1
|
Meng K, Meng F, Wu Y, Lin L. Multi-omics analysis identified extracellular vesicles as biomarkers for cardiovascular diseases. Talanta 2024; 280:126710. [PMID: 39213888 DOI: 10.1016/j.talanta.2024.126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cell-derived extracellular vesicles (EVs) have emerged as a promising non-invasive liquid biopsy technique due to their accessibility and their ability to encapsulate and transport diverse biomolecules. EVs have garnered substantial research interest, notably in cardiovascular diseases (CVDs), where their roles in pathophysiology and as diagnostic and prognostic biomarkers are increasingly recognized. This review provides a comprehensive overview of EVs, starting with their origins, followed by the techniques used for their isolation and characterization. We explore the diverse cargo of EVs, including nucleic acids, proteins, lipids, and metabolites, highlighting their roles in intercellular communication and as potential biomarkers. We then delve into the application of genomics, transcriptomics, proteomics, and metabolomics in the analysis of EVs, particularly within the context of CVDs. Finally, we discuss how integrated multi-omics approaches are unveiling novel biomarkers, offering fresh insights into the diagnosis and prognosis of CVDs. This review underscores the growing importance of EVs in clinical diagnostics and the potential of multi-omics to propel future advancements in CVD biomarker discovery.
Collapse
Affiliation(s)
- Ke Meng
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Fanqi Meng
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361004, Fujian, China
| | - Yuan Wu
- Department of Cardiac Surgery, Yuebei People's Hospital, Shaoguan, Guangdong, China.
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Rayamajhi S, Gibbs BK, Sipes J, Pathak HB, Bossmann SH, Godwin AK. Tracking Small Extracellular Vesicles Using a Minimally Invasive PicoGreen Labeling Strategy. ACS APPLIED BIO MATERIALS 2024. [PMID: 39482871 DOI: 10.1021/acsabm.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted lipid bilayer delimited particles that mediate cellular communication. These tiny sacs of cellular information play an important role in cell communication and alter the physiological process under both normal and pathological conditions. As such, tracking EVs can provide valuable information regarding the basic understanding of cell communication, the onset of early malignancy, and biomarker discovery. Most of the current EV-tracking strategies are invasive, altering the natural characteristics of EVs by modifying the lipid bilayer with lipophilic dyes or surface proteins with fluorescent reporters. The invasive labeling strategies could alter the natural processes of EVs and thereby have major limitations for functional studies. Here, we report an alternative minimally invasive EV labeling strategy using PicoGreen (PG), a small molecule that fluoresces at 520 nm when bound to dsDNA. We show that PG binds to dsDNA associated with small EVs (50-200 nm), forming a stable and highly fluorescent PG-DNA complex in EVs (PG-EVs). In both 2D cell culture and 3D organoid models, PG-EV showed efficient tracking properties, including a high signal-to-noise ratio, time- and concentration-dependent uptake, and the ability to traverse a 3D environment. We further validated PG-EV tracking using dual-labeled EVs following two orthogonal labeling strategies: (1) Bioconjugation via surface amine labeling and (2) donor cell engineering via endogenously expressing mCherry-tetraspanin (CD9/CD63/CD81) reporter proteins. Our study has shown the feasibility of using PG-EV as an effective EV tracking strategy that can be applied for studying the functional role of EVs across multiple model systems.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Benjamin K Gibbs
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jared Sipes
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
3
|
Laplane L, Maley CC. The evolutionary theory of cancer: challenges and potential solutions. Nat Rev Cancer 2024; 24:718-733. [PMID: 39256635 DOI: 10.1038/s41568-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/12/2024]
Abstract
The clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve. The performance and value of the clonal evolution model depends on the empirical extent to which evolutionary processes are involved in cancer, and on its theoretical ability to account for those evolutionary processes. Here, we identify limits in the theoretical performance of the clonal evolution model and provide solutions to overcome those limits. Although we do not claim that clonal evolution can explain everything about cancer, we show how many of the complexities that have been identified in the dynamics of cancer can be integrated into the model to improve our current understanding of cancer.
Collapse
Affiliation(s)
- Lucie Laplane
- UMR 8590 Institut d'Histoire et Philosophie des Sciences et des Techniques, CNRS, University Paris I Pantheon-Sorbonne, Paris, France
- UMR 1287 Hematopoietic Tissue Aging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024:118583. [PMID: 39353793 DOI: 10.1016/j.atherosclerosis.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.
Collapse
Affiliation(s)
- Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| |
Collapse
|
5
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Lv L, Zhang J, Wang Y, Liang H, Liu Q, Hu F, Li H, Su W, Zhang J, Chen R, Chen Z, Wang Z, Li J, Yan R, Yang M, Chang Y, Li J, Liang T, Xing G, Chen K. Boron Neutron Capture Therapy-Derived Extracellular Vesicles via DNA Accumulation Boost Antitumor Dendritic Cell Vaccine Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405158. [PMID: 39021327 PMCID: PMC11425286 DOI: 10.1002/advs.202405158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/20/2024]
Abstract
Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.
Collapse
Affiliation(s)
- Linwen Lv
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsArtemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Yujiao Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Haojun Liang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Qiuyang Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Fan Hu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Hao Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Wenxi Su
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Junhui Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ranran Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ziteng Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Zhijie Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Jiacheng Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ruyu Yan
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Mingxin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ya‐nan Chang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Juan Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Tianjiao Liang
- Guangdong‐Hong Kong‐Macao Joint Laboratory for Neutron Scattering Science and TechnologySpallation Neutron Source Science CenterDongguan523803China
| | - Gengmei Xing
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Kui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| |
Collapse
|
7
|
Di Santo R, Verdelli F, Niccolini B, Varca S, Gaudio AD, Di Giacinto F, De Spirito M, Pea M, Giovine E, Notargiacomo A, Ortolani M, Di Gaspare A, Baldi A, Pizzolante F, Ciasca G. Exploring novel circulating biomarkers for liver cancer through extracellular vesicle characterization with infrared spectroscopy and plasmonics. Anal Chim Acta 2024; 1319:342959. [PMID: 39122286 DOI: 10.1016/j.aca.2024.342959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with cirrhosis being a major risk factor. Traditional blood markers like alpha-fetoprotein (AFP) demonstrate limited efficacy in distinguishing between HCC and cirrhosis, underscoring the need for more effective diagnostic methodologies. In this context, extracellular vesicles (EVs) have emerged as promising candidates; however, their practical diagnostic application is restricted by the current lack of label-free methods to accurately profile their molecular content. To address this gap, our study explores the potential of mid-infrared (mid-IR) spectroscopy, both alone and in combination with plasmonic nanostructures, to detect and characterize circulating EVs. RESULTS EVs were extracted from HCC and cirrhotic patients. Mid-IR spectroscopy in the Attenuated Total Reflection (ATR) mode was utilized to identify potential signatures for patient classification, highlighting significant changes in the Amide I-II region (1475-1700 cm-1). This signature demonstrated diagnostic performance comparable to AFP and surpassed it when the two markers were combined. Further investigations utilized a plasmonic metasurface suitable for ultrasensitive spectroscopy within this spectral range. This device consists of two sets of parallel rod-shaped gold nanoantennas (NAs); the longer NAs produced an intense near-field amplification in the Amide I-II bands, while the shorter NAs were utilized to provide a sharp reflectivity edge at 1800-2200 cm-1 for EV mass-sensing. A clinically relevant subpopulation of EVs was targeted by conjugating NAs with an antibody specific to Epithelial Cell Adhesion Molecule (EpCAM). This methodology enabled the detection of variations in the quantity of EpCAM-presenting EVs and revealed changes in the Amide I-II lineshape. SIGNIFICANCE The presented results can positively impact the development of novel laboratory methods for the label-free characterization of EVs, based on the combination between mid-IR spectroscopy and plasmonics. Additionally, data obtained by using HCC and cirrhotic subjects as a model system, suggest that this approach could be adapted for monitoring these conditions.
Collapse
Affiliation(s)
- R Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy; Dipartimento di Scienze della Vita, della salute e delle Professioni sanitarie, Link Campus University, Rome, Italy
| | - F Verdelli
- Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven 5600 HH, The Netherlands
| | - B Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - S Varca
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Del Gaudio
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - M De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| | - M Pea
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - E Giovine
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - A Notargiacomo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - M Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - A Di Gaspare
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - A Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - F Pizzolante
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
9
|
Zhu S, Wu R, Liu X, Xie B, Xie C, Li S, Wu Z, Zhang Z, Tang Z, Gu L. Clinical application of ctDNA in early diagnosis, treatment and prognosis of patients with non-small cell lung cancer. Future Oncol 2024; 20:2213-2224. [PMID: 39073412 PMCID: PMC11514542 DOI: 10.1080/14796694.2024.2376513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Lung cancer is one of the most common malignancies worldwide, with non-small cell lung cancer (NSCLC) being the most common type. As understanding of precise treatment options for NSCLC deepens, circulating tumor DNA (ctDNA) has emerged as a potential biomarker that has become a research hotspot and may represent a new approach for the individualized diagnosis and treatment of NSCLC. This article reviews the applications of ctDNA for the early screening of patients with NSCLC, guiding targeted therapy and immunotherapy, evaluating chemotherapy and postoperative efficacy, assessing prognosis and monitoring recurrence. With the in-depth study of the pathogenesis of NSCLC, plasma ctDNA may become an indispensable part of the precise treatment of NSCLC, which has great clinical application prospects.
Collapse
Affiliation(s)
- Shenyu Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Rongqian Wu
- Department of Endocrinology and Metabolism, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangjin Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bin Xie
- First Clinical Medical College, The Gannan Medical University, Ganzhou, China
| | - Chunfa Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Shulin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Zhicheng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Zuxiong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Zhixian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Liang Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| |
Collapse
|
10
|
Dang XTT, Phung CD, Lim CMH, Jayasinghe MK, Ang J, Tran T, Schwarz H, Le MTN. Dendritic cell-targeted delivery of antigens using extracellular vesicles for anti-cancer immunotherapy. Cell Prolif 2024; 57:e13622. [PMID: 38509634 PMCID: PMC11216926 DOI: 10.1111/cpr.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Neoantigen delivery using extracellular vesicles (EVs) has gained extensive interest in recent years. EVs derived from tumour cells or immune cells have been used to deliver tumour antigens or antitumor stimulation signals. However, potential DNA contamination from the host cell and the cost of large-scale EV production hinder their therapeutic applications in clinical settings. Here, we develop an antigen delivery platform for cancer vaccines from red blood cell-derived EVs (RBCEVs) targeting splenic DEC-205+ dendritic cells (DCs) to boost the antitumor effect. By loading ovalbumin (OVA) protein onto RBCEVs and delivering the protein to DCs, we were able to stimulate and present antigenic OVA peptide onto major histocompatibility complex (MHC) class I, subsequently priming activated antigen-reactive T cells. Importantly, targeted delivery of OVA using RBCEVs engineered with anti-DEC-205 antibody robustly enhanced antigen presentation of DCs and T cell activation. This platform is potentially useful for producing personalised cancer vaccines in clinical settings.
Collapse
Affiliation(s)
- Xuan T. T. Dang
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cao Dai Phung
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Claudine Ming Hui Lim
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jorgen Ang
- School of Applied ScienceRepublic PolytechnicWoodlandsSingapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Disease Translational Research ProgramNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeNational University of SingaporeSingaporeSingapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeNational University of SingaporeSingaporeSingapore
| | - Minh T. N. Le
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology ProgrammeNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, Technology and ResearchSingaporeSingapore
| |
Collapse
|
11
|
Singh PK, Sarchet P, Hord C, Casadei L, Pollock R, Prakash S. Mechanical property estimation of sarcoma-relevant extracellular vesicles using transmission electron microscopy. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e158. [PMID: 38966868 PMCID: PMC11222873 DOI: 10.1002/jex2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024]
Abstract
Analysis of single extracellular vesicles (EVs) has the potential to yield valuable label-free information on their morphological structure, biomarkers and therapeutic targets, though such analysis is hindered by the lack of reliable and quantitative measurements of the mechanical properties of these compliant nanoscale particles. The technical challenge in mechanical property measurements arises from the existing tools and methods that offer limited throughput, and the reported elastic moduli range over several orders of magnitude. Here, we report on a flow-based method complemented by transmission electron microscopy (TEM) imaging to provide a high throughput, whole EV deformation analysis for estimating the mechanical properties of liposarcoma-derived EVs as a function of their size. Our study includes extracting morphological data of EVs from a large dataset of 432 TEM images, with images containing single to multiple EVs, and implementing the thin-shell deformation theory. We estimated the elastic modulus, E = 0.16 ± 0.02 MPa (mean±SE) for small EVs (sEVs; 30-150 nm) and E = 0.17 ± 0.03 MPa (mean±SE) for large EVs (lEVs; >150 nm). To our knowledge, this is the first report on the mechanical property estimation of LPS-derived EVs and has the potential to establish a relationship between EV size and EV mechanical properties.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Patricia Sarchet
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Catherine Hord
- Center for Life Sciences EducationThe Ohio State UniversityColumbusOhioUSA
| | - Lucia Casadei
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Raphael Pollock
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
12
|
Phillips D, Noble D. Reply from Daniel Phillips and Denis Noble. J Physiol 2024; 602:2669-2672. [PMID: 38305416 DOI: 10.1113/jp286224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Daniel Phillips
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Zhang Y, Ding N, Li Y, Ouyang M, Fu P, Peng Y, Tan Y. Transcription factor FOXM1 specifies chromatin DNA to extracellular vesicles. Autophagy 2024; 20:1054-1071. [PMID: 37974331 PMCID: PMC11135825 DOI: 10.1080/15548627.2023.2284523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicle DNAs (evDNAs) hold significant diagnostic value for various diseases and facilitate transcellular transfer of genetic material. Our study identifies transcription factor FOXM1 as a mediator for directing chromatin genes or DNA fragments (termed FOXM1-chDNAs) to extracellular vesicles (EVs). FOXM1 binds to MAP1LC3/LC3 in the nucleus, and FOXM1-chDNAs, such as the DUX4 gene and telomere DNA, are designated by FOXM1 binding and translocated to the cytoplasm before being released to EVs through the secretory autophagy during lysosome inhibition (SALI) process involving LC3. Disrupting FOXM1 expression or the SALI process impairs FOXM1-chDNAs incorporation into EVs. FOXM1-chDNAs can be transmitted to recipient cells via EVs and expressed in recipient cells when they carry functional genes. This finding provides an example of how chromatin DNA fragments are specified to EVs by transcription factor FOXM1, revealing its contribution to the formation of evDNAs from nuclear chromatin. It provides a basis for further exploration of the roles of evDNAs in biological processes, such as horizontal gene transfer.Abbreviation: ATG5: autophagy related 5; CCFs: cytoplasmic chromatin fragments; ChIP: chromatin immunoprecipitation; cytoDNA: cytoplasmic DNA; CQ: chloroquine; FOXM1-DBD: FOXM1 DNA binding domain; DUX4:double homeobox 4; EVs: extracellular vesicles; evDNAs: extracellular vesicle DNAs; FOXM1: forkhead box M1; FOXM1-chDNAs: chromatin DNA fragments directed by FOXM1 to EVs; HGT: horizontal gene transfer; LC3-II: lipid modified LC3; LMNB1: lamin B1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MVBs: multivesicular bodies; M1-binding DNA: a linear DNA containing 72× FOXM1 binding sites; SALI: secretory autophagy during lysosome inhibition; siRNA: small interfering RNA; TetO-DUX4: TetO array-containing DUX4 DNA; TetO: tet operator; TetR: tet repressor.
Collapse
Affiliation(s)
- Yunsheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
- The Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Nana Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Yizhen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Ping Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Yousong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, PR China
| |
Collapse
|
14
|
Hadpech S, Chaiyarit S, Phuangkham S, Sukphan S, Thongboonkerd V. The modulatory effects of large and small extracellular vesicles from normal human urine on calcium oxalate crystallization, growth, aggregation, adhesion on renal cells, and invasion through extracellular matrix: An in vitro study. Biomed Pharmacother 2024; 173:116393. [PMID: 38461684 DOI: 10.1016/j.biopha.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Urinary extracellular vesicles (uEVs) play important roles in physiologic condition and various renal/urological disorders. However, their roles in kidney stone disease remain unclear. This study aimed to examine modulatory effects of large and small uEVs derived from normal human urine on calcium oxalate (CaOx) crystals (the main component in kidney stones). After isolation, large uEVs, small uEVs and total urinary proteins (TUPs) with equal (protein equivalent) concentration were added into various crystal assays to compare with the control (without uEVs or TUPs). TUPs strongly inhibited CaOx crystallization, growth, aggregation and crystal-cell adhesion. Large uEVs had lesser degree of inhibition against crystallization, growth and crystal-cell adhesion, and comparable degree of aggregation inhibition compared with TUPs. Small uEVs had comparable inhibitory effects as of TUPs for all these crystal assays. However, TUPs and large uEVs slightly promoted CaOx invasion through extracellular matrix, whereas small uEVs did not affect this. Matching of the proteins reported in six uEVs datasets with those in the kidney stone modulator (StoneMod) database revealed that uEVs contained 18 known CaOx stone modulators (mainly inhibitors). These findings suggest that uEVs derived from normal human urine serve as CaOx stone inhibitors to prevent healthy individuals from kidney stone formation.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Sukphan
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
15
|
Caamaño D, Cabezas J, Aguilera C, Martinez I, Wong YS, Sagredo DS, Ibañez B, Rodriguez S, Castro FO, Rodriguez-Alvarez L. DNA Content in Embryonic Extracellular Vesicles Is Independent of the Apoptotic Rate in Bovine Embryos Produced In Vitro. Animals (Basel) 2024; 14:1041. [PMID: 38612280 PMCID: PMC11011075 DOI: 10.3390/ani14071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pre-implantation embryos release extracellular vesicles containing different molecules, including DNA. The presence of embryonic DNA in E-EVs released into the culture medium during in vitro embryo production could be useful for genetic diagnosis. However, the vesicles containing DNA might be derived from embryos suffering from apoptosis, i.e., embryos of bad quality. This work intended to confirm that embryos release DNA that is useful for genotyping by evaluating the effect of embryonic apoptosis on DNA content in E-EVs. Bovine embryos were produced by parthenogenesis and in vitro fertilization (IVF). On Day 5, morulae were transferred to individual cultures in an EV-depleted SOF medium. On Day 7, embryos were used to evaluate cellular apoptosis, and each culture medium was collected to evaluate E-EV concentration, characterization, and DNA quantification. While no effect of the origin of the embryo on the apoptotic rate was found, arrested morulae had a higher apoptotic rate. E-EVs containing DNA were identified in all samples, and the concentration of those vesicles was not affected by the origin or quality of the embryos. However, the concentration of DNA was higher in EVs released by the arrested parthenogenetic embryos. There was a correlation between the concentration of E-EVs, the concentration of DNA-positive E-EVs, and the concentration of DNA. There was no negative effect of apoptotic rate on DNA-positive E-EVs and DNA concentration; however, embryos of the best quality with a low apoptotic rate still released EVs containing DNA. This study confirms that the presence of DNA in E-EVs is independent of embryo quality. Therefore, E-EVs could be used in liquid biopsy for noninvasive genetic diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lleretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillán 3780000, Chile; (D.C.); (J.C.); (C.A.); (I.M.); (Y.S.W.); (D.S.S.); (B.I.); (S.R.); (F.O.C.)
| |
Collapse
|
16
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Suresh Kumar Meena Kumari M, Liu P, Jump K, Morales Y, Miller EA, Shecter I, Stadecker MJ, Kalantari P. NLRP3 and AIM2 inflammasomes exacerbate the pathogenic Th17 cell response to eggs of the helminth Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584371. [PMID: 38559160 PMCID: PMC10979858 DOI: 10.1101/2024.03.11.584371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Infection with the helminth Schistosoma mansoni can cause exacerbated morbidity and mortality via a pathogenic host CD4 T cell-mediated immune response directed against parasite egg antigens, with T helper (Th) 17 cells playing a major role in the development of severe granulomatous hepatic immunopathology. The role of inflammasomes in intensifying disease has been reported; however, neither the types of caspases and inflammasomes involved, nor their impact on the Th17 response are known. Here we show that enhanced egg-induced IL-1β secretion and pyroptotic cell death required both caspase-1 and caspase-8 as well as NLRP3 and AIM2 inflammasome activation. Schistosome genomic DNA activated AIM2, whereas reactive oxygen species, potassium efflux and cathepsin B, were the major activators of NLRP3. NLRP3 and AIM2 deficiency led to a significant reduction in pathogenic Th17 responses, suggesting their crucial and non-redundant role in promoting inflammation. Additionally, we show that NLRP3- and AIM2-induced IL-1β suppressed IL-4 and protective Type I IFN (IFN-I) production, which further enhanced inflammation. IFN-I signaling also curbed inflammasome- mediated IL-1β production suggesting that these two antagonistic pathways shape the severity of disease. Lastly, Gasdermin D (Gsdmd) deficiency resulted in a marked decrease in egg-induced granulomatous inflammation. Our findings establish NLRP3/AIM2-Gsdmd axis as a central inducer of pathogenic Th17 responses which is counteracted by IFN-I pathway in schistosomiasis.
Collapse
Affiliation(s)
- Madhusoodhanan Suresh Kumar Meena Kumari
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pengyu Liu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kaile Jump
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yoelkys Morales
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Emily A Miller
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ilana Shecter
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Miguel J. Stadecker
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Parisa Kalantari
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
19
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
20
|
Rakshit T, Pal S. Extracellular Vesicles for Drug Delivery and Theranostics In Vivo. JACS AU 2024; 4:318-327. [PMID: 38425894 PMCID: PMC10900499 DOI: 10.1021/jacsau.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanopouches generated by all cells and are abundant in various body fluids. Depending on the parent and recipient cells, EVs exchange diverse constituents including nucleic acids, proteins, carbohydrates, and metabolites. Morphologically, EVs suffer from low zeta potentials and short circulation times, but they also offer low intrinsic immunogenicity and inherent stability. Some crucial factors for the effective clinical application of EVs include controlling immune system clearance, achieving the large-scale production of EVs with efficient quality control, and determining the dominant mechanism of the in vivo action of EVs. In this Perspective, we shed light on how these intriguing nano-objects are utilized in cellular imaging and drug delivery for disease therapeutics. We also discuss potential strategies for overcoming the associated limitations.
Collapse
Affiliation(s)
- Tatini Rakshit
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Delhi-NCR 201314, India
| | - Suchetan Pal
- Department
of Chemistry, Department of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai, Durg 491001, India
| |
Collapse
|
21
|
Kisielewska M, Rakoczy K, Skowron I, Górczyńska J, Kacer J, Bocheńska A, Choromańska A. Utilizing Extracellular Vesicles for Eliminating 'Unwanted Molecules': Harnessing Nature's Structures in Modern Therapeutic Strategies. Molecules 2024; 29:948. [PMID: 38474460 DOI: 10.3390/molecules29050948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are small phospholipid bilayer-bond structures released by diverse cell types into the extracellular environment, maintaining homeostasis of the cell by balancing cellular stress. This article provides a comprehensive overview of extracellular vesicles, their heterogeneity, and diversified roles in cellular processes, emphasizing their importance in the elimination of unwanted molecules. They play a role in regulating oxidative stress, particularly by discarding oxidized toxic molecules. Furthermore, endoplasmic reticulum stress induces the release of EVs, contributing to distinct results, including autophagy or ER stress transmission to following cells. ER stress-induced autophagy is a part of unfolded protein response (UPR) and protects cells from ER stress-related apoptosis. Mitochondrial-derived vesicles (MDVs) also play a role in maintaining homeostasis, as they carry damaged mitochondrial components, thereby preventing inflammation. Moreover, EVs partake in regulating aging-related processes, and therefore they can potentially play a crucial role in anti-aging therapies, including the treatment of age-related diseases such as Alzheimer's disease or cardiovascular conditions. Overall, the purpose of this article is to provide a better understanding of EVs as significant mediators in both physiological and pathological processes, and to shed light on their potential for therapeutic interventions targeting EV-mediated pathways in various pathological conditions, with an emphasis on age-related diseases.
Collapse
Affiliation(s)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Kacer
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Agata Bocheńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
22
|
Ding T, Diao Y, Zeng X, Zhou L, Wu G, Liu J, Hao X. Influential factors on urine EV DNA methylation detection and its diagnostic potential in prostate cancer. Front Genet 2024; 15:1338468. [PMID: 38440192 PMCID: PMC10909848 DOI: 10.3389/fgene.2024.1338468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
The value of Extracellular vesicles (EVs) diagnostic markers is widely recognized. However, current research on EV DNA remains limited. This study investigates the biological properties, preprocessing factors, and diagnostic potential of EV DNA. We found that DNA positive vesicles account for 23.3% ± 6.7% of the urine total EV, with a large amount of DNA attached to the outside. EV DNA fragments are large, there is no significant effect on uEV DNA when store urine less than 6 h at 4°C. In addition, the influence of different EV extraction methods on methylation detection is also minor. More importantly, RASSF1A methylation in urine total EV DNA can distinguish between PCa and BPH, with an AUC of 0.874. Our results suggest the potential of urine EV DNA as a novel marker for PCa diagnosis. This provides a new idea for the study of urinary tumor markers.
Collapse
Affiliation(s)
- Ting Ding
- Fourth Military Medical University (Air Force Medical University), Xi’an, China
- School of Medicine, Northwest University, Xi’an, China
| | - Yanjun Diao
- Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Xianfei Zeng
- School of Medicine, Northwest University, Xi’an, China
- Shanxi Lifegen Co., Ltd., Xi’an, China
| | - Lei Zhou
- Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Guojun Wu
- School of Medicine, Northwest University, Xi’an, China
- Department of Urology, Xi’an People’s Hospital(Xi’an Fourth Hospital), Xi’an, China
| | - Jiayun Liu
- Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Xiaoke Hao
- Fourth Military Medical University (Air Force Medical University), Xi’an, China
- School of Medicine, Northwest University, Xi’an, China
| |
Collapse
|
23
|
Retana Moreira L, Cornet-Gomez A, Sepulveda MR, Molina-Castro S, Alvarado-Ocampo J, Chaves Monge F, Jara Rojas M, Osuna A, Abrahams Sandí E. Providing an in vitro depiction of microglial cells challenged with immunostimulatory extracellular vesicles of Naegleria fowleri. Front Microbiol 2024; 15:1346021. [PMID: 38374922 PMCID: PMC10876093 DOI: 10.3389/fmicb.2024.1346021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis, a rapid and acute infection of the central nervous system with a fatal outcome in >97% of cases. Due to the infrequent report of cases and diagnostic gaps that hinder the possibility of recovering clinic isolates, studies related to pathogenesis of the disease are scarce. However, the secretion of cytolytic molecules has been proposed as a factor involved in the progression of the infection. Several of these molecules could be included in extracellular vesicles (EVs), making them potential virulence factors and even modulators of the immune response in this infection. In this work, we evaluated the immunomodulatory effect of EVs secreted by two clinic isolates of Naegleria fowleri using in vitro models. For this purpose, characterization analyses between EVs produced by both isolates were first performed, for subsequent gene transcription analyses post incubation of these vesicles with primary cultures from mouse cell microglia and BV-2 cells. Analyses of morphological changes induced in primary culture microglia cells by the vesicles were also included, as well as the determination of the presence of nucleic acids of N. fowleri in the EV fractions. Results revealed increased expression of NOS, proinflammatory cytokines IL-6, TNF-α, and IL-23, and the regulatory cytokine IL-10 in primary cultures of microglia, as well as increased expression of NOS and IL-13 in BV-2 cells. Morphologic changes from homeostatic microglia, with small cellular body and long processes to a more amoeboid morphology were also observed after the incubation of these cells with EVs. Regarding the presence of nucleic acids, specific Naegleria fowleri DNA that could be amplified using both conventional and qPCR was confirmed in the EV fractions. Altogether, these results confirm the immunomodulatory effects of EVs of Naegleria fowleri over microglial cells and suggest a potential role of these vesicles as biomarkers of primary acute meningoencephalitis.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - M. Rosario Sepulveda
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Silvia Molina-Castro
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Johan Alvarado-Ocampo
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Frida Chaves Monge
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariana Jara Rojas
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
24
|
Ali A, Mahla SB, Reza V, Hossein A, Bahareh K, Mohammad H, Fatemeh S, Mostafa AB, Leili R. MicroRNAs: Potential prognostic and theranostic biomarkers in chronic lymphocytic leukemia. EJHAEM 2024; 5:191-205. [PMID: 38406506 PMCID: PMC10887358 DOI: 10.1002/jha2.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Small noncoding ribonucleic acids called microRNAs coordinate numerous critical physiological and biological processes such as cell division, proliferation, and death. These regulatory molecules interfere with the function of many genes by binding the 3'-UTR region of target mRNAs to inhibit their translation or even degrade them. Given that a large proportion of miRNAs behave as either tumor suppressors or oncogenes, any genetic or epigenetic aberration changeing their structure and/or function could initiate tumor formation and development. An example of such cancers is chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in Western nations, which is caused by unregulated growth and buildup of defective cells in the peripheral blood and lymphoid organs. Genetic alterations at cellular and molecular levels play an important role in the occurrence and development of CLL. In this vein, it was noted that the development of this disease is noticeably affected by changes in the expression and function of miRNAs. Many studies on miRNAs have shown that these molecules are pivotal in the prognosis of different cancers, including CLL, and their epigenetic alterations (e.g., methylation) can predict disease progression and response to treatment. Furthermore, miRNAs are involved in the development of drug resistance in CLL, and targeting these molecules can be considered a new therapeutic approach for the treatment of this disease. MiRNA screening can offer important information on the etiology and development of CLL. Considering the importance of miRNAs in gene expression regulation, their application in the diagnosis, prognosis, and treatment of CLL is reviewed in this paper.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sattarzadeh Bardsiri Mahla
- Stem Cells and Regenerative Medicine Innovation CenterKerman University of Medical SciencesKermanIran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Vahidi Reza
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Arezoomand Hossein
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Kashani Bahareh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Hosseininaveh Mohammad
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sharifi Fatemeh
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Amopour Bahnamiry Mostafa
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Rouhi Leili
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
25
|
Jiao Y, Gao L, Zhang T, He Z, Zheng SY, Liu W. Profiling DNA Cargos in Single Extracellular Vesicles via Hydrogel-Based Droplet Digital Multiple Displacement Amplification. Anal Chem 2024; 96:1293-1300. [PMID: 38189229 DOI: 10.1021/acs.analchem.3c04666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Due to the substantial heterogeneity among extracellular vesicle (EV) subpopulations, single-EV analysis has the potential to elucidate the mechanisms behind EV biogenesis and shed light on the myriad functions, leading to the development of novel diagnostics and therapeutics. While many studies have been devoted to reveal between-EV variations in surface proteins and RNAs, DNA cargos (EV-DNA) have received little attention. Here, we report a hydrogel-based droplet digital multiple displacement amplification approach for the comprehensive analysis of EV-DNA at the single-EV level. Single EVs are dispersed in thousands of hydrogel droplets and lysed for DNA amplification and identification. The droplet microfluidics strategy empowers the assay with single-molecule sensitivity and capability for absolute quantification of DNA-containing EVs. In particular, our findings indicate that 5-40% EVs are associated with DNA, depending on the cell of origin. Large EVs exhibit a higher proportion of DNA-containing EVs and a more substantial presence of intraluminal DNA, compared to small EVs. These DNA-containing EVs carry multiple DNA fragments on average. Furthermore, both double-stranded DNA and single-stranded DNA were able to be detected at the single-EV level. Utilizing this method, the abundance, distribution, and biophysical properties of EV-DNA in various EV populations are evaluated. The DNA level within EVs provides insight into the status of the originating cells and offers valuable information on the outcomes of anticancer treatments. The utilization of single-EV analysis for EV-DNA holds significant promise for early cancer detection and treatment response monitoring.
Collapse
Affiliation(s)
- Yufeng Jiao
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Liyang Gao
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ziyi He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | | | - Wu Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
26
|
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, Gangopadhyay M, Jha SK, Liu Q. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer 2024; 23:18. [PMID: 38243280 PMCID: PMC10797874 DOI: 10.1186/s12943-024-01932-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Moumita Gangopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, Delhi, 110008, India.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
27
|
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, Ciasca G. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123346. [PMID: 37774583 DOI: 10.1016/j.saa.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are lipid vesicles secreted by all cells into the extracellular space and act as nanosized biological messengers among cells. They carry a specific molecular cargo, composed of lipids, proteins, nucleic acids, and carbohydrates, which reflects the state of their parent cells. Due to their remarkable structural and compositional heterogeneity, characterizing EVs, particularly from a biochemical perspective, presents complex challenges. In this context, mid-infrared (IR) spectroscopy is emerging as a valuable tool, providing researchers with a comprehensive and label-free spectral fingerprint of EVs in terms of their specific molecular content. This review aims to provide an up-to-date critical overview of the major advancements in mid-IR spectroscopy of extracellular vesicles, encompassing both fundamental and applied research achievements. We also systematically emphasize the new possibilities offered by the integration of emerging cutting-edge IR technologies, such as tip-enhanced and surface-enhanced spectroscopy approaches, along with the growing use of machine learning for data analysis and spectral interpretation. Additionally, to assist researchers in navigating this intricate subject, our manuscript includes a wide and detailed collection of the spectral peaks that have been assigned to EV molecular constituents up to now in the literature.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
28
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
29
|
Jiang Y, Zhu Y, Shao Y, Yang K, Zhu L, Liu Y, Zhang P, Zhang X, Zhou Y. Platelet-Derived Apoptotic Vesicles Promote Bone Regeneration via Golgi Phosphoprotein 2 (GOLPH2)-AKT Signaling Axis. ACS NANO 2023; 17:25070-25090. [PMID: 38047915 PMCID: PMC10753896 DOI: 10.1021/acsnano.3c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Apoptotic vesicles (apoVs) are apoptotic-cell-derived nanosized vesicles that take on dominant roles in regulating bone homeostasis. We have demonstrated that mesenchymal stem cell (MSC)-derived apoVs are promising therapeutic agents for bone regeneration. However, clinical translation of MSC-derived apoVs has been hindered due to cell expansion and nuclear substance. As another appealing source for apoV therapy, blood cells could potentially eliminate these limitations. However, whether blood cells can release apoVs during apoptosis is uncertain, and the detailed characteristics and biological properties of respective apoVs are not elucidated. In this study, we showed that platelets (PLTs) could rapidly release abundant apoVs during apoptosis in a short time. To recognize the different protein expressions between PLT-derived apoVs and PLTs, we established their precise protein landscape. Furthermore, we identified six proteins specifically enriched in PLT-derived apoVs, which could be considered as specific biomarkers. More importantly, PLT-derived apoVs promoted osteogenesis of MSCs and rescued bone loss via Golgi phosphoprotein 2 (GOLPH2)-induced AKT phosphorylation, therefore, leading to the emergence of their potential in bone regeneration. In summary, we comprehensively determined characteristics of PLT-derived apoVs and confirmed their roles in bone metabolism through previously unrecognized GOPLH2-dependent AKT signaling, providing more understanding for exploring apoV-based therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Yuhe Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Lei Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
30
|
Xiang Z, Xie Q, Yu Z. Exosomal DNA: Role in Reflecting Tumor Genetic Heterogeneity, Diagnosis, and Disease Monitoring. Cancers (Basel) 2023; 16:57. [PMID: 38201485 PMCID: PMC10778000 DOI: 10.3390/cancers16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs), with exosomes at the forefront, are key in transferring cellular information and assorted biological materials, including nucleic acids. While exosomal RNA has been thoroughly examined, exploration into exosomal DNA (exoDNA)-which is stable and promising for cancer diagnostics-lags behind. This hybrid genetic material, combining contributions from both nuclear and mitochondrial DNA (mtDNA), is rooted in the cytoplasm. The enigmatic process concerning its cytoplasmic encapsulation continues to captivate researchers. Covering the entire genetic landscape, exoDNA encases significant oncogenic alterations in genes like TP53, ALK, and IDH1, which is vital for clinical assessment. This review delves into exosomal origins, the ins and outs of DNA encapsulation, and exoDNA's link to tumor biology, underscoring its superiority to circulating tumor DNA in the biomarker arena for both detection and therapy. Amidst scientific progress, there are complexities in the comprehension and practical application of the exoDNA surface. Reflecting on these nuances, we chart the prospective research terrain and potential pitfalls, forging a path for future inquiry. By illuminating both the known and unknown facets of exoDNA, the objective of this review is to provide guidance to the field of liquid biopsy (LB) while minimizing the occurrence of avoidable blind spots and detours.
Collapse
Affiliation(s)
- Ziyi Xiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Qihui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Zili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
31
|
Lu Y, Godbout K, Lamothe G, Tremblay JP. CRISPR-Cas9 delivery strategies with engineered extracellular vesicles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102040. [PMID: 37842166 PMCID: PMC10571031 DOI: 10.1016/j.omtn.2023.102040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Therapeutic genome editing has the potential to cure diseases by directly correcting genetic mutations in tissues and cells. Recent progress in the CRISPR-Cas9 systems has led to breakthroughs in gene editing tools because of its high orthogonality, versatility, and efficiency. However, its safe and effective administration to target organs in patients is a major hurdle. Extracellular vesicles (EVs) are endogenous membranous particles secreted spontaneously by all cells. They are key actors in cell-to-cell communication, allowing the exchange of select molecules such as proteins, lipids, and RNAs to induce functional changes in the recipient cells. Recently, EVs have displayed their potential for trafficking the CRISPR-Cas9 system during or after their formation. In this review, we highlight recent developments in EV loading, surface functionalization, and strategies for increasing the efficiency of delivering CRISPR-Cas9 to tissues, organs, and cells for eventual use in gene therapies.
Collapse
Affiliation(s)
- Yaoyao Lu
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Kelly Godbout
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Gabriel Lamothe
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| |
Collapse
|
32
|
Nieuwland R, Enciso-Martinez A, Bracht JWP. Clinical applications and challenges in the field of extracellular vesicles. MED GENET-BERLIN 2023; 35:251-258. [PMID: 38835736 PMCID: PMC11006345 DOI: 10.1515/medgen-2023-2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Body fluids contain cell-derived particles called extracellular vesicles (EVs). EVs are released by cells and are present in all body fluids (i. e. liquid biopsies). EVs contribute to physiology and pathology and offer a plethora of potential clinical applications, ranging from biomarkers to therapeutic applications. In this manuscript we provide an overview of this new and rapidly growing research field, along with its challenges and opportunities.
Collapse
Affiliation(s)
- Rienk Nieuwland
- Amsterdam UMC, location University of Amsterdam Amsterdam Vesicle Center, Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry Amsterdam The Netherlands
| | - Agustin Enciso-Martinez
- Amsterdam UMC location University of Amsterdam, Amsterdam Vesicle Center, Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry Amsterdam The Netherlands
| | - Jillian W P Bracht
- Amsterdam UMC, location AMC Amsterdam Vesicle Center, Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry Amsterdam The Netherlands
| |
Collapse
|
33
|
Szatmári T, Balázs K, Csordás IB, Sáfrány G, Lumniczky K. Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles. Strahlenther Onkol 2023; 199:1191-1213. [PMID: 37347291 DOI: 10.1007/s00066-023-02098-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
In the past decades, plenty of evidence has gathered pointing to the role of extracellular vesicles (EVs) secreted by irradiated cells in the development of radiation-induced non-targeted effects. EVs are complex natural structures composed of a phospholipid bilayer which are secreted by virtually all cells and carry bioactive molecules. They can travel certain distances in the body before being taken up by recipient cells. In this review we discuss the role and fate of EVs in tumor cells and highlight the importance of DNA specimens in EVs cargo in the context of radiotherapy. The effect of EVs depends on their cargo, which reflects physiological and pathological conditions of donor cell types, but also depends on the mode of EV uptake and mechanisms involved in the route of EV internalization. While the secretion and cargo of EVs from irradiated cells has been extensively studied in recent years, their uptake is much less understood. In this review, we will focus on recent knowledge regarding the EV uptake of cancer cells and the effect of radiation in this process.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary.
| | - Katalin Balázs
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Ilona Barbara Csordás
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Géza Sáfrány
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| |
Collapse
|
34
|
Wandrey M, Jablonska J, Stauber RH, Gül D. Exosomes in Cancer Progression and Therapy Resistance: Molecular Insights and Therapeutic Opportunities. Life (Basel) 2023; 13:2033. [PMID: 37895415 PMCID: PMC10608050 DOI: 10.3390/life13102033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The development of therapy resistance still represents a major hurdle in treating cancers, leading to impaired treatment success and increased patient morbidity. The establishment of minimally invasive liquid biopsies is a promising approach to improving the early diagnosis, as well as therapy monitoring, of solid tumors. Because of their manifold functions in the tumor microenvironment, tumor-associated small extracellular vesicles, referred to as exosomes, have become a subject of intense research. Besides their important roles in cancer progression, metastasis, and the immune response, it has been proposed that exosomes also contribute to the acquisition and transfer of therapy resistance, mainly by delivering functional proteins and RNAs, as well as facilitating the export of active drugs or functioning as extracellular decoys. Extensive research has focused on understanding the molecular mechanisms underlying the occurrence of resistance and translating these into strategies for early detection. With this review, we want to provide an overview of the current knowledge about the (patho-)biology of exosomes, as well as state-of-the-art methods of isolation and analysis. Furthermore, we highlight the role of exosomes in tumorigenesis and cancer treatment, where they can function as therapeutic agents, biomarkers, and/or targets. By focusing on their roles in therapy resistance, we will reveal new paths of exploiting exosomes for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Madita Wandrey
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Jadwiga Jablonska
- Translational Oncology/ENT Department, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany;
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Roland H. Stauber
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Désirée Gül
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| |
Collapse
|
35
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
36
|
Gregory CD, Rimmer MP. Extracellular vesicles arising from apoptosis: forms, functions, and applications. J Pathol 2023; 260:592-608. [PMID: 37294158 PMCID: PMC10952477 DOI: 10.1002/path.6138] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher D Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| | - Michael P Rimmer
- Centre for Reproductive HealthInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| |
Collapse
|
37
|
Kurtulmuş A, Koçana CÇ, Toprak SF, Sözer S. The role of Extracellular Genomic Materials (EGMs) in psychiatric disorders. Transl Psychiatry 2023; 13:262. [PMID: 37464177 PMCID: PMC10354097 DOI: 10.1038/s41398-023-02549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Extracellular Genomic Materials (EGMs) are the nucleic acids secreted or released from all types of cells by endogenous or exogenous stimuli through varying mechanisms into the extracellular region and inevitably to all biological fluids. EGMs could be found as free, protein-bound, and/ or with vesicles. EGMs can potentially have immunophenotypic and/or genotypic characteristics of a cell of origin, travel to distant organs, and interact with the new microenvironment. To achieve all, EGMs might bi-directionally transit through varying membranes, including the blood-brain barrier. Such ability provides the transfer of any information related to the pathophysiological changes in psychiatric disorders in the brain to the other distant organ systems or vice versa. In this article, many aspects of EGMs have been elegantly reviewed, including their potential in diagnosis as biomarkers, application in treatment modalities, and functional effects in the pathophysiology of psychiatric disorders. The psychiatric disorders were studied under subgroups of Schizophrenia spectrum disorders, bipolar disorder, depressive disorders, and an autism spectrum disorders. EGMs provide a robust and promising tool in clinics for prognosis and diagnosis. The successful application of EGMs into treatment modalities might further provide encouraging outcomes for researchers and clinicians in psychiatric disorders.
Collapse
Affiliation(s)
- Ayşe Kurtulmuş
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
- Istanbul Göztepe Prof.Dr.Süleyman Yalçın City Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Cemal Çağıl Koçana
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
38
|
Dave KM, Stolz DB, Manickam DS. Delivery of mitochondria-containing extracellular vesicles to the BBB for ischemic stroke therapy. Expert Opin Drug Deliv 2023; 20:1769-1788. [PMID: 37921194 DOI: 10.1080/17425247.2023.2279115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Ischemic stroke-induced mitochondrial dysfunction in brain endothelial cells (BECs) leads to breakdown of the blood-brain barrier (BBB) causing long-term neurological dysfunction. Restoration of mitochondrial function in injured BECs is a promising therapeutic strategy to alleviate stroke-induced damage. Mounting evidence demonstrate that selected subsets of cell-derived extracellular vehicles (EVs), such as exosomes (EXOs) and microvesicles (MVs), contain functional mitochondrial components. Therefore, development of BEC-derived mitochondria-containing EVs for delivery to the BBB will (1) alleviate mitochondrial dysfunction and limit long-term neurological dysfunction in ischemic stroke and (2) provide an alternative therapeutic option for treating numerous other diseases associated with mitochondrial dysfunction. AREA COVERED This review will discuss (1) how EV subsets package different types of mitochondrial components during their biogenesis, (2) mechanisms of EV internalization and functional mitochondrial responses in the recipient cells, and (3) EV biodistribution and pharmacokinetics - key factors involved in the development of mitochondria-containing EVs as a novel BBB-targeted stroke therapy. EXPERT OPINION Mitochondria-containing MVs have demonstrated therapeutic benefits in ischemic stroke and other pathologies associated with mitochondrial dysfunction. Delivery of MV mitochondria to the BBB is expected to protect the BBB integrity and neurovascular unit post-stroke. MV mitochondria quality control, characterization, mechanistic understanding of its effects in vivo, safety and efficacy in different preclinical models, large-scale production, and establishment of regulatory guidelines are foreseeable milestones to harness the clinical potential of MV mitochondria delivery.
Collapse
Affiliation(s)
- Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Pan X, Zhang W, Guo H, Wang L, Wu H, Ding L, Yang B. Strategies involving STING pathway activation for cancer immunotherapy: Mechanism and agonists. Biochem Pharmacol 2023; 213:115596. [PMID: 37201875 DOI: 10.1016/j.bcp.2023.115596] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Recent studies have expanded the known functions of cGAS-STING in inflammation to a role in cancer due to its participation in activating immune surveillance. In cancer cells, the cGAS-STING pathway can be activated by cytosolic dsDNA derived from genomic, mitochondrial and exogenous origins. The resulting immune-stimulatory factors from this cascade can either attenuate tumor growth or recruit immune cells for tumor clearance. Furthermore, STING-IRF3-induced type I interferon signaling can enforce tumor antigen presentation on dendritic cells and macrophages and thus cross-prime CD8+ T cells for antitumor immunity. Given the functions of the STING pathway in antitumor immunity, multiple strategies are being developed and tested with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells to elicit immunostimulatory effects, either alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. Based on the canonical molecular mechanism of STING activation, numerous strategies for inducing mitochondrial and nuclear dsDNA release have been used to activate the cGAS-STING signaling pathway. Other noncanonical strategies that activate cGAS-STING signaling, including the use of direct STING agonists and STING trafficking facilitation, also show promise in type I interferon release and antitumor immunity priming. Here, we review the key roles of the STING pathway in different steps of the cancer-immunity cycle and characterize the canonical and noncanonical mechanisms of cGAS-STING pathway activation to understand the potential of cGAS-STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
40
|
Li C, Wang C, Xie HY, Huang L. Cell-Based Biomaterials for Coronavirus Disease 2019 Prevention and Therapy. Adv Healthc Mater 2023; 12:e2300404. [PMID: 36977465 DOI: 10.1002/adhm.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to threaten human health, economic development, and national security. Although many vaccines and drugs have been explored to fight against the major pandemic, their efficacy and safety still need to be improved. Cell-based biomaterials, especially living cells, extracellular vesicles, and cell membranes, offer great potential in preventing and treating COVID-19 owing to their versatility and unique biological functions. In this review, the characteristics and functions of cell-based biomaterials and their biological applications in COVID-19 prevention and therapy are described. First the pathological features of COVID-19 are summarized, providing enlightenment on how to fight against COVID-19. Next, the classification, organization structure, characteristics, and functions of cell-based biomaterials are focused on. Finally, the progress of cell-based biomaterials in overcoming COVID-19 in different aspects, including the prevention of viral infection, inhibition of viral proliferation, anti-inflammation, tissue repair, and alleviation of lymphopenia are comprehensively described. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
41
|
Cohen R, Platell CF, McCoy MJ, Meehan K, Fuller K. Circulating tumour DNA in colorectal cancer management. Br J Surg 2023; 110:773-783. [PMID: 37190784 PMCID: PMC10364542 DOI: 10.1093/bjs/znad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Circulating tumour DNA analysis can be performed using two opposing paradigms: tumour-informed and tumour-agnostic approaches. The first requires sequencing data from the primary tumour sample to identify tumour DNA in circulation, whereas the latter occurs without previous primary tumour genetic profiling.
Several preanalytical and laboratory considerations need to be taken into account before proceeding with in-house circulating tumour DNA analysis.
Detection of circulating tumour DNA after curative resection is associated with a significant risk of recurrence. For those with stage II disease and detectable postoperative circulating tumour DNA, administration of adjuvant chemotherapy results in a reduction in the number of patients receiving chemotherapy while providing non-inferior recurrence-free survival compared with standard histopathological decision-making algorithms.
Monitoring circulating tumour DNA during post-treatment surveillance may provide a significantly earlier diagnosis of recurrence.
Collapse
Affiliation(s)
- Ryan Cohen
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Colorectal Cancer Unit, St John of God Subiaco Hospital, Perth, Western Australia, Australia
| | - Cameron F Platell
- Colorectal Cancer Unit, St John of God Subiaco Hospital, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Melanie J McCoy
- Colorectal Cancer Unit, St John of God Subiaco Hospital, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Katie Meehan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kathy Fuller
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
42
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
43
|
Aseervatham J. Dynamic Role of Exosome microRNAs in Cancer Cell Signaling and Their Emerging Role as Noninvasive Biomarkers. BIOLOGY 2023; 12:biology12050710. [PMID: 37237523 DOI: 10.3390/biology12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Exosomes are extracellular vesicles that originate from endosomes and are released by all cells irrespective of their origin or type. They play an important role in cell communication and can act in an autocrine, endocrine, or paracrine fashion. They are 40-150 nm in diameter and have a similar composition to the cell of origin. An exosome released by a particular cell is unique since it carries information about the state of the cell in pathological conditions such as cancer. miRNAs carried by cancer-derived exosomes play a multifaceted role by taking part in cell proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, apoptosis, and immune evasion. Depending on the type of miRNA that it carries as its cargo, it can render cells chemo- or radiosensitive or resistant and can also act as a tumor suppressor. Since the composition of exosomes is affected by the cellular state, stress, and changes in the environment, they can be used as diagnostic or prognostic biomarkers. Their unique ability to cross biological barriers makes them an excellent choice as vehicles for drug delivery. Because of their easy availability and stability, they can be used to replace cancer biopsies, which are invasive and expensive. Exosomes can also be used to follow the progression of diseases and monitor treatment strategies. A better understanding of the roles and functions of exosomal miRNA can be used to develop noninvasive, innovative, and novel treatments for cancer.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
44
|
Takeda M, Akamatsu S, Kita Y, Goto T, Kobayashi T. The Roles of Extracellular Vesicles in the Progression of Renal Cell Carcinoma and Their Potential for Future Clinical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101611. [PMID: 37242027 DOI: 10.3390/nano13101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and is thought to originate from renal tubular epithelial cells. Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are secreted into extracellular spaces by nearly all cell types, including cancer cells and non-cancerous cells. EVs are involved in multiple steps of RCC progression, such as local invasion, host immune modulation, drug resistance, and metastasis. Therefore, EVs secreted from RCC are attracting rapidly increasing attention from researchers. In this review, we highlight the mechanism by which RCC-derived EVs lead to disease progression as well as the potential and challenges related to the clinical implications of EV-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Masashi Takeda
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
45
|
Lichá K, Pastorek M, Repiská G, Celec P, Konečná B. Investigation of the Presence of DNA in Human Blood Plasma Small Extracellular Vesicles. Int J Mol Sci 2023; 24:ijms24065915. [PMID: 36982989 PMCID: PMC10051167 DOI: 10.3390/ijms24065915] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Extracellular DNA (ecDNA) is DNA outside of cells, which is a result of various mechanisms. EcDNA is believed to be a cause of various pathogeneses as well as their potential biomarker. EcDNA is believed to also be part of small extracellular vesicles (sEVs) from cell cultures. If ecDNA is present in sEVs in plasma, their membrane may protect it from degradation by deoxyribonucleases. Moreover, sEVs play a role in the intercellular communication, and they can therefore transfer ecDNA between cells. The aim of this study was to investigate the presence of ecDNA in sEVs isolated from fresh human plasma by the ultracentrifugation and density gradient, which serves to exclude the co-isolation of non-sEVs compartments. The novelty of the current study is the investigation of the localization and subcellular origin of the ecDNA associated with sEVs in plasma, as well as the estimation of the approximate concentration. The cup-shaped sEVs were confirmed by transmission electron microscopy. The highest concentration of particles was in the size of 123 nm. The presence of the sEVs markers CD9 and TSG101 was confirmed by western blot. It was found that 60-75% of DNA is on the surface of sEVs, but a part of the DNA is localized inside the sEVs. Moreover, both nuclear and mitochondrial DNA were present in plasma EVs. Further studies should focus on the potential harmful autoimmune effect of DNA carried by plasma EVs or specifically sEVs.
Collapse
Affiliation(s)
- Kristína Lichá
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| |
Collapse
|
46
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Gao Y, Yu Z. Advances of multi-omics applications in hepatic precancerous lesions and hepatocellular carcinoma: The role of extracellular vesicles. Front Mol Biosci 2023; 10:1114594. [PMID: 37006626 PMCID: PMC10060991 DOI: 10.3389/fmolb.2023.1114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Due to the lack of distinct early symptoms and specific biomarkers, most patients with hepatocellular carcinoma (HCC) are usually diagnosed at advanced stages, rendering the treatment ineffective and useless. Therefore, recognition of the malady at precancerous lesions and early stages is particularly important for improving patient outcomes. The interest in extracellular vesicles (EVs) has been growing in recent years with the accumulating knowledge of their multiple cargoes and related multipotent roles in the modulation of immune response and tumor progression. By virtue of the rapid advancement of high-throughput techniques, multiple omics, including genomics/transcriptomics, proteomics, and metabolomics/lipidomics, have been widely integrated to analyze the role of EVs. Comprehensive analysis of multi-omics data will provide useful insights for discovery of new biomarkers and identification of therapeutic targets. Here, we review the attainment of multi-omics analysis to the finding of the potential role of EVs in early diagnosis and the immunotherapy in HCC.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| |
Collapse
|
47
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
48
|
Jimenez SA, Piera-Velazquez S. Probable role of exosomes in the extension of fibrotic alterations from affected to normal cells in systemic sclerosis. Rheumatology (Oxford) 2023; 62:999-1008. [PMID: 35944210 PMCID: PMC9977136 DOI: 10.1093/rheumatology/keac451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
SSc is a systemic autoimmune disease of unknown etiology characterized by frequently progressive cutaneous and internal organ fibrosis causing severe disability, organ failure and high mortality. A remarkable feature of SSc is the extension of the fibrotic alterations to nonaffected tissues. The mechanisms involved in the extension of fibrosis have remained elusive. We propose that this process is mediated by exosome microvesicles released from SSc-affected cells that induce an activated profibrotic phenotype in normal or nonaffected cells. Exosomes are secreted microvesicles involved in an intercellular communication system. Exosomes can transfer their macromolecular content to distant target cells and induce paracrine effects in the recipient cells, changing their molecular pathways and gene expression. Confirmation of this hypothesis may identify the molecular mechanisms responsible for extension of the SSc fibrotic process from affected cells to nonaffected cells and may allow the development of novel therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
49
|
Tatischeff I. Extracellular Vesicle-DNA: The Next Liquid Biopsy Biomarker for Early Cancer Diagnosis? Cancers (Basel) 2023; 15:cancers15051456. [PMID: 36900248 PMCID: PMC10000627 DOI: 10.3390/cancers15051456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
After a short introduction about the history of liquid biopsy, aimed to noninvasively replace the common tissue biopsy as a help for cancer diagnosis, this review is focused on extracellular vesicles (EVs), as the main third component, which is now coming into the light of liquid biopsy. Cell-derived EV release is a recently discovered general cellular property, and EVs harbor many cellular components reflecting their cell of origin. This is also the case for tumoral cells, and their cargoes might therefore be a "treasure chest" for cancer biomarkers. This has been extensively explored for a decade, but the EV-DNA content escaped this worldwide query until recently. The aim of this review is to gather the pilot studies focused on the DNA content of circulating cell-derived EVs, and the following five years of studies about the circulating tumor EV-DNA. The recent preclinical studies about the circulating tEV-derived gDNA as a potential cancer biomarker developed into a puzzling controversy about the presence of DNA into exosomes, coupled with an increased unexpected non vesicular complexity of the extracellular environment. This is discussed in the present review, together with the challenges that need to be solved before any efficient clinical transfer of EV-DNA as a quite promising cancer diagnosis biomarker.
Collapse
Affiliation(s)
- Irène Tatischeff
- Honorary CNRS and UPMC Research Director, Founder of RevInterCell, a Scientific Consulting Service, 91400 Orsay, France
| |
Collapse
|
50
|
Karmacharya M, Kumar S, Cho YK. Tuning the Extracellular Vesicles Membrane through Fusion for Biomedical Applications. J Funct Biomater 2023; 14:jfb14020117. [PMID: 36826916 PMCID: PMC9960107 DOI: 10.3390/jfb14020117] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Membrane fusion is one of the key phenomena in the living cell for maintaining the basic function of life. Extracellular vesicles (EVs) have the ability to transfer information between cells through plasma membrane fusion, making them a promising tool in diagnostics and therapeutics. This study explores the potential applications of natural membrane vesicles, EVs, and their fusion with liposomes, EVs, and cells and introduces methodologies for enhancing the fusion process. EVs have a high loading capacity, bio-compatibility, and stability, making them ideal for producing effective drugs and diagnostics. The unique properties of fused EVs and the crucial design and development procedures that are necessary to realize their potential as drug carriers and diagnostic tools are also examined. The promise of EVs in various stages of disease management highlights their potential role in future healthcare.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| |
Collapse
|