1
|
Agarwal S, Gupta S, Raj R. Identification of potential targetable genes in papillary, follicular, and anaplastic thyroid carcinoma using bioinformatics analysis. Endocrine 2024; 86:255-267. [PMID: 38676768 DOI: 10.1007/s12020-024-03836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE To perform an extensive exploratory analysis to build a deeper insight into clinically relevant molecular biomarkers in Papillary, Follicular, and Anaplastic thyroid carcinomas (PTC, FTC, ATC). METHODS Thirteen Thyroid Cancer (THCA) datasets incorporating PTC, FTC, and ATC were derived from the Gene Expression Omnibus. Genes differentially expressed (DEGs) between THCA and normal were identified and subjected to GO and KEGG analyses. Multiple topological properties were harnessed and protein-protein interaction (PPI) networks were constructed to identify the hub genes followed by survival analysis and validation. RESULTS There were 70, 87, and 377 DEGs, and 23, 27, and 53 hub genes for PTC, FTC, and ATC samples, respectively. Survival analysis detected 39 overall and 49 relapse-free survival-relevant hub genes. Six hub genes, BCL2, FN1, ITPR1, LYVE1, NTRK2, TBC1D4, were found common to more than one THCA type. The most significant hub genes found in the study were: BCL2, CD44, DCN, FN1, IRS1, ITPR1, MFAP4, MKI67, NTRK2, PCLO, TGFA. The most enriched and significant GO terms were Melanocyte differentiation for PTC, Extracellular region for FTC, and Extracellular exosome for ATC. Prostate cancer for PTC was the most significantly enriched KEGG pathway. The results were validated using TCGA data. CONCLUSIONS The findings unravel potential biomarkers and therapeutic targets of thyroid carcinomas.
Collapse
Affiliation(s)
- Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Shikha Gupta
- Department of Computer Science, S.S. College of Business Studies, University of Delhi, New Delhi, India.
| | - Rishav Raj
- Department of Computer Science, S.S. College of Business Studies, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Di Vito A, Donato A, Bria J, Conforti F, La Torre D, Malara N, Donato G. Extracellular Matrix Structure and Interaction with Immune Cells in Adult Astrocytic Tumors. Cell Mol Neurobiol 2024; 44:54. [PMID: 38969910 PMCID: PMC11226480 DOI: 10.1007/s10571-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The extracellular matrix (ECM) is a dynamic set of molecules produced by the cellular component of normal and pathological tissues of the embryo and adult. ECM acts as critical regulator in various biological processes such as differentiation, cell proliferation, angiogenesis, and immune control. The most frequent primary brain tumors are gliomas and by far the majority are adult astrocytic tumors (AATs). The prognosis for patients with these neoplasms is poor and the treatments modestly improves survival. In the literature, there is a fair number of studies concerning the composition of the ECM in AATs, while the number of studies relating the composition of the ECM with the immune regulation is smaller. Circulating ECM proteins have emerged as a promising biomarker that reflect the general immune landscape of tumor microenvironment and may represent a useful tool in assessing disease activity. Given the importance it can have for therapeutic and prognostic purposes, the aim of our study is to summarize the biological properties of ECM components and their effects on the tumor microenvironment and to provide an overview of the interactions between major ECM proteins and immune cells in AATs. As the field of immunotherapy in glioma is quickly expanding, we retain that current data together with future studies on ECM organization and functions in glioma will provide important insights into the tuning of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Annalidia Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jessica Bria
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Domenico La Torre
- Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Natalia Malara
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Uzair M, Singhal C, Ali A, Rajak S, Kapoor A, Agarwal SK, Tiwari S, Pande S, Prakash P. Myocardial ischemia-reperfusion injury released cellular fibronectin containing domain A (CFN-EDA): A destructive positive loop amplifying arterial thrombosis formation and exacerbating myocardial reperfusion injury. Thromb Res 2024; 238:117-128. [PMID: 38703585 DOI: 10.1016/j.thromres.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Previous research has identified intravascular platelet thrombi in regions affected by myocardial ischemia-reperfusion (MI/R) injury and neighbouring areas. However, the occurrence of arterial thrombosis in the context of MI/R injury remains unexplored. This study utilizes intravital microscopy to investigate carotid artery thrombosis during MI/R injury in rats, establishing a connection with the presence of prothrombotic cellular fibronectin containing extra domain A (CFN-EDA) protein. Additionally, the study examines samples from patients with coronary artery disease (CAD) both before and after coronary artery bypass grafting (CABG). Levels of CFN-EDA significantly increase following MI with further elevation observed following reperfusion of the ischemic myocardium. Thrombotic events, such as thrombus formation and growth, show a significant increase, while the time to complete cessation of blood flow in the carotid artery significantly decreases following MI/R injury induced by ferric chloride. The acute infusion of purified CFN-EDA protein accelerates in-vivo thrombotic events in healthy rats and significantly enhances in-vitro adenosine diphosphate and collagen-induced platelet aggregation. Treatment with anti-CFN-EDA antibodies protected the rat against MI/R injury and significantly improved cardiac function as evidenced by increased end-systolic pressure-volume relationship slope and preload recruitable stroke work compared to control. Similarly, in a human study, plasma CFN-EDA levels were notably elevated in CAD patients undergoing CABG. Post-surgery, these levels continued to rise over time, alongside cardiac injury biomarkers such as cardiac troponin and B-type natriuretic peptide. The study highlights that increased CFN-EDA due to CAD or MI initiates a destructive positive feedback loop by amplifying arterial thrombus formation, potentially exacerbating MI/R injury.
Collapse
Affiliation(s)
- Moh Uzair
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Chahak Singhal
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Azeem Ali
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Surendra Kumar Agarwal
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Shantanu Pande
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India.
| |
Collapse
|
4
|
Longstreth JH, Wang K. The role of fibronectin in mediating cell migration. Am J Physiol Cell Physiol 2024; 326:C1212-C1225. [PMID: 38372136 DOI: 10.1152/ajpcell.00633.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Fibronectin (FN) is a major extracellular matrix (ECM) protein involved in a wide range of physiological processes, including cell migration. These FN-mediated cell migration events are essential to processes such as wound repair, cancer metastasis, and vertebrate development. This review synthesizes mainly current literature to provide an overview of the mechanoregulatory role of FN-mediated cell migration. Background on FN structure and role in mechanotransduction is provided. Cell migration concepts are introduced, including the general cell migration mechanism and classification of cell migration types. Then, FN-mediated events that directly affect cell migration are explored. Finally, a focus on FN in tissue repair and cancer migration is presented, as these topics represent a large amount of current research.
Collapse
Affiliation(s)
- Jessica H Longstreth
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Collado J, Boland L, Ahrendsen JT, Miska J, Lee-Chang C. Understanding the glioblastoma tumor microenvironment: leveraging the extracellular matrix to increase immunotherapy efficacy. Front Immunol 2024; 15:1336476. [PMID: 38380331 PMCID: PMC10876826 DOI: 10.3389/fimmu.2024.1336476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma (GBM) accounts for approximately half of all malignant brain tumors, and it remains lethal with a five-year survival of less than 10%. Despite the immense advancements in the field, it has managed to evade even the most promising therapeutics: immunotherapies. The main reason is the highly spatiotemporally heterogeneous and immunosuppressive GBM tumor microenvironment (TME). Accounting for this complex interplay of TME-driven immunosuppression is key to developing effective therapeutics. This review will explore the immunomodulatory role of the extracellular matrix (ECM) by establishing its contribution to the TME as a key mediator of immune responses in GBM. This relationship will help us elucidate therapeutic targets that can be leveraged to develop and deliver more effective immunotherapies.
Collapse
Affiliation(s)
- Jimena Collado
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lauren Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Jared T Ahrendsen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lurie Cancer Center, Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lurie Cancer Center, Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| |
Collapse
|
6
|
Hua Q, Li Z, Zhou Y, Wang Y, Yu Y, Sun L, Ye J, Li L. Single-cell RNA sequencing reveals association of aberrant placental trophoblasts and FN1 reduction in late-onset fetal growth restriction. Placenta 2024; 146:30-41. [PMID: 38160601 DOI: 10.1016/j.placenta.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) can lead to fetal mental development abnormalities, malformations, and even intrauterine death. Defects in the trophoblasts at the maternal-fetal interface may contribute to FGR. However, the impact of trophoblasts on FGR is still not well understood. Therefore, the objective of this study is to characterize the heterogeneity of placental cells at the single-cell level and investigate the role of trophoblast subtypes in the pathogenesis of FGR at the cellular and molecular levels. METHODS Single-cell RNA sequencing was performed on the maternal side of placentas from two normal pregnant women and two pregnant women with FGR. Lentivirus transfection was used to establish a FN1 knockout model in trophoblast HTR-8-Svneo cells. The effect of FN1 knockout on cell migration and invasion of HTR-8-Svneo cells was assessed through wound healing and transwell assays. RESULTS Nine cell types were annotated in 39,161 cells derived from single-cell RNA sequencing. The FGR group exhibited a decrease in the percentage of trophoblasts, especially in subtype of extravillous trophoblasts (EVTs). The expression of FN1 was reduced in trophoblasts and EVTs. Furthermore, the protein expression levels of FN1 in the placentas of FGR patients were significantly lower than those of normal pregnant women. The cell migration and invasion ability of HTR-8-Svneo cells were inhibited after the knockdown of FN1. DISCUSSION The dysregulation of the trophoblast subtype-EVTs is involved in placental dysplasia related to FGR. The association between aberrant placental trophoblasts and reduced FN1 expression may contribute to insufficient remodeling of spiral arteries and the formation of FGR.
Collapse
Affiliation(s)
- Qing Hua
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Zhe Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yadan Zhou
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Yangyang Yu
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Lei Sun
- Stem Cell Regenerative Medicine Transformation Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, PR China; Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou, 450007, Henan, PR China.
| | - Li Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, PR China.
| |
Collapse
|
7
|
Tang J, Liu N, Zhu Y, Li Y, Zhao X. CAR-T Therapy Targets Extra Domain B of Fibronectin Positive Solid Tumor Cells. Immunol Invest 2023; 52:985-996. [PMID: 37815216 DOI: 10.1080/08820139.2023.2264332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
BACKGROUND CAR-T cell immunotherapy has achieved remarkable success in malignant B-cell malignancies, but progress in solid tumors is slow, and one of the key reasons is the lack of ideal targets. Cancer-specific extra domain B of fibronectin (EDB-FN) is widely upregulated in solid tumors and expressed at low levels in normal tissues. Many imaging and targeted cancer therapies based on EDB-FN targets have been developed and tested in clinical trials, making EDB-FN an ideal target for immunotherapy. METHODS We constructed two EDB-FN-targeted CAR-Ts based on the peptide APT0 and the single-chain antibody CGS2 in a lentiviral infection manner for the first time. Luciferase cytotoxicity assay to assess CAR-T killing of tumor cells. An enzyme-linked immunosorbent assay was used to detect the release of the cytokine IFN-γ. Fluorescence imaging to evaluate the dynamics of CAR-T cell and tumor cell coculture. Knockdown assays were used to validate the target specificity of CAR-T cells. RESULTS In this research, two CAR-Ts targeting EDB-FN, APT0 CAR-T, and CGS2 CAR-T, were constructed. In vitro, both CAR-T cells produced broad-spectrum killing of multiple EDB-FN-positive solid tumor cell lines and were accompanied by cytokine IFN-γ release. Regarding safety, the two CAR-T cells did not affect T cells' normal growth and proliferation and were not toxic to HEK-293T human embryonic kidney epithelial cells. CONCLUSION APT0 CAR-T and CGS2 CAR-T cells are two new CAR-Ts targeting EDB-FN. Both CAR-T cells can successfully identify and specifically kill various EDB-FN-positive solid tumor cells with potential clinical applications.
Collapse
Affiliation(s)
- Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and Department of Respiratory and Critical care Medicine and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Liu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and Department of Respiratory and Critical care Medicine and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and Department of Respiratory and Critical care Medicine and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and Department of Respiratory and Critical care Medicine and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Feng Y, Hao Y, Wang Y, Song W, Zhang S, Ni D, Yan F, Sun L. Ultrasound Molecular Imaging of Bladder Cancer via Extradomain B Fibronectin-Targeted Biosynthetic GVs. Int J Nanomedicine 2023; 18:4871-4884. [PMID: 37662687 PMCID: PMC10474871 DOI: 10.2147/ijn.s412422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Ultrasound molecular imaging (UMI) has proven promising to diagnose the onset and progression of diseases such as angiogenesis, inflammation, and thrombosis. However, microbubble-based acoustic probes are confined to intravascular targets due to their relatively large particle size, greatly reducing the application value of UMI, especially for extravascular targets. Extradomain B fibronectin (ED-B FN) is an important glycoprotein associated with tumor genesis and development and highly expressed in many types of tumors. Here, we developed a gas vesicles (GVs)-based nanoscale acoustic probe (ZD2-GVs) through conjugating ZD2 peptides which can specially target to ED-B FN to the biosynthetic GVs. Materials and Methods ED-B FN expression was evaluated in normal liver and tumor tissues with immunofluorescence and Western blot. ZD2-GVs were prepared by conjugating ZD2 to the surface of GVs by amide reaction. The inverted microscope was used to analyze the targeted binding capacity of ZD2-GVs to MB49 cells (bladder cancer cell line). The contrast-enhanced imaging features of GVs, non-targeted control GVs (CTR-GVs), and targeted GVs (ZD2-GVs) were compared in three MB49 tumor mice. The penetration ability of ZD2-GVs in tumor tissues was assessed by fluorescence immunohistochemistry. The biosafety of GVs was evaluated by CCK8, blood biochemistry, and HE staining. Results Strong ED-B FN expression was observed in tumor tissues while little expression in normal liver tissues. The resulting ZD2-GVs had only 267.73 ± 2.86 nm particle size and exhibited excellent binding capability to the MB49 tumor cells. The in vivo UMI experiments showed that ZD2-GVs produced stronger and longer retention in the BC tumors than that of the non-targeted CTR-GVs and GVs. Fluorescence immunohistochemistry confirmed that ZD2-GVs could penetrate the tumor vascular into the interstitial space of the tumors. Biosafety analysis revealed there was no significant cytotoxicity to these tested mice. Conclusion Thus, ZD2-GVs can function as a potential UMI probe for the early diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Yanan Feng
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Weijian Song
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Shanxin Zhang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Dong Ni
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, 518055, People’s Republic of China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| |
Collapse
|
9
|
Nicolescu C, Schilb A, Kim J, Sun D, Hall R, Gao S, Gilmore H, Schiemann WP, Lu ZR. Evaluating Dual-Targeted ECO/siRNA Nanoparticles against an Oncogenic lncRNA for Triple Negative Breast Cancer Therapy with Magnetic Resonance Molecular Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:461-470. [PMID: 37655165 PMCID: PMC10466452 DOI: 10.1021/cbmi.3c00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 09/02/2023]
Abstract
Differentiation antagonizing noncoding RNA (DANCR) is recognized as an oncogenic long noncoding RNA (lncRNA) overexpressed in triple negative breast cancer (TNBC). We showed in a previous study that RNAi with targeted multifunctional ionizable lipid ECO/siRNA nanoparticles was effective to regulate this undruggable target for effective treatment of TNBC. In this study, we developed dual-targeted ECO/siDANCR nanoparticles by targeting a tumor extracellular matrix oncoprotein, extradomain B fibronectin (EDB-FN), and integrins overexpressed on cancer cells for enhanced delivery of siDANCR. The treatment of Hs578T TNBC cells and MCF-7 estrogen receptor-positive cells in vitro resulted in significant down-regulation of DANCR and EDB-FN and suppressed invasion and 3D spheroid formation of the cells. Magnetic resonance molecular imaging (MRMI) with an EDB-FN-targeted contrast agent, MT218, was used to noninvasively evaluate tumor response to treatment with the targeted ECO/siDANCR nanoparticles in female nude mice bearing orthotopic Hs578T and MCF-7 xenografts. MRMI with MT218 was effective to differentiate between aggressive TNBC with high DANCR and EDB-FN expression and ER+ MCF-7 tumors with low expression of the targets. MRMI showed that the dual-targeted ECO/siDANCR nanoparticles resulted in more significant inhibition of tumor growth in both models than the controls and significantly reduced EDB-FN expression in the TNBC tumors. The combination of MRMI and dual-targeted ECO/siDANCR nanoparticles is a promising approach for image-guided treatment of TNBC by regulating the onco-lncRNA.
Collapse
Affiliation(s)
- Calin Nicolescu
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew Schilb
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Jiyoon Kim
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Da Sun
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Ryan Hall
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Songqi Gao
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Hannah Gilmore
- Department
of Pathology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - William P. Schiemann
- Case
Comprehensive Cancer Center, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Department
of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Case
Comprehensive Cancer Center, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Tang JQ, Marchand MM, Veggiani G. Ubiquitin Engineering for Interrogating the Ubiquitin-Proteasome System and Novel Therapeutic Strategies. Cells 2023; 12:2117. [PMID: 37626927 PMCID: PMC10453149 DOI: 10.3390/cells12162117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Protein turnover, a highly regulated process governed by the ubiquitin-proteasome system (UPS), is essential for maintaining cellular homeostasis. Dysregulation of the UPS has been implicated in various diseases, including viral infections and cancer, making the proteins in the UPS attractive targets for therapeutic intervention. However, the functional and structural redundancies of UPS enzymes present challenges in identifying precise drug targets and achieving target selectivity. Consequently, only 26S proteasome inhibitors have successfully advanced to clinical use thus far. To overcome these obstacles, engineered peptides and proteins, particularly engineered ubiquitin, have emerged as promising alternatives. In this review, we examine the impact of engineered ubiquitin on UPS and non-UPS proteins, as well as on viral enzymes. Furthermore, we explore their potential to guide the development of small molecules targeting novel surfaces, thereby expanding the range of druggable targets.
Collapse
Affiliation(s)
- Jason Q. Tang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Mary M. Marchand
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
11
|
Hall RC, Vaidya AM, Schiemann WP, Pan Q, Lu ZR. RNA-Seq Analysis of Extradomain A and Extradomain B Fibronectin as Extracellular Matrix Markers for Cancer. Cells 2023; 12:cells12050685. [PMID: 36899821 PMCID: PMC10000746 DOI: 10.3390/cells12050685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Alternatively spliced forms of fibronectin, called oncofetal fibronectin, are aberrantly expressed in cancer, with little to no expression in normal tissue, making them attractive biomarkers to exploit for tumor-targeted therapeutics and diagnostics. While prior studies have explored oncofetal fibronectin expression in limited cancer types and limited sample sizes, no studies have performed a large-scale pan-cancer analysis in the context of clinical diagnostics and prognostics to posit the utility of these biomarkers across multiple cancer types. In this study, RNA-Seq data sourced from the UCSC Toil Recompute project were extracted and analyzed to determine the correlation between the expression of oncofetal fibronectin, including extradomain A and extradomain B fibronectin, and patient diagnosis and prognosis. We determined that oncofetal fibronectin is significantly overexpressed in most cancer types relative to corresponding normal tissues. In addition, strong correlations exist between increasing oncofetal fibronectin expression levels and tumor stage, lymph node activity, and histological grade at the time of diagnosis. Furthermore, oncofetal fibronectin expression is shown to be significantly associated with overall patient survival within a 10-year window. Thus, the results presented in this study suggest oncofetal fibronectin as a commonly upregulated biomarker in cancer with the potential to be used for tumor-selective diagnosis and treatment applications.
Collapse
Affiliation(s)
- Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amita M. Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Quintin Pan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0187; Fax: +1-216-368-4969
| |
Collapse
|
12
|
Maher J, Davies DM. CAR-Based Immunotherapy of Solid Tumours-A Survey of the Emerging Targets. Cancers (Basel) 2023; 15:1171. [PMID: 36831514 PMCID: PMC9953954 DOI: 10.3390/cancers15041171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Immunotherapy with CAR T-cells has revolutionised the treatment of B-cell and plasma cell-derived cancers. However, solid tumours present a much greater challenge for treatment using CAR-engineered immune cells. In a partner review, we have surveyed data generated in clinical trials in which patients with solid tumours that expressed any of 30 discrete targets were treated with CAR-based immunotherapy. That exercise confirms that efficacy of this approach falls well behind that seen in haematological malignancies, while significant toxic events have also been reported. Here, we consider approximately 60 additional candidates for which such clinical data are not available yet, but where pre-clinical data have provided support for their advancement to clinical evaluation as CAR target antigens.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
13
|
Eulberg D, Frömming A, Lapid K, Mangasarian A, Barak A. The prospect of tumor microenvironment-modulating therapeutical strategies. Front Oncol 2022; 12:1070243. [PMID: 36568151 PMCID: PMC9772844 DOI: 10.3389/fonc.2022.1070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple mechanisms promote tumor prosperity, which does not only depend on cell-autonomous, inherent abnormal characteristics of the malignant cells that facilitate rapid cell division and tumor expansion. The neoplastic tissue is embedded in a supportive and dynamic tumor microenvironment (TME) that nurtures and protects the malignant cells, maintaining and perpetuating malignant cell expansion. The TME consists of different elements, such as atypical vasculature, various innate and adaptive immune cells with immunosuppressive or pro-inflammatory properties, altered extracellular matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-tethered bioactive molecules that contribute to malignancy, directly or indirectly. In this review, we describe the various TME components and provide examples of anti-cancer therapies and novel drugs under development that aim to target these components rather than the intrinsic processes within the malignant cells. Combinatory TME-modulating therapeutic strategies may be required to overcome the resistance to current treatment options and prevent tumor recurrence.
Collapse
|
14
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
15
|
Zhang Z, Liu C, Yang Z, Yin H. CAR-T-Cell Therapy for Solid Tumors Positive for Fibronectin Extra Domain B. Cells 2022; 11:cells11182863. [PMID: 36139437 PMCID: PMC9496916 DOI: 10.3390/cells11182863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: The lack of specific targets has slowed the progress of CAR-T in treating solid tumors. Recent studies have revealed that EDB-FN (fibronectin extra domain B) may be an effective target for CAR-T treatment of solid tumors; EDB-FN is expressed in tumor and embryonic tissues, and antibody–cytokine fusion proteins targeting EDB-FN have been developed. However, the therapeutic effects of BBz CAR-engineered T-cells targeting EDB-FN in solid tumors have not been evaluated. (2) Results: In this study, we constructed a BBz CAR construct targeting EDB-FN, and the CAR molecule was expressed on the surface of T-cells by lentiviral transduction. In vitro, CAR-T-cells can be activated to express perforin and granzyme and lyse EDB-positive cells (U-87 MG cells, A549 cells, and HUVECs) and have no toxicity to EDB-negative cells (MCF-7). Compared to T-cells, CAR-T-cells can release cytokines after coculture with EDB-positive cell lines. In vivo, CAR-T-cells inhibited the progression of U-87 MG subcutaneous tumors and significantly reduced the blood vessel density in tumor tissue compared to T-cells, without obvious toxicity to mouse tissues and organs. Furthermore, CAR-T-cells overexpressing BiTE targeting EDB-FN can significantly improve their antitumor activity in vitro. (3) Conclusions: These results demonstrate that CAR-T-cells have specific antitumor and angiogenic activities in vivo and in vitro, suggesting that EDB-FN may be a potential solid tumor target for CAR-T therapy.
Collapse
|
16
|
Ashok G, Miryala SK, Saju MT, Anbarasu A, Ramaiah S. FN1 encoding fibronectin as a pivotal signaling gene for therapeutic intervention against pancreatic cancer. Mol Genet Genomics 2022; 297:1565-1580. [PMID: 35982245 DOI: 10.1007/s00438-022-01943-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
The delayed diagnosis of pancreatic cancer has resulted in rising mortality rate and low survival rate that can be circumvented using potent theranostics biomarkers. The treatment gets complicated with delayed detection resulting in lowered 5-year relative survival rate. In our present study, we employed systems biology approach to identify central genes that play crucial roles in tumor progression. Pancreatic cancer genes collected from various databases were used to construct a statistically significant interactome with 812 genes that was further analysed thoroughly using topological parameters and functional enrichment analysis. The significant genes in the network were then identified based on the maximum degree parameter. The overall survival analysis indicated through hazard ratio [HR] and gene expression [log Fold Change] across pancreatic adenocarcinoma revealed the critical role of FN1 [HR 1.4; log2(FC) 5.748], FGA [HR 0.78; log2(FC) 1.639] FGG [HR 0.9; log2(FC) 1.597], C3 [HR 1.1; log2(FC) 2.637], and QSOX1 [HR 1.4; log2(FC) 2.371]. The functional significance of the identified hub genes signified the enrichment of integrin cell surface interactions and proteoglycan syndecan-mediated cell signaling. The differential expression, low overall survival and functional significance of FN1 gene implied its possible role in controlling metastasis in pancreatic cancer. Furthermore, alternate splice variants of FN1 gene showed 10 protein coding transcripts with conserved cell attachment site and functional domains indicating the variants' potential role in pancreatic cancer. The strong association of the identified hub-genes can be better directed to design potential theranostics biomarkers for metastasized pancreatic tumor.
Collapse
Affiliation(s)
- Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.,Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.,Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Treesa Saju
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.,Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.,Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India. .,Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
17
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Zhou WH, Du WD, Li YF, Al-Aroomi MA, Yan C, Wang Y, Zhang ZY, Liu FY, Sun CF. The Overexpression of Fibronectin 1 Promotes Cancer Progression and Associated with M2 Macrophages Polarization in Head and Neck Squamous Cell Carcinoma Patients. Int J Gen Med 2022; 15:5027-5042. [PMID: 35607361 PMCID: PMC9123938 DOI: 10.2147/ijgm.s364708] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the biological roles of fibronectin 1 (FN1) in head and neck squamous cell carcinoma (HNSCC) and its effects on macrophage M2 polarization. Methods We analyzed FN1 expression pattern and examined its clinical relevance in HNSCC progression by bioinformatic analysis. Small interfering RNA (siRNA) was utilized to silence FN1 in HNSCC cells. Cell counting kit-8 (CCK-8) assay, colony formation assay, Transwell assay and wound healing assay were performed to reveal the effect of FN1 on malignant behaviors of HNSCC cells. Moreover, a co-culture model of macrophages and HNSCC cells was established to investigate whether FN1 induce macrophage M2 polarization. Finally, we used bioinformatic methods to explore the possible FN1-related pathways in HNSCC. Results FN1 is significantly overexpressed in HNSCC patients and has been obviously correlated with higher pathological stage and poor prognosis. Downregulation of FN1 suppressed the proliferation, migration and invasion of HNSCC cells, and inhibited macrophage M2 polarization in vitro. In addition, “PI3K-Akt” and “MAPK” signaling pathways may be involved in the malignant process of FN1 in HNSCC. Conclusion The overexpression of FN1 promotes HNSCC progression and induces macrophages M2 polarization. FN1 may serve as a promising prognostic biomarker and therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Wan-Hang Zhou
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Wei-Dong Du
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Yan-Fei Li
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, People’s Republic of China
| | - Maged Ali Al-Aroomi
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Cong Yan
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Yao Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Ze-Ying Zhang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| | - Fa-Yu Liu
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
- Correspondence: Fa-Yu Liu; Chang-Fu Sun, Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110000, People’s Republic of China, Tel +86 24 22894773, Fax +86 24 86602310, Email ;
| | - Chang-Fu Sun
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University; Oral Diseases Laboratory of Liaoning, Shenyang, 110000, People’s Republic of China
| |
Collapse
|
19
|
Ramelyte E, Restivo G, Mannino M, Levesque MP, Dummer R. Advances in the drug management of basal cell carcinoma. Expert Opin Pharmacother 2022; 23:573-582. [PMID: 35081851 DOI: 10.1080/14656566.2022.2032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Basal cell carcinoma (BCC) is the most common skin cancer in humans. Recently, BCCs were suggested to be classified into 'easy to treat' and 'difficult to treat,' and different therapeutic options are suggested for their management. AREAS COVERED In this review, the authors discuss treatment options that are approved, recommended for, or are still in development for treatment of BCC. The review covers approved local therapies, such as imiquimod and 5-fluorouracil, and systemic therapies, such as hedgehog inhibitors. New medical agents, investigated in clinical trials, are reviewed. These include: targeted therapies, such as GLI antagonists or anti-VEGFR agents, immunotherapies, such as checkpoint inhibitors, recombinant cytokines or silencing RNA, as well as intralesional virotherapies with modified adeno- or herpes viruses. EXPERT OPINION The progress made in recent years has improved the management of patients with advanced BCC; however, neither tumor targeting nor immune system engaging agents provide a cure. New treatment approaches directed not only to known targets but also the tumor microenvironment are in development and are anticipated to improve the management of difficult to treat BCC.
Collapse
Affiliation(s)
- Egle Ramelyte
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Maria Mannino
- Department of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Wolfarth AA, Dhar S, Goon JB, Ezeanya UI, Ferrando-Martínez S, Lee BH. Advancements of Common Gamma-Chain Family Cytokines in Cancer Immunotherapy. Immune Netw 2022; 22:e5. [PMID: 35291658 PMCID: PMC8901704 DOI: 10.4110/in.2022.22.e5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Swati Dhar
- NeoImmuneTech, Inc., Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
21
|
Du Y, Xu J. Engineered Bifunctional Proteins for Targeted Cancer Therapy: Prospects and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103114. [PMID: 34585802 DOI: 10.1002/adma.202103114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional proteins (BFPs) are a class of therapeutic agents produced through genetic engineering and protein engineering, and are increasingly used to treat various human diseases, including cancer. These proteins usually have two or more biological functions-specifically recognizing different molecular targets to regulate the related signaling pathways, or mediating effector molecules/cells to kill tumor cells. Unlike conventional small-molecule or single-target drugs, BFPs possess stronger biological activity but lower systemic toxicity. Hence, BFPs are considered to offer many benefits for the treatment of heterogeneous tumors. In this review, the authors briefly describe the unique structural feature of BFP molecules and innovatively divide them into bispecific antibodies, cytokine-based BFPs (immunocytokines), and protein toxin-based BFPs (immunotoxins) according to their mode of action. In addition, the latest advances in the development of BFPs are discussed and the potential limitations or problems in clinical applications are outlined. Taken together, future studies need to be centered on understanding the characteristics of BFPs for optimizing and designing more effective such drugs.
Collapse
Affiliation(s)
- Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021; 18:488-505. [PMID: 33875860 DOI: 10.1038/s41571-021-00499-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Bone metastases are a frequent and severe complication of advanced-stage cancers. Breast and prostate cancers, the most common malignancies in women and men, respectively, have a particularly high propensity to metastasize to bone. Conceptually, circulating tumour cells (CTCs) in the bloodstream and disseminated tumour cells (DTCs) in the bone marrow provide a snapshot of the dissemination and colonization process en route to clinically apparent bone metastases. Many cell types that constitute the bone microenvironment, including osteoblasts, osteocytes, osteoclasts, adipocytes, endothelial cells, haematopoietic stem cells and immune cells, engage in a dialogue with tumour cells. Some of these cells modify tumour biology, while others are disrupted and out-competed by tumour cells, thus leading to distinct phases of tumour cell migration, dormancy and latency, and therapy resistance and progression to overt bone metastases. Several current bone-protective therapies act by interrupting these interactions, mainly by targeting tumour cell-osteoclast interactions. In this Review, we describe the functional roles of the bone microenvironment and its components in the initiation and propagation of skeletal metastases, outline the biology and clinical relevance of CTCs and DTCs, and discuss established and future therapeutic approaches that specifically target defined components of the bone microenvironment to prevent or treat skeletal metastases.
Collapse
Affiliation(s)
- Lorenz C Hofbauer
- University Center for Healthy Aging, Dresden University of Technology, Dresden, Germany. .,Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) partner site Dresden, Dresden, Germany.
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Martina Rauner
- University Center for Healthy Aging, Dresden University of Technology, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Franz Jakob
- Department of Orthopedic Surgery, Julius Maximilians University of Würzburg, Würzburg, Germany.,Department of Functional Materials in Medicine and Dentistry, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
23
|
Lin Q, Fu Q, Chen D, Yu B, Luo Y, Huang Z, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Functional Characterization of Porcine NK-Lysin: A Novel Immunomodulator That Regulates Intestinal Inflammatory Response. Molecules 2021; 26:molecules26144242. [PMID: 34299517 PMCID: PMC8307250 DOI: 10.3390/molecules26144242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine NK-Lysine (PNKL) is a new antimicrobial peptide (AMP) identified in the small intestine. In this study, PNKL protein was obtained through heterologous expression in Escherichia coli and was estimated by SDS-PAGE at 33 kDa. The antibacterial activities of PNKL were determined using various bacterial strains and showed broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria. Furthermore, E. coli K88-challenged IPEC-J2 cells were used to determine PNKL influences on inflammatory responses. Hemolytic assays showed that PNKL had no detrimental impact on cell viability. Interestingly, PNKL elevated the viability of IPEC-J2 cells exposure to E. coli K88. PNKL significantly decreased the cell apoptosis rate, and improved the distribution and abundance of tight junction protein ZO-1 in IPEC-J2 cells upon E. coli K88-challenge. Importantly, PNKL not only down regulated the expressions of inflammatory cytokines such as the IL-6 and TNF-α, but also down regulated the expressions of NF-κB, Caspase3, and Caspase9 in the E. coli K88-challenged cells. These results suggest a novel function of natural killer (NK)-lysin, and the anti-bacterial and anti-inflammatory properties of PNKL may allow it a potential substitute for conventionally used antibiotics or drugs.
Collapse
Affiliation(s)
- Qian Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Qingqing Fu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (Q.F.); (D.C.); (B.Y.); (Y.L.); (Z.H.); (P.Z.); (X.M.); (J.Y.); (J.L.); (H.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-1781; Fax: +86-28-8629-0922
| |
Collapse
|
24
|
Baumann M, Bacchus C. Radiation Oncology - Towards a mission-oriented approach to cancer. Mol Oncol 2021; 14:1429-1430. [PMID: 32615032 PMCID: PMC7332219 DOI: 10.1002/1878-0261.12730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Carol Bacchus
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Serum Liberation of Fetal Fibronectin Variants in Patients with Pulmonary Hypertension: ED-A + Fn as Promising Novel Biomarker of Pulmonary Vascular and Right Ventricular Myocardial Remodeling. J Clin Med 2021; 10:jcm10122559. [PMID: 34207881 PMCID: PMC8229629 DOI: 10.3390/jcm10122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Aims: Pulmonary Hypertension (PH) represents an aetiologically and clinically heterogeneous disorder accompanied by a severely impaired prognosis. Key steps of PH pathogenesis are vascular and right ventricular myocardial remodelling entailing the re-occurrence of fetal variants of the cell adhesion modulating protein fibronectin (Fn) being virtually absent in healthy adult tissues. These variants are liberated into circulation and are therefore qualified as excellent novel serum biomarkers. Moreover, these molecules might serve as promising therapeutic targets. The current study was aimed at quantifying the serum levels of two functionally important fetal Fn variants (ED-A+ and ED-B+ Fn) in patients suffering from PH due to different aetiologies compared to healthy controls. Methods: Serum levels of ED-A+ and ED-B+ Fn were quantified using novel ELISA protocols established and validated in our group in 80 PH patients and 40 controls. Results were analysed with respect to clinical, laboratory, echocardiographic and functional parameters. Results: Serum levels of ED-A+ Fn (p = 0.001) but not ED-B+ Fn (p = 0.722) were significantly increased in PH patients compared to healthy controls. Thus, the following analyses were performed only for ED-A+ Fn. When dividing PH patients into different aetiological groups according to current ESC guidelines, the increase in ED-A+ Fn in PH patients compared to controls remained significant for group 1 (p = 0.032), 2 (p = 0.007) and 3 (p = 0.001) but not for group 4 (p = 0.156). Correlation analysis revealed a significant relation between ED-A+ Fn and brain natriuretic peptide (BNP) (r = 0.310; p = 0.002), six minutes’ walk test (r = −0.275; p = 0.02) and systolic pulmonary artery pressure (PAPsys) (r = 0.364; p < 0.001). By logistic regression analysis (backward elimination WALD) including a variety of potentially relevant patients’ characteristics, only chronic kidney disease (CKD) (OR: 8.866; CI: 1.779–44.187; p = 0.008), C reactive protein (CRP) (OR: 1.194; CI: 1.011–1.410; p = 0.037) and ED-A+ Fn (OR: 1.045; CI: 1.011–1.080; p = 0.009) could be identified as independent predictors of the presence of PH. Conclusions: Against the background of our results, ED-A+ Fn could serve as a promising novel biomarker of PH with potential value for initial diagnosis and aetiological differentiation. Moreover, it might contribute to more precise risk stratification of PH patients. Beyond that, the future role of ED-A+ Fn as a therapeutic target has to be evaluated in further studies.
Collapse
|
26
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
27
|
Spada S, Tocci A, Di Modugno F, Nisticò P. Fibronectin as a multiregulatory molecule crucial in tumor matrisome: from structural and functional features to clinical practice in oncology. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:102. [PMID: 33731188 PMCID: PMC7972229 DOI: 10.1186/s13046-021-01908-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Deciphering extracellular matrix (ECM) composition and architecture may represent a novel approach to identify diagnostic and therapeutic targets in cancer. Among the ECM components, fibronectin and its fibrillary assembly represent the scaffold to build up the entire ECM structure, deeply affecting its features. Herein we focus on this extraordinary protein starting from its complex structure and defining its role in cancer as prognostic and theranostic marker.
Collapse
Affiliation(s)
- Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
28
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
29
|
Van Limbergen EJ, Hoeben A, Lieverse RIY, Houben R, Overhof C, Postma A, Zindler J, Verhelst F, Dubois LJ, De Ruysscher D, Troost EGC, Lambin P. Toxicity of L19-Interleukin 2 Combined with Stereotactic Body Radiation Therapy: A Phase 1 Study. Int J Radiat Oncol Biol Phys 2020; 109:1421-1430. [PMID: 33285270 DOI: 10.1016/j.ijrobp.2020.11.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE The immunocytokine L19-IL2 delivers interleukin-2 to the tumor by exploiting the selective L19-dependent binding of extradomain B of fibronectin on tumor blood vessels. In preclinical models, L19-IL2 has been shown to enhance the local and abscopal effects of radiation therapy. The clinical safety of L19-IL2 monotherapy has been established previously. In this study, the safety and tolerability of L19-IL2 after stereotactic body radiation therapy (SBRT) was assessed. METHODS AND MATERIALS Patients with oligometastatic solid tumors received radical SBRT to all visible metastases. Within 1 week after SBRT, intravenous L19-IL2 using a 3 + 3 dose escalation design was administered. Safety and tolerability were analyzed as the primary endpoint using the Common Terminology Criteria for Adverse Events 4.03 scoring system, with progression-free and overall survival as secondary endpoints. RESULTS A total of 6 patients in 2 L19-IL2 dose levels were included. The 15 million International Units (Mio IU) dose level was well tolerated with no dose-limiting toxicity. The most frequently reported adverse events were chills, noninfectious fever, fatigue, edema, erythema, pruritus, nausea/vomiting, and cough and dyspnea. Blood analysis revealed abnormalities in liver function tests, anemia, hypoalbuminemia, and hypokalemia. At the second dose level (ie, 22.5 Mio IU), which is the recommended dose for L19-IL2 monotherapy, all 3 included patients experienced dose-limiting toxicity but recovered without sequelae. We documented 2 long-term progression-free responders, both having non-small cell lung cancer as primary tumor. CONCLUSIONS Based on the results of this phase 1 clinical trial, the recommended phase 2 dose for SBRT combined with L19-IL2 is 15 Mio IU. The therapeutic efficacy of this combination is currently being evaluated in the multicentric EU-funded phase 2 clinical trial, ImmunoSABR.
Collapse
Affiliation(s)
- Evert Jan Van Limbergen
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Internal Medicine, Division of Medical Oncology, GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Relinde I Y Lieverse
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Chantal Overhof
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Alida Postma
- Department of Radiology and Nuclear Medicine, GROW-School for Oncology, School for Mental Health and Sciences, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jaap Zindler
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands; Department of Radiotherapy, Erasmus University Medical Centre Cancer Institute, Rotterdam, The Netherlands; Holland Proton Therapy Centre, Delft, The Netherlands
| | - Frans Verhelst
- Department of Internal Medicine, Division of Pulmonology, H.-Hartziekenhuis, Lier, Belgium
| | - Ludwig J Dubois
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany; Helmholtz-Zentrum Dresden- Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Philippe Lambin
- The D-Lab & The M-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
30
|
Abstract
INTRODUCTION Anticalin proteins are engineered versions of lipocalins that constitute a novel class of clinical-stage biopharmaceuticals. The lipocalins exhibit a central β-barrel with eight antiparallel β-strands and an α-helix attached to its side. Four structurally variable loops at the open end of the β-barrel form a pronounced binding pocket, which can be reshaped to generate specificities toward diverse disease-relevant molecular targets. AREAS COVERED This article reviews the current status of Anticalin engineering, from the basic principles to the development of Anticalins with high target affinity and specificity via combinatorial protein design and directed evolution, including examples of Anticalin-based drug candidates under preclinical and clinical development. EXPERT OPINION Combinatorial gene libraries together with powerful molecular selection techniques have enabled the expansion of the natural ligand specificities of lipocalins from small molecules to peptides and proteins. This biomolecular concept has been validated by structural analyses of a series of Anticalin•target complexes. Promising Anticalin lead candidates have reached different preclinical and clinical development stages in the areas of (immuno)oncology, metabolic, and respiratory diseases, as antidotes to treat intoxications and as novel antibiotics. Thus, Anticalins offer an alternative to antibodies with promising and potentially superior features as next-generation biologics.
Collapse
Affiliation(s)
| | - Elena Ilyukhina
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
31
|
Lieverse RIY, Van Limbergen EJ, Oberije CJG, Troost EGC, Hadrup SR, Dingemans AMC, Hendriks LEL, Eckert F, Hiley C, Dooms C, Lievens Y, de Jong MC, Bussink J, Geets X, Valentini V, Elia G, Neri D, Billiet C, Abdollahi A, Pasquier D, Boisselier P, Yaromina A, De Ruysscher D, Dubois LJ, Lambin P. Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: a multicentre, randomised controlled open-label phase II trial. BMC Cancer 2020; 20:557. [PMID: 32539805 PMCID: PMC7296663 DOI: 10.1186/s12885-020-07055-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND About 50% of non-small cell lung cancer (NSCLC) patients have metastatic disease at initial diagnosis, which limits their treatment options and, consequently, the 5-year survival rate (15%). Immune checkpoint inhibitors (ICI), either alone or in combination with chemotherapy, have become standard of care (SOC) for most good performance status patients. However, most patients will not obtain long-term benefit and new treatment strategies are therefore needed. We previously demonstrated clinical safety of the tumour-selective immunocytokine L19-IL2, consisting of the anti-ED-B scFv L19 antibody coupled to IL2, combined with stereotactic ablative radiotherapy (SABR). METHODS This investigator-initiated, multicentric, randomised controlled open-label phase II clinical trial will test the hypothesis that the combination of SABR and L19-IL2 increases progression free survival (PFS) in patients with limited metastatic NSCLC. One hundred twenty-six patients will be stratified according to their metastatic load (oligo-metastatic: ≤5 or poly-metastatic: 6 to 10) and randomised to the experimental-arm (E-arm) or the control-arm (C-arm). The C-arm will receive SOC, according to the local protocol. E-arm oligo-metastatic patients will receive SABR to all lesions followed by L19-IL2 therapy; radiotherapy for poly-metastatic patients consists of irradiation of one (symptomatic) to a maximum of 5 lesions (including ICI in both arms if this is the SOC). The accrual period will be 2.5-years, starting after the first centre is initiated and active. Primary endpoint is PFS at 1.5-years based on blinded radiological review, and secondary endpoints are overall survival, toxicity, quality of life and abscopal response. Associative biomarker studies, immune monitoring, CT-based radiomics, stool collection, iRECIST and tumour growth rate will be performed. DISCUSSION The combination of SABR with or without ICI and the immunocytokine L19-IL2 will be tested as 1st, 2nd or 3rd line treatment in stage IV NSCLC patients in 14 centres located in 6 countries. This bimodal and trimodal treatment approach is based on the direct cytotoxic effect of radiotherapy, the tumour selective immunocytokine L19-IL2, the abscopal effect observed distant from the irradiated metastatic site(s) and the memory effect. The first results are expected end 2023. TRIAL REGISTRATION ImmunoSABR Protocol Code: NL67629.068.18; EudraCT: 2018-002583-11; Clinicaltrials.gov: NCT03705403; ISRCTN ID: ISRCTN49817477; Date of registration: 03-April-2019.
Collapse
Affiliation(s)
- Relinde I Y Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cary J G Oberije
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Marie C Dingemans
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Crispin Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christophe Dooms
- Department of Respiratory Diseases, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Monique C de Jong
- Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066, Amsterdam, CX, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavier Geets
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, MIRO - IREC Lab, UCL, Bruxelles, Belgium
| | - Vincenzo Valentini
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Istituto di Radiologia, Roma, Italy
| | - Giuliano Elia
- Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Charlotte Billiet
- Department of Radiation Oncology, Iridium Network, Wilrijk (Antwerp), Belgium
- University of Antwerp, Faculty of Medicine and Health Sciences, Campus Drie Eiken, Building S, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Pasquier
- Academic Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center, Lille, France
| | - Pierre Boisselier
- Department of Radiation Oncology, ICM-Val d'Aurelle, Université de Montpellier, Montpellier, France
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ludwig J Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|