1
|
Wang Y, Fu Q, Sha S, Yoon S. Interferon Inhibitors Increase rAAV Production in HEK293 Cells. J Biotechnol 2025; 399:S0168-1656(25)00010-0. [PMID: 39824361 DOI: 10.1016/j.jbiotec.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Recombinant adeno-associated viruses (rAAVs) comprise a promising viral vector for therapeutic gene delivery to treat disease. However, the current manufacturing capability of rAAVs must be improved to meet commercial demand. Previously published omics studies indicate that rAAV production through transient transfection triggers antiviral responses and endoplasmic reticulum stress responses in the host cell. Both responses negatively regulate viral production. We demonstrate that the modulation of the antiviral immune response (by blocking interferon signaling pathways) can effectively lower the production of interferon and enhance viral genome production. The use of interferon inhibitors before transfection can significantly increase rAAV production in HEK293 cells, with up to a 2-fold increase in productivity and up to a 6-fold increase in specific productivity. Compared to the untreated groups, the addition of these small molecules generally reduced viable cell density but increased vector productivity. The positive candidates were BX795 (a TBK inhibitor), TPCA-1 (an IKK2 inhibitor), Cyt387 (a JAK1 inhibitor), and ruxolitinib (another JAK1 inhibitor). These candidates were identified using deep well screening, and reproducible titer improvement was achieved in a 30mL shake flask scale. Additionally, genome titer improvement is feasible and scalable in two different media, but the extent of improvement may vary.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854
| | - Sha Sha
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854.
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854.
| |
Collapse
|
2
|
Wu B, Gao A, He B, Chen Y, Kong X, Wen F, Gao H. RNA-seq analysis of mitochondria-related genes regulated by AMPK in the human trophoblast cell line BeWo. Animal Model Exp Med 2024. [PMID: 39445545 DOI: 10.1002/ame2.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND How AMP activated protein kinase (AMPK) signaling regulates mitochondrial functions and mitophagy in human trophoblast cells remains unclear. This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq. METHODS We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2 (PRKAA1/2) knockdown (AKD) and control BeWo cells using the Seahorse real-time ATP rate test, then analyzed gene expression profiling by RNA-seq. Differentially expressed genes (DEG) were examined by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Then protein-protein interactions (PPI) among mitochondria related genes were further analyzed using Metascape and Ingenuity Pathway Analysis (IPA) software. RESULTS Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells (CT), with a greater reduction of mitochondrial ATP production. A total of 1092 DEGs were identified, with 405 upregulated and 687 downregulated. GO analysis identified 60 genes associated with the term 'mitochondrion' in the cellular component domain. PPI analysis identified three clusters of mitochondria related genes, including aldo-keto reductase family 1 member B10 and B15 (AKR1B10, AKR1B15), alanyl-tRNA synthetase 1 (AARS1), mitochondrial ribosomal protein S6 (MRPS6), mitochondrial calcium uniporter dominant negative subunit beta (MCUB) and dihydrolipoamide branched chain transacylase E2 (DBT). CONCLUSIONS In summary, this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells, and among them, three clusters of genes may potentially contribute to altered mitochondrial functions in response to reduced AMPK signaling.
Collapse
Affiliation(s)
- Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Albert Gao
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Bin He
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, P.R. China
| | - Yun Chen
- Landmark Bio, Watertown, Massachusetts, USA
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| | - Fayuan Wen
- Department of Biology, College of Arts and Sciences, Howard University, Washington, District of Columbia, USA
| | - Haijun Gao
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Zankharia U, Yi Y, Lu F, Vladimirova O, Karisetty BC, Wikramasinghe J, Kossenkov A, Collman RG, Lieberman PM. HIV-induced RSAD2/Viperin supports sustained infection of monocyte-derived macrophages. J Virol 2024; 98:e0086324. [PMID: 39258908 PMCID: PMC11494996 DOI: 10.1128/jvi.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/11/2024] [Indexed: 09/12/2024] Open
Abstract
HIV establishes long-term latent infection in memory CD4+ T cells and also establishes sustained long-term productive infection in macrophages, especially in the central nervous system (CNS). To better understand how HIV sustains infection in macrophages, we performed RNAseq analysis after infection of human monocyte-derived macrophages (MDMs) with the brain-derived HIV-1 strain YU2 and compared this with acute infection of CD4+ T cells. HIV infection in MDM and CD4+ T cells altered many gene transcripts, but with few overlaps between these different cell types. We found interferon pathways upregulated in both MDM and CD4+ T cells, but with different gene signatures. The interferon-stimulated gene RSAD2/Viperin was among the most upregulated genes following HIV infection in MDMs, but not in CD4+ T cells. RSAD2/Viperin was induced early after infection with various HIV strains, was sustained over time, and remained elevated in established MDM infection even if new rounds of infection were blocked by antiretroviral treatment. Immunofluorescence microscopy revealed that RSAD2/Viperin was induced in HIV-infected cells, as well as in some uninfected neighboring cells. Knockdown of RSAD2/Viperin following the establishment of infection in MDMs reduced the production of HIV transcripts and viral p24 antigen. This correlated with the reduction in the number of multinucleated giant cells, and changes in the HIV DNA and chromatin structure, including an increased DNA copy number and loss of nucleosomes and histone modifications at the long terminal repeat (LTR). RNAseq transcriptomic analysis of RSAD2/Viperin knockdown during HIV infection of MDMs revealed the activation of interferon alpha/beta and gamma pathways and the inactivation of Rho GTPase pathways. Taken together, these results suggest that RSAD2/Viperin supports the sustained infection in macrophages, potentially through mechanisms involving the alteration of the LTR chromatin structure and the interferon response. IMPORTANCE HIV infection of macrophages is a barrier to HIV cure and a source of neurocognitive pathology. We found that HIV induces RSAD2/Viperin during sustained infection of macrophages. While RSAD2/Viperin is an interferon-stimulated gene with known antiviral activity, we find RSAD2/Viperin promotes HIV infection in macrophages through multiple mechanisms, including interferon signaling. Therefore, RSAD2/Viperin may be a therapeutic target for the treatment of HIV-infected macrophages.
Collapse
Affiliation(s)
- Urvi Zankharia
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Yanjie Yi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fang Lu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Olga Vladimirova
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Bhanu Chandra Karisetty
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jayamanna Wikramasinghe
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul M. Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Iperi C, Fernández-Ochoa Á, Pers JO, Barturen G, Alarcón-Riquelme M, Quirantes-Piné R, Borrás-Linares I, Segura-Carretero A, Cornec D, Bordron A, Jamin C. Integration of multi-omics analysis reveals metabolic alterations of B lymphocytes in systemic lupus erythematosus. Clin Immunol 2024; 264:110243. [PMID: 38735509 DOI: 10.1016/j.clim.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with those in their macroenvironment, including cellular and fluidic components. METHODS Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metabolomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database. Common sources of variation were identified using MOFA integration analysis. RESULTS Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins. CONCLUSIONS B cells showed metabolic changes shared with their macroenvironment and unique changes directly or indirectly induced by IFN-α signalling. This study underscores the importance of understanding the interplay between B cells and their macroenvironment in SLE pathology.
Collapse
Affiliation(s)
| | | | | | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Marta Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosa Quirantes-Piné
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | | |
Collapse
|
5
|
Chaumont L, Jouneau L, Huetz F, van Muilekom DR, Peruzzi M, Raffy C, Le Hir J, Minke J, Boudinot P, Collet B. Unexpected regulatory functions of cyprinid Viperin on inflammation and metabolism. BMC Genomics 2024; 25:650. [PMID: 38951796 PMCID: PMC11218377 DOI: 10.1186/s12864-024-10566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, 75015, Paris, France
| | | | - Mathilde Peruzzi
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | | | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
6
|
Eastman KS, Mifflin MC, Oblad PF, Roberts AG, Bandarian V. A Promiscuous rSAM Enzyme Enables Diverse Peptide Cross-linking. ACS BIO & MED CHEM AU 2023; 3:480-493. [PMID: 38144258 PMCID: PMC10739248 DOI: 10.1021/acsbiomedchemau.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 12/26/2023]
Abstract
Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical S-adenosyl-l-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate. Our results demonstrate that branched side chains in the thiol- and carboxylate-containing residues are processed and that lengthening of these groups to homocysteine and homoglutamate does not impair the ability of PapB to form thioether cross-links. Remarkably, the enzyme can even cross-link a peptide substrate where the native Asp carboxylate moiety is replaced with a tetrazole. We show that variations to residues embedded between the thiol- and carboxylate-containing residues are tolerated by PapB, as peptides containing both bulky (e.g., Phe) and charged (e.g., Lys) side chains in both natural L- and unnatural D-forms are efficiently cross-linked. Diastereomeric peptides bearing (2S,3R)- and (2S,3S)-methylaspartate are processed by PapB to form cyclic thioethers with markedly different rates, suggesting the enzymatic hydrogen atom abstraction event for the native Asp-containing substrate is diastereospecific. Finally, we synthesized two diastereomeric peptide substrates bearing E- and Z-configured γ,δ-dehydrohomoglutamate and show that PapB promotes addition of the deoxyadenosyl radical (dAdo•) instead of hydrogen atom abstraction. In the Z-configured γ,δ-dehydrohomoglutamate substrate, a fraction of the dAdo-adduct peptide is thioether cross-linked. In both cases, there is evidence for product inhibition of PapB, as the dAdo-adducts likely mimic the native transition state where dAdo• is poised to abstract a substrate hydrogen atom. Collectively, these findings provide critical insights into the arrangement of reacting species in the active site of the PapB, reveal unusual promiscuity, and highlight the potential of PapB as a tool in the development peptide therapeutics.
Collapse
Affiliation(s)
- Karsten
A. S. Eastman
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| | - Marcus C. Mifflin
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| | - Paul F. Oblad
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| | - Andrew G. Roberts
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
7
|
Roberts I, Wright Muelas M, Taylor JM, Davison AS, Winder CL, Goodacre R, Kell DB. Quantitative LC-MS study of compounds found predictive of COVID-19 severity and outcome. Metabolomics 2023; 19:87. [PMID: 37853293 PMCID: PMC10584727 DOI: 10.1007/s11306-023-02048-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Since the beginning of the SARS-CoV-2 pandemic in December 2019 multiple metabolomics studies have proposed predictive biomarkers of infection severity and outcome. Whilst some trends have emerged, the findings remain intangible and uninformative when it comes to new patients. OBJECTIVES In this study, we accurately quantitate a subset of compounds in patient serum that were found predictive of severity and outcome. METHODS A targeted LC-MS method was used in 46 control and 95 acute COVID-19 patient samples to quantitate the selected metabolites. These compounds included tryptophan and its degradation products kynurenine and kynurenic acid (reflective of immune response), butyrylcarnitine and its isomer (reflective of energy metabolism) and finally 3',4'-didehydro-3'-deoxycytidine, a deoxycytidine analogue, (reflective of host viral defence response). We subsequently examine changes in those markers by disease severity and outcome relative to those of control patients' levels. RESULTS & CONCLUSION Finally, we demonstrate the added value of the kynurenic acid/tryptophan ratio for severity and outcome prediction and highlight the viral detection potential of ddhC.
Collapse
Affiliation(s)
- Ivayla Roberts
- Department of Biochemistry and Systems Biology, Centre for Metabolomics Research (CMR), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Marina Wright Muelas
- Department of Biochemistry and Systems Biology, Centre for Metabolomics Research (CMR), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph M Taylor
- Liverpool Clinical Laboratories, Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospitals Trust, Liverpool, UK
| | - Andrew S Davison
- Liverpool Clinical Laboratories, Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospitals Trust, Liverpool, UK
| | - Catherine L Winder
- Department of Biochemistry and Systems Biology, Centre for Metabolomics Research (CMR), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Centre for Metabolomics Research (CMR), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Douglas B Kell
- Department of Biochemistry and Systems Biology, Centre for Metabolomics Research (CMR), Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet, 2000, Kgs Lyngby, Denmark.
| |
Collapse
|
8
|
Nghi HT, Shahmohammadi S, Ebrahimi KH. Ancient complexes of iron and sulfur modulate oncogenes and oncometabolism. Curr Opin Chem Biol 2023; 76:102338. [PMID: 37295349 DOI: 10.1016/j.cbpa.2023.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Inorganic complexes of iron and sulfur, that is, iron-sulfur [FeS] clusters, have played a fundamental role in life on Earth since the prebiotic period. These clusters were involved in elementary reactions leading to the emergence of life and, since then, gained function in processes, such as respiration, replication, transcription, and the immune response. We discuss how three [FeS] proteins involved in the innate immune response play a role in oncogene expression/function and oncometabolism. Our analysis highlights the importance of future research into understanding the [FeS] clusters' roles in cancer progression and proliferation. The outcomes of these studies will help identify new targets and develop new anticancer therapeutics.
Collapse
Affiliation(s)
- Hoang Thao Nghi
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sayeh Shahmohammadi
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center and Stereochemistry Research Group, Eötvös Loránd Research Network, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Kourosh H Ebrahimi
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
9
|
Wang Y, Fu Q, Lee YS, Sha S, Yoon S. Transcriptomic features reveal molecular signatures associated with recombinant adeno-associated virus production in HEK293 cells. Biotechnol Prog 2023; 39:e3346. [PMID: 37130170 DOI: 10.1002/btpr.3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
The development of gene therapies based on recombinant adeno-associated viruses (rAAVs) has grown exponentially, so the current rAAV manufacturing platform needs to be more efficient to satisfy rising demands. Viral production exerts great demand on cellular substrates, energy, and machinery; therefore, viral production relies heavily on the physiology of the host cell. Transcriptomics, as a mechanism-driven tool, was applied to identify significantly regulated pathways and to study cellular features of the host cell for supporting rAAV production. This study investigated the transcriptomic features of two cell lines cultured in their respective media by comparing viral-producing cultures with non-producing cultures over time in parental human embryonic kidney cells (HEK293). The results demonstrate that the innate immune response signaling pathways of host cells (e.g., RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytosolic DNA sensing pathway, JAK-STAT signaling pathway) were significantly enriched and upregulated. This was accompanied by the host cellular stress responses, including endoplasmic reticulum stress, autophagy, and apoptosis in viral production. In contrast, fatty acid metabolism and neutral amino acid transport were downregulated in the late phase of viral production. Our transcriptomics analysis reveals the cell-line independent signatures for rAAV production and serves as a significant reference for further studies targeting the productivity improvement in the future.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Sha Sha
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
10
|
Ji Y, Wei L, Da A, Stark H, Hagedoorn PL, Ciofi-Baffoni S, Cowley SA, Louro RO, Todorovic S, Mroginski MA, Nicolet Y, Roessler MM, Le Brun NE, Piccioli M, James WS, Hagen WR, Ebrahimi KH. Radical-SAM dependent nucleotide dehydratase (SAND), rectification of the names of an ancient iron-sulfur enzyme using NC-IUBMB recommendations. Front Mol Biosci 2022; 9:1032220. [PMID: 36387278 PMCID: PMC9642334 DOI: 10.3389/fmolb.2022.1032220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yuxuan Ji
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Li Wei
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Anqi Da
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Holger Stark
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Duesseldorf, Germany
| | | | - Simone Ciofi-Baffoni
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, and Department of Chemistry, University of Florence, Florence, Italy
| | - Sally A. Cowley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ricardo O. Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República–EAN, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República–EAN, Oeiras, Portugal
| | | | | | - Maxie M. Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Mario Piccioli
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, and Department of Chemistry, University of Florence, Florence, Italy
| | - William S. James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Kourosh H. Ebrahimi
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
11
|
Hsu JCC, Laurent-Rolle M, Pawlak JB, Xia H, Kunte A, Hee JS, Lim J, Harris LD, Wood JM, Evans GB, Shi PY, Grove TL, Almo SC, Cresswell P. Viperin triggers ribosome collision-dependent translation inhibition to restrict viral replication. Mol Cell 2022; 82:1631-1642.e6. [PMID: 35316659 PMCID: PMC9081181 DOI: 10.1016/j.molcel.2022.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/06/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
Abstract
Innate immune responses induce hundreds of interferon-stimulated genes (ISGs). Viperin, a member of the radical S-adenosyl methionine (SAM) superfamily of enzymes, is the product of one such ISG that restricts the replication of a broad spectrum of viruses. Here, we report a previously unknown antiviral mechanism in which viperin activates a ribosome collision-dependent pathway that inhibits both cellular and viral RNA translation. We found that the radical SAM activity of viperin is required for translation inhibition and that this is mediated by viperin's enzymatic product, 3'-deoxy-3',4'-didehydro-CTP (ddhCTP). Viperin triggers ribosome collisions and activates the MAPKKK ZAK pathway that in turn activates the GCN2 arm of the integrated stress response pathway to inhibit translation. The study illustrates the importance of translational repression in the antiviral response and identifies viperin as a translation regulator in innate immunity.
Collapse
Affiliation(s)
- Jack Chun-Chieh Hsu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maudry Laurent-Rolle
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Joanna B Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amit Kunte
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jia Shee Hee
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaechul Lim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lawrence D Harris
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - James M Wood
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Gary B Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Drug Discovery, Galveston, TX 77555, USA
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Iron–sulfur clusters as inhibitors and catalysts of viral replication. Nat Chem 2022; 14:253-266. [DOI: 10.1038/s41557-021-00882-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
|
13
|
Al Shujairi WH, Kris LP, van der Hoek K, Cowell E, Bracho-Granado G, Woodgate T, Beard MR, Carr JM. Viperin is anti-viral in vitro but is dispensable for restricting dengue virus replication or induction of innate and inflammatory responses in vivo. J Gen Virol 2021; 102. [PMID: 34665110 PMCID: PMC8604189 DOI: 10.1099/jgv.0.001669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viperin has antiviral function against many viruses, including dengue virus (DENV), when studied in cells in culture. Here, the antiviral actions of viperin were defined both in vitro and in a mouse in vivo model of DENV infection. Murine embryonic fibroblasts (MEFs) derived from mice lacking viperin (vip−/−) showed enhanced DENV infection, accompanied by increased IFN-β and induction of ISGs; IFIT1 and CXCL-10 but not IRF7, when compared to wild-type (WT) MEFs. In contrast, subcutaneous challenge of immunocompetent WT and vip−/− mice with DENV did not result in enhanced infection. Intracranial infection with DENV resulted in body weight loss and neurological disease with a moderate increase in mortality in vip−/− compared with WT mice, although this was not accompanied by altered brain morphology, immune cell infiltration or DENV RNA level in the brain. Similarly, DENV induction of IFN-β, IFIT1, CXCL-10, IRF7 and TNF-α was not significantly different in WT and vip−/− mouse brain, although there was a modest but significant increase in DENV induction of IL-6 and IfI27la in the absence of viperin. NanoString nCounter analysis confirmed no significant difference in induction of a panel of inflammatory genes in WT compared to vip−/− DENV-infected mouse brains. Further, polyI:C stimulation of bone marrow-derived macrophages (BMDMs) induced TNF-α, IFN-β, IL-6 and Nos-2, but responses were not different in BMDMs generated from WT or vip−/− mice. Thus, while there is significant evidence of anti-DENV actions of viperin in some cell types in vitro, for DENV infection in vivo a lack of viperin does not affect systemic or brain susceptibility to DENV or induction of innate and inflammatory responses.
Collapse
Affiliation(s)
- Wisam-Hamzah Al Shujairi
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, 51001 Hilla, Iraq
| | - Luke P Kris
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kylie van der Hoek
- School of Biological Sciences, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Evangeline Cowell
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Tahlia Woodgate
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael R Beard
- School of Biological Sciences, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
14
|
Differentiation of human induced pluripotent stem cells to authentic macrophages using a defined, serum-free, open-source medium. Stem Cell Reports 2021; 16:1735-1748. [PMID: 34171284 PMCID: PMC8282471 DOI: 10.1016/j.stemcr.2021.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/02/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) and macrophages derived from them are increasingly popular tools for research into both infectious and degenerative diseases. However, as the field strives for greater modeling accuracy, it is becoming ever more challenging to justify the use of undefined and proprietary media for the culture of these cells. Here, we describe a defined, serum-free, open-source medium for the differentiation of iPSC-derived macrophages. This medium is equally capable of maintaining these cells compared with commercial alternatives. The macrophages differentiated in this medium display improved terminally differentiated cell characteristics, reduced basal expression of induced antiviral response genes, and improved polarization capacity. We conclude that cells cultured in this medium are an appropriate and malleable model for tissue-resident macrophages, on which future differentiation techniques can be built.
Collapse
|
15
|
Grunkemeyer TJ, Ghosh S, Patel AM, Sajja K, Windak J, Basrur V, Kim Y, Nesvizhskii AI, Kennedy RT, Marsh ENG. The antiviral enzyme viperin inhibits cholesterol biosynthesis. J Biol Chem 2021; 297:100824. [PMID: 34029588 PMCID: PMC8254119 DOI: 10.1016/j.jbc.2021.100824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023] Open
Abstract
Many enveloped viruses bud from cholesterol-rich lipid rafts on the cell membrane. Depleting cellular cholesterol impedes this process and results in viral particles with reduced viability. Viperin (Virus Inhibitory Protein, Endoplasmic Reticulum-associated, Interferon iNducible) is an endoplasmic reticulum membrane-associated enzyme that exerts broad-ranging antiviral effects, including inhibiting the budding of some enveloped viruses. However, the relationship between viperin expression and the retarded budding of virus particles from lipid rafts on the cell membrane is unclear. Here, we investigated the effect of viperin expression on cholesterol biosynthesis using transiently expressed genes in the human cell line human embryonic kidney 293T (HEK293T). We found that viperin expression reduces cholesterol levels by 20% to 30% in these cells. Following this observation, a proteomic screen of the viperin interactome identified several cholesterol biosynthetic enzymes among the top hits, including lanosterol synthase (LS) and squalene monooxygenase (SM), which are enzymes that catalyze key steps in establishing the sterol carbon skeleton. Coimmunoprecipitation experiments confirmed that viperin, LS, and SM form a complex at the endoplasmic reticulum membrane. While coexpression of viperin was found to significantly inhibit the specific activity of LS in HEK293T cell lysates, coexpression of viperin had no effect on the specific activity of SM, although did reduce SM protein levels by approximately 30%. Despite these inhibitory effects, the coexpression of neither LS nor SM was able to reverse the viperin-induced depletion of cellular cholesterol levels, possibly because viperin is highly expressed in transfected HEK293T cells. Our results establish a link between viperin expression and downregulation of cholesterol biosynthesis that helps explain viperin's antiviral effects against enveloped viruses.
Collapse
Affiliation(s)
| | - Soumi Ghosh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayesha M Patel
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Keerthi Sajja
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - James Windak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Youngsoo Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemisrty, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
16
|
Bandyopadhyay S, Douglass J, Kapell S, Khan N, Feitosa-Suntheimer F, Klein JA, Temple J, Brown-Culbertson J, Tavares AH, Saeed M, Lau NC. DNA templates with blocked long 3' end single-stranded overhangs (BL3SSO) promote bona fide Cas9-stimulated homology-directed repair of long transgenes into endogenous gene loci. G3-GENES GENOMES GENETICS 2021; 11:6275753. [PMID: 33989385 PMCID: PMC8496256 DOI: 10.1093/g3journal/jkab169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
Knock-in of large transgenes by Cas9-mediated homology-directed repair (HDR) is an extremely inefficient process. Although the use of single-stranded oligonucleotides (ssODN) as an HDR donor has improved the integration of smaller transgenes, they do not support efficient insertion of large DNA sequences. In an effort to gain insights into the mechanism(s) governing the HDR-mediated integration of larger transgenes and to improve the technology, we conducted knock-in experiments targeting the human EMX1 locus and applied rigorous genomic PCR analyses in the human HEK293 cell line. This exercise revealed an unexpected molecular complication arising from the transgene HDR being initiated at the single homology arm and the subsequent genomic integration of plasmid backbone sequences. To pivot around this problem, we devised a novel PCR-constructed template containing blocked long 3' single-stranded overhangs (BL3SSO) that greatly improved the efficiency of bona fide Cas9-stimulated HDR at the EMX1 locus. We further refined BL3SSO technology and successfully used it to insert GFP transgenes into two important interferon-stimulated genes (ISGs) loci, Viperin/RSAD2, and ISG15. This study demonstrates the utility of the BL3SSO platform for inserting long DNA sequences into both constitutive and inducible endogenous loci to generate novel human cell lines for the study of important biological processes.
Collapse
Affiliation(s)
- Saptaparni Bandyopadhyay
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph Douglass
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Sebastian Kapell
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nazimuddin Khan
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | | | - Jenny A Klein
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jasmine Temple
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Jayce Brown-Culbertson
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alexander H Tavares
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA 02118, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA.,Genome Science Institute, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
17
|
Bernheim A, Millman A, Ofir G, Meitav G, Avraham C, Shomar H, Rosenberg MM, Tal N, Melamed S, Amitai G, Sorek R. Prokaryotic viperins produce diverse antiviral molecules. Nature 2021; 589:120-124. [PMID: 32937646 PMCID: PMC7610908 DOI: 10.1038/s41586-020-2762-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Viperin is an interferon-induced cellular protein that is conserved in animals1. It has previously been shown to inhibit the replication of multiple viruses by producing the ribonucleotide 3'-deoxy-3',4'-didehydro (ddh)-cytidine triphosphate (ddhCTP), which acts as a chain terminator for viral RNA polymerase2. Here we show that eukaryotic viperin originated from a clade of bacterial and archaeal proteins that protect against phage infection. Prokaryotic viperins produce a set of modified ribonucleotides that include ddhCTP, ddh-guanosine triphosphate (ddhGTP) and ddh-uridine triphosphate (ddhUTP). We further show that prokaryotic viperins protect against T7 phage infection by inhibiting viral polymerase-dependent transcription, suggesting that it has an antiviral mechanism of action similar to that of animal viperin. Our results reveal a class of potential natural antiviral compounds produced by bacterial immune systems.
Collapse
Affiliation(s)
- Aude Bernheim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Ofir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Meitav
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Carmel Avraham
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Nir Tal
- Pantheon Biosciences, Yavne, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
Ou Z, Ouzounis C, Wang D, Sun W, Li J, Chen W, Marlière P, Danchin A. A Path toward SARS-CoV-2 Attenuation: Metabolic Pressure on CTP Synthesis Rules the Virus Evolution. Genome Biol Evol 2020; 12:2467-2485. [PMID: 33125064 PMCID: PMC7665462 DOI: 10.1093/gbe/evaa229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the context of the COVID-19 pandemic, we describe here the singular metabolic background that constrains enveloped RNA viruses to evolve toward likely attenuation in the long term, possibly after a step of increased pathogenicity. Cytidine triphosphate (CTP) is at the crossroad of the processes allowing SARS-CoV-2 to multiply, because CTP is in demand for four essential metabolic steps. It is a building block of the virus genome, it is required for synthesis of the cytosine-based liponucleotide precursors of the viral envelope, it is a critical building block of the host transfer RNAs synthesis and it is required for synthesis of dolichol-phosphate, a precursor of viral protein glycosylation. The CCA 3'-end of all the transfer RNAs required to translate the RNA genome and further transcripts into the proteins used to build active virus copies is not coded in the human genome. It must be synthesized de novo from CTP and ATP. Furthermore, intermediary metabolism is built on compulsory steps of synthesis and salvage of cytosine-based metabolites via uridine triphosphate that keep limiting CTP availability. As a consequence, accidental replication errors tend to replace cytosine by uracil in the genome, unless recombination events allow the sequence to return to its ancestral sequences. We document some of the consequences of this situation in the function of viral proteins. This unique metabolic setup allowed us to highlight and provide a raison d'être to viperin, an enzyme of innate antiviral immunity, which synthesizes 3'-deoxy-3',4'-didehydro-CTP as an extremely efficient antiviral nucleotide.
Collapse
Affiliation(s)
- Zhihua Ou
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Christos Ouzounis
- Biological Computation and Process Laboratory, Centre for Research and Technology Hellas, Chemical Process and Energy Resources Institute, Thessalonica, Greece
| | - Daxi Wang
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Wanying Sun
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Weijun Chen
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China.,BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, Paris, France
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, Paris, France.,School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam, Hong Kong
| |
Collapse
|
19
|
Ebrahimi KH, Gilbert-Jaramillo J, James WS, McCullagh JSO. Interferon-stimulated gene products as regulators of central carbon metabolism. FEBS J 2020; 288:3715-3726. [PMID: 33185982 PMCID: PMC8359365 DOI: 10.1111/febs.15625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
In response to viral infections, the innate immune system rapidly activates expression of several interferon-stimulated genes (ISGs), whose protein and metabolic products are believed to directly interfere with the viral life cycle. Here, we argue that biochemical reactions performed by two specific protein products of ISGs modulate central carbon metabolism to support a broad-spectrum antiviral response. We demonstrate that the metabolites generated by metalloenzymes nitric oxide synthase and the radical S-adenosylmethionine (SAM) enzyme RSAD2 inhibit the activity of the housekeeping and glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We discuss that this inhibition is likely to stimulate a range of metabolic and signalling processes to support a broad-spectrum immune response. Based on these analyses, we propose that inhibiting GAPDH in individuals with deteriorated cellular innate immune response like elderly might help in treating viral diseases such as COVID-19.
Collapse
Affiliation(s)
- Kourosh H Ebrahimi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, UK
| | - Javier Gilbert-Jaramillo
- Sir William Dunn School of Pathology, University of Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - William S James
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, UK
| |
Collapse
|
20
|
Ebrahimi KH. Nanofactories for Controlled Synthesis and Delivery of Nucleoside Analogue Therapeutics. Chembiochem 2020; 21:3186-3188. [PMID: 32964558 DOI: 10.1002/cbic.202000382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Indexed: 12/15/2022]
Abstract
The ultimate nanomedicine will be a cell-like machinery capable of reaching a specific target in the body and performing a desired therapeutic action in a controlled fashion. To make such machinery a reality, we need to combine fundamental knowledge and technological developments in different areas including polymer chemistry, biology, enzymology, and biochemical engineering. In this viewpoint, I put forward my vision of creating a nanofactory as a step towards developing cell-like nanomedicines. To make the proposed nanofactory a reality there are many challenges ahead. I propose plausible solutions to address some of the main challenges.
Collapse
Affiliation(s)
- Kourosh H Ebrahimi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QR, Oxford
| |
Collapse
|
21
|
Xiang C, Huang M, Xiong T, Rong F, Li L, Liu DX, Chen RA. Transcriptomic Analysis and Functional Characterization Reveal the Duck Interferon Regulatory Factor 1 as an Important Restriction Factor in the Replication of Tembusu Virus. Front Microbiol 2020; 11:2069. [PMID: 32983049 PMCID: PMC7480082 DOI: 10.3389/fmicb.2020.02069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Duck Tembusu virus (DTMUV) infection has caused great economic losses to the poultry industry in China, since its first discovery in 2010. Understanding of host anti-DTMUV responses, especially the innate immunity against DTMUV infection, would be essential for the prevention and control of this viral disease. In this study, transcriptomic analysis of duck embryonic fibroblasts (DEFs) infected with DTMUV reveals that several innate immunity-related pathways, including Toll-like, NOD-like, and retinoic acid-inducible gene I (RIG-I)-like receptor signaling pathways, are activated. Further verification by RT-qPCR confirmed that RIG-I, MAD5, TLR3, TLR7, IFN-α, IFN-β, MX, PKR, MHCI, MHCII, IL-1β, IL-6, (IFN-regulatory factor 1) IRF1, VIPERIN, IFIT5, and CMPK2 were up-regulated in cells infected with DTMUV. Through overexpression and knockdown/out of gene expression, we demonstrated that both VIPERIN and IRF1 played an important role in the regulation of DTMUV replication. Overexpression of either one significantly reduced viral replication as characterized by reduced viral RNA copy numbers and the envelope protein expression. Consistently, down-regulation of either one resulted in the enhanced replication of DTMUV in the knockdown/out cells. We further proved that IRF1 can up-regulate VIPERIN gene expression during DTMUV infection, through induction of type 1 IFNs as well as directly binding to and activation of the VIPERIN promoter. This study provides a genome-wide differential gene expression profile in cells infected with DTMUV and reveals an important function for IRF1 as well as several other interferon-stimulated genes in restricting DTMUV replication.
Collapse
Affiliation(s)
- Chengwei Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China
| | - Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fang Rong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Linyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
22
|
Ghosh S, Marsh ENG. Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity. J Biol Chem 2020; 295:11513-11528. [PMID: 32546482 PMCID: PMC7450102 DOI: 10.1074/jbc.rev120.012784] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Viperin plays an important and multifaceted role in the innate immune response to viral infection. Viperin is also notable as one of very few radical SAM-dependent enzymes present in higher animals; however, the enzyme appears broadly conserved across all kingdoms of life, which suggests that it represents an ancient defense mechanism against viral infections. Although viperin was discovered some 20 years ago, only recently was the enzyme's structure determined and its catalytic activity elucidated. The enzyme converts CTP to 3'-deoxy-3',4'-didehydro-CTP, which functions as novel chain-terminating antiviral nucleotide when misincorporated by viral RNA-dependent RNA polymerases. Moreover, in higher animals, viperin interacts with numerous other host and viral proteins, and it is apparent that this complex network of interactions constitutes another important aspect of the protein's antiviral activity. An emerging theme is that viperin appears to facilitate ubiquitin-dependent proteasomal degradation of some of the proteins it interacts with. Viperin-targeted protein degradation contributes to the antiviral response either by down-regulating various metabolic pathways important for viral replication or by directly targeting viral proteins for degradation. Here, we review recent advances in our understanding of the structure and catalytic activity of viperin, together with studies investigating the interactions between viperin and its target proteins. These studies have provided detailed insights into the biochemical processes underpinning this unusual enzyme's wide-ranging antiviral activity. We also highlight recent intriguing reports that implicate a broader role for viperin in regulating nonpathological cellular processes, including thermogenesis and protein secretion.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Danchin A, Marlière P. Cytosine drives evolution of SARS-CoV-2. Environ Microbiol 2020; 22:1977-1985. [PMID: 32291894 PMCID: PMC7262064 DOI: 10.1111/1462-2920.15025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antoine Danchin
- Kodikos Labs, 24 rue Jean Baldassini, 69007 Lyon/Institut Cochin, 75013 Paris, France
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France
| |
Collapse
|
24
|
Honarmand Ebrahimi K, Vowles J, Browne C, McCullagh J, James WS. ddhCTP produced by the radical-SAM activity of RSAD2 (viperin) inhibits the NAD + -dependent activity of enzymes to modulate metabolism. FEBS Lett 2020; 594:1631-1644. [PMID: 32232843 DOI: 10.1002/1873-3468.13778] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Abstract
Radical S-adenosylmethionine (SAM) domain-containing protein 2 (RSAD2; viperin) is a key enzyme in innate immune responses that is highly expressed in response to viral infection and inflammatory stimuli in many cell types. Recently, it was found that RSAD2 catalyses transformation of cytidine triphosphate (CTP) to its analogue 3'-deoxy-3',4'-didehydro-CTP (ddhCTP). The cellular function of this metabolite is unknown. Here, we analysed the extra- and intracellular metabolite levels in human induced pluripotent stem cell (hiPSC)-derived macrophages using high-resolution LC-MS/MS. The results together with biochemical assays and molecular docking simulations revealed that ddhCTP inhibits the NAD+ -dependent activity of enzymes including that of the housekeeping enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We propose that ddhCTP regulates cellular metabolism in response to inflammatory stimuli such as viral infection, pointing to a broader function of RSAD2 than previously thought.
Collapse
Affiliation(s)
| | - Jane Vowles
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Cathy Browne
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | - William S James
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|