1
|
Sobhy H, De Rovere M, Ait-Ammar A, Kashif M, Wallet C, Daouad F, Loustau T, Van Lint C, Schwartz C, Rohr O. BCL11b interacts with RNA and proteins involved in RNA processing and developmental diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195065. [PMID: 39455000 DOI: 10.1016/j.bbagrm.2024.195065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown. Thanks to CLIP-seq and quantitative LC-MS/MS mass spectrometry approaches complemented with systems biology validations, we show that BCL11b interacts with RNA splicing and non-sense-mediated decay proteins, including FUS, SMN1, UPF1 and Drosha, which may contribute in isoform selection of protein-coding RNA isoforms from noncoding-RNAs isoforms (retained introns or nonsense mediated RNA). Interestingly, BCL11b binds to RNA transcripts and proteins encoded by the same genes (FUS, ESWR1, CHD and Tubulin). Our study highlights that BCL11b targets RNA processing and splicing proteins, and RNAs that implicate cell cycle, development, neurodegenerative, and cancer pathways. These findings will help future mechanistic understanding of developmental disorders. IMPORTANCE: BCL11b-protein and RNA interactomes reveal BLC11b association with specific nucleoprotein complexes involved in the regulation of genes expression. BCL11b interacts with RNA processing and splicing proteins.
Collapse
Affiliation(s)
- Haitham Sobhy
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| | - Marco De Rovere
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Amina Ait-Ammar
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France; Université Libre de Bruxelles, ULB, Gosselies, Belgium
| | - Muhammad Kashif
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Clementine Wallet
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | | | - Christian Schwartz
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
2
|
Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, Solyappan M, Fuloria S, Gupta G, Ahlawat A, Yadav G, Kaur P, Husseen B. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract 2024; 261:155489. [PMID: 39111016 DOI: 10.1016/j.prp.2024.155489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is considered the most common type of head and neck squamous cell carcinoma (HNSCC) as it holds 90 % of HNSCC cases that arise from multiple locations in the oral cavity. The last three decades witnessed little progress in the diagnosis and treatment of OSCC the aggressive tumor. However, in-depth knowledge about OSCC's pathogenesis, staging & grading, hallmarks, and causative factors is a prime requirement in advanced diagnosis and treatment for OSCC patients. Therefore present review was intended to comprehend the OSCCs' prevalence, staging & grading, molecular pathogenesis including premalignant stages, various hallmarks, etiology, diagnostic methods, treatment (including FDA-approved drugs with the mechanism of action and side effects), and theranostic agents. The current review updates that for a better understanding of OSCC progress tumor-promoting inflammation, sustained proliferative signaling, and growth-suppressive signals/apoptosis capacity evasion are the three most important hallmarks to be considered. This review suggests that among all the etiology factors the consumption of tobacco is the major contributor to the high incidence rate of OSCC. In OSCC diagnosis biopsy is considered the gold standard, however, toluidine blue staining is the easiest and non-invasive method with high accuracy. Although there are various therapeutic agents available for cancer treatment, however, a few only are approved by the FDA specifically for OSCC treatment. The present review recommends that among all available OSCC treatments, the antibody-based CAR-NK is a promising therapeutic approach for future cancer treatment. Presently review also suggests that theranostics have boosted the advancement of cancer diagnosis and treatment, however, additional work is required to refine the role of theranostics in combination with different modalities in cancer treatment.
Collapse
Affiliation(s)
- Dharshini Jagadeesan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Kathiresan V Sathasivam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia,11800 USM, Pulau Pinang, Malaysia
| | - Goot Heah Khor
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, SungaiBuloh, Selangor 47000, Malaysia; Oral and Maxillofacial Cancer Research Group, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Maheswaran Solyappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Abhilasha Ahlawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Pandeep Kaur
- National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
3
|
Sandhanam K, Tamilanban T, Manasa K, Bhattacharjee B. Unlocking novel therapeutic avenues in glioblastoma: Harnessing 4-amino cyanine and miRNA synergy for next-gen treatment convergence. Neuroscience 2024; 553:1-18. [PMID: 38944146 DOI: 10.1016/j.neuroscience.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) poses a formidable challenge in oncology due to its aggressive nature and dismal prognosis, with average survival rates around 15 months despite conventional treatments. This review proposes a novel therapeutic strategy for GBM by integrating microRNA (miRNA) therapy with 4-amino cyanine molecules possessing near-infrared (NIR) properties. miRNA holds promise in regulating gene expression, particularly in GBM, making it an attractive therapeutic target. 4-amino cyanine molecules, especially those with NIR properties, have shown efficacy in targeted tumor cell degradation. The combined approach addresses gene expression regulation and precise tumor cell degradation, offering a breakthrough in GBM treatment. Additionally, the review explores noncoding RNAs classification and characteristics, highlighting their role in GBM pathogenesis. Advanced technologies such as antisense oligonucleotides (ASOs), locked nucleic acids (LNAs), and peptide nucleic acids (PNAs) show potential in targeting noncoding RNAs therapeutically, paving the way for precision medicine in GBM. This synergistic combination presents an innovative approach with the potential to advance cancer therapy in the challenging landscape of GBM.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy 502294, Telangana, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501 Assam, India
| |
Collapse
|
4
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03265-7. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Jafarian M, Hasannia T, Badameh P, Behmanesh M, Soltani BM. Introduction of miR-3613-3p as a regulator of transforming growth factor-β (TGF-β) signaling pathway in colorectal cancer. Mol Biol Rep 2024; 51:728. [PMID: 38861185 DOI: 10.1007/s11033-024-09419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/05/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second common cancer and the fourth major reason of cancer death worldwide. Dysregulation of intracellular pathways, such as TGF-β/SMAD signaling, contributes to CRC development. MicroRNAs (miRNAs) are post-transcriptional regulators that are involved in CRC pathogenesis. Here, we aimed to investigate the effect of miR-3613-3p on the TGF-β /SMAD signaling pathway in CRC. METHODS & RESULTS Bioinformatics analysis suggested that miR-3613-3p is a regulator of TGF-Β signaling downstream genes. Then, miR-3613-3p overexpression was followed by downregulation of TGF-βR1, TGF-βR2, and SMAD2 expression levels, detected by RT-qPCR. Additionally, dual luciferase assay supported the direct interaction of miR-3613-3p with 3'UTR sequences of TGF-βR1 and TGF-βR2 genes. Furthermore, reduced SMAD3 protein level following the miR-3613-3p overexpression verified its suppressive effect against TGF-β signaling in HCT-116 cells, detected by western blot analysis. Finally, miR-3613-3p overexpression induced sub-G1 arrest in HCT116 cells, detected by flow cytometry, and promoted downregulation of cyclin D1 protein expression, which was detected by western blotting analysis. CONCLUSION Our findings indicated that miR-3613-3p plays an important role in CRC by targeting the TGF-β/SMAD signaling pathway and could be considered as a new candidate for further therapy investigations.
Collapse
Affiliation(s)
- Monireh Jafarian
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tabasom Hasannia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Badameh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Liu Q, Pepin RM, Novak MK, Maschhoff KR, Worner K, Hu W. AGO1 controls protein folding in mouse embryonic stem cell fate decisions. Dev Cell 2024; 59:979-990.e5. [PMID: 38458189 DOI: 10.1016/j.devcel.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Argonaute (AGO) proteins are evolutionarily conserved RNA-binding proteins that control gene expression through the small RNAs they interact with. Whether AGOs have regulatory roles independent of RNAs, however, is unknown. Here, we show that AGO1 controls cell fate decisions through facilitating protein folding. We found that in mouse embryonic stem cells (mESCs), while AGO2 facilitates differentiation via the microRNA (miRNA) pathway, AGO1 controls stemness independently of its binding to small RNAs. We determined that AGO1 specifically interacts with HOP, a co-chaperone for the HSP70 and HSP90 chaperones, and enhances the folding of a set of HOP client proteins with intrinsically disordered regions. This AGO1-mediated facilitation of protein folding is important for maintaining stemness in mESCs. Our results demonstrate divergent functions between AGO1 and AGO2 in controlling cellular states and identify an RNA-independent function of AGO1 in controlling gene expression and cell fate decisions.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel M Pepin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mariah K Novak
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Katharine R Maschhoff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kailey Worner
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Lui A, Do T, Alzayat O, Yu N, Phyu S, Santuya HJ, Liang B, Kailash V, Liu D, Inslicht SS, Shahlaie K, Liu D. Tumor Suppressor MicroRNAs in Clinical and Preclinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2024; 17:426. [PMID: 38675388 PMCID: PMC11054060 DOI: 10.3390/ph17040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers and neurological disorders are two major types of diseases in humans. We developed the concept called the "Aberrant Cell Cycle Disease (ACCD)" due to the accumulating evidence that shows that two different diseases share the common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncoprotein activation and tumor suppressor (TS) inactivation, which are associated with both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase/oncogene inhibition and TS elevation) can be leveraged for neurological treatments. MicroRNA (miR/miRNA) provides a new style of drug-target binding. For example, a single tumor suppressor miRNA (TS-miR/miRNA) can bind to and decrease tens of target kinases/oncogenes, producing much more robust efficacy to block cell cycle re-entry than inhibiting a single kinase/oncogene. In this review, we summarize the miRNAs that are altered in both cancers and neurological disorders, with an emphasis on miRNA drugs that have entered into clinical trials for neurological treatment.
Collapse
Affiliation(s)
- Austin Lui
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Timothy Do
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Omar Alzayat
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Nina Yu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Su Phyu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Hillary Joy Santuya
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Benjamin Liang
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Vidur Kailash
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Dewey Liu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Sabra S. Inslicht
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco, San Francisco, CA 94143, USA
- San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
- Mirnova Therapeutics Inc., Davis, CA 95618, USA
| |
Collapse
|
8
|
Rodrigues L, Da Cruz Paula A, Soares P, Vinagre J. Unraveling the Significance of DGCR8 and miRNAs in Thyroid Carcinoma. Cells 2024; 13:561. [PMID: 38607000 PMCID: PMC11011343 DOI: 10.3390/cells13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
MicroRNAs (miRNAs) act as negative regulators for protein-coding gene expression impacting cell proliferation, differentiation, and survival. These miRNAs are frequently dysregulated in cancer and constitute classes of blood-based biomarkers useful for cancer detection and prognosis definition. In thyroid cancer (TC), the miRNA biogenesis pathway plays a pivotal role in thyroid gland formation, ensuring proper follicle development and hormone production. Several alterations in the miRNA biogenesis genes are reported as a causality for miRNA dysregulation. Mutations in microprocessor component genes are linked to an increased risk of developing TC; in particular, a recurrent mutation affecting DGCR8, the E518K. In this review, we explore these novel findings and resume the current state-of-the-art in miRNAs in thyroid carcinomas.
Collapse
Affiliation(s)
- Lia Rodrigues
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3S), Rua Alfredo Allen, 4200-135 Porto, Portugal; (L.R.); (A.D.C.P.); (P.S.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Escola Superior de Saúde do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Arnaud Da Cruz Paula
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3S), Rua Alfredo Allen, 4200-135 Porto, Portugal; (L.R.); (A.D.C.P.); (P.S.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3S), Rua Alfredo Allen, 4200-135 Porto, Portugal; (L.R.); (A.D.C.P.); (P.S.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3S), Rua Alfredo Allen, 4200-135 Porto, Portugal; (L.R.); (A.D.C.P.); (P.S.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Rua Júlio Amaral de Carvalho, 4200-135 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
9
|
Tscherrig V, Steinfort M, Haesler V, Surbek D, Schoeberlein A, Joerger-Messerli MS. All but Small: miRNAs from Wharton's Jelly-Mesenchymal Stromal Cell Small Extracellular Vesicles Rescue Premature White Matter Injury after Intranasal Administration. Cells 2024; 13:543. [PMID: 38534387 DOI: 10.3390/cells13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
White matter injury (WMI) is a common neurological issue in premature-born neonates, often causing long-term disabilities. We recently demonstrated a key beneficial role of Wharton's jelly mesenchymal stromal cell-derived small extracellular vesicles (WJ-MSC-sEVs) microRNAs (miRNAs) in WMI-related processes in vitro. Here, we studied the functions of WJ-MSC-sEV miRNAs in vivo using a preclinical rat model of premature WMI. Premature WMI was induced in rat pups through inflammation and hypoxia-ischemia. Small EVs were purified from the culture supernatant of human WJ-MSCs. The capacity of WJ-MSC-sEV-derived miRNAs to decrease microglia activation and promote oligodendrocyte maturation was evaluated by knocking down (k.d) DROSHA in WJ-MSCs, releasing sEVs containing significantly less mature miRNAs. Wharton's jelly MSC-sEVs intranasally administrated 24 h upon injury reached the brain within 1 h, remained detectable for at least 24 h, significantly reduced microglial activation, and promoted oligodendrocyte maturation. The DROSHA k.d in WJ-MSCs lowered the therapeutic capabilities of sEVs in experimental premature WMI. Our results strongly indicate the relevance of miRNAs in the therapeutic abilities of WJ-MSC-sEVs in premature WMI in vivo, opening the path to clinical application.
Collapse
Affiliation(s)
- Vera Tscherrig
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Marel Steinfort
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Marianne Simone Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
10
|
Noguchi S, Ohkura S, Negishi Y, Tozawa S, Takizawa T, Morita R, Takahashi H, Ohkuchi A, Takizawa T. Cytoplasmic and nuclear DROSHA in human villous trophoblasts. J Reprod Immunol 2024; 162:104189. [PMID: 38241848 DOI: 10.1016/j.jri.2023.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024]
Abstract
In villous trophoblasts, DROSHA is a key ribonuclease III enzyme that processes pri-microRNAs (pri-miRNAs) into pre-miRNAs at the placenta-specific, chromosome 19 miRNA cluster (C19MC) locus. However, little is known of its other functions. We performed formaldehyde crosslinking, immunoprecipitation, and sequencing (fCLIP-seq) analysis of terminal chorionic villi to identify DROSHA-binding RNAs in villous trophoblasts. In villous trophoblasts, DROSHA predominantly generated placenta-specific C19MC pre-miRNAs, including antiviral C19MC pre-miRNAs. The fCLIP-seq analysis also identified non-miRNA transcripts with hairpin structures potentially capable of binding to DROSHA (e.g., SNORD100 and VTRNA1-1). Moreover, in vivo immunohistochemical analysis revealed DROSHA in the cytoplasm of villous trophoblasts. DROSHA was abundant in the cytoplasm of villous trophoblasts, particularly in the apical region of syncytiotrophoblast, in the full-term placenta. Furthermore, in BeWo trophoblasts infected with Sindbis virus (SINV), DROSHA translocated to the cytoplasm and recognized the genomic RNA of SINV. Therefore, in trophoblasts, DROSHA not only regulates RNA metabolism, including the biogenesis of placenta-specific miRNAs, but also recognizes viral RNAs. After SINV infection, BeWo DROSHA-binding VTRNA1-1 was significantly upregulated, and cellular VTRNA1-1 was significantly downregulated, suggesting that DROSHA soaks up VTRNA1-1 in response to viral infection. These results suggest that the DROSHA-mediated recognition of RNAs defends against viral infection in villous trophoblasts. Our data provide insight into the antiviral functions of DROSHA in villous trophoblasts of the human placenta.
Collapse
Affiliation(s)
- Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sadayuki Ohkura
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shohei Tozawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan; Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan.
| |
Collapse
|
11
|
Cillo F, Coppola E, Habetswallner F, Cecere F, Pignata L, Toriello E, De Rosa A, Grilli L, Ammendola A, Salerno P, Romano R, Cirillo E, Merla G, Riccio A, Pignata C, Giardino G. Understanding the Variability of 22q11.2 Deletion Syndrome: The Role of Epigenetic Factors. Genes (Basel) 2024; 15:321. [PMID: 38540380 PMCID: PMC10969806 DOI: 10.3390/genes15030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
Initially described as a triad of immunodeficiency, congenital heart defects and hypoparathyroidism, 22q11.2 deletion syndrome (22q11.2DS) now encompasses a great amount of abnormalities involving different systems. Approximately 85% of patients share a 3 Mb 22q11.2 region of hemizygous deletion in which 46 protein-coding genes are included. However, the hemizygosity of the genes of this region cannot fully explain the clinical phenotype and the phenotypic variability observed among patients. Additional mutations in genes located outside the deleted region, leading to "dual diagnosis", have been described in 1% of patients. In some cases, the hemizygosity of the 22q11.2 region unmasks autosomal recessive conditions due to additional mutations on the non-deleted allele. Some of the deleted genes play a crucial role in gene expression regulation pathways, involving the whole genome. Typical miRNA expression patterns have been identified in 22q11.2DS, due to an alteration in miRNA biogenesis, affecting the expression of several target genes. Also, a methylation epi-signature in CpG islands differentiating patients from controls has been defined. Herein, we summarize the evidence on the genetic and epigenetic mechanisms implicated in the pathogenesis of the clinical manifestations of 22q11.2 DS. The review of the literature confirms the hypothesis that the 22q11.2DS phenotype results from a network of interactions between deleted protein-coding genes and altered epigenetic regulation.
Collapse
Affiliation(s)
- Francesca Cillo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Emma Coppola
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Federico Habetswallner
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Laura Grilli
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Antonio Ammendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
| | - Paolo Salerno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| |
Collapse
|
12
|
Liu Y, Lu L, Yang H, Wu X, Luo X, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Deng S, Cho CH, Li Q, Li X, Li W, Wang F, Sun Y, Gu L, Chen M, Li M. Dysregulation of immunity by cigarette smoking promotes inflammation and cancer: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122730. [PMID: 37838314 DOI: 10.1016/j.envpol.2023.122730] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Smoking is a serious global health issue. Cigarette smoking contains over 7000 different chemicals. The main harmful components include nicotine, acrolein, aromatic hydrocarbons and heavy metals, which play the key role for cigarette-induced inflammation and carcinogenesis. Growing evidences show that cigarette smoking and its components exert a remarkable impact on regulation of immunity and dysregulated immunity promotes inflammation and cancer. Therefore, this comprehensive and up-to-date review covers four interrelated topics, including cigarette smoking, inflammation, cancer and immune system. The known harmful chemicals from cigarette smoking were summarized. Importantly, we discussed in depth the impact of cigarette smoking on the formation of inflammatory or tumor microenvironment, primarily by affecting immune effector cells, such as macrophages, neutrophils, and T lymphocytes. Furthermore, the main molecular mechanisms by which cigarette smoking induces inflammation and cancer, including changes in epigenetics, DNA damage and others were further summarized. This article will contribute to a better understanding of the impact of cigarette smoking on inducing inflammation and cancer.
Collapse
Affiliation(s)
- Yubin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xinyue Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Hussen BM, Saleem SJ, Abdullah SR, Mohamadtahr S, Hidayat HJ, Rasul MF, Taheri M, Kiani A. Current landscape of miRNAs and TGF-β signaling in lung cancer progression and therapeutic targets. Mol Cell Probes 2023; 72:101929. [PMID: 37683829 DOI: 10.1016/j.mcp.2023.101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Lung cancer (LC) is the primary reason for cancer-associated fatalities globally. Due to both tumor-suppressing and tumor-promoting activities, the TGF-β family of growth factors is extremely essential to tumorigenesis. A non-coding single-stranded short RNA called microRNA (miRNA), which is made up of about 22 nt and is encoded by endogenous genes, can control normal and pathological pathways in various kinds of cancer, including LC. Recent research demonstrated that the TGF-β signaling directly can affect the synthesis of miRNAs through suppressor of mothers against decapentaplegic (SMAD)-dependent activity or other unidentified pathways, which could generate allostatic feedback as a result of TGF-β signaling stimulation and ultimately affect the destiny of cancer tissues. In this review, we emphasize the critical functions of miRNAs in lung cancer progression and, more critically, how they affect the TGF-β signaling pathway, and explore the role of both the TGF-β signaling pathway and miRNAs as potential therapeutic targets for improving the treatments of LC patients.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
| | - Safeen Jasim Saleem
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Begum MIA, Chuan L, Hong ST, Chae HS. The Pathological Role of miRNAs in Endometriosis. Biomedicines 2023; 11:3087. [PMID: 38002087 PMCID: PMC10669455 DOI: 10.3390/biomedicines11113087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Association studies investigating miRNA in relation to diseases have consistently shown significant alterations in miRNA expression, particularly within inflammatory pathways, where they regulate inflammatory cytokines, transcription factors (such as NF-κB, STAT3, HIF1α), and inflammatory proteins (including COX-2 and iNOS). Given that endometriosis (EMS) is characterized as an inflammatory disease, albeit one influenced by estrogen levels, it is natural to speculate about the connection between EMS and miRNA. Recent research has indeed confirmed alterations in the expression levels of numerous microRNAs (miRNAs) in both endometriotic lesions and the eutopic endometrium of women with EMS, when compared to healthy controls. The undeniable association of miRNAs with EMS hints at the emergence of a new era in the study of miRNA in the context of EMS. This article reviews the advancements made in understanding the pathological role of miRNA in EMS and its association with EMS-associated infertility. These findings contribute to the ongoing pursuit of developing miRNA-based therapeutics and diagnostic markers for EMS.
Collapse
Affiliation(s)
- Mst Ismat Ara Begum
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Lin Chuan
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Hee-Suk Chae
- Department of Obstetrics and Gynecology, Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
15
|
Gil-Kulik P, Petniak A, Kluz N, Wallner G, Skoczylas T, Ciechański A, Kocki J. Influence of Clinical Factors on miR-3613-3p Expression in Colorectal Cancer. Int J Mol Sci 2023; 24:14023. [PMID: 37762323 PMCID: PMC10531160 DOI: 10.3390/ijms241814023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death globally. Because of a tendency to be an asymptomatic primary tumor and therefore resulting in late detection, most CRC patients are diagnosed in the advanced stage. Several miRNAs have the potential to become novel noninvasive biomarkers measured as diagnostic and prognostic indicators of CRC to guide surgical therapies and promote the understanding of the carcinogenesis of CRC. Since the change of miR-3613-3p was associated with several types of cancer other than colorectal cancer, there is a lack of functional evidence and the results are inconsistent. We conducted a pilot microarray study in which we noted a decreased expression of miR-3613-3p in colorectal cancer cells, then we confirmed the expression of miR-3613-3p by qPCR on a group of 83 patients, including 65 patients with colorectal cancer, 5 with a benign tumor and 13 from the control group. We noted that in both malignant and benign tumors, miR-3613-3p is downgraded relative to the surrounding tissue. As a result of the study, we also observed colorectal tumor tissue and surrounding tissue in patients with colorectal cancer who received radiotherapy before surgery, which showed a significantly higher expression of miR-3613-3p compared to patients who did not receive radiotherapy. In addition, we noted that the tissue surrounding the tumor in patients with distant metastases showed a significantly higher expression of miR-3613-3p compared to patients without distant metastases. The increased expression of miR-3613-3p in patients after radiotherapy suggests the possibility of using this miR as a therapeutic target for CRC, but this requires confirmation in further studies.
Collapse
Affiliation(s)
- Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland; (N.K.); (J.K.)
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland; (N.K.); (J.K.)
| | - Natalia Kluz
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland; (N.K.); (J.K.)
| | - Grzegorz Wallner
- II Chair and Department of General and Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, 16 Staszica Str., 20-081 Lublin, Poland; (G.W.); (T.S.); (A.C.)
| | - Tomasz Skoczylas
- II Chair and Department of General and Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, 16 Staszica Str., 20-081 Lublin, Poland; (G.W.); (T.S.); (A.C.)
| | - Aleksander Ciechański
- II Chair and Department of General and Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, 16 Staszica Str., 20-081 Lublin, Poland; (G.W.); (T.S.); (A.C.)
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland; (N.K.); (J.K.)
| |
Collapse
|
16
|
Ahmadi SM, Amirkhanloo S, Yazdian-Robati R, Ebrahimi H, Pirhayati FH, Almalki WH, Ebrahimnejad P, Kesharwani P. Recent advances in novel miRNA mediated approaches for targeting breast cancer. J Drug Target 2023; 31:777-793. [PMID: 37480323 DOI: 10.1080/1061186x.2023.2240979] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/24/2023]
Abstract
Breast cancer (BC) is considered one of the most frequent cancers among woman worldwide. While conventional therapy has been successful in treating many cases of breast cancer, drug resistance, heterogenicity, tumour features and recurrence, invasion, metastasis and the presence of breast cancer stem cells can hinder the effect of treatments, and can reduce the quality of life of patients. MicroRNAs (miRNAs) are short non-coding RNA molecules that play a crucial role in the development and progression of breast cancer. Several studies have reported that aberrant expression of specific miRNAs is associated with the pathogenesis of breast cancer. However, miRNAs are emerging as potential biomarkers and therapeutic targets for breast cancer. Understanding their role in breast cancer biology could help develop more effective treatments for this disease. The present study discusses the biogenesis and function of miRNAs, as well as miRNA therapy approaches for targeting and treating breast cancer cells.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ebrahimi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
17
|
Kordaß T, Chao TY, Osen W, Eichmüller SB. Novel microRNAs modulating ecto-5'-nucleotidase expression. Front Immunol 2023; 14:1199374. [PMID: 37409119 PMCID: PMC10318900 DOI: 10.3389/fimmu.2023.1199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction The expression of immune checkpoint molecules (ICMs) by cancer cells is known to counteract tumor-reactive immune responses, thereby promoting tumor immune escape. For example, upregulated expression of ecto-5'-nucleotidase (NT5E), also designated as CD73, increases extracellular levels of immunosuppressive adenosine, which inhibits tumor attack by activated T cells. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Thus, the binding of miRNAs to the 3'-untranslated region of target mRNAs either blocks translation or induces degradation of the targeted mRNA. Cancer cells often exhibit aberrant miRNA expression profiles; hence, tumor-derived miRNAs have been used as biomarkers for early tumor detection. Methods In this study, we screened a human miRNA library and identified miRNAs affecting the expression of ICMs NT5E, ENTPD1, and CD274 in the human tumor cell lines SK-Mel-28 (melanoma) and MDA-MB-231 (breast cancer). Thereby, a set of potential tumor-suppressor miRNAs that decreased ICM expression in these cell lines was defined. Notably, this study also introduces a group of potential oncogenic miRNAs that cause increased ICM expression and presents the possible underlying mechanisms. The results of high-throughput screening of miRNAs affecting NT5E expression were validated in vitro in 12 cell lines of various tumor entities. Results As result, miR-1285-5p, miR-155-5p, and miR-3134 were found to be the most potent inhibitors of NT5E expression, while miR-134-3p, miR-6859-3p, miR-6514-3p, and miR-224-3p were identified as miRNAs that strongly enhanced NT5E expression levels. Discussion The miRNAs identified might have clinical relevance as potential therapeutic agents and biomarkers or therapeutic targets, respectively.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Tsu-Yang Chao
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Takemon Y, LeBlanc VG, Song J, Chan SY, Lee SD, Trinh DL, Ahmad ST, Brothers WR, Corbett RD, Gagliardi A, Moradian A, Cairncross JG, Yip S, Aparicio SAJR, Chan JA, Hughes CS, Morin GB, Gorski SM, Chittaranjan S, Marra MA. Multi-Omic Analysis of CIC's Functional Networks Reveals Novel Interaction Partners and a Potential Role in Mitotic Fidelity. Cancers (Basel) 2023; 15:2805. [PMID: 37345142 PMCID: PMC10216487 DOI: 10.3390/cancers15102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada;
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Véronique G. LeBlanc
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Jungeun Song
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Susanna Y. Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Stephen Dongsoo Lee
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Diane L. Trinh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Shiekh Tanveer Ahmad
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - William R. Brothers
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Richard D. Corbett
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Alessia Gagliardi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Annie Moradian
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - J. Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen Yip
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Samuel A. J. R. Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Jennifer A. Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
19
|
Arancio W, Sciaraffa N, Coronnello C. MBS: a genome browser annotation track for high-confident microRNA binding sites in whole human transcriptome. Database (Oxford) 2023; 2023:baad015. [PMID: 37114805 PMCID: PMC10141451 DOI: 10.1093/database/baad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 04/29/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) that play a role in many regulatory pathways in eukaryotes. They usually exert their functions by binding mature messenger RNAs. The prediction of the binding targets of the endogenous miRNAs is crucial to unravel the processes they are involved in. In this work, we performed an extensive miRNA binding sites (MBS) prediction over all the annotated transcript sequences and made them available through an UCSC track. MBS annotation track allows to study and visualize the human miRNA binding sites transcriptome-wide in a genome browser, together with any other available information the user is interested in. In the creation of the database that underlies the MBS track, three consolidated algorithms of miRNA binding prediction have been used: PITA, miRanda and TargetScan, and information about the binding sites predicted by all of them has been collected. MBS track displays high-confident miRNA binding sites for the whole length of each human transcript, both coding and non-coding ones. Each annotation can redirect to a web page with the details of the miRNA binding and the involved transcripts. MBS can be easily applied to retrieve specific information such as the effects of alternative splicing on miRNA binding or when a specific miRNA binds an exon-exon junction in the mature RNA. Overall, MBS will be of great help for studying and visualizing, in a user-friendly mode, the predicted miRNA binding sites on all the transcripts arising from a gene or a region of interest. Database URL https://datasharingada.fondazionerimed.com:8080/MBS.
Collapse
Affiliation(s)
- Walter Arancio
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), via Ugo la Malfa, 153, Palermo 90133, Italy
| | - Nicolina Sciaraffa
- Advanced Data Analysis Group, Ri.MED Foundation, via Bandiera, 11, Palermo 90133, Italy
| | - Claudia Coronnello
- Advanced Data Analysis Group, Ri.MED Foundation, via Bandiera, 11, Palermo 90133, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology, via Bandiera, 11, Palermo 90133, Italy
| |
Collapse
|
20
|
Cressoni ACL, Penariol LBC, Padovan CC, Orellana MD, Rosa-E-Silva JC, Poli-Neto OB, Ferriani RA, de Paz CCP, Meola J. Downregulation of DROSHA: Could It Affect miRNA Biogenesis in Endometriotic Menstrual Blood Mesenchymal Stem Cells? Int J Mol Sci 2023; 24:ijms24065963. [PMID: 36983035 PMCID: PMC10057010 DOI: 10.3390/ijms24065963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Menstrual blood mesenchymal stem cells (MenSCs) have gained prominence in the endometriosis scientific community, given their multifunctional roles in regenerative medicine as a noninvasive source for future clinical applications. In addition, changes in post-transcriptional regulation via miRNAs have been explored in endometriotic MenSCs with a role in modulating proliferation, angiogenesis, differentiation, stemness, self-renewal, and the mesenchymal-epithelial transition process. In this sense, homeostasis of the miRNA biosynthesis pathway is essential for several cellular processes and is related to the self-renewal and differentiation of progenitor cells. However, no studies have investigated the miRNA biogenesis pathway in endometriotic MenSCs. In this study, we profiled the expression of eight central genes for the miRNA biosynthesis pathway under experimental conditions involving a two-dimensional culture of MenSCs obtained from healthy women (n = 10) and women with endometriosis (n = 10) using RT-qPCR and reported a two-fold decrease in DROSHA expression in the disease. In addition, miR-128-3p, miR-27a-3p, miR-27b-3p, miR-181a-5p, miR-181b-5p, miR-452-3p, miR-216a-5p, miR-216b-5p, and miR-93-5p, which have been associated with endometriosis, were identified through in silico analyses as negative regulators of DROSHA. Because DROSHA is essential for miRNA maturation, our findings may justify the identification of different profiles of miRNAs with DROSHA-dependent biogenesis in endometriosis.
Collapse
Affiliation(s)
- Ana Clara Lagazzi Cressoni
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Letícia B C Penariol
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cristiana Carolina Padovan
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Maristela D Orellana
- Regional Blood Center, Medical School of Hemocenter Foundation of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Júlio Cesar Rosa-E-Silva
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Omero Benedicto Poli-Neto
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona)-CNPq, Porto Alegre 90035-003, Brazil
| | - Cláudia Cristina Paro de Paz
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Juliana Meola
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona)-CNPq, Porto Alegre 90035-003, Brazil
| |
Collapse
|
21
|
Yuan L, Jiang X, Gong Q, Gao N. Arsenic resistance protein 2 and microRNA biogenesis: Biological implications in cancer development. Pharmacol Ther 2023; 244:108386. [PMID: 36933704 DOI: 10.1016/j.pharmthera.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Arsenic resistance protein 2 (Ars2) is a nuclear protein that plays a critical role in the regulation of microRNA (miRNA) biogenesis. Ars2 is required for cell proliferation and for the early stages of mammalian development through a possible effect on miRNA processing. Increasing evidence reveal that Ars2 is highly expressed in proliferating cancer cells, suggesting that Ars2 may be a potential therapeutic target for cancer. Therefore, development of the novel Ars2 inhibitors could represent the novel therapeutic strategies for treatment of cancer. In this review, we briefly discuss the mechanisms by which Ars2 regulates miRNA biogenesis and its impact on cell proliferation and cancer development. Particularly, we mainly discuss the role of Ars2 in the regulation of cancer development and highlight pharmacological targeting of Ars2 as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Liang Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China.
| |
Collapse
|
22
|
Yun S, Zhang X. Genome-wide identification, characterization and expression analysis of AGO, DCL, and RDR families in Chenopodium quinoa. Sci Rep 2023; 13:3647. [PMID: 36871121 PMCID: PMC9985633 DOI: 10.1038/s41598-023-30827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
RNA interference is a highly conserved mechanism wherein several types of non-coding small RNAs regulate gene expression at the transcriptional or post-transcriptional level, modulating plant growth, development, antiviral defence, and stress responses. Argonaute (AGO), DCL (Dicer-like), and RNA-dependent RNA polymerase (RDR) are key proteins in this process. Here, these three protein families were identified in Chenopodium quinoa. Further, their phylogenetic relationships with Arabidopsis, their domains, three-dimensional structure modelling, subcellular localization, and functional annotation and expression were analysed. Whole-genome sequence analysis predicted 21 CqAGO, eight CqDCL, and 11 CqRDR genes in quinoa. All three protein families clustered into phylogenetic clades corresponding to those of Arabidopsis, including three AGO clades, four DCL clades, and four RDR clades, suggesting evolutionary conservation. Domain and protein structure analyses of the three gene families showed almost complete homogeneity among members of the same group. Gene ontology annotation revealed that the predicted gene families might be directly involved in RNAi and other important pathways. Largely, these gene families showed significant tissue-specific expression patterns, RNA-sequencing (RNA-seq) data revealed that 20 CqAGO, seven CqDCL, and ten CqRDR genes tended to have preferential expression in inflorescences. Most of them being downregulated in response to drought, cold, salt and low phosphate stress. To our knowledge, this is the first study to elucidate these key protein families involved in the RNAi pathway in quinoa, which are significant for understanding the mechanisms underlying stress responses in this plant.
Collapse
Affiliation(s)
- Shiyu Yun
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030031, China.
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
23
|
MicroRNA-148a Controls Epidermal and Hair Follicle Stem/Progenitor Cells by Modulating the Activities of ROCK1 and ELF5. J Invest Dermatol 2023; 143:480-491.e5. [PMID: 36116511 DOI: 10.1016/j.jid.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022]
Abstract
Skin and hair development is regulated by complex programs of gene activation and silencing and microRNA-dependent modulation of gene expression to maintain normal skin and hair follicle development, homeostasis, and cycling. In this study, we show that miR-148a, through its gene targets, plays an important role in regulating skin homeostasis and hair follicle cycling. RNA and protein analysis of miR-148a and its gene targets were analyzed using a combination of in vitro and in vivo experiments. We show that the expression of miR-148a markedly increases during telogen (bulge and hair germ stem cell compartments). Administration of antisense miR-148a inhibitor into mouse skin during the telogen phases of the postnatal hair cycle results in accelerated anagen development and altered stem cell activity in the skin. We also show that miR-148a can regulate colony-forming abilities of hair follicle bulge stem cells as well as control keratinocyte proliferation/differentiation processes. RNA and protein analysis revealed that miR-148a may control these processes by regulating the expression of Rock1 and Elf5 in vitro and in vivo. These data provide an important foundation for further analyses of miR-148a as a crucial regulator of these genes target in the skin and hair follicles and its importance in maintaining stem/progenitor cell functions during normal tissue homeostasis and regeneration.
Collapse
|
24
|
Pelletier D, Rivera B, Fabian MR, Foulkes WD. miRNA biogenesis and inherited disorders: clinico-molecular insights. Trends Genet 2023; 39:401-414. [PMID: 36863945 DOI: 10.1016/j.tig.2023.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of gene expression, a process known as miRNA-induced gene silencing. The human genome codes for many miRNAs, and their biogenesis relies on a handful of genes, including DROSHA, DGCR8, DICER1, and AGO1/2. Germline pathogenic variants (GPVs) in these genes cause at least three distinct genetic syndromes, with clinical manifestations that range from hyperplastic/neoplastic entities to neurodevelopmental disorders (NDDs). Over the past decade, DICER1 GPVs have been shown to lead to tumor predisposition. Moreover, recent findings have provided insight into the clinical consequences arising from GPVs in DGCR8, AGO1, and AGO2. Here we provide a timely update with respect to how GPVs in miRNA biogenesis genes alter miRNA biology and ultimately lead to their clinical manifestations.
Collapse
Affiliation(s)
- Dylan Pelletier
- Department of Human Genetics, Medicine, McGill University, Montreal, QC, Canada; Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Barbara Rivera
- Molecular Mechanisms and Experimental Therapy in Oncology Program - Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Marc R Fabian
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William D Foulkes
- Department of Human Genetics, Medicine, McGill University, Montreal, QC, Canada; Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
25
|
Ziętara KJ, Lejman J, Wojciechowska K, Lejman M. The Importance of Selected Dysregulated microRNAs in Diagnosis and Prognosis of Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:428. [PMID: 36672378 PMCID: PMC9856444 DOI: 10.3390/cancers15020428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a frequent type of childhood hematological malignancy. The disease is classified into several subtypes according to genetic abnormalities. MicroRNAs (miRNAs) are involved in pathological processes (e.g., proliferation, apoptosis, differentiation). A miRNA is a group of short non-coding RNAs with relevant regulatory effects on gene expression achieved by suppression of the translation or degradation of messenger RNA (mRNA). These molecules act as tumor suppressors and/or oncogenes in the pathogenesis of pediatric leukemias. The characteristic features of miRNAs are their stable form and the possibility of secretion to the circulatory system. The role of miRNA in BCP-ALL pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. The dysregulation of some miRNAs involved in childhood acute lymphoid leukemia, such as miR-155, miR-200c, miR-100, miR-181a, miR125b, and miR146a is discussed, showing their possible employment as therapeutic targets. In the current review, the capabilities of miRNAs in non-invasive diagnostics and their prognostic potential as biomarkers are presented.
Collapse
Affiliation(s)
- Karolina Joanna Ziętara
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Lejman
- Independent Public Health Care Facility of The Ministry of Internal Affairs and Administration in Lublin, 20-331 Lublin, Poland
| | - Katarzyna Wojciechowska
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
26
|
Ormenezi I, Ribeiro-Silva A, Rosa-E-Silva JC, Meola J, Candido-Dos-Reis FJ, Poli-Neto OB. Immunohistochemical expression of Drosha is reduced in eutopic and ectopic endometrium of women with adenomyosis. Braz J Med Biol Res 2022; 55:e12375. [PMID: 36515351 DOI: 10.1590/1414-431x2022e12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to evaluate the immunohistochemical expression of Dicer, Drosha, and Exportin-5 in the eutopic and ectopic endometrium of women with adenomyosis. Twenty-two paired ectopic and eutopic endometrium from women with adenomyosis and 10 eutopic endometrium samples from control women undergoing hysterectomy were included in the study. Paraffin-embedded tissue blocks were cut and stained for immunohistochemistry. The percentage of epithelial cells positively marked was identified digitally after an automated slide scanning process. Mann-Whitney test or Wilcoxon signed-rank test was performed for independent and paired groups, respectively. A lower expression of Drosha was observed in the eutopic endometrium of women with adenomyosis than in the eutopic endometrium of women without the disease (69.9±3.4% vs 85.2±2.9%, respectively) (P=0.016; 95%CI: 3.4 to 27.4%). We also detected lower Drosha expression in the ectopic endometrium of women with adenomyosis than in the eutopic endometrium of the same women (59.6±3.2% vs 69.9±3.4%, respectively) (P=0.004; 95%CI: 2.3 to 16.7%). Additionally, we observed a correlation between Drosha expression in the ectopic and paired eutopic endometrium (P=0.034, rho=0.454). No significant difference in Dicer or Exportin expression was observed. Predominant pattern of cytoplasmic staining for the anti-Drosha antibody and both a nuclear and cytoplasmic pattern for the anti-Exportin antibody were observed. Drosha expression was significantly lower in the endometrium of women with adenomyosis compared to the eutopic endometrium of asymptomatic women without the disease. Furthermore, its expression was lower in the ectopic endometrium but correlated to the paired eutopic endometrium.
Collapse
Affiliation(s)
- I Ormenezi
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A Ribeiro-Silva
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J C Rosa-E-Silva
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J Meola
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - F J Candido-Dos-Reis
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O B Poli-Neto
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
27
|
Li J, Wu X, Ma H, Sun G, Ding P, Lu S, Zhang L, Yang P, Peng Y, Fu J, Wang L. New developments in non-exosomal and exosomal ncRNAs in coronary artery disease. Epigenomics 2022; 14:1355-1372. [PMID: 36514887 DOI: 10.2217/epi-2022-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim & methods: Non-exosomal and exosomal ncRNAs have been reported to be involved in the regulation of coronary artery disease (CAD). Therefore, to explore the biological effects of non-exosomal/exosomal ncRNAs in CAD, the authors searched for studies published in the last 3 years on these ncRNAs in CAD and summarized their functions and mechanisms. Results: The authors summarized 120 non-exosomal ncRNAs capable of regulating CAD progression. In clinical studies, 47 non-exosomal and nine exosomal ncRNAs were able to serve as biomarkers for the diagnosis of CAD. Conclusion: Non-exosomal/exosomal ncRNAs are not only able to serve as biomarkers for CAD diagnosis but can also regulate CAD progression through ceRNA mechanisms and are a potential target for early clinical intervention in CAD.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xinyu Wu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Haocheng Ma
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Guihu Sun
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Peng Ding
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Si Lu
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lijiao Zhang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ping Yang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yunzhu Peng
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jingyun Fu
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Luqiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
28
|
Arora T, Kausar MA, Aboelnaga SM, Anwar S, Hussain MA, Sadaf S, Kaur S, Eisa AA, Shingatgeri VMM, Najm MZ, Aloliqi AA. miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncol Rep 2022; 48:135. [PMID: 35699111 DOI: 10.3892/or.2022.8346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is recognized as the leading cause of death worldwide. The hippo signaling pathway regulates organ size by balancing cell proliferation and cell death; hence dysregulation of the hippo pathway promotes cancer‑like conditions. miRNAs are a type of non‑coding RNA that have been shown to regulate gene expression. miRNA levels are altered in various classes of cancer. Researchers have also uncovered a crosslinking between miRNAs and the hippo pathway, which has been linked to cancer. The components of the hippo pathway regulate miRNA synthesis, and various miRNAs regulate the components of the hippo pathway both positively and negatively, which can lead to cancer‑like conditions. In the present review article, the mechanism behind the hippo signaling pathway and miRNAs biogenesis and crosslinks between miRNAs and the hippo pathway, which result in cancer, shall be discussed. Furthermore, the article will cover miRNA‑related therapeutics and provide an overview of the development of resistance to anticancer drugs. Understanding the underlying processes would improve the chances of developing effective cancer treatment therapies.
Collapse
Affiliation(s)
- Taruna Arora
- Division of Reproductive Biology, Maternal & Child Health, Department of Health Research, ICMR, MOHFW, Government of India, Ansari Nagar, New Delhi 110029, India
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia
| | | | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia
| | - Malik Asif Hussain
- Department of Pathology, University of Hail, Hail, KSA-2240, Saudi Arabia
| | - Sadaf Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Simran Kaur
- School of Biosciences, Apeejay Stya University, Sohna, Haryana 122103, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina, KSA‑344, Saudi Arabia
| | | | | | - Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
29
|
Omoto T, Yimiti D, Sanada Y, Toriyama M, Ding C, Hayashi Y, Ikuta Y, Nakasa T, Ishikawa M, Sano M, Lee M, Akimoto T, Shukunami C, Miyaki S, Adachi N. Tendon-Specific Dicer Deficient Mice Exhibit Hypoplastic Tendon Through the Downregulation of Tendon-Related Genes and MicroRNAs. Front Cell Dev Biol 2022; 10:898428. [PMID: 35784484 PMCID: PMC9241168 DOI: 10.3389/fcell.2022.898428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Tendon is a fibrous connective tissue, that is, transmitting the forces that permit body movement. However, tendon/ligament biology is still not fully understood and especially, the role of miRNAs in tendon/ligament is sparse and uncharacterized in in vivo models. The objectives of this study were to address the function of DICER using mice with tendon/ligament-specific deletion of Dicer (Dicer conditional knockout; cKO), and to identify key miRNAs in tendon/ligament. Dicer cKO mice exhibited hypoplastic tendons through structurally abnormal collagen fibrils with downregulation of tendon-related genes. The fragility of tendon did not significantly affect the tensile strength of tendon in Dicer cKO mice, but they showed larger dorsiflexion angle in gait compared with Control mice. We identified two miRNAs, miR-135a and miR-1247, which were highly expressed in the Achilles tendon of Control mice and were downregulated in the Achilles tendon of Dicer cKO mice compared with Control mice. miR-135a mimic increased the expression of tendon-related genes in injured Achilles tendon-derived fibroblasts. In this study, Dicer cKO mice exhibited immature tendons in which collagen fibrils have small diameter with the downregulation of tendon-related genes such as transcriptional factor, extracellular matrix, and miRNAs. Thus, DICER plays an important role in tendon maturation, and miR-135a may have the potential to become key miRNA for tendon maturation and healing.
Collapse
Affiliation(s)
- Takenori Omoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Minoru Toriyama
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Hayashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Musculoskeletal Traumatology and Reconstructive Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Minjung Lee
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
- *Correspondence: Shigeru Miyaki,
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
Sun Y, Lv Y, Li Y, Li J, Liu J, Luo L, Zhang C, Zhang W. Maternal genetic effect on apoptosis of ovarian granulosa cells induced by cadmium. Food Chem Toxicol 2022; 165:113079. [PMID: 35525383 DOI: 10.1016/j.fct.2022.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
To investigate the maternal genetic effects of cadmium (Cd) -induced apoptotic in ovarian granulosa cells (OGCs). Herein, pregnant Sprague-Dawley (SD) rats were treated with CdCl2 from day 1 to day 20, F1 and F2 female rats were mated with untreated males to produce F2 and F3 generations. Under this model, significant apoptotic changes were observed in F1 OGCs induced by Cd (Liu et al., 2021). In this study, no apoptotic bodies were found in F2 while the mitochondrial membrane potential level decreased significantly but not in F3. Moreover, significant changes in bcl-xl and Cle-CASPASE-9/Pro-CASPASE-9 ratio were observed in F2 which disappears in F3. The DNA methylation sequencing and microRNAs (miRNAs) microarray reveals different gene methylation and miRNAs changes in F2 and F3. Notably, miR-132-3p, miR-199a-5p, and miR-1949 were upregulated in F1 while downregulated in F2 and F3 in which apoptosis gradually disappeared. Further, miRNA maturation-related genes and transcription factors have different expression patterns in F1-F3. These results indicate that maternal genetic intergenerational/transgenerational effect of Cd-induced OGCs apoptotic was significantly attenuated and disappeared, which was related to self-repair regulation of apoptosis-related genes. The changes in apoptosis-related miRNAs and DNA methylation may be important, and the role of transcription factors deserve attention.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
31
|
Borger A, Stadlmayr S, Haertinger M, Semmler L, Supper P, Millesi F, Radtke C. How miRNAs Regulate Schwann Cells during Peripheral Nerve Regeneration-A Systemic Review. Int J Mol Sci 2022; 23:3440. [PMID: 35408800 PMCID: PMC8999002 DOI: 10.3390/ijms23073440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023] Open
Abstract
A growing body of studies indicate that small noncoding RNAs, especially microRNAs (miRNA), play a crucial role in response to peripheral nerve injuries. During Wallerian degeneration and regeneration processes, they orchestrate several pathways, in particular the MAPK, AKT, and EGR2 (KROX20) pathways. Certain miRNAs show specific expression profiles upon a nerve lesion correlating with the subsequent nerve regeneration stages such as dedifferentiation and with migration of Schwann cells, uptake of debris, neurite outgrowth and finally remyelination of regenerated axons. This review highlights (a) the specific expression profiles of miRNAs upon a nerve lesion and (b) how miRNAs regulate nerve regeneration by acting on distinct pathways and linked proteins. Shedding light on the role of miRNAs associated with peripheral nerve regeneration will help researchers to better understand the molecular mechanisms and deliver targets for precision medicine.
Collapse
Affiliation(s)
- Anton Borger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Maximilian Haertinger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Lorenz Semmler
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Paul Supper
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| |
Collapse
|
32
|
Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4. Nat Commun 2022; 13:1001. [PMID: 35194019 PMCID: PMC8863982 DOI: 10.1038/s41467-022-28554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
RNA interference is required for post-transcriptional silencing, but also has additional roles in transcriptional silencing of centromeres and genome stability. However, these roles have been controversial in mammals. Strikingly, we found that Dicer-deficient embryonic stem cells have strong proliferation and chromosome segregation defects as well as increased transcription of centromeric satellite repeats, which triggers the interferon response. We conducted a CRISPR-Cas9 genetic screen to restore viability and identified transcriptional activators, histone H3K9 methyltransferases, and chromosome segregation factors as suppressors, resembling Dicer suppressors identified in independent screens in fission yeast. The strongest suppressors were mutations in the transcriptional co-activator Brd4, which reversed the strand-specific transcription of major satellite repeats suppressing the interferon response, and in the histone acetyltransferase Elp3. We show that identical mutations in the second bromodomain of Brd4 rescue Dicer-dependent silencing and chromosome segregation defects in both mammalian cells and fission yeast. This remarkable conservation demonstrates that RNA interference has an ancient role in transcriptional silencing and in particular of satellite repeats, which is essential for cell cycle progression and proper chromosome segregation. Our results have pharmacological implications for cancer and autoimmune diseases characterized by unregulated transcription of satellite repeats. While RNA interference is conserved across species, small RNA pathways are very diverse. In this study, Gutbrod et al. find that non-canonical roles of Dicer in genome stability are in fact deeply conserved from yeast to humans.
Collapse
|
33
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
34
|
González IA, Stewart DR, Schultz KAP, Field AP, Hill DA, Dehner LP. DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma. Mod Pathol 2022; 35:4-22. [PMID: 34599283 PMCID: PMC8695383 DOI: 10.1038/s41379-021-00905-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
DICER1 syndrome (OMIM 606241, 601200) is a rare autosomal dominant familial tumor predisposition disorder with a heterozygous DICER1 germline mutation. The most common tumor seen clinically is the pleuropulmonary blastoma (PPB), a lung neoplasm of early childhood which is classified on its morphologic features into four types (IR, I, II and III) with tumor progression over time within the first 4-5 years of life from the prognostically favorable cystic type I to the unfavorable solid type III. Following the initial report of PPB, its association with other cystic neoplasms was demonstrated in family studies. The detection of the germline mutation in DICER1 provided the opportunity to identify and continue to recognize a number seemingly unrelated extrapulmonary neoplasms: Sertoli-Leydig cell tumor, gynandroblastoma, embryonal rhabdomyosarcomas of the cervix and other sites, multinodular goiter, differentiated and poorly differentiated thyroid carcinoma, cervical-thyroid teratoma, cystic nephroma-anaplastic sarcoma of kidney, nasal chondromesenchymal hamartoma, intestinal juvenile-like hamartomatous polyp, ciliary body medulloepithelioma, pituitary blastoma, pineoblastoma, primary central nervous system sarcoma, embryonal tumor with multilayered rosettes-like cerebellar tumor, PPB-like peritoneal sarcoma, DICER1-associated presacral malignant teratoid neoplasm and other non-neoplastic associations. Each of these neoplasms is characterized by a second somatic mutation in DICER1. In this review, we have summarized the salient clinicopathologic aspects of these tumors whose histopathologic features have several overlapping morphologic attributes particularly the primitive mesenchyme often with rhabdomyoblastic and chondroid differentiation and an uncommitted spindle cell pattern. Several of these tumors have an initial cystic stage from which there is progression to a high grade, complex patterned neoplasm. These pathologic findings in the appropriate clinical setting should serve to alert the pathologist to the possibility of a DICER1-associated neoplasm and initiate appropriate testing on the neoplasm and to alert the clinician about the concern for a DICER1 mutation.
Collapse
Affiliation(s)
- Iván A. González
- grid.239552.a0000 0001 0680 8770Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Douglas R. Stewart
- grid.48336.3a0000 0004 1936 8075Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD USA
| | - Kris Ann P. Schultz
- International Pleuropulmonary Blastoma/DICER1 Registry, Children’s Minnesota, Minneapolis, MN USA ,Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, MN USA
| | | | - D. Ashley Hill
- International Pleuropulmonary Blastoma/DICER1 Registry, Children’s Minnesota, Minneapolis, MN USA ,ResourcePath LLC, Sterling, VA USA ,grid.253615.60000 0004 1936 9510Division of Pathology, Children’s National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC USA
| | - Louis P. Dehner
- International Pleuropulmonary Blastoma/DICER1 Registry, Children’s Minnesota, Minneapolis, MN USA ,grid.411019.cThe Lauren V. Ackerman Laboratory of Surgical Pathology, Barnes-Jewish and St. Louis Children’s Hospitals, Washington University Medical Center, St. Louis, MO USA
| |
Collapse
|
35
|
Zhang H, Hao Y, Yang A, Xie L, Ding N, Xu L, Wang Y, Yang Y, Bai Y, Zhang H, Jiang Y. TGFB3-AS1 promotes Hcy-induced inflammation of macrophages via inhibiting the maturity of miR-144 and upregulating Rap1a. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1318-1335. [PMID: 34853730 PMCID: PMC8609111 DOI: 10.1016/j.omtn.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
It has been demonstrated that homocysteine (Hcy) can cause inflammatory diseases. Long noncoding RNAs (lncRNA) and microRNAs (miRNAs) are involved in this biological process, but the mechanism underlying Hcy-induced inflammation remains poorly understood. Here, we found that lncRNA TGFB3-AS1 was highly expressed in macrophages treated with Hcy and the peripheral blood monocytes from cystathionine beta-synthase heterozygous knockout (CBS+/−) mice with a high-methionine diet using lncRNA microarray. In vivo and in vitro experiments further confirmed that TGFB3-AS1 accelerated Hcy-induced inflammation of macrophages through the Rap1a/wnt signaling pathway. Meanwhile, TGFB3-AS1 interacted with Rap1a and reduced degradation of Rap1a through inhibiting its ubiquitination in macrophages treated with Hcy. Rap1a mediated inflammation induced by Hcy and serves as a direct target of miR-144. Moreover, TGFB3-AS1 regulated miR-144 by binding to pri-miR-144 and inhibiting its maturation, which further regulated Rap1a expression. More importantly, we found that high expression of TGFB3-AS1 was positively correlated with the levels of Hcy and proinflammatory cytokines in serum of healthy individuals and patients with HHcy. Our study revealed a novel mechanism by which TGFB3-AS1 promoted inflammation of macrophages through inhibiting miR-144 maturation to stay miR-144 regulated inhibition of functional Rap1a expression.
Collapse
Affiliation(s)
- Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Lingbo Xu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yanhua Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yong Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Neurology, Region People's Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yongsheng Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Neurology, Region People's Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Corresponding author Huiping Zhang, Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, 804 Sheng Li Street, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
- Corresponding author Yideng Jiang, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Sheng Li Street, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.
| |
Collapse
|
36
|
Vergani-Junior CA, Tonon-da-Silva G, Inan MD, Mori MA. DICER: structure, function, and regulation. Biophys Rev 2021; 13:1081-1090. [DOI: 10.1007/s12551-021-00902-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
|
37
|
Yang X, Wang X, Li Z, Duan S, Li H, Jin J, Zhang Z, Gu W. An unexpected role for Dicer as a reader of the unacetylated DNA binding domain of p53 in transcriptional regulation. SCIENCE ADVANCES 2021; 7:eabi6684. [PMID: 34705508 PMCID: PMC8550248 DOI: 10.1126/sciadv.abi6684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/04/2021] [Indexed: 06/02/2023]
Abstract
Here, we identified Dicer as a major cellular factor that recognizes the DNA binding domain (DBD) of p53 in a manner dependent on its acetylation status. Upon binding the unacetylated DBD, Dicer is recruited to the promoters of p53 target genes, where it represses p53-mediated transcriptional activation. Conversely, knockdown or knockout of endogenous Dicer leads to up-regulation of p53-mediated transcriptional activation without increasing its protein levels. Moreover, Dicer-mediated repression is independent of its intrinsic endoribonuclease activity; instead, Dicer directly represses transcription by recruiting the SUV39H1 histone methyltransferase. However, upon DNA damage, Dicer-mediated repression is abrogated by stress-induced acetylation at the DBD of p53. Notably, the inability of acetylation-defective p53-3KR in transcription is partially but significantly restored upon loss of Dicer expression. Our study reveals that Dicer acts as an unexpected acetylation “reader” for p53 and thus has important implications regarding the mechanism of acetylation-mediated regulation of p53 transcriptional program.
Collapse
Affiliation(s)
- Xin Yang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
| | - Xingwu Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
| | - Zhiming Li
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
| | - Huan Li
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
- Department of Pediatrics and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave., New York, NY 10032, USA
| |
Collapse
|
38
|
Xu H, Liu X, Li W, Xi Y, Su P, Meng B, Shao X, Tang B, Yang Q, Mao Z. p38 MAPK-mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta-induced neuronal stress in Alzheimer's disease. Aging Cell 2021; 20:e13434. [PMID: 34528746 PMCID: PMC8521488 DOI: 10.1111/acel.13434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 07/03/2021] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs ubiquitously expressed in the brain and regulate gene expression at the post‐transcriptional level. The nuclear RNase III enzyme Drosha initiates the maturation process of miRNAs in the nucleus. Strong evidence suggests that dysregulation of miRNAs is involved in many neurological disorders including Alzheimer's disease (AD). Dysfunction of miRNA biogenesis components may be involved in the processes of those diseases. However, the role of Drosha in AD remains unknown. By using immunohistochemistry, biochemistry, and subcellular fractionation methods, we show here that the level of Drosha protein was significantly lower in the postmortem brain of human AD patients as well as in the transgenic rat model of AD. Interestingly, Drosha level was specifically reduced in neurons of the cortex and hippocampus but not in the cerebellum in the AD brain samples. In primary cortical neurons, amyloid‐beta (Aβ) oligomers caused a p38 MAPK‐dependent phosphorylation of Drosha, leading to its redistribution from the nucleus to the cytoplasm and a decrease in its level. This loss of Drosha function preceded Aβ‐induced neuronal death. Importantly, inhibition of p38 MAPK activity or overexpression of Drosha protected neurons from Aβ oligomers‐induced apoptosis. Taken together, these results establish a role for p38 MAPK‐Drosha pathway in modulating neuronal viability under Aβ oligomers stress condition and implicate loss of Drosha as a key molecular change in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haidong Xu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaolei Liu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Wenming Li
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Ye Xi
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Peng Su
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaoyun Shao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Beisha Tang
- Department of Neurology Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Neurosurgery Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
- Department of Neurology Emory University School of Medicine Atlanta Georgia USA
| |
Collapse
|
39
|
Mahjoubin-Tehran M, Rezaei S, Jalili A, Sahebkar A, Aghaee-Bakhtiari SH. A comprehensive review of online resources for microRNA-diseases associations: the state of the art. Brief Bioinform 2021; 23:6376589. [PMID: 34571538 DOI: 10.1093/bib/bbab381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) as small 19- to 24-nucleotide noncoding RNAs regulate several mRNA targets and signaling pathways. Therefore, miRNAs are considered key regulators in cellular pathways as well as various pathologies. There is substantial interest in the relationship between disease and miRNAs, which made that one of the important research topics. Interestingly, miRNAs emerged as an attractive approach for clinical application, not only as biomarkers for diagnosis and prognosis or in the prediction of therapy response but also as therapeutic tools. For these purposes, the identification of crucial miRNAs in disease is very important. Databases provided valuable experimental and computational miRNAs-disease information in an accessible and comprehensive manner, such as miRNA target genes, miRNA related in signaling pathways and miRNA involvement in various diseases. In this review, we summarized miRNAs-disease databases in two main categories based on the general or specific diseases. In these databases, researchers could search diseases to identify critical miRNAs and developed that for clinical applications. In another way, by searching particular miRNAs, they could recognize in which disease these miRNAs would be dysregulated. Despite the significant development that has been done in these databases, there are still some limitations, such as not being updated and not providing uniform and detailed information that should be resolved in future databases. This survey can be helpful as a comprehensive reference for choosing a suitable database by researchers and as a guideline for comparing the features and limitations of the database by developer or designer. Short abstract We summarized miRNAs-disease databases that researchers could search disease to identify critical miRNAs and developed that for clinical applications. This survey can help choose a suitable database for researchers.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran and Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran and Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran and Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran and Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
40
|
Shaw A, Gullerova M. Home and Away: The Role of Non-Coding RNA in Intracellular and Intercellular DNA Damage Response. Genes (Basel) 2021; 12:1475. [PMID: 34680868 PMCID: PMC8535248 DOI: 10.3390/genes12101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage response (DDR), which was previously believed to be solely regulated by proteins. Many species of ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate a population-wide response to damage. Many microRNA species have been directly implicated in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| |
Collapse
|
41
|
Maerker M, Getwan M, Dowdle ME, McSheene JC, Gonzalez V, Pelliccia JL, Hamilton DS, Yartseva V, Vejnar C, Tingler M, Minegishi K, Vick P, Giraldez AJ, Hamada H, Burdine RD, Sheets MD, Blum M, Schweickert A. Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nat Commun 2021; 12:5482. [PMID: 34531379 PMCID: PMC8446035 DOI: 10.1038/s41467-021-25464-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Rotating cilia at the vertebrate left-right organizer (LRO) generate an asymmetric leftward flow, which is sensed by cells at the left LRO margin. Ciliary activity of the calcium channel Pkd2 is crucial for flow sensing. How this flow signal is further processed and relayed to the laterality-determining Nodal cascade in the left lateral plate mesoderm (LPM) is largely unknown. We previously showed that flow down-regulates mRNA expression of the Nodal inhibitor Dand5 in left sensory cells. De-repression of the co-expressed Nodal, complexed with the TGFß growth factor Gdf3, drives LPM Nodal cascade induction. Here, we show that post-transcriptional repression of dand5 is a central process in symmetry breaking of Xenopus, zebrafish and mouse. The RNA binding protein Bicc1 was identified as a post-transcriptional regulator of dand5 and gdf3 via their 3'-UTRs. Two distinct Bicc1 functions on dand5 mRNA were observed at pre- and post-flow stages, affecting mRNA stability or flow induced translational inhibition, respectively. To repress dand5, Bicc1 co-operates with Dicer1, placing both proteins in the process of flow sensing. Intriguingly, Bicc1 mediated translational repression of a dand5 3'-UTR mRNA reporter was responsive to pkd2, suggesting that a flow induced Pkd2 signal triggers Bicc1 mediated dand5 inhibition during symmetry breakage.
Collapse
Affiliation(s)
- Markus Maerker
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany
| | - Maike Getwan
- University of Zurich, Institute of Anatomy, Zurich, Switzerland
| | - Megan E Dowdle
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Jason C McSheene
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Vanessa Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - José L Pelliccia
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Charles Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Melanie Tingler
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Philipp Vick
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael D Sheets
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Martin Blum
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany.
| |
Collapse
|
42
|
Mody D, Verma V, Rani V. Modulating host gene expression via gut microbiome-microRNA interplay to treat human diseases. Crit Rev Microbiol 2021; 47:596-611. [PMID: 34407384 DOI: 10.1080/1040841x.2021.1907739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human gastrointestinal (GI) tract hosts trillions of microbial inhabitants involved in maintaining intestinal homeostasis, dysbiosis of which provokes a motley of pathogenic and autoimmune disorders. While the mechanisms by which the microbiota modulates human health are manifold, their liberated metabolites from ingested dietary supplements play a crucial role by bidirectionally regulating the expression of micro-ribonucleic acids (miRNAs). miRNAs are small endogenous non-coding RNAs (ncRNAs) that have been confirmed to be involved in an interplay with microbiota to regulate host gene expression. This comprehensive review focuses on key principles of miRNAs, their regulation, and crosstalk with gut microbiota to influence host gene expression in various human disorders, by bringing together important recent findings centric around miRNA-microbiota interactions in diseases along various axis of the gut with other organs. We also attempt to lay emphasis on exploiting the avenues of gut-directed miRNA therapeutics using rudimentary dietary supplements to regulate abnormal host gene expression in diseases, opening doors to an accessible and economical therapeutic strategy.
Collapse
Affiliation(s)
- Deepansh Mody
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vedika Verma
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vibha Rani
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
43
|
MicroRNAs Patterns as Potential Tools for Diagnostic and Prognostic Follow-Up in Cancer Survivorship. Cells 2021; 10:cells10082069. [PMID: 34440837 PMCID: PMC8394126 DOI: 10.3390/cells10082069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Advances in screening methods and pharmacological treatments are increasing the life expectancy of cancer patients. During recent decades, the community of long-term disease-free cancer survivors (LCS) has grown exponentially, raising the issues related to cancer follow-up. Cancer relapse and other cancer-related diseases, as well as lifestyle, influence cancer survival. Recently, the regulatory role of microRNAs (miRNAs) in gene expression and their involvement in human diseases, including cancer, has been identified. Extracellular circulating miRNAs (ECmiRNAs) have been found in biological fluids and specific ECmiRNAs have been associated with cancer development and progression or with a therapy response. Here, we focus on the pivotal role of ECmiRNAs as biomarkers in cancer diagnosis and prognosis. Then, we discuss the relevance of ECmiRNAs expression in cancer survivors for the identification of specific ECmiRNAs profiles as potential tools to assess cancer outcome and to control LCS follow-up.
Collapse
|
44
|
Girard C, Budin K, Boisnard S, Zhang L, Debuchy R, Zickler D, Espagne E. RNAi-Related Dicer and Argonaute Proteins Play Critical Roles for Meiocyte Formation, Chromosome-Axes Lengths and Crossover Patterning in the Fungus Sordaria macrospora. Front Cell Dev Biol 2021; 9:684108. [PMID: 34262901 PMCID: PMC8274715 DOI: 10.3389/fcell.2021.684108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
RNA interference (RNAi) is a cellular process involving small RNAs that target and regulate complementary RNA transcripts. This phenomenon has well-characterized roles in regulating gene and transposon expression. In addition, Dicer and Argonaute proteins, which are key players of RNAi, also have functions unrelated to gene repression. We show here that in the filamentous Ascomycete Sordaria macrospora, genes encoding the two Dicer (Dcl1 and Dcl2) and the two Argonaute (Sms2 and Qde2) proteins are dispensable for vegetative growth. However, we identified roles for all four proteins in the sexual cycle. Dcl1 and Sms2 are essential for timely and successful ascus/meiocyte formation. During meiosis per se, Dcl1, Dcl2, and Qde2 modulate, more or less severely, chromosome axis length and crossover numbers, patterning and interference. Additionally, Sms2 is necessary both for correct synaptonemal complex formation and loading of the pro-crossover E3 ligase-protein Hei10. Moreover, meiocyte formation, and thus meiotic induction, is completely blocked in the dcl1 dcl2 and dcl1 sms2 null double mutants. These results indicate complex roles of the RNAi machinery during major steps of the meiotic process with newly uncovered roles for chromosomes-axis length modulation and crossover patterning regulation.
Collapse
Affiliation(s)
- Chloe Girard
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Budin
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Boisnard
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Robert Debuchy
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Denise Zickler
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Espagne
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
45
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
46
|
Torres AG, Martí E. Toward an Understanding of Extracellular tRNA Biology. Front Mol Biosci 2021; 8:662620. [PMID: 33937338 PMCID: PMC8082309 DOI: 10.3389/fmolb.2021.662620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular RNAs (exRNAs) including abundant full length tRNAs and tRNA fragments (tRFs) have recently garnered attention as a promising source of biomarkers and a novel mediator in cell-to-cell communication in eukaryotes. Depending on the physiological state of cells, tRNAs/tRFs are released to the extracellular space either contained in extracellular vesicles (EVs) or free, through a mechanism that is largely unknown. In this perspective article, we propose that extracellular tRNAs (ex-tRNAs) and/or extracellular tRFs (ex-tRFs) are relevant paracrine signaling molecules whose activity depends on the mechanisms of release by source cells and capture by recipient cells. We speculate on how ex-tRNA/ex-tRFs orchestrate the effects in target cells, depending on the type of sequence and the mechanisms of uptake. We further propose that tRNA modifications may be playing important roles in ex-tRNA biology.
Collapse
Affiliation(s)
- Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eulàlia Martí
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
47
|
Lam B, Nwadozi E, Haas TL, Birot O, Roudier E. High Glucose Treatment Limits Drosha Protein Expression and Alters AngiomiR Maturation in Microvascular Primary Endothelial Cells via an Mdm2-dependent Mechanism. Cells 2021; 10:742. [PMID: 33801773 PMCID: PMC8065922 DOI: 10.3390/cells10040742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes promotes an angiostatic phenotype in the microvascular endothelium of skeletal muscle and skin. Angiogenesis-related microRNAs (angiomiRs) regulate angiogenesis through the translational repression of pro- and anti-angiogenic genes. The maturation of micro-RNA (miRs), including angiomiRs, requires the action of DROSHA and DICER proteins. While hyperglycemia modifies the expression of angiomiRs, it is unknown whether high glucose conditions alter the maturation process of angiomiRs in dermal and skeletal muscle microvascular endothelial cells (MECs). Compared to 5 mM of glucose, high glucose condition (30 mM, 6-24 h) decreased DROSHA protein expression, without changing DROSHA mRNA, DICER mRNA, or DICER protein in primary dermal MECs. Despite DROSHA decreasing, high glucose enhanced the maturation and expression of one angiomiR, miR-15a, and downregulated an miR-15a target: Vascular Endothelial Growth Factor-A (VEGF-A). The high glucose condition increased Murine Double Minute-2 (MDM2) expression and MDM2-binding to DROSHA. Inhibition of MDM2 prevented the effects evoked by high glucose on DROSHA protein and miR-15a maturation in dermal MECs. In db/db mice, blood glucose was negatively correlated with the expression of skeletal muscle DROSHA protein, and high glucose decreased DROSHA protein in skeletal muscle MECs. Altogether, our results suggest that high glucose reduces DROSHA protein and enhances the maturation of the angiostatic miR-15a through a mechanism that requires MDM2 activity.
Collapse
|
48
|
Murphy SJ, Levy MJ, Smadbeck JB, Karagouga G, McCune AF, Harris FR, Udell JB, Johnson SH, Kerr SE, Cheville JC, Kipp BR, Vasmatzis G, Gleeson FC. Theragnostic chromosomal rearrangements in treatment-naive pancreatic ductal adenocarcinomas obtained via endoscopic ultrasound. J Cell Mol Med 2021; 25:4110-4123. [PMID: 33704908 PMCID: PMC8051743 DOI: 10.1111/jcmm.16381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
A crucial mutational mechanism in malignancy is structural variation, in which chromosomal rearrangements alter gene functions that drive cancer progression. Herein, the presence and pattern of structural variations were investigated in twelve prospectively acquired treatment‐naïve pancreatic cancers specimens obtained via endoscopic ultrasound (EUS). In many patients, this diagnostic biopsy procedure and specimen is the only opportunity to identify somatic clinically relevant actionable alterations that may impact their care and outcome. Specialized mate pair sequencing (MPseq) provided genome‐wide structural variance analysis (SVA) with a view to identifying prognostic markers and possible therapeutic targets. MPseq was successfully performed on all specimens, identifying highly rearranged genomes with complete SVA on all specimens with > 20% tumour content. SVA identified chimeric fusion proteins and potentially immunogenic readthrough transcripts, change of function truncations, gains and losses of key genes linked to tumour progression. Complex localized rearrangements, termed chromoanagenesis, with broad pattern heterogeneity were observed in 10 (83%) specimens, impacting multiple genes with diverse cellular functions that could influence theragnostic evaluation and responsiveness to immunotherapy regimens. This study indicates that genome‐wide MPseq can be successfully performed on very limited clinically EUS obtained specimens for chromosomal rearrangement detection and potential theragnostic targets.
Collapse
Affiliation(s)
- Stephen J Murphy
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Levy
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - James B Smadbeck
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Giannoula Karagouga
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexa F McCune
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Faye R Harris
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julia B Udell
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah H Johnson
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah E Kerr
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - John C Cheville
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Biomarker Discovery Laboratory, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ferga C Gleeson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
49
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
50
|
Pabit SA, Chen YL, Usher ET, Cook EC, Pollack L, Showalter SA. Elucidating the Role of Microprocessor Protein DGCR8 in Bending RNA Structures. Biophys J 2020; 119:2524-2536. [PMID: 33189689 DOI: 10.1016/j.bpj.2020.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022] Open
Abstract
Although conformational dynamics of RNA molecules are potentially important in microRNA (miRNA) processing, the role of the protein binding partners in facilitating the requisite structural changes is not well understood. In previous work, we and others have demonstrated that nonduplex structural elements and the conformational flexibility they support are necessary for efficient RNA binding and cleavage by the proteins associated with the two major stages of miRNA processing. However, recent studies showed that the protein DGCR8 binds primary miRNA and duplex RNA with similar affinities. Here, we study RNA binding by a small recombinant construct of the DGCR8 protein and the RNA conformation changes that result. This construct, the DGCR8 core, contains two double-stranded RNA-binding domains (dsRBDs) and a C-terminal tail. To assess conformational changes resulting from binding, we applied small-angle x-ray scattering with contrast variation to detect conformational changes of primary-miR-16-1 in complex with the DGCR8 core. This method reports only on the RNA conformation within the complex and suggests that the protein bends the RNA upon binding. Supporting work using smFRET to study the conformation of RNA duplexes bound to the core also shows bending. Together, these studies elucidate the role of DGCR8 in interacting with RNA during the early stages of miRNA processing.
Collapse
Affiliation(s)
- Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Emery T Usher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Erik C Cook
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York.
| | - Scott A Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|