularia lunata IM 4417, which is known to degrade various xenobiotics, was used. The aim of the research was to study the elimination of quinoline and its influence on fungal phospholipids, which are considered to be excellent indicators of environmental monitoring. Quinoline biodegradation products and phospholipid contents were analyzed using gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry. C. lunata IM 4417 degraded quinoline, which led to the formation of conjugates of glucose with hydroxylated derivatives of the compound. Toxicity tests (Artoxkit M and Microtox assay) indicated that the elimination of lower concentrations of quinoline was efficient and led to a reduction in sample toxicity. The presence of quinoline also significantly affected the profile of fatty acids and phospholipids. The addition of quinoline to a culture of C. lunata IM 4417 caused an increase in the content of phosphatidylcholine (PC) and a decrease in the amount of phosphatidylethanolamine (PE), two major structural lipids. Additionally, decreases in the contents of phosphatidylinositol (PI) and phosphatidylserine (PS), which are responsible for tolerance to toxic substances, cell viability, and signal transduction, were noted. Thus, it can be concluded that the presence of quinoline modifies the membrane composition, and this change may be an important indicator of the presence of N-heterocyclic compounds or other toxins in the environment.
Collapse
|
33
|
Kotlova ER, Senik SV, Manzhieva BS, Kiyashko AA, Shakhova NV, Puzansky RK, Volobuev SV, Misharev AD, Serebryakov EB, Psurtseva NV. Diversity of ESI-MS Based Phosphatidylcholine Profiles in Basidiomycetes. J Fungi (Basel) 2022; 8:177. [PMID: 35205932 PMCID: PMC8879007 DOI: 10.3390/jof8020177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphatidylcholines (PC) are the main membrane lipid constituents comprising more than 50% of total glycerophospholipids. They coordinate a number of cell functions, particularly cell growth, homeostasis, secretion, recognition and communication. In basidial fungi PC are synthesized via the Kennedy pathway as well as through methylation of phosphatidylethanolamines (PE) and then undergo remodeling in Lands cycle that replaces fatty acids in PC molecules. The molecular profile of PC is determined by the genetic features that are characteristic for every species and depend on the environment. Here we present the results of ESI-MS based analyses of PC profiles of 38 species of basidiomycetes belonging to Agaricales (12), Polyporales (17), Russulales (5), Gleophyllales (2), Cantharellales (1), Auriculariales (1), Phallales (1). Although the variety of PC molecular species of basidiomycetes is rather diverse (20-38 molecular species in every profile), only 1-3 main molecular species represent 70-90% of total PC content. The most abundant of them are C36:4 and C36:3, followed by C34:1, C34:2, C36:5, C36:2. In the majority of basidiomycetes, C36:4 reaches up to 50-70% of total PC molecular species. Based on the results of hierarchical cluster analysis four main types of PC profiles which characterized the studied fungi independently from their taxonomic position, ecology, trophic status, and hyphal differentiation have been revealed. Comparative analyses of studied fungi using PCA method have shown that species of Polyporales differ from those of Agaricales by higher variability of PC profiles.
Collapse
Affiliation(s)
- Ekaterina R. Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Svetlana V. Senik
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Bairta S. Manzhieva
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Anna A. Kiyashko
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Natalia V. Shakhova
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Roman K. Puzansky
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Sergei V. Volobuev
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| | - Alexander D. Misharev
- Chemical Analysis and Materials Research Centre, Saint-Petersburg State University, 198504 Saint-Petersburg, Russia; (A.D.M.); (E.B.S.)
| | - Eugeny B. Serebryakov
- Chemical Analysis and Materials Research Centre, Saint-Petersburg State University, 198504 Saint-Petersburg, Russia; (A.D.M.); (E.B.S.)
| | - Nadezhda V. Psurtseva
- Komarov Botanical Institute, Russian Academy of Sciences RAS, 197376 Saint-Petersburg, Russia; (S.V.S.); (B.S.M.); (A.A.K.); (N.V.S.); (R.K.P.); (S.V.V.); (N.V.P.)
| |
Collapse
|
34
|
Ianutsevich EA, Danilova OA, Bondarenko SA, Tereshina VM. Membrane lipid and osmolyte readjustment in the alkaliphilic micromycete Sodiomyces tronii under cold, heat and osmotic shocks. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34816793 DOI: 10.1099/mic.0.001112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previously, we showed for the first time that alkaliphilic fungi, in contrast to alkalitolerant fungi, accumulated trehalose under extremely alkaline conditions, and we have proposed its key role in alkaliphilia. We propose that high levels of trehalose in the mycelium of alkaliphiles may promote adaptation not only to alkaline conditions, but also to other stressors. Therefore, we studied changes in the composition of osmolytes, and storage and membrane lipids under the action of cold (CS), heat (HS) and osmotic (OS) shocks in the obligate alkaliphilic micromycete Sodiomyces tronii. During adaptation to CS, an increase in the degree of unsaturation of phospholipids was observed while the composition of osmolytes, membrane and storage lipids remained the same. Under HS conditions, a twofold increase in the level of trehalose and an increase in the proportion of phosphatidylethanolamines were observed against the background of a decrease in the proportion of phosphatidic acids. OS was accompanied by a decrease in the amount of membrane lipids, while their ratio remained unchanged, and an increase in the level of polyols (arabitol and mannitol) in the fungal mycelium, which suggests their role for adaptation to OS. Thus, the observed consistency of the composition of membrane lipids suggests that trehalose can participate in adaptation not only to extremely alkaline conditions, but also to other stressors - HS, CS and OS. Taken together, the data obtained indicate the adaptability of the fungus to the action of various stressors, which can point to polyextremotolerance.
Collapse
Affiliation(s)
- Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Sofiya A Bondarenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia.,Lomonosov Moscow State University, Faculty of Biology, Russia
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
35
|
Pathak BK, Dey S, Mozumder S, Sengupta J. The role of membranes in function and dysfunction of intrinsically disordered amyloidogenic proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:397-434. [PMID: 35034725 DOI: 10.1016/bs.apcsb.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane-protein interactions play a major role in human physiology as well as in diseases pathology. Interaction of a protein with the membrane was previously thought to be dependent on well-defined three-dimensional structure of the protein. In recent decades, however, it has become evident that a large fraction of the proteome, particularly in eukaryotes, stays disordered in solution and these proteins are termed as intrinsically disordered proteins (IDPs). Also, a vast majority of human proteomes have been reported to contain substantially long disordered regions, called intrinsically disordered regions (IDRs), in addition to the structurally ordered regions. IDPs exist in an ensemble of conformations and the conformational flexibility enables IDPs to achieve functional diversity. IDPs (and IDRs) are found to be important players in cell signaling, where biological membranes act as anchors for signaling cascades. Therefore, IDPs modulate the membrane architectures, at the same time membrane composition also affects the binding of IDPs. Because of intrinsic disorders, misfolding of IDPs often leads to formation of oligomers, protofibrils and mature fibrils through progressive self-association. Accumulation of amyloid-like aggregates of some of the IDPs is a known causative agent for numerous diseases. In this chapter we highlight recent advances in understanding membrane interactions of some of the intrinsically disordered proteins involved in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Bani Kumar Pathak
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sandip Dey
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
36
|
Bao X, Koorengevel MC, Groot Koerkamp MJA, Homavar A, Weijn A, Crielaard S, Renne MF, Lorent JH, Geerts WJC, Surma MA, Mari M, Holstege FCP, Klose C, de Kroon AIPM. Shortening of membrane lipid acyl chains compensates for phosphatidylcholine deficiency in choline-auxotroph yeast. EMBO J 2021; 40:e107966. [PMID: 34520050 PMCID: PMC8521299 DOI: 10.15252/embj.2021107966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity.
Collapse
Affiliation(s)
- Xue Bao
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Martijn C Koorengevel
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | | | - Amir Homavar
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Amrah Weijn
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Stefan Crielaard
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Mike F Renne
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Willie JC Geerts
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | | | - Muriel Mari
- Department of Biomedical Sciences of Cells & SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | | | - Anton I P M de Kroon
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
37
|
Renne MF, Hariri H. Lipid Droplet-Organelle Contact Sites as Hubs for Fatty Acid Metabolism, Trafficking, and Metabolic Channeling. Front Cell Dev Biol 2021; 9:726261. [PMID: 34595176 PMCID: PMC8477659 DOI: 10.3389/fcell.2021.726261] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Cells prepare for fluctuations in nutrient availability by storing energy in the form of neutral lipids in organelles called Lipid Droplets (LDs). Upon starvation, fatty acids (FAs) released from LDs are trafficked to different cellular compartments to be utilized for membrane biogenesis or as a source of energy. Despite the biochemical pathways being known in detail, the spatio-temporal regulation of FA synthesis, storage, release, and breakdown is not completely understood. Recent studies suggest that FA trafficking and metabolism are facilitated by inter-organelle contact sites that form between LDs and other cellular compartments such as the Endoplasmic Reticulum (ER), mitochondria, peroxisomes, and lysosomes. LD-LD contact sites are also sites where FAs are transferred in a directional manner to support LD growth and expansion. As the storage site of neutral lipids, LDs play a central role in FA homeostasis. In this mini review, we highlight the role of LD contact sites with other organelles in FA trafficking, channeling, and metabolism and discuss the implications for these pathways on cellular lipid and energy homeostasis.
Collapse
Affiliation(s)
- Mike F. Renne
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
38
|
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021; 8:48. [PMID: 34496967 PMCID: PMC8425997 DOI: 10.1186/s40779-021-00343-2] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Qi-Yu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Bin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Yue-Ming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xiang-Yu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Gang Shao
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, Zhejiang, China
| | - Jun-Jie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xu-Rui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian Kang
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cai-Yun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
39
|
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae. Sci Rep 2021; 11:17333. [PMID: 34462478 PMCID: PMC8405694 DOI: 10.1038/s41598-021-96757-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid.
Collapse
|
40
|
Silin VI, Hoogerheide DP. pH dependent electrical properties of the inner- and outer- leaflets of biomimetic cell membranes. J Colloid Interface Sci 2021; 594:279-289. [PMID: 33765647 DOI: 10.1016/j.jcis.2021.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Composition and asymmetry of lipid membranes provide a means for regulation of trans-membrane permeability of ions and small molecules. The pH dependence of these processes plays an important role in the functioning and survival of cells. In this work, we study the pH dependence of membrane electrical resistance and capacitance using electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR) and neutron reflectometry (NR) measurements of biomimetic tethered bilayer lipid membranes (tBLMs). tBLMs were prepared with single-component phospholipid compositions, as well as mixtures of phospholipids (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingomyelin and cholesterol) that mimic the inner- and outer- leaflets of plasma cell membranes. We found that all studied tBLMs have a resistance maximum at pHs near the pKas of the phospholipids. SPR and NR indicated that surface concentration of phospholipids and the thickness of the hydrophobic part of the membrane did not change versus pH. We postulate that these maxima are the result of protonation of the phosphate oxygen of the phospholipids and that hydronium ions play a major role in the conductance at pHs < pKas while sodium ions play the major role at pHs > pKas. An additional sharp resistance maximum of the PE tBLMs found at pH 5.9 and most likely represents the phosphatidylethanolamine's isoelectric point. The data show the key roles of the characteristic parts of phospholipid molecules: terminal group (choline, carboxyl, amine), phosphate, glycerol and ester oxygens on the permeability and selectivity of ions through the membrane. The interactions between these groups lead to significant differences in the electrical properties of biomimetic models of inner- and outer- leaflets of the plasma cell membranes.
Collapse
Affiliation(s)
- Vitalii I Silin
- University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville MD 20850, USA.
| | - David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
41
|
Pei J, Xu Y, Zong S, Ren L. Transcriptomic and Metabolomic Data Reveal the Key Metabolic Pathways Affecting Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae) Larvae During Overwintering. Front Physiol 2021; 12:655059. [PMID: 34220530 PMCID: PMC8250450 DOI: 10.3389/fphys.2021.655059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae) is a woodboring insect feeding on Fraxinus pennsylvanica, Sophora japonica, and Ginkgo biloba, as well as many other species used for urban greening and plain afforestation in northern China, including the temperate north. There is also a risk that S. insularis could spread through the transportation of seedlings, thereby increasing urban greening costs. However, how S. insularis increases the cold tolerance then reduces it to survive winter temperature below 0°C remains unclear. In the transcriptomic of S. insularis, we identified three profiles (profile 25, 27, and 13) whose trends related to the cold tolerance. We detected 1,783 differentially expressed genes (in profile 25) and identified 522 genes enriched in the AMPK signaling pathway. The metabolome analysis identified 122 differential metabolites. We identified four co-pathways, among which "Glycerophospholipid metabolism" was the pathway most enriched in differentially expressed genes and differential metabolites. The AMPK signaling and glycerophospholipid metabolism pathways play key roles in the natural overwintering physiological process of S. insularis larvae.
Collapse
Affiliation(s)
| | | | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
42
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Preisler SS, Wiuf AD, Friis M, Kjaergaard L, Hurd M, Becares ER, Nurup CN, Bjoerkskov FB, Szathmáry Z, Gourdon PE, Calloe K, Klaerke DA, Gotfryd K, Pedersen PA. Saccharomyces cerevisiae as a superior host for overproduction of prokaryotic integral membrane proteins. Curr Res Struct Biol 2021; 3:51-71. [PMID: 34235486 PMCID: PMC8244417 DOI: 10.1016/j.crstbi.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Integral membrane proteins (IMPs) constitute ~30% of all proteins encoded by the genome of any organism and Escherichia coli remains the first-choice host for recombinant production of prokaryotic IMPs. However, the expression levels of prokaryotic IMPs delivered by this bacterium are often low and overproduced targets often accumulate in inclusion bodies. The targets are therefore often discarded to avoid an additional and inconvenient refolding step in the purification protocol. Here we compared expression of five prokaryotic (bacterial and archaeal) IMP families in E. coli and Saccharomyces cerevisiae. We demonstrate that our S. cerevisiae-based production platform is superior in expression of four investigated IMPs, overall being able to deliver high quantities of active target proteins. Surprisingly, in case of the family of zinc transporters (Zrt/Irt-like proteins, ZIPs), S. cerevisiae rescued protein expression that was undetectable in E. coli. We also demonstrate the effect of localization of the fusion tag on expression yield and sample quality in detergent micelles. Lastly, we present a road map to achieve the most efficient expression of prokaryotic IMPs in our yeast platform. Our findings demonstrate the great potential of S. cerevisiae as host for high-throughput recombinant overproduction of bacterial and archaeal IMPs for downstream biophysical characterization. S. cerevisiae is superior to E. coli in expressing correctly folded and active IMPs. S. cerevisiae completely rescues the expression of the family of zinc transporters. Localization of the fusion tag affects expression yields and protein quality. We provide a roadmap to efficient expression of prokaryotic IMPs in S. cerevisiae.
Collapse
Affiliation(s)
- Sarah Spruce Preisler
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Anders Drabaek Wiuf
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Marc Friis
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Lasse Kjaergaard
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Molly Hurd
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Eva Ramos Becares
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Casper Normann Nurup
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | | | - Zsófia Szathmáry
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| | - Pontus Emanuel Gourdon
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Kirstine Calloe
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Dan A Klaerke
- University of Copenhagen, Department of Veterinary and Animal Sciences, Dyrlaegevej 100, Frederiksberg, DK, 1870, Denmark
| | - Kamil Gotfryd
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK 2200, Copenhagen N, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark
| |
Collapse
|
44
|
Muszewska A, Okrasińska A, Steczkiewicz K, Drgas O, Orłowska M, Perlińska-Lenart U, Aleksandrzak-Piekarczyk T, Szatraj K, Zielenkiewicz U, Piłsyk S, Malc E, Mieczkowski P, Kruszewska JS, Bernat P, Pawłowska J. Metabolic Potential, Ecology and Presence of Associated Bacteria Is Reflected in Genomic Diversity of Mucoromycotina. Front Microbiol 2021; 12:636986. [PMID: 33679672 PMCID: PMC7928374 DOI: 10.3389/fmicb.2021.636986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e., Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e., U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e., M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e., Thamnidium elegans and Mucor saturninus). We complement computational genome annotation with experimental characteristics of their digestive capabilities, cell wall carbohydrate composition, and extensive total lipid profiles. These traits inferred from genome composition, e.g., in terms of identified encoded enzymes, are in accordance with experimental results. Finally, we link the presence of associated bacteria with observed characteristics. Thamnidium elegans genome harbors an additional, complete genome of an associated bacterium classified to Paenibacillus sp. This fungus displays multiple altered traits compared to the remaining isolates, regardless of their evolutionary distance. For instance, it has expanded carbon assimilation capabilities, e.g., efficiently degrades carboxylic acids, and has a higher diacylglycerol:triacylglycerol ratio and skewed phospholipid composition which suggests a more rigid cellular membrane. The bacterium can complement the host enzymatic capabilities, alter the fungal metabolism, cell membrane composition but does not change the composition of the cell wall of the fungus. Comparison of early-diverging Umbelopsidales with evolutionary younger Mucorales points at several subtle differences particularly in their carbon source preferences and encoded carbohydrate repertoire. Nevertheless, all tested Mucoromycotina share features including the ability to produce 18:3 gamma-linoleic acid, use TAG as the storage lipid and have fucose as a cell wall component.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Drgas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Malc
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Piotr Mieczkowski
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Young RSE, Bowman AP, Williams ED, Tousignant KD, Bidgood CL, Narreddula VR, Gupta R, Marshall DL, Poad BLJ, Nelson CC, Ellis SR, Heeren RMA, Sadowski MC, Blanksby SJ. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep 2021; 34:108738. [PMID: 33567271 DOI: 10.1016/j.celrep.2021.108738] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Canonical fatty acid metabolism describes specific enzyme-substrate interactions that result in products with well-defined chain lengths, degree(s), and positions of unsaturation. Deep profiling of lipids across a range of prostate cancer cell lines reveals a variety of fatty acids with unusual site(s) of unsaturation that are not described by canonical pathways. The structure and abundance of these unusual lipids correlate with changes in desaturase expression and are strong indicators of cellular phenotype. Gene silencing and stable isotope tracing demonstrate that direct Δ6 and Δ8 desaturation of 14:0 (myristic), 16:0 (palmitic), and 18:0 (stearic) acids by FADS2 generate new families of unsaturated fatty acids (including n-8, n-10, and n-12) that have rarely-if ever-been reported in human-derived cells. Isomer-resolved lipidomics reveals the selective incorporation of these unusual fatty acids into complex structural lipids and identifies their presence in cancer tissues, indicating functional roles in membrane structure and signaling.
Collapse
Affiliation(s)
- Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Andrew P Bowman
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Kaylyn D Tousignant
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Charles L Bidgood
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | | | - Rajesh Gupta
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Shane R Ellis
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ron M A Heeren
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia; Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland.
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia.
| |
Collapse
|
46
|
Ruiz M, Palmgren H, Henricsson M, Devkota R, Jaiswal H, Maresca M, Bohlooly-Y M, Peng XR, Borén J, Pilon M. Extensive transcription mis-regulation and membrane defects in AdipoR2-deficient cells challenged with saturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158884. [PMID: 33444759 DOI: 10.1016/j.bbalip.2021.158884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
How cells maintain vital membrane lipid homeostasis while obtaining most of their constituent fatty acids from a varied diet remains largely unknown. Here, we used transcriptomics, lipidomics, growth and respiration assays, and membrane property analyses in human HEK293 cells or human umbilical vein endothelial cells (HUVEC) to show that the function of AdipoR2 is to respond to membrane rigidification by regulating many lipid metabolism genes. We also show that AdipoR2-dependent membrane homeostasis is critical for growth and respiration in cells challenged with saturated fatty acids. Additionally, we found that AdipoR2 deficiency causes transcriptome and cell physiological defects similar to those observed in SREBP-deficient cells upon SFA challenge. Finally, we compared several genes considered important for lipid homeostasis, namely AdipoR2, SCD, FADS2, PEMT and ACSL4, and found that AdipoR2 and SCD are the most important among these to prevent membrane rigidification and excess saturation when human cells are challenged with exogenous SFAs. We conclude that AdipoR2-dependent membrane homeostasis is one of the primary mechanisms that protects against exogenous SFAs.
Collapse
Affiliation(s)
- Mario Ruiz
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden
| | - Henrik Palmgren
- Metabolism Bioscience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcus Henricsson
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ranjan Devkota
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden
| | - Himjyot Jaiswal
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden; CellinkAB, Arvid Wallgrens Backe 20, 413 46 Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Xiao-Rong Peng
- Metabolism Bioscience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jan Borén
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 405 30 Gothenburg, Sweden
| | - Marc Pilon
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
47
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm 2021; 592:120051. [DOI: 10.1016/j.ijpharm.2020.120051] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
|
49
|
Ianutsevich EA, Danilova OA, Tereshina VM. Combinatorial Action of Different Stress Factors on the Composition of Membrane Lipids and Osmolytes of Aspergillus niger. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
50
|
Winans MJ, Gallagher JEG. Metallomic and lipidomic analysis of S. cerevisiae response to cellulosic copper nanoparticles uncovers drivers of toxicity. Metallomics 2020; 12:799-812. [PMID: 32239052 DOI: 10.1039/d0mt00018c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanotechnology is a promising new technology, of which antimicrobial metal nanocomposites are predicted to become valuable in medical and food packaging applications. Copper is a redox-active antimicrobial metal that can become increasingly toxic depending on the target biomolecule's donor atom selectivity and the chemical species of copper present. Mass is the traditional measurement of the intrinsic elemental chemistry, but this practice fails to reflect the morphology and surface area reactivity of nanotechnology. The carboxymethyl cellulose copper nanoparticles (CMC-Cu) investigated in this study have unique and undefined toxicity to Saccharomyces cerevisiae that is different from CuSO4. Cellular surface damage was found in scanning electron micrographs upon CMC-Cu exposure. Further investigation into the lipids revealed altered phosphatidylcholine and phosphatidylethanolamine membrane composition, as well as depleted triacylglycerols, suggesting an impact on the Kennedy lipid pathway. High levels of reactive oxygen species were measured which likely played a role in the lipid peroxidation detected with CMC-Cu treatment. Metal homeostasis was affected by CMC-Cu treatment. The copper sensitive yeast strain, YJM789, significantly decreased cellular zinc concentrations while the copper concentrations increased, suggesting a possible ionic mimicry relationship. In contrast to other compounds that generate ROS, no evidence of genotoxicity was found. As commonplace objects become more integrated with nanotechnology, humanity must look forward past traditional measurements of toxicity.
Collapse
Affiliation(s)
- Matthew J Winans
- West Virginia University - Biology Department, 53 Campus Drive LSB 3140, Morgantown, WV 26506, USA.
| | | |
Collapse
|