1
|
Yang F, Zheng X, Wang D, Yao E, Li Y, Huang W, Zhang L, Wang J, Zhong J. Significant diurnal variations in nitrous oxide (N 2O) emissions from two contrasting habitats in a large eutrophic lake (Lake Taihu, China). ENVIRONMENTAL RESEARCH 2024; 261:119691. [PMID: 39074775 DOI: 10.1016/j.envres.2024.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Algae and macrophytes in lake ecosystems regulate nitrous oxide (N2O) emissions from eutrophic lakes. However, knowledge of diurnal N2O emission patterns from different habitats remains limited. To understand the diurnal patterns and driving mechanisms of N2O emissions from contrasting habitats, continuous in situ observations (72 h) of N2O fluxes from an algae-dominated zone (ADZ) and reed-dominated zone (RDZ) in Lake Taihu were conducted using the Floating Chamber method. The results showed average N2O emission fluxes of 0.15 ± 0.06 and 0.02 ± 0.04 μmol m-2 h-1 in the ADZ and RDZ in autumn, respectively. The significantly higher (p < 0.05) N2O fluxes in the ADZ were mainly attributed to differences in nitrogen (N) levels. The results also showed significant diurnal differences (p < 0.05) in the N2O emission fluxes within the ADZ and RDZ, and daytime fluxes were significantly higher (p < 0.05) than nighttime fluxes. The statistical results indicated that N2O emissions from the ADZ were mainly driven by diurnal variations in N loading and the dissolved oxygen (DO) concentration, and those from the RDZ were more influenced by DO, redox potential, and pH. Finally, we determined the proper time for routine monitoring of N2O flux in the two habitats. Our results highlight the importance of considering diverse habitats and diurnal variations when estimating N2O budgets at a whole-lake scale.
Collapse
Affiliation(s)
- Fanyan Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, PR China
| | - Xiaolan Zheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Dongqi Wang
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, PR China
| | - Enqin Yao
- Huzhou Ecological and Environmental Monitoring Center, Zhejiang Province, Huzhou, 313000, PR China
| | - Yunchuang Li
- China Construction First Group Corporation Limited, Beijing, 100161, PR China
| | - Wei Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
2
|
Liu K, Machado PVF, Lin S, Drury CF, Lemke RL. Soil nitrous oxide emissions from wheat-based rotations with different types of pulse crops. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122830. [PMID: 39369532 DOI: 10.1016/j.jenvman.2024.122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Production of agricultural crops with a low greenhouse gas (GHG) footprint is essential to mitigate the adverse effects of climate change. The inclusion of pulse crops in cereal-based rotations can enhance environmental quality by providing biologically fixed N and thereby reducing the amount of synthetic N fertilizer required for the crop rotation. The inclusion of pulse crop has the potential to reduce N2O emissions from the agricultural system in both the legume phase and the subsequent wheat phase of the rotation. However, long-term studies are necessary to thoroughly investigate N2O emissions from rotations with pulse crops, particularly in the semiarid region where pulse crops are frequently grown. In the present study, we evaluated cumulative N2O emissions and emission intensity during the rotation cycle. The assessment was conducted over 4 years, during two complete 2-yr cycles of an established rotation (years 9-12), under the climatological conditions of 2018-2021. Four rotations including wheat-wheat, pea-wheat, lentil-wheat, and chickpea-wheat were selected from a trial in Swift Current, Saskatchewan (semiarid prairies/Brown Chernozem). Our experiment was subjected to below normal precipitation, with interannual variations in climate and the last 2 years (2020-21) were drier than the first two years (2018-2019). Under such climate, PW and LW demonstrated to be environmentally sustainable, always exporting the highest N in grains (133 kg N ha-1 averaged across PW and LW and cycles) and consistently achieving the lowest N2O intensity (2.8 g N2O-N per kg exported N averaged across PW and LW and cycles). Continuous wheat presented inconsistent results, with a significant reduction in exported N from years 9-10 to 11-12 (the driest cycle). Because WW also promoted the highest cumulative N2O emissions, N2O intensity over the 2-yr was always the highest for WW. The CW consistently promoted the lowest N exports and was not resilient to dry soil conditions, with 23% lower exported N in years 11-12 than in years 9-10. Hence including pulse crops with pea or lentil in the rotation reduced N2O emissions and enhanced wheat yield resiliency.
Collapse
Affiliation(s)
- K Liu
- Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK, S9H 3X2, Canada.
| | - P V F Machado
- Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK, S9H 3X2, Canada
| | - S Lin
- Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK, S9H 3X2, Canada
| | - C F Drury
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - R L Lemke
- Agriculture and Agri-Food Canada, 2585 Essex County Rd 20, Harrow, ON, N0R 1G0, Canada
| |
Collapse
|
3
|
Wang D, Zhang J, Han W, Wu P, Deng L, Wang W. Ammonia oxidizing bacteria (AOB) denitrification and bacterial denitrification as the main culprit of high N 2O emission in SBR with low C/N ratio wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122357. [PMID: 39232327 DOI: 10.1016/j.jenvman.2024.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A large amount of greenhouse gas nitrous oxide (N2O) will be produced during the biological nitrogen removal process for organic wastewater of low C/N ratio. One of the effective methods to solve this problem is to incorporate inexpensive carbon source. In this study, raw wastewater (RW) from pig farm, that was not anaerobically digested, was utilized as exogenous carbon in both A/O and SBR aerobic reactor to treat liquid digestate with high ammonia nitrogen and low C/N ratio. The results showed that N2O emission in SBR was higher than that of A/O process under the same nitrogen load. The N2O conversion in the biological nitrogen removal process was investigated by the strategy of integrating stable isotope method and metagenomics. The δO18-N2O, δN15-N2O, and SP values of the SBR were closer to the denitrification values of Ammonia-Oxidizing Bacteria (AOB) than those of A/O. The abundance of AOB in the SBR reactor was higher than that in the A/O reactor, while the abundance of denitrifying bacteria was lower. The amoA/B/C gene abundance in the SBR was greater than that in the A/O, and the NOS gene abundance was the opposite. The results indicated that both AOB denitrification and bacterial denitrification led to the increase of N2O emissions of the SBR.
Collapse
Affiliation(s)
- Dongxu Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Jingni Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Wenkai Han
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| |
Collapse
|
4
|
Chesebro BB, Gandhi S. Mitigating the systemic loss of nitrous oxide: a narrative review and data-driven practice analysis. Br J Anaesth 2024:S0007-0912(24)00509-9. [PMID: 39322471 DOI: 10.1016/j.bja.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Given the negative health impacts of climate change, clinicians have a fundamental responsibility to take an active role in mitigating the environmental impact of their practices. Inhaled anaesthetics are potent greenhouse gases, including nitrous oxide (N2O), with their long atmospheric lifetime, high global warming potential, and ozone-depleting properties. However, few clinicians realise that losses from central N2O supply systems account for the vast majority of overall N2O consumption in healthcare. Central N2O supply systems are standard in most facilities, compounding the impact of these under-recognised, unnecessary greenhouse gas emissions. We review the environmental impact of N2O in healthcare, offer N2O utilisation data from 47 hospitals in the USA, and provide clinician-targeted guidance for mitigating these widespread N2O emissions. Consistent with findings from the UK and Australia, data from two large US healthcare systems reveal significant nonclinical N2O losses of 47.2-99.8% of total procured N2O. As illustrated in one quaternary medical centre, the transition from central to portable supply systems reduced overall N2O consumption by 97.6%. To date, this mitigation initiative has been successfully implemented at over 25 hospitals in our system. Raising awareness of this considerable source of healthcare-specific N2O emissions empowers clinicians to spearhead facility-level engagement and action. As healthcare leaders, clinicians should advocate for decarbonisation of clinical practices and systems while ensuring high-quality patient care.
Collapse
Affiliation(s)
- Brian B Chesebro
- Center for Environmental Stewardship, Providence Health & Services, Renton, WA, USA; Oregon Anesthesiology Group PC, Portland, OR, USA.
| | - Seema Gandhi
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Sisharmini A, Wihardjaka A, Enggarini W, Apriana A, Hairmansis A, Amirhusin B. Field performance and nitrous oxide emissions of transgenic nitrogen use efficient rice lines cultivated in tropical paddy fields. Transgenic Res 2024:10.1007/s11248-024-00410-z. [PMID: 39266882 DOI: 10.1007/s11248-024-00410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
Nitrogen (N) fertilizers make up the majority of the input used in rice production, and their excess application leads to significant environmental pollution. Developing rice varieties with improved nitrogen use efficiency (NUE) is essential to maintain the sustainability of rice production. This study aims to evaluate the performance of transgenic Oryza sativa japonica cv. Kitaake expressing the barley (Hordeum vulgare) alanine aminotransferase (HvAlaAT) gene in response to different levels of N fertilizer application under tropical paddy field conditions. Results from this study demonstrate that transgenic nitrogen use efficient Kitaake rice (Kitaake NUE) displays a grain yield increase of up to 41% compared to Kitaake null. Transgenic Kitaake NUE expressing the HvAlaAT gene displays a higher N uptake and achieves a higher nitrogen use efficiency compared to control plants while maintaining lower nitrous oxide (N2O) fluxes. The reduction in N2O emissions in Kitaake NUE compared to Kitaake null ranges from 37.5 to 96.3%. The transgenic Kitaake NUE used in this study has potential as a donor to improve the nitrogen use efficiency of indica rice for better adaptability to tropical conditions.
Collapse
Affiliation(s)
- Atmitri Sisharmini
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Anicetus Wihardjaka
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Wening Enggarini
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Aniversari Apriana
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Aris Hairmansis
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Bahagiawati Amirhusin
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia.
| |
Collapse
|
6
|
Wu X, Du J, Gao Y, Wang H, Zhang C, Zhang R, He H, Lu GM, Wu Z. Progress and challenges in nitrous oxide decomposition and valorization. Chem Soc Rev 2024; 53:8379-8423. [PMID: 39007174 DOI: 10.1039/d3cs00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nitrous oxide (N2O) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel N2O reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent. In this review, we undertake a thorough evaluation of N2O treatment technologies from a holistic perspective. First, we summarize and update the recent progress in thermal decomposition, direct catalytic decomposition (deN2O), and selective catalytic reduction of N2O. The scope extends to the catalytic activity of emerging catalysts, including nanostructured materials and single-atom catalysts. Furthermore, we present a detailed account of the mechanisms and applications of room-temperature techniques characterized by low energy consumption and sustainable merits, including photocatalytic and electrocatalytic N2O reduction. This article also underscores the extensive and effective utilization of N2O resources in chemical synthesis scenarios, providing potential avenues for future resource reuse. This review provides an accessible theoretical foundation and a panoramic vision for practical N2O emission controls.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Yanxia Gao
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Zhang N, Chen K, Chen J, Ji W, Yang Z, Chen Z. Response Characteristics and Community Assembly Mechanisms of nirS-Type Denitrifiers in the Alpine Wetland under Simulated Precipitation Conditions. BIOLOGY 2024; 13:596. [PMID: 39194534 DOI: 10.3390/biology13080596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
The nitrogen cycling process in alpine wetlands is profoundly affected by precipitation changes, yet the dynamic response mechanism of denitrifiers to long-term precipitation shifts in the alpine wetland of the Qinghai-Tibet Plateau remains enigmatic. Utilizing high-throughput sequencing analysis of nirS-type functional genes, this study delved into the dynamic response mechanism of nirS-type denitrifiers to precipitation changes in the alpine wetland of Qinghai Lake. The findings revealed that nirS-type denitrifiers in the alpine wetland of Qinghai Lake were primarily Proteobacteria, and Alpha diversity exhibited a negative correlation with the precipitation gradient, with deterministic processes predominating in the community assembly of denitrifying microbes. A 50% increase in rainfall shifted the community assembly process of denitrifiers from deterministic to stochastic. Dominant microflora at the genus level responded significantly to precipitation changes, with aerobic bacteria comprising the majority of differentially abundant taxa (55.56%). As precipitation increased, the complexity of the microbial interaction network decreased, and a 25% reduction in precipitation notably elevated the relative abundance of three key functional groups: chemoheterotrophic, aerobic chemoheterotrophic, and nitrogen fixation. Precipitation notably emerged as the primary regulator of nirS-type denitrifiers in the alpine wetland of Qinghai Lake, accounting for 51% of the variation in community composition. In summary, this study offers a fresh perspective for investigating the ecological processes of nitrogen cycling in alpine ecosystems by examining the diversity and community composition of nirS-type denitrifiers in response to precipitation changes.
Collapse
Affiliation(s)
- Ni Zhang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Kelong Chen
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Department of Earth and Environmental Science, Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710061, China
- Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an 710061, China
| | - Wei Ji
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Ziwei Yang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Zhirong Chen
- College of Resources, Environment and Life Sciences, Ningxia Normal University, Guyuan 756099, China
| |
Collapse
|
8
|
Machacova K, Schindler T, Bréchet L, Mander Ü, Grams TEE. Substantial uptake of nitrous oxide (N 2O) by shoots of mature European beech. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173122. [PMID: 38734086 DOI: 10.1016/j.scitotenv.2024.173122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Similar to soils, tree stems emit and consume nitrous oxide (N2O) from the atmosphere. Although tree leaves dominate tree surface area, they have been completely excluded from field N2O flux measurements and therefore their role in forest N2O exchange remains unknown. We explored the contribution of leaf fluxes to forest N2O exchange. We determined the N2O exchange of mature European beech (Fagus sylvatica) stems and shoots (i.e., terminal branches) and of adjacent forest floor, in a typical temperate upland forest in Germany. The beech stems, and particularly the shoots, acted as net N2O sinks (-0.254 ± 0.827 μg N2O m-2 stem area h-1 and -4.54 ± 1.53 μg N2O m-2 leaf area h-1, respectively), while the forest floor was a net source (2.41 ± 1.08 μg N2O m-2 soil area h-1). The unstudied tree shoots were identified as a significant contributor to the net ecosystem N2O exchange. Moreover, we revealed for the first time that tree leaves act as substantial N2O sinks. Although this is the first study of its kind, it is of global importance for the proper design of future flux studies in forest ecosystems worldwide. Our results demonstrate that excluding tree leaves from forest N2O flux measurements can lead to misinterpretation of tree and forest N2O exchange, and thus global forest greenhouse gas flux inventories.
Collapse
Affiliation(s)
- Katerina Machacova
- Department of Ecosystem Trace Gas Exchange, Global Change Research Institute of the Czech Academy of Sciences, Belidla 4a, CZ-60300 Brno, Czech Republic.
| | - Thomas Schindler
- Department of Ecosystem Trace Gas Exchange, Global Change Research Institute of the Czech Academy of Sciences, Belidla 4a, CZ-60300 Brno, Czech Republic; Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia
| | - Laëtitia Bréchet
- INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, FR-97310 Kourou, France
| | - Ülo Mander
- Department of Ecosystem Trace Gas Exchange, Global Change Research Institute of the Czech Academy of Sciences, Belidla 4a, CZ-60300 Brno, Czech Republic; Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, 46 Vanemuise, EST-51014 Tartu, Estonia
| | - Thorsten E E Grams
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Von-Carlowitz-Platz 2, DE-85354 Freising, Germany
| |
Collapse
|
9
|
McGarrigle C, Hartigan S, Duffy O, Tan T. Perspectives on sustainable practices in the use of nitrous oxide for labour analgesia: A patient and staff survey. Eur J Anaesthesiol 2024; 41:473-479. [PMID: 38757157 DOI: 10.1097/eja.0000000000002005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BACKGROUND Climate change has emerged as the single biggest global health threat of the twenty-first century. Nitrous oxide accounts for the largest carbon footprint amongst our use of anaesthetic gas. It is a potent greenhouse gas possessing a global warming potential of approximately 265 times that of carbon dioxide. Despite recent curtailment of its use, it remains extensively employed as an analgesic for women in labour. OBJECTIVES Assessment of the opinions of post-natal women and staff on nitrous oxide use and to investigate whether knowledge of its environmental harm would influence their choice of labour analgesia. DESIGN Postnatal women and healthcare staff were invited to participate in a survey of nitrous oxide use as a labour analgesic and knowledge of its effect of the environment. SETTING A single-centre study in a major obstetric tertiary referral centre in Ireland in 2021. MAIN OUTCOME MEASURES To evaluate the awareness and perceptions of postnatal women and staff regarding the environmental impact of nitrous oxide and if it would affect their decision to use it in the future. RESULTS One hundred postnatal women and 50 healthcare staff completed the survey. One hundred and six post-natal women were invited to complete the survey, resulting in a response rate of 94%. Knowledge of nitrous oxide's environmental impact was low. After receiving information, 46% of patients were more inclined to seek epidural or request it earlier (54%) to limit their nitrous oxide use, while 51% would choose an alternative analgesia to avoid nitrous oxide altogether. Overwhelmingly, 99% believed they had the right to know about these harmful effects when choosing an analgesic option. CONCLUSIONS Patients should be informed of the environmental impact of nitrous oxide antenatally, empowering them to make informed decision on a climate friendly analgesic option if they wish.
Collapse
Affiliation(s)
- Conor McGarrigle
- From the Coombe Women & Infants University Hospital, Dublin, Ireland (CMG, SH, OD, TT)
| | | | | | | |
Collapse
|
10
|
Dong Y, Wang L, Wang F, Zou B, Lv G, Cui H, Ye Z. N 2O emission factors in bubbling fluidized bed incineration of municipal sewage sludge: The China case. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:253-259. [PMID: 38776827 DOI: 10.1016/j.wasman.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The N2O emissions resulting from sludge incineration are estimated using the default values published by the Intergovernmental Panel on Climate Change (IPCC), which may differ significantly from the actual emissions. In this investigation, N2O emissions from four sludge incineration lines in two plants were monitored for varying durations. The variation in N2O emission factors (EFs) between incineration lines of the same plant was much smaller than the difference between different plants. Data on N2O EFs obtained from brief monitoring may contain variabilities of up to 30%. N2O EFs were more sensitive to temperature changes at low temperatures, necessitating extended monitoring periods to improve the reliability of N2O monitoring outcomes in cases of low furnace temperatures. Excessive use of the SNCR system to reduce NOx emissions resulted in concentrations of N2O and NH3 in the exhaust gases exceeding NOx levels. In the case of furnace temperature control and advanced reburning technology, it is advisable to utilize actual monitoring data or the smaller default values provided by the IPCC in China. Otherwise, the estimated N2O emissions may exceed the actual emissions.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Lihua Wang
- Shanghai Chengtou Waste Water Treatment Co.,Ltd, Shanghai 200092, China
| | - Fei Wang
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Boyuan Zou
- Shanghai Chengtou Waste Water Treatment Co.,Ltd, Shanghai 200092, China
| | - Guojun Lv
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Haibin Cui
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhirong Ye
- State Key Laboratory of Clean Energy Utilization, Institute of Thermal Power Engineering of Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
11
|
Zhang B, Mao W, Chen S, Wang X. Characteristics and key driving factors of nitrous oxide emissions from a full-scale landfill leachate treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172821. [PMID: 38688376 DOI: 10.1016/j.scitotenv.2024.172821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The characteristics of N2O emission from a full-scale landfill leachate treatment system were investigated by in-situ monitoring over 1.4 years and driving factors responsible for these emissions were identified by statistical analysis of multidimensional environmental variables. The results showed that the maximum N2O emission flux of 2.21 × 107 mg N·h-1 occurred in the nitrification tanks, where 98.5 % of the total N2O was released, with only 1.5 % of the total N2O emitted from the denitrification tanks. Limited oxygen in nitrification tank was responsible for N2O hotspot. The N2O emissions from the parallel lines A and B (both comprising the primary biochemical system) accounted for 52.6 % and 46.6 %, respectively, while the secondary biochemical system contributed only 0.8 % to the total emissions. Higher nitrite concentration in line A and lower nitrogen loading in the secondary biochemical system caused these discrepancies. We found that during the steady state of leachate treatment, intensive N2O emissions of 253.4-1270.5 kg N·d-1 were measured. The corresponding N2O emission factor (EF) ranged from 8.86 to 49.6 %, much higher than those of municipal wastewater treatment. But N2O EF was inconceivably as low as 0.42 % averagely after system maintenance. Influent with low salinity was the key reason, followed by the high MLSS and varying microbial community after maintenance. The dominant genus shifted from Lentimicrobium and Thauera to Norank-F-Anaerolineaceae and Unclassified-F-Rhodocyclaceae. This study underscores the significance of landfill leachate treatment in urban nitrogen management and provides valuable insights into the characteristics and driving factors of N2O emissions from such systems. The findings offer important references for greenhouse gas emission inventories and strategies for N2O control in full-scale wastewater treatment plants.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenlong Mao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
12
|
Chen Y, Wu X, Zhou X, Yang X, Dai X, Liu S. The N + Formation Mechanism of Vibrationally Selected N 2O + Ions in the C 2Σ + State: A TPEPICO Imaging Study. J Phys Chem A 2024; 128:4439-4447. [PMID: 38780798 DOI: 10.1021/acs.jpca.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The N-NO bond fission of N2O+(C2Σ+) ions can produce two major fragment ions, NO+ or N+. In contrast to the dominant NO+ fragment ion, the N+ formation mechanism remains unclear to date. Here, dissociative photoionization of N2O via the C2Σ+ ionic state has been reinvestigated using a combined approach of threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging and quantum chemical calculations. Accompanying the N+(3P) formation, the NO(X2Π) neutral fragment with low and high vi-rotational distributions was identified, based on the N+ speed and angular distributions derived from the TPEPICO images. In particular, the excitation of the symmetric stretching ν1+ mode promotes the formation of high rotational components, while the asymmetric stretching ν3+ mode shows the exact opposite effect. According to our calculated multistate potential energy surfaces, intersystem crossing from C2Σ+ to 14Π exclusively provides feasible decomposition pathways to produce the N+ fragment. In a slightly bent geometry, spin-orbit couplings between C2Σ+ and two substates of 14Π, 14A' or 14A″, play a crucial role in the N+ formation from vibrationally selected N2O+(C2Σ+) ions. The mechanism also provides new insights into the charge transfer reaction of N+ + NO → N + NO+.
Collapse
Affiliation(s)
- Yan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiangkun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xinlang Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xinhua Dai
- National Institute of Metrology, Beijing 100013, China
| | - Shilin Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
13
|
Selden CR, LaBrie R, Ganley LC, Crocker DR, Peleg O, Perry DC, Reich HG, Sasaki M, Thibodeau PS, Isanta-Navarro J. Is our understanding of aquatic ecosystems sufficient to quantify ecologically driven climate feedbacks? GLOBAL CHANGE BIOLOGY 2024; 30:e17351. [PMID: 38837306 DOI: 10.1111/gcb.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The Earth functions as an integrated system-its current habitability to complex life is an emergent property dependent on interactions among biological, chemical, and physical components. As global warming affects ecosystem structure and function, so too will the biosphere affect climate by altering atmospheric gas composition and planetary albedo. Constraining these ecosystem-climate feedbacks is essential to accurately predict future change and develop mitigation strategies; however, the interplay among ecosystem processes complicates the assessment of their impact. Here, we explore the state-of-knowledge on how ecological and biological processes (e.g., competition, trophic interactions, metabolism, and adaptation) affect the directionality and magnitude of feedbacks between ecosystems and climate, using illustrative examples from the aquatic sphere. We argue that, despite ample evidence for the likely significance of many, our present understanding of the combinatorial effects of ecosystem dynamics precludes the robust quantification of most ecologically driven climate feedbacks. Constraining these effects must be prioritized within the ecological sciences for only by studying the biosphere as both subject and arbiter of global climate can we develop a sufficiently holistic view of the Earth system to accurately predict Earth's future and unravel its past.
Collapse
Affiliation(s)
- Corday R Selden
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Richard LaBrie
- Interdisciplinary Environmental Research Centre, TU Bergakademie Freiberg, Freiberg, Germany
| | - Laura C Ganley
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, USA
| | - Daniel R Crocker
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Ohad Peleg
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Danielle C Perry
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hannah G Reich
- Department of Biological Sciences, Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Mansfield, Connecticut, USA
| | - Patricia S Thibodeau
- School of Marine and Environmental Programs, University of New England, Biddeford, Maine, USA
| | | |
Collapse
|
14
|
Li Z, Wu Y, Wang H, Wu Z, Wu X. High-Efficiency Electrocatalytic Reduction of N 2O with Single-Atom Cu Supported on Nitrogen-Doped Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8976-8987. [PMID: 38653761 DOI: 10.1021/acs.est.4c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas with a high global warming potential, emphasizing the critical need to develop efficient elimination methods. Electrocatalytic N2O reduction reaction (N2ORR) stands out as a promising approach, offering room temperature conversion of N2O to N2 without the production of NOx byproducts. In this study, we present the synthesis of a copper-based single-atom catalyst featuring atomic Cu on nitrogen-doped carbon black (Cu1-NCB). Attributed to the highly dispersed single-atom Cu sites and the effective suppression of the hydrogen evolution reaction, Cu1-NCB demonstrated an optimal N2 faradaic efficiency (82.1%) and yield rate (3.53 mmol h-1 mgmetal-1) at -0.2 and -0.5 V vs RHE, respectively, outperforming previously reported N2ORR electrocatalysts. Further, a gas diffusion electrode cell was employed to improve mass transfer and achieved a 28.6% conversion rate of 30% N2O with only a 14 s residence time, demonstrating the potential for practical application. Density functional theory calculations identified Cu-N4 as the crucial active site for N2ORR, highlighting the significance of the unsaturated coordination and metal-support electronic structure. O-terminal adsorption of N2O was favored, and the dissociative adsorption (*ON2 → *O + N2) was the rate-determining step. These findings reveal the broad prospects of N2O decomposition via electrocatalysis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yunshuo Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Awala SI, Gwak JH, Kim Y, Jung MY, Dunfield PF, Wagner M, Rhee SK. Nitrous oxide respiration in acidophilic methanotrophs. Nat Commun 2024; 15:4226. [PMID: 38762502 PMCID: PMC11102522 DOI: 10.1038/s41467-024-48161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024] Open
Abstract
Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yongman Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
- Jeju Microbiome Center, Jeju National University, Jeju, Republic of Korea
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
16
|
Zhang L, Pan S, Ouyang Z, Canadell JG, Chang J, Conchedda G, Davidson EA, Lu F, Pan N, Qin X, Shi H, Tubiello FN, Wang X, Zhang Y, Tian H. Global nitrous oxide emissions from livestock manure during 1890-2020: An IPCC tier 2 inventory. GLOBAL CHANGE BIOLOGY 2024; 30:e17303. [PMID: 38741339 DOI: 10.1111/gcb.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
| | - Shufen Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
- Department of Engineering, Boston College, Chestnut Hill, Massachusetts, USA
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Josep G Canadell
- Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, Australian Capital Territory, Australia
| | - Jinfeng Chang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Giulia Conchedda
- Statistics Division, Food and Agriculture Organization of the United Nations, Via Terme di Caracalla, Rome, Italy
| | - Eric A Davidson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
| | - Fei Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Naiqing Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
| | - Xiaoyu Qin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Francesco N Tubiello
- Statistics Division, Food and Agriculture Organization of the United Nations, Via Terme di Caracalla, Rome, Italy
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhong Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
17
|
Xu Z, Gao X, Li G, Nghiem LD, Luo W, Zhang F. Microbial Sources and Sinks of Nitrous Oxide during Organic Waste Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7367-7379. [PMID: 38644786 DOI: 10.1021/acs.est.3c10341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Composting is widely used for organic waste management and is also a major source of nitrous oxide (N2O) emission. New insight into microbial sources and sinks is essential for process regulation to reduce N2O emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for N2O sources and sinks during composting. Results showed that several nosZ-lacking denitrifiers in feedstocks drove N2O emission at the beginning of the composting. Such emission became negligible at the thermophilic stage, as high temperatures inhibited all denitrifiers for N2O production except for those containing nirK. The nosZ-lacking denitrifiers were notably enriched to increase N2O production at the cooling stage. Nevertheless, organic biodegradation limited energy availability for chemotaxis and flagellar assembly to restrain nirKS-containing denitrifiers for nitrate reduction toward N2O sources but insignificantly interrupt norBC- and nosZ-containing bacteria (particularly nosZ-containing nondenitrifiers) for N2O sinks by capturing N2O and nitric oxide (NO) for energy production, thereby reducing N2O emission at the mature stage. Furthermore, nosZII-type bacteria included all nosZ-containing nondenitrifiers and dominated N2O sinks. Thus, targeted strategies can be developed to restrict the physiological behaviors of nirKS-containing denitrifiers and expand the taxonomic distribution of nosZ for effective N2O mitigation in composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Wenhai Luo
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Fusuo Zhang
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Hiraki S, Baba H, Kobayashi I, Oda A, Ohkubo T, Ikemoto Y, Moriwaki T, Kuroda Y. Excellent capture of N 2O functioning at RT and lower pressure by utilizing an NaCaA-85 zeolite. Chem Commun (Camb) 2024; 60:4597-4600. [PMID: 38586897 DOI: 10.1039/d4cc00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We have found an efficient adsorption feature provided by an NaCaA-85 zeolite for N2O even at 298 K and at lower pressures: N2O adsorption capacities of 1.33 mmol g-1 and 4.69 mmol g-1 under respective pressures of 0.3 and at 100 Torr, respectively, indicating the best performance among adsorbent materials so far reported. These adsorption peculiarities will pave a new way for developing excellent materials working for adsorption/separation processes of N2O.
Collapse
Affiliation(s)
- Suguru Hiraki
- Department of Chemistry, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Haruka Baba
- Department of Chemistry, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Ikuka Kobayashi
- Department of Chemistry, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Akira Oda
- Department of Chemistry, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
- Department of Materials chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Ohkubo
- Department of Chemistry, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Taro Moriwaki
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasushige Kuroda
- Department of Chemistry, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
19
|
Hunt KA, Carr AV, Otwell AE, Valenzuela JJ, Walker KS, Dixon ER, Lui LM, Nielsen TN, Bowman S, von Netzer F, Moon JW, Schadt CW, Rodriguez M, Lowe K, Joyner D, Davis KJ, Wu X, Chakraborty R, Fields MW, Zhou J, Hazen TC, Arkin AP, Wankel SD, Baliga NS, Stahl DA. Contribution of Microorganisms with the Clade II Nitrous Oxide Reductase to Suppression of Surface Emissions of Nitrous Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7056-7065. [PMID: 38608141 DOI: 10.1021/acs.est.3c07972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.
Collapse
Affiliation(s)
- Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex V Carr
- Department of Molecular Engineering Sciences, University of Washington, Seattle, Washington 98105, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Anne E Otwell
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | | | - Kathleen S Walker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Emma R Dixon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Samuel Bowman
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02540, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ji-Won Moon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kenneth Lowe
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Dominique Joyner
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Katherine J Davis
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Xiaoqin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Romy Chakraborty
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Jizhong Zhou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Scott D Wankel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02540, United States
| | - Nitin S Baliga
- Department of Molecular Engineering Sciences, University of Washington, Seattle, Washington 98105, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Li L, Hong M, Zhang Y, Paustian K. Soil N 2 O emissions from specialty crop systems: A global estimation and meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17233. [PMID: 38469991 DOI: 10.1111/gcb.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Nitrous oxide (N2 O) exacerbates the greenhouse effect and thus global warming. Agricultural management practices, especially the use of nitrogen (N) fertilizers and irrigation, increase soil N2 O emissions. As a vital sector of global agriculture, specialty crop systems usually require intensive input and management. However, soil N2 O emissions from global specialty crop systems have not been comprehensively evaluated. Here, we synthesized 1137 observations from 114 published studies, conducted a meta-analysis to evaluate the effects of agricultural management and environmental factors on soil N2 O emissions, and estimated global soil N2 O emissions from specialty crop systems. The estimated global N2 O emission from specialty crop soils was 1.5 Tg N2 O-N year-1 , ranging from 0.5 to 4.5 Tg N2 O-N year-1 . Globally, soil N2 O emissions exponentially increased with N fertilizer rates. The effect size of N fertilizer on soil N2 O emissions generally increased with mean annual temperature, mean annual precipitation, and soil organic carbon concentration but decreased with soil pH. Global climate change will further intensify the effect of N fertilizer on soil N2 O emissions. Drip irrigation, fertigation, and reduced tillage can be used as essential strategies to reduce soil N2 O emissions and increase crop yields. Deficit irrigation and non-legume cover crop can reduce soil N2 O emissions but may also lower crop yields. Biochar may have a relatively limited effect on reducing soil N2 O emissions but be effective in increasing crop yields. Our study points toward effective management strategies that have substantial potential for reducing N2 O emissions from global agricultural soils.
Collapse
Affiliation(s)
- Lidong Li
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mu Hong
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Yao Zhang
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Keith Paustian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
21
|
Wang J, Wang B, Bian R, He W, Liu Y, Shen G, Xie H, Feng Y. Bibliometric analysis of biochar-based organic fertilizers in the past 15 years: Focus on ammonia volatilization and greenhouse gas emissions during composting. ENVIRONMENTAL RESEARCH 2024; 243:117853. [PMID: 38070856 DOI: 10.1016/j.envres.2023.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Biochar-based organic fertilizer is a new type of ecological fertilizer formulated with organic fertilizers using biochar as the primary conditioning agent, which has received wide attention and application in recent years. This study conducted a comprehensive bibliometric analysis of the main hot spots and research trends in the field of biochar-based organic fertilizer research by collecting indicators (publication year, number, prominent authors, and research institutions) in the Web of Science database. The results showed that the research in biochar-based organic fertilizer has been in a rapid development stage since 2015, with exponential growth in publications number; the main institution with the highest publications number was Northwest Agriculture & Forestry University; the researchers with the highest number of publications was Mukesh Kumar Awasthi; the most publications country is China by Dec 30, 2022. The hot spots of biochar-based organic fertilizer research have been nitrogen utilization, greenhouse gas emission, composting product quality and soil fertility. Biochar reduces ammonia volatilization and greenhouse gas emissions from compost mainly through adsorption. The results showed that adding 10% biochar was an effective measure to achieve co-emission reduction of ammonia and greenhouse gases in composting process. In addition, biochar modification or combination with other additives should be the focus of future research to mitigate ammonia and greenhouse gas emissions from composting processes.
Collapse
Affiliation(s)
- Jixiang Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weijiang He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Liu
- Research Center of IoT Agriculture Applications/Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangcai Shen
- Baoshan Branch of Yunnan Tobacco Company, Baoshan, 67800, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
22
|
Xia Y, Fu C, Liao A, Wu H, Wu H, Zhang H. Effects of Extreme Weather Events on Nitrous Oxide Emissions from Rice-Wheat Rotation Croplands. PLANTS (BASEL, SWITZERLAND) 2023; 13:25. [PMID: 38202334 PMCID: PMC10780663 DOI: 10.3390/plants13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Cropland ecosystems are significant emission sources of N2O, but a limited number of studies have focused on the impact of extreme weather events on N2O fluxes from cropland. This present study integrated field observations and model simulations to explore the responses of N2O fluxes to extreme weather events in typical rice and wheat rotation croplands in the middle and lower reaches of the Yangtze River (MLRYR) in China. The findings revealed that the studied rice-wheat rotation cropland exhibited a net source of N2O over the three-year monitoring period, with annual cumulative N2O emissions ranging from 190.4 to 261.8 mg N m-2. N2O emissions during the rice and wheat growing seasons accounted for 29% and 71% of the total yearly emissions, respectively. Extreme heat events led to a 23% to 32% increase in observed N2O emissions from cropland. Observed N2O emissions from irrigated rice fields during extreme precipitation events were 45% lower than those during extreme drought events. In contrast, extreme precipitation events raised observed N2O emissions from rain-fed wheat fields by 36% compared to the multi-year average, while extreme drought events reduced N2O emissions from wheat fields by 20%. Regional simulations indicated that annual cumulative N2O emissions from croplands in the MLRYR are projected to increase from 207.8 mg N m-2 under current climate to 303.4 mg N m-2 in the future. Given the episodic nature and uncertainties associated with N2O emissions from cropland, further validation is necessary for utilizing the model to explore the effects of extreme weather events on N2O in cropland ecosystems.
Collapse
Affiliation(s)
- Ye Xia
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.X.)
| | - Congsheng Fu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.X.)
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Aimin Liao
- Chuzhou Scientific Hydrology Laboratory, Nanjing Hydraulic Research Institute, Chuzhou 239080, China
| | - Huawu Wu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.X.)
| | - Haohao Wu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.X.)
| | - Haixia Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.X.)
| |
Collapse
|
23
|
Feng R, Li Z. Current investigations on global N 2O emissions and reductions: Prospect and outlook. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122664. [PMID: 37813141 DOI: 10.1016/j.envpol.2023.122664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Global nitrous oxide (N2O) emissions merit scrutiny, because N2O is the third most important greenhouse gas for global warming and the predominant ozone-depleting substance in this century. Here we recapitulate global natural and anthropogenic N2O sources, comprehensively depict global sectoral human-induced N2O emissions by country, thoroughly survey all existing approaches for mitigating human-induced N2O emissions, preview the economic costs and social benefits from abating N2O emissions, and summarize roadblocks for achieving its emission reductions. From 1970 to 2018, the annual global anthropogenic N2O emissions increased by 64%-about 3.6 teragrams (Tg); agricultural sources primarily accounted for 78% of this increment. We find the social benefits from reducing N2O emissions override the economic costs for abatements, only except precision farming for agricultural sources and replacement by Xe for anesthetic, thus justifying the motivation for crafting policies to limit its emissions. Net zero N2O emissions cannot be achieved via applying current technologies and breeding N2O-reducing microbes is a potential method to accrue N2O sinks.
Collapse
Affiliation(s)
- Rui Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Zhenhua Li
- Xiacheng District Study-Aid Science & Technology Studio, Hangzhou, 310004, China
| |
Collapse
|
24
|
Hei Z, Peng Y, Hao S, Li Y, Yang X, Zhu T, Müller C, Zhang H, Hu H, Chen Y. Full substitution of chemical fertilizer by organic manure decreases soil N 2 O emissions driven by ammonia oxidizers and gross nitrogen transformations. GLOBAL CHANGE BIOLOGY 2023; 29:7117-7130. [PMID: 37800353 DOI: 10.1111/gcb.16957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/09/2023] [Indexed: 10/07/2023]
Abstract
Replacing synthetic fertilizer by organic manure has been shown to reduce emissions of nitrous oxide (N2 O), but the specific roles of ammonia oxidizing microorganisms and gross nitrogen (N) transformation in regulating N2 O remain unclear. Here, we examined the effect of completely replacing chemical fertilizer with organic manure on N2 O emissions, ammonia oxidizers, gross N transformation rates using a 13-year field manipulation experiment. Our results showed that organic manure reduced cumulative N2 O emissions by 16.3%-210.3% compared to chemical fertilizer. The abundance of ammonia oxidizing bacteria (AOB) was significantly lower in organic manure compared with chemical fertilizer during three growth stages of maize. Organic manure also significantly decreased AOB alpha diversity and changed their community structure. However, organic manure substitution increased the abundance of ammonia oxidizing archaea and the alpha diversity of comammox Nitrospira compared to chemical fertilizer. Interestingly, organic manure decreased organic N mineralization by 23.2%-32.9%, and autotrophic nitrification rate by 10.5%-45.4%, when compared with chemical fertilizer. This study also found a positive correlation between AOB abundance, organic N mineralization and gross autotrophic nitrification rate with N2 O emission, and their contribution to N2 O emission was supported by random forest analysis. Our study highlights the key roles of ammonia oxidizers and N transformation rates in predicting cropland N2 O.
Collapse
Affiliation(s)
- Zewen Hei
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
| | - Yiting Peng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
| | - Shenglei Hao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
| | - Yiming Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
| | - Xue Yang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
| | - Tongbin Zhu
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
- International Research Center on Karst Under the Auspices of UNESCO, Guilin, China
| | - Christoph Müller
- Department of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Hongyan Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
| | - Hangwei Hu
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Vic., Australia
| | - Yongliang Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Wasai-Hara S, Itakura M, Fernandes Siqueira A, Takemoto D, Sugawara M, Mitsui H, Sato S, Inagaki N, Yamazaki T, Imaizumi-Anraku H, Shimoda Y, Minamisawa K. Bradyrhizobium ottawaense efficiently reduces nitrous oxide through high nosZ gene expression. Sci Rep 2023; 13:18862. [PMID: 37914789 PMCID: PMC10620151 DOI: 10.1038/s41598-023-46019-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
N2O is an important greenhouse gas influencing global warming, and agricultural land is the predominant (anthropogenic) source of N2O emissions. Here, we report the high N2O-reducing activity of Bradyrhizobium ottawaense, suggesting the potential for efficiently mitigating N2O emission from agricultural lands. Among the 15 B. ottawaense isolates examined, the N2O-reducing activities of most (13) strains were approximately five-fold higher than that of Bradyrhizobium diazoefficiens USDA110T under anaerobic conditions. This robust N2O-reducing activity of B. ottawaense was confirmed by N2O reductase (NosZ) protein levels and by mitigation of N2O emitted by nodule decomposition in laboratory system. While the NosZ of B. ottawaense and B. diazoefficiens showed high homology, nosZ gene expression in B. ottawaense was over 150-fold higher than that in B. diazoefficiens USDA110T, suggesting the high N2O-reducing activity of B. ottawaense is achieved by high nos expression. Furthermore, we examined the nos operon transcription start sites and found that, unlike B. diazoefficiens, B. ottawaense has two transcription start sites under N2O-respiring conditions, which may contribute to the high nosZ expression. Our study indicates the potential of B. ottawaense for effective N2O reduction and unique regulation of nos gene expression towards the high performance of N2O mitigation in the soil.
Collapse
Affiliation(s)
- Sawa Wasai-Hara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | - Daisaku Takemoto
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Toshimasa Yamazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
26
|
Yeerken S, Li L, Deng M, Song K, Wu F. Effect and microbial mechanism of suspended sediments particle size on nitrous oxide emission in eutrophic lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122180. [PMID: 37442329 DOI: 10.1016/j.envpol.2023.122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Suspended sediment (SPS) is an important environmental factor in eutrophic lakes, where they may play a significant role in the microbial nitrogen cycle and thus affect the N2O source and sink function. This study investigated the correlation and corresponding microbial mechanisms between N2O emission fluxes and SPS particle sizes. N2O emission characteristics were investigated in four parallel operated lab-scale microcosmic systems, in which different sizes of SPS particles were inoculated (i.e., <75, 75-150, 150-300, and >300 μm). The results show that, N2O emission fluxes in the eutrophic lakes were exponentially correlated with the lake trophic level index (TLI) (R2 = 0.94, p < 0.01) and the specific surface area of the SPS (R2 = 0.38, p < 0.05). In the microcosmic systems, SPS with 75-150 μm particles had the highest N2O emission rate of 5.94 ± 0.007 μg N/L/d, which was 2.6 times that of the <75 μm particle size system. The microcosmic system with particle size >300 μm had the highest N2O reduction rate (Vmax) of 6.776 μmol/L/h, which was 16-50 times that of the other three groups. Larger particle size SPS have a smaller specific surface area, which could affect the microenvironment on SPS surface and thus affect the microbe functions. The microbial community structure results indicated that the dominant microorganisms on the SPS surface were denitrifying bacteria. The maximum (nirS + nirK)/nosZ ratio was 30.2 for the 75-150 μm system, which was nearly 2 times higher than the other systems. The >300 μm system had the highest nosZ abundance, indicating a strong ability to reduce N2O. The co-occurrence networks analysis indicated that the cooperation and competition among nitrifiers and denitrifiers determined N2O emissions. These results provide fundamental insights into the influence of SPS size on N2O emissions in eutrophic lakes.
Collapse
Affiliation(s)
- Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
27
|
Navasakthi S, Pandey A, Bhari JS, Sharma A. Significant variation in air quality in South Indian cities during COVID-19 lockdown and unlock phases. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:772. [PMID: 37253943 DOI: 10.1007/s10661-023-11375-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
With the spread of COVID-19 pandemic worldwide, the Government of India had imposed lockdown in the month of March 2020 to curb the spread of the virus furthermore. This shutdown led to closure of various institutions, organizations, and industries, and restriction on public movement was also inflicted which paved way to better air quality due to reduction in various industrial and vehicular emissions. To brace this, the present study was carried out to statistically analyze the changes in air quality from pre-lockdown period to unlock 6.0 in South Indian cities, namely, Bangalore, Chennai, Coimbatore, and Hyderabad, by assessing the variation in concentration of PM2.5, PM10, NO2, and SO2 during pre-lockdown, lockdown, and unlock phases. Pollutant concentration data was obtained for the selected timeframe (01 March 2020-30 November 2020) from CPCB, and line graph was plotted which had shown visible variation in the concentration of pollutants in cities taken into consideration. Analysis of variance (ANOVA) was applied to determine the mean differences in the concentration of pollutants during eleven timeframes, and the results indicated a significant difference (F (10,264) = 3.389, p < 0.001). A significant decrease in the levels of PM2.5, PM10, NO2, and SO2 during the lockdown phases was asserted by Tukey HSD results in Bangalore, Coimbatore, and Hyderabad stations, whereas PM10 and NO2 significantly increased during lockdown period in Chennai station. In order to understand the cause of variation in the concentration of pollutants and to find the association of pollutants with meteorological parameters, the Pearson correlation coefficient was used to study the relationship between PM2.5, PM10, NO2, and SO2 concentrations, temperature, rainfall, and wind speed for a span of 15 months, i.e., from January 2020 to March 2021. At a significant level of 99.9%, 99%, and 95%, a significant correlation among the pollutants, rainfall had a major impact on the pollutant concentration in Bangalore, Coimbatore, Hyderabad, and Chennai followed by wind speed and temperature. No significant influence of temperature on the concentration of pollutants was observed in Bangalore station.
Collapse
Affiliation(s)
- Shibani Navasakthi
- Department of Civil Engineering, Chandigarh University, Mohali, Punjab, India
| | - Anuvesh Pandey
- Department of Civil Engineering, Chandigarh University, Mohali, Punjab, India
| | | | - Ashita Sharma
- Department of Civil Engineering, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
28
|
Xiang H, Hong Y, Wu J, Wang Y, Ye F, Hu Z, Qu Z, Long A. NosZ-II-type N 2O-reducing bacteria play dominant roles in determining the release potential of N 2O from sediments in the Pearl River Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121732. [PMID: 37116571 DOI: 10.1016/j.envpol.2023.121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
The microbial reduction of N2O serves as a "gatekeeper" for N2O emissions, determining the flux of N2O release into the atmosphere. Estuaries are active regions for N2O emissions, but the microbial functions of N2O-reducing bacteria in estuarine ecosystems are not well understood. In this study, the 15N isotope tracer method, qPCR, and high-throughput sequencing were used to analyze N2O production, reduction, and emission processes in surface sediments of the Pearl River Estuary. The 15N isotope tracer experiment showed that the N2O production rates declined and the N2O reduction potential (Rr, the ratio of N2O reduction rates to N2O production rates) increased from upstream to downstream of the Pearl River Estuary, leading to a corresponding decrease of the N2O emission rates from upstream to downstream. The gene abundance ratio of nosZ/nir gradually increased from upstream to downstream and was negatively correlated with the water N2O saturation. The gene abundance of nosZ II was significantly higher than that of nosZ I in the estuary, and the nosZ II/nosZ I abundance ratio was positively correlated with N2O reduction potential. Furthermore, the community composition of NosZ-I- and NosZ-II-type N2O-reducing bacteria shifted from upstream to downstream. NosZ-II-type N2O-reducing bacteria, especially Myxococcales, Thiotrichales, and Gemmatimonadetes species, contributed to the high N2O reduction potential in the downstream. Our results suggest that NosZ-II-type N2O-reducing bacteria play a dominant role in determining the release potential of N2O from sediments in the Pearl River Estuary. This study provides a new insight into the function of microbial N2O reduction in estuarine ecosystems.
Collapse
Affiliation(s)
- Hua Xiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China; State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China.
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Zheng Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Zhiming Qu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Aimin Long
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
29
|
Green Energy by Hydrogen Production from Water Splitting, Water Oxidation Catalysis and Acceptorless Dehydrogenative Coupling. INORGANICS 2023. [DOI: 10.3390/inorganics11020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
In this review, we want to explain how the burning of fossil fuels is pushing us towards green energy. Actually, for a long time, we have believed that everything is profitable, that resources are unlimited and there are no consequences. However, the reality is often disappointing. The use of non-renewable resources, the excessive waste production and the abandonment of the task of recycling has created a fragile thread that, once broken, may never restore itself. Metaphors aside, we are talking about our planet, the Earth, and its unique ability to host life, including ourselves. Our world has its balance; when the wind erodes a mountain, a beach appears, or when a fire devastates an area, eventually new life emerges from the ashes. However, humans have been distorting this balance for decades. Our evolving way of living has increased the number of resources that each person consumes, whether food, shelter, or energy; we have overworked everything to exhaustion. Scientists worldwide have already said actively and passively that we are facing one of the biggest problems ever: climate change. This is unsustainable and we must try to revert it, or, if we are too late, slow it down as much as possible. To make this happen, there are many possible methods. In this review, we investigate catalysts for using water as an energy source, or, instead of water, alcohols. On the other hand, the recycling of gases such as CO2 and N2O is also addressed, but we also observe non-catalytic means of generating energy through solar cell production.
Collapse
|
30
|
Tian X, Cong J, Wang H, Zheng H, Wang Z, Chu Y, Wang Y, Xue Y, Yin Y, Cui Z. Cropland nitrous oxide emissions exceed the emissions of RCP 2.6: A global spatial analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159738. [PMID: 36334657 DOI: 10.1016/j.scitotenv.2022.159738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Nitrous oxide (N2O), as a potent greenhouse gas, must be limited to prevent the global temperature increasing by >2 °C. Cropland is the largest source of anthropogenic N2O emissions; however, earlier estimates for emissions and their exceedances still remain uncertainties. Here, we used a spatially explicit model to estimate cropland N2O emission in 2014 by refined grid-level crop-specific EFs and considered the background emission. We also sought to determine where N2O emissions exceed the "boundary" through analysis of spatial data from representative concentration pathway (RCP) 2.6. The global cropland N2O emission was 2.92 ± 0.59 Tg N yr-1, which far exceeds the 0.82 Tg N yr-1 boundary, over 90 % of cropland areas exceeded the boundary. Western Europe, Southeastern China, Pakistan, and the Ganges Plain exceeded the boundary by >2 kg N ha-1 yr-1. The boundary exceedances showed a positive linear response with respect to total cropland emission and a quadratic response to GDP per capita at the country level. Our study highlights the necessity of accurate estimations of spatial variations in cropland N2O emissions and evaluation of exceedances, to facilitate the development of more effective mitigation measures in different regions.
Collapse
Affiliation(s)
- Xingshuai Tian
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Jiahui Cong
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Hongye Wang
- Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, China
| | - Huifang Zheng
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zihan Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yiyan Chu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yingcheng Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yanfang Xue
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China
| | - Yulong Yin
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Zhenling Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Yuan D, Zheng L, Liu YX, Cheng H, Ding A, Wang X, Tan Q, Wang X, Xing Y, Xie E, Wu H, Wang S, Zhu G. Nitrifiers Cooperate to Produce Nitrous Oxide in Plateau Wetland Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:810-821. [PMID: 36459424 DOI: 10.1021/acs.est.2c06234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The thawing of dormant plateau permafrost emits nitrous oxide (N2O) through wetlands; however, the N2O production mechanism in plateau wetlands is still unclear. Here, we used the 15N-18O double tracer technique and metagenomic sequencing to analyze the N2O production mechanism in the Yunnan-Kweichow and Qinghai-Tibet plateau wetlands during the summer of 2020. N2O production activity was detected in all 16 sediment samples (elevation 1020-4601 m: 2.55 ± 0.42-26.38 ± 3.25 ng N g-1 d-1) and was promoted by nitrifier denitrification (ND). The key functional genes of ND (amoA, hao, and nirK) belonged to complete ammonia oxidizing (comammox) bacteria, and the key ND species was the comammox bacterium Nitrospira nitrificans. We found that the comammox bacterial species N. nitrificans and the ammonia oxidizing bacterial (AOB) species Nitrosomonas europaea cooperate to produce N2O in the plateau wetland sediments. Furthermore, we inferred that environmental factors (elevation and total organic matter (TOM)) influence the cooperation pattern via N. nitrificans, thus affecting the N2O production activity in the plateau wetland sediments. Our findings advance the mechanistic understanding of nitrifiers in biogeochemical cycles and global climate change.
Collapse
Affiliation(s)
- Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing100083, China
| | - Haoming Wu
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| |
Collapse
|
32
|
Minganti D, Chabrillat S, Errera Q, Prignon M, Kinnison DE, Garcia RR, Abalos M, Alsing J, Schneider M, Smale D, Jones N, Mahieu E. Evaluation of the N 2O Rate of Change to Understand the Stratospheric Brewer-Dobson Circulation in a Chemistry-Climate Model. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2021JD036390. [PMID: 36589523 PMCID: PMC9788151 DOI: 10.1029/2021jd036390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
The Brewer-Dobson Circulation (BDC) determines the distribution of long-lived tracers in the stratosphere; therefore, their changes can be used to diagnose changes in the BDC. We evaluate decadal (2005-2018) trends of nitrous oxide (N2O) in two versions of the Whole Atmosphere Chemistry-Climate Model (WACCM) by comparing them with measurements from four Fourier transform infrared (FTIR) ground-based instruments, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and with a chemistry-transport model (CTM) driven by four different reanalyses. The limited sensitivity of the FTIR instruments can hide negative N2O trends in the mid-stratosphere because of the large increase in the lowermost stratosphere. When applying ACE-FTS measurement sampling on model datasets, the reanalyses from the European Center for Medium Range Weather Forecast (ECMWF) compare best with ACE-FTS, but the N2O trends are consistently exaggerated. The N2O trends obtained with WACCM disagree with those obtained from ACE-FTS, but the new WACCM version performs better than the previous above the Southern Hemisphere in the stratosphere. Model sensitivity tests show that the decadal N2O trends reflect changes in the stratospheric transport. We further investigate the N2O Transformed Eulerian Mean (TEM) budget in WACCM and in the CTM simulation driven by the latest ECMWF reanalysis. The TEM analysis shows that enhanced advection affects the stratospheric N2O trends in the Tropics. While no ideal observational dataset currently exists, this model study of N2O trends still provides new insights about the BDC and its changes because of the contribution from relevant sensitivity tests and the TEM analysis.
Collapse
Affiliation(s)
- Daniele Minganti
- Royal Belgian Institute for Space AeronomyBIRA‐IASBBrusselsBelgium
| | - Simon Chabrillat
- Royal Belgian Institute for Space AeronomyBIRA‐IASBBrusselsBelgium
| | - Quentin Errera
- Royal Belgian Institute for Space AeronomyBIRA‐IASBBrusselsBelgium
| | - Maxime Prignon
- Institute of Astrophysics and GeophysicsUR SPHERESUniversity of LiègeLiègeBelgium
- Now at: Department of Earth, Space and EnvironmentChalmers University of TechnologyGothenburgSweden
| | | | | | | | - Justin Alsing
- Oskar Klein Centre for Cosmoparticle PhysicsDepartment of PhysicsStockholm UniversityStockholmSweden
- Imperial Centre for Inference and CosmologyDepartment of PhysicsImperial College LondonBlackett LaboratoryLondonUK
| | - Matthias Schneider
- Institute of Meteorology and Climate Research (IMK‐ASF)Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Dan Smale
- National Institute of Water and Atmospheric ResearchLauderNew Zealand
| | - Nicholas Jones
- School of ChemistryUniversity of WollongongWollongongAustralia
| | - Emmanuel Mahieu
- Institute of Astrophysics and GeophysicsUR SPHERESUniversity of LiègeLiègeBelgium
| |
Collapse
|
33
|
Umegaki T, Noguchi D, Fukumoto T. Decomposition of Nitrous Oxide using a Copper‐supported Shirasu Catalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202201763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tetsuo Umegaki
- Department of Materials and Applied Chemistry College of Science and Technology Nihon University 1-8-14, Kanda Surugadai Chiyoda-ku Tokyo 101-8308
| | - Daisuke Noguchi
- National Institute of Technology Miyakonojo College 473-1, Yoshio Miyakonojo Miyazaki 885-8567
| | - Tsubasa Fukumoto
- Takachiho Shirasu Co. Nakakirishima 1719 Yamada Miyakonojo Miyazaki 889-4602
| |
Collapse
|
34
|
Panigrahi TH, Sahoo SR, Murmu G, Maity D, Saha S. Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Bellido-Pedraza CM, Calatrava V, Llamas A, Fernandez E, Sanz-Luque E, Galvan A. Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the Microalga Chlamydomonas reinhardtii. Int J Mol Sci 2022; 23:9412. [PMID: 36012676 PMCID: PMC9409008 DOI: 10.3390/ijms23169412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas and an ozone-depleting compound whose synthesis and release have traditionally been ascribed to bacteria and fungi. Although plants and microalgae have been proposed as N2O producers in recent decades, the proteins involved in this process have been only recently unveiled. In the green microalga Chlamydomonas reinhardtii, flavodiiron proteins (FLVs) and cytochrome P450 (CYP55) are two nitric oxide (NO) reductases responsible for N2O synthesis in the chloroplast and mitochondria, respectively. However, the molecular mechanisms feeding these NO reductases are unknown. In this work, we use cavity ring-down spectroscopy to monitor N2O and CO2 in cultures of nitrite reductase mutants, which cannot grow on nitrate or nitrite and exhibit enhanced N2O emissions. We show that these mutants constitute a very useful tool to study the rates and kinetics of N2O release under different conditions and the metabolism of this greenhouse gas. Our results indicate that N2O production, which was higher in the light than in the dark, requires nitrate reductase as the major provider of NO as substrate. Finally, we show that the presence of nitrate reductase impacts CO2 emissions in both light and dark conditions, and we discuss the role of NO in the balance between CO2 fixation and release.
Collapse
Affiliation(s)
| | - Victoria Calatrava
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Aurora Galvan
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
36
|
Abdo AI, Sun D, Li Y, Yang J, Metwally MS, Abdel-Hamed EMW, Wei H, Zhang J. Coupling the environmental impacts of reactive nitrogen losses and yield responses of staple crops in China. FRONTIERS IN PLANT SCIENCE 2022; 13:927935. [PMID: 36092406 PMCID: PMC9450997 DOI: 10.3389/fpls.2022.927935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Cropland reactive nitrogen losses (Nr) are of the greatest challenges facing sustainable agricultural intensification to meet the increases in food demand. The environmental impacts of Nr losses and their yield responses to the mitigation strategies were not completely evaluated. We assessed the environmental impacts of Nr losses in China and coupled the efficiency of mitigation actions with yield responses. Datasets about Nr losses in China were collected, converted into potentials of acidification (AP), global warming (GWP), and aquatic eutrophication (AEP), and analyzed by a meta-analysis program. Results showed that producing 1 Mg of rice grains had the highest AP (153 kg acid equiv.), while wheat had the highest GWP and AEP (74 kg CO2 equiv. and 0.37 kg PO4 equiv., respectively). Using the conventional rates (averagely, 200, 230, and 215 kg N ha-1) of urea as a surface application to produce 131.4, 257.2, and 212.1 Tg of wheat, maize, and rice resulted in 17-33 Tg, 7-10 Tg, and 6-87 Gg of AP, GWP, and AEP, respectively. For their balanced effect on reducing AP, GWP, and AEP while maximizing yields, inhibitors, and subsurface application could be set as the best mitigation strategies in wheat production. Inhibitors usage and biochar are strongly recommended strategies for sustainable production of maize. None of the investigated strategies had a balanced effect on rice yield and the environment, thus new mitigation technologies should be developed.
Collapse
Affiliation(s)
- Ahmed I. Abdo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
| | - Daolin Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
| | - Yazheng Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
| | - Jiayue Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
| | - Mohamed S. Metwally
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment. REMOTE SENSING 2022. [DOI: 10.3390/rs14081810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitrous oxide (N2O) is the third most abundant anthropogenous greenhouse gas (after carbon dioxide and methane), with a long atmospheric lifetime and a continuously increasing concentration due to human activities, making it an important gas to monitor. In this work, we present a new method to retrieve N2O concentration profiles (with up to two degrees of freedom) from each cloud-free satellite observation by the Infrared Atmospheric Sounding Interferometer (IASI), using spectral micro-windows in the N2O ν3 band, the Radiative Transfer for TOVS (RTTOV) tools and the Tikhonov regularization scheme. A time series of ten years (2011–2020) of IASI N2O profiles and integrated partial columns has been produced and validated with collocated ground-based Network for the Detection of Atmospheric Composition Change (NDACC) and Total Carbon Column Observing Network (TCCON) data. The importance of consistency in the ancillary data used for the retrieval for generating consistent time series has been demonstrated. The Nitrous Oxide Profiling from Infrared Radiances (NOPIR) N2O partial columns are of very good quality, with a positive bias of 1.8 to 4% with respect to the ground-based data, which is less than the sum of uncertainties of the compared values. At high latitudes, the comparisons are a bit worse, due to either a known bias in the ground-based data, or to a higher uncertainty in both ground-based and satellite retrievals.
Collapse
|
38
|
Effects of Drainage Water Management in a Corn–Soy Rotation on Soil N2O and CH4 Fluxes. NITROGEN 2022. [DOI: 10.3390/nitrogen3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Drainage water management (DWM), also known as controlled drainage, is a best management practice (BMP) deployed on drainage ditches with demonstrated success at reducing dissolved nitrogen export from agricultural fields. By slowing discharge from agricultural ditches, subsequent anaerobic soil conditions provide an environment for nitrate to be reduced via denitrification. Despite this success, incomplete denitrification might increase nitrous oxide (N2O) emissions and more reducing conditions might increase methanogenesis, resulting in increased methane (CH4) emissions. These two gases, N2O and CH4, are potent greenhouse gases (GHG) and N2O also depletes stratospheric ozone. This potential pollution swapping of nitrate reduction for GHG production could negatively impact the desirability of this BMP. We conducted three years of static chamber measurements of GHG emissions from the soil surface in farm plots with and without DWM in a corn–soybean rotation on the Delmarva Peninsula. We found that DWM raised the water table at the drainage ditch edge, but had no statistically significant effect on water-filled pore space in the field soil surface. Nor did we find a significant effect of DWM on GHG emissions. These findings are encouraging and suggest that, at least for this farm site, DWM can be used to remove nitrate without a significant tradeoff of increased GHG emissions.
Collapse
|
39
|
Evaluation and Global-Scale Observation of Nitrous Oxide from IASI on Metop-A. REMOTE SENSING 2022. [DOI: 10.3390/rs14061403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitrous oxide (N2O) is a greenhouse gas difficult to estimate by satellite because of its weak spectral signature in the infra-red band and its low variability in the troposphere. Nevertheless, this study presents the evaluation of new tropospheric N2O observations from the Infrared Atmospheric Sounder Interferometer (IASI) on Metop-A using the Toulouse N2O Retrieval Version 2.0 tool. This tool is based on the Radiative Transfer for Tiros Operational Vertical sounder (RTTOV) model version 12.3 coupled to the Levenberg-Marquardt optimal estimation method enabling the simultaneous retrieval of methane, water vapour, temperature profiles together with surface temperature and emissivity within the 1240–1350 cm−1 window. In this study, we focused on the upper troposphere (300 hPa) where the sensitivity of IASI is significant. The IASI N2O data has been evaluated using aircraft N2O observations from the High-performance Instrumented Airborne Platform for Environmental Research Pole-to-Pole Observations (HIPPO) campaigns in 2009, 2010, and 2011 and from the National Oceanic and Atmospheric Administration’s (NOAA) Global Greenhouse Gas Reference Network (GGGRN) in 2011. In addition, we evaluated the IASI N2O using ground-based N2O measurements from 9 stations belonging to the Network for the Detection of Atmospheric Composition Change (NDACC). We found a total random error of ∼2 ppbv (0.6%) for one single retrieval at 300 hPa. Under favorable conditions, this error is also found in the vertical level pressure range 300–500 hPa. It decreases rapidly to ∼0.4 ppbv (0.1%) when we average on a 1° × 1° box. In addition, independent observations allows the estimation of bias with the IASI TN2OR v2.0 N2O. The bias between IASI and aircraft N2O data at 300 hPa is ∼1.0 ppbv (∼0.3%). We found an estimated random error of ∼2.3 ppbv (∼0.75%). This study also shows relatively high correlations between IASI data and aircraft in situ profiles but more varying correlations over the year 2011 depending on the location between IASI and NDACC remote sensing data. Finally, we present daily, monthly, and seasonal IASI N2O horizontal distributions in the upper troposphere as well as cross sections for different seasons that exhibit maxima in the Tropical band especially over Africa and South America.
Collapse
|
40
|
Zhang K, Li M, Yan Z, Li M, Kang E, Yan L, Zhang X, Li Y, Wang J, Yang A, Niu Y, Kang X. Changes in precipitation regime lead to acceleration of the N cycle and dramatic N 2O emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152140. [PMID: 34864035 DOI: 10.1016/j.scitotenv.2021.152140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Alpine meadows on the Qinghai-Tibetan Plateau are sensitive to climate change. The precipitation regime in this region has undergone major changes, "repackaging" precipitation from more frequent, smaller events to less frequent, larger events. Nitrous oxide (N2O) is an important indicator of responses to global change in alpine meadow ecosystems. However, little information is available describing the mechanisms driving the response of N2O emissions to changes in the precipitation regime. In this study, a manipulative field experiment was conducted to investigate N2O flux, soil properties, enzyme activity, and gene abundance in response to severe and moderate changes in precipitation regime over two years. Severe changes in precipitation regime led to a 12.6-fold increase in N2O fluxes (0.0068 ± 0.0018 mg m-2 h-1) from Zoige alpine meadows relative to natural conditions (0.0005 ± 0.0029 mg m-2 h-1). In addition, severe changes in precipitation regime significantly suppressed the activities of leucine amino peptidase (LAP) and peroxidase (PEO), affected ecoenzymatic stoichiometry, and increased the abundances of gdhA, narI and nirK genes, which significantly promoted organic nitrogen (N) decomposition, denitrification, and anammox processes. The increase in abundance of these genes could be ascribed to changes in the abundance of several dominant bacterial taxa (i.e., Actinobacteria and Proteobacteria) as a result of the altered precipitation regime. Decreases in nitrate and soil moisture caused by severe changes in precipitation may exacerbate N limitation and water deficit, lead to a suppression of soil enzyme activity, and change the structure of microorganism community. The N cycle of the alpine meadow ecosystem may accelerate by increasing the abundance of key N functional genes. This would, in turn, lead to increased N2O emission. This study provided insights into how precipitation regimes changes affect N cycling, and may also improve prediction of N2O fluxes in response to changes in precipitation regime.
Collapse
Affiliation(s)
- Kerou Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongqing Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Meng Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Enze Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Liang Yan
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Xiaodong Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yong Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Jinzhi Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Ao Yang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China
| | - Yuechuan Niu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, Sichuan, China.
| |
Collapse
|
41
|
Monreal Corona R, Besalu E, Pla Quintana A, Poater A. A Predictive Chemistry DFT Study of the N 2O Functionalization for the Preparation of Triazolopyridine and Triazoloquinoline Scaffolds. Org Chem Front 2022. [DOI: 10.1039/d2qo00589a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The whole reaction mechanism of the functionalization of N2O for the synthesis of triazolopyridine and triazoloquinoline scaffolds has been unveiled by means of DFT calculations. The rate determining step of...
Collapse
|
42
|
Li S, Pang Y, Ji G. Increase of N 2O production during nitrate reduction after long-term sulfide addition in lake sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118231. [PMID: 34571071 DOI: 10.1016/j.envpol.2021.118231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Microbial denitrification is a main source of nitrous oxide (N2O) emissions which have strong greenhouse effect and destroy stratospheric ozone. Though the importance of sulfide driven chemoautotrophic denitrification has been recognized, its contribution to N2O emissions in nature remains elusive. We built up long-term sulfide-added microcosms with sediments from two freshwater lakes. Chemistry analysis confirmed sulfide could drive nitrate respiration in long term. N2O accumulated to over 1.5% of nitrate load in both microcosms after long-term sulfide addition, which was up to 12.9 times higher than N2O accumulation without sulfide addition. Metagenomes were extracted and sequenced during microcosm incubations. 16 S rRNA genes of Thiobacillus and Defluviimonas were gradually enriched. The nitric oxide reductase with c-type cytochromes as electron donors (cNorB) increased in abundance, while the nitric oxide reductase receiving electrons from quinols (qNorB) decreased in abundance. cnorB genes similar to Thiobacillus were enriched in both microcosms. In parallel, enrichment was observed for enzymes involved in sulfur oxidation, which supplied electrons to nitrate respiration, and enzymes involved in Calvin Cycle, which sustained autotrophic cell growth, implying the coupling relationship between carbon, nitrogen and sulfur cycling processes. Our results suggested sulfur pollution considerably increased N2O emissions in natural environments.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
43
|
Nisbet EG, Dlugokencky EJ, Fisher RE, France JL, Lowry D, Manning MR, Michel SE, Warwick NJ. Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200457. [PMID: 34565227 PMCID: PMC8473950 DOI: 10.1098/rsta.2020.0457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The causes of methane's renewed rise since 2007, accelerated growth from 2014 and record rise in 2020, concurrent with an isotopic shift to values more depleted in 13C, remain poorly understood. This rise is the dominant departure from greenhouse gas scenarios that limit global heating to less than 2°C. Thus a comprehensive understanding of methane sources and sinks, their trends and inter-annual variations are becoming more urgent. Efforts to quantify both sources and sinks and understand latitudinal and seasonal variations will improve our understanding of the methane cycle and its anthropogenic component. Nationally declared emissions inventories under the UN Framework Convention on Climate Change (UNFCCC) and promised contributions to emissions reductions under the UNFCCC Paris Agreement need to be verified independently by top-down observation. Furthermore, indirect effects on natural emissions, such as changes in aquatic ecosystems, also need to be quantified. Nitrous oxide is even more poorly understood. Despite this, options for mitigating methane and nitrous oxide emissions are improving rapidly, both in cutting emissions from gas, oil and coal extraction and use, and also from agricultural and waste sources. Reductions in methane and nitrous oxide emission are arguably among the most attractive immediate options for climate action. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Collapse
Affiliation(s)
- Euan G. Nisbet
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
- NCAS, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Edward J. Dlugokencky
- US National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, 325 Broadway, Boulder, CO 80305, USA
| | - Rebecca E. Fisher
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - James L. France
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - David Lowry
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Martin R. Manning
- New Zealand Climate Change Research Institute, School of Geography Environment and Earth Studies, Victoria University of Wellington, Wellington, New Zealand
| | - Sylvia E. Michel
- Institute of Arctic and Antarctic Research, Univ. of Colorado, Boulder, CO 80309-0450, USA
| | - Nicola J. Warwick
- NCAS, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
44
|
Landman IR, Fadaei-Tirani F, Severin K. Nitrous oxide as a diazo transfer reagent: the synthesis of triazolopyridines. Chem Commun (Camb) 2021; 57:11537-11540. [PMID: 34664049 DOI: 10.1039/d1cc04907k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrous oxide is a potential diazo transfer reagent, but its applications in organic chemistry are scarce. Here, we show that triazolopyridines and triazoloquinolines are formed in the reactions of metallated 2-alkylpyridines or 2-alkylquinolines with N2O. The reactions can be performed under mild conditions and give synthetically interesting triazoles in moderate to good yields.
Collapse
Affiliation(s)
- Iris R Landman
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Pham TV, Lin M. Ab initio quantum-chemical and kinetic studies of the O(1D) + N2(X1Σg+) spin-forbidden quenching process. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Tang B, Li Z. Reaction between a NO 2 Dimer and Dissolved SO 2: A New Mechanism for ONSO 3- Formation and its Fate in Aerosol. J Phys Chem A 2021; 125:8468-8475. [PMID: 34543016 DOI: 10.1021/acs.jpca.1c06215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental observations indicate that sulfate formation in aerosol is sensitive to the concentrations of nitric oxide (NO2). While it also widely exists as a dimer in the gas phase, previous studies focus on the monomer of NO2. In this study, we employ quantum chemical calculations and ab initio molecular dynamics simulations to investigate the reaction between the NO2 dimer (ONONO2) and sulfite (HSO3-/SO32-) in the gas phase and in an aerosol. Gas-phase reactions turn out to be barrierless. In an aerosol, the reaction between adsorbed ONONO2 and HSO3- to form ONSO3- follows a stepwise mechanism with proton and electron transfer processes. The reaction between ONONO2 and SO32- is more straightforward. Nevertheless, both reactions occur at a picosecond time scale. Decomposition of ONSO3- can form an NO molecule and SO3-, which gives a complementary pathway for sulfate formation in an aerosol. Hydrolysis of ONSO3- to form HNO and HSO4- is highly impossible in an aerosol, which calls for a revisit of the atmospheric N2O formation mechanism. The results presented in this study deepen our understanding of the interaction between NO2 and SO2 pollutants in the atmosphere.
Collapse
Affiliation(s)
- Bo Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
47
|
Demissie EG, Lam WK, Thompson H, Tang WK, Siu CK. Decomposition of nitrous oxide in hydrated cobalt(I) clusters: a theoretical insight into the mechanistic roles of ligand-binding modes. Phys Chem Chem Phys 2021; 23:16816-16826. [PMID: 34323905 DOI: 10.1039/d1cp01820e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrated cobalt(i) cluster ions, [Co(H2O)n]+, can decompose the inert nitrous oxide molecule, N2O. Density functional theory suggests that N2O can anchor to Co+ of [Co(N2O)(H2O)n]+ through either O end-on (η1-OL) or N end-on (η1-NL) coordinate mode. The latter is thermodynamically more favorable resulting from a subtle π backdonation from Co+ to N2O. N2O decomposition involves two major processes: (1) redox reaction and (2) N-O bond dissociation. The initial activation of N2O through an electron transfer from Co+ to N2O yields anionic N2O-, which binds to the metal center of [Co2+(N2O-)(H2O)n] also through either O end-on (η1-O) or N end-on (η1-N) mode and is stabilized by water molecules through hydrogen bonding. From η1-O, subsequent N-O bond dissociation to liberate N2, producing [CoO(H2O)n]+, is straightforward via a mechanism that is commonplace for typical metal-catalyzed N2O decompositions. Unexpectedly, the N-O bond dissociation directly from η1-N is also possible and eliminates both N2 and OH, explaining the formation of [CoOH(H2O)n]+ as observed in a previous experimental study. Interestingly, formation of [CoO(H2O)n]+ is kinetically controlled by the initial redox process between Co+ and the O-bound N2O, the activation barriers of which in large water clusters (n ≥ 14) are higher than that of the unexpected N-O bond dissociation from the N-bound structure forming [CoOH(H2O)n]+. This theoretical discovery implies that in the present of water molecules, the metal-catalyzed N2O decomposition starting from an O-bound metal complex is not mandatory.
Collapse
Affiliation(s)
- Ephrem G Demissie
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
Liu G, Wu X, Li D, Jiang L, Huang J, Zhuang L. Long-Term Low Dissolved Oxygen Operation Decreases N 2O Emissions in the Activated Sludge Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6975-6983. [PMID: 33904707 DOI: 10.1021/acs.est.0c07279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas and a dominant ozone-depleting substance. Nitrification in the activated sludge process (ASP) is an important N2O emission source. This study demonstrated that a short-term low dissolved oxygen (DO) increased the N2O emissions by six times, while long-term low DO operation decreased the N2O emissions by 54% (P < 0.01). Under long-term low DO, the ammonia oxidizer abundance in the ASP increased significantly, and thus, complete nitrification was recovered and no NH3 or nitrite accumulated. Moreover, long-term low DO decreased the abundance of ammonia-oxidizing bacteria (AOB) by 28%, while increased the abundance of ammonia-oxidizing archaea (AOA) by 507%, mainly due to their higher oxygen affinity. As a result, AOA outnumbered AOB with the AOA/AOB amoA gene ratio increasing to 19.5 under long-term low DO. The efficient nitrification and decreased AOB abundance might not increase N2O production via AOB under long-term low DO conditions. The enriched AOA could decrease the N2O emissions because they were reported to lack canonical nitric oxide (NO) reductase genes that convert NO to N2O. Probably because of AOA enrichment, the positive and significant (P = 0.02) correlation of N2O emission and nitrite concentration became insignificant (P = 0.332) after 80 days of low DO operation. Therefore, ASPs can be operated with low DO and extended sludge age to synchronously reduce N2O production and carbon dioxide emissions owing to lower aeration energy without compromising the nitrification efficiency.
Collapse
Affiliation(s)
- Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xianwei Wu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Deyong Li
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Lugao Jiang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ju Huang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Luque-Urrutia JA, Pèlachs T, Solà M, Poater A. Double-Carrousel Mechanism for Mn-Catalyzed Dehydrogenative Amide Synthesis from Alcohols and Amines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jesús A. Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Tània Pèlachs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
50
|
Puerta Lombardi BM, Gendy C, Gelfand BS, Bernard GM, Wasylishen RE, Tuononen HM, Roesler R. Side‐on Coordination in Isostructural Nitrous Oxide and Carbon Dioxide Complexes of Nickel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Chris Gendy
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
- Department of Chemistry, Nanoscience Centre University of Jyväskylä, P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Benjamin S. Gelfand
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Guy M. Bernard
- Gunning-Lemieux Chemistry Centre University of Alberta 11227 Saskatchewan Drive NW Edmonton AB T6G 2G2 Canada
| | - Roderick E. Wasylishen
- Gunning-Lemieux Chemistry Centre University of Alberta 11227 Saskatchewan Drive NW Edmonton AB T6G 2G2 Canada
| | - Heikki M. Tuononen
- Department of Chemistry, Nanoscience Centre University of Jyväskylä, P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Roland Roesler
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| |
Collapse
|