1
|
Holland MM, Atkinson A, Best M, Bresnan E, Devlin M, Goberville E, Hélaouët P, Machairopoulou M, Faith M, Thompson MSA, McQuatters-Gollop A. Predictors of long-term variability in NE Atlantic plankton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175793. [PMID: 39191329 DOI: 10.1016/j.scitotenv.2024.175793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Anthropogenic pressures such as climate change and nutrient pollution are causing rapid changes in the marine environment. The relative influence of drivers of change on the plankton community remains uncertain, and this uncertainty is limiting our understanding of sustainable levels of human pressures. Plankton are the primary energy resource in marine food webs and respond rapidly to environmental changes, representing useful indicators of shifts in ecosystem structure and function. Categorising plankton into broad groups with similar characteristics, known as "lifeforms", can be useful for understanding ecological patterns related to environmental change and for assessing the state of pelagic habitats in accordance with the EU Marine Strategy Framework Directive and the OSPAR Commission, which mandates protection of the North-East Atlantic. We analysed 29 years of Continuous Plankton Recorder data (1993-2021) from the North-East Atlantic to examine how trends in plankton lifeform abundance changed in relation to one another and across gradients of environmental change associated with human pressures. Random forest models predicted between 57 % and 80 % of the variability in lifeform abundance, based on data not used to train the models. Observed variability was mainly explained by trends in other lifeforms, with mainly positively correlated trends, indicating bottom-up control and/or shared responses to environmental variability were prevalent. Longitude, bathymetry, mixed layer depth, the nitrogen-to‑phosphorus ratio, and temperature were also significant predictors. However, contrasting influences of environmental drivers were detected. For example, small copepod abundance increased in warmer conditions whereas meroplankton, large copepods and fish larvae either decreased or were unchanged. Our findings highlight recent changes in stratification, reflected by variation in mixed layer depth, and imbalanced nutrient ratios are affecting multiple lifeforms, impacting the North-East Atlantic plankton community. To achieve environmental improvements in North-East Atlantic pelagic habitats, it is crucial that we continue to address climate change and reduce nutrient pollution.
Collapse
Affiliation(s)
- Matthew M Holland
- Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - Mike Best
- Environment Agency, Quay House, Floor 6, 2 East Station Road, Fletton Quays, Peterborough PE2 8YY, UK
| | - Eileen Bresnan
- Marine Directorate of the Scottish Government, 375 Victoria Road, AB11 9DB Aberdeen, Scotland, UK
| | - Michelle Devlin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, UK
| | - Eric Goberville
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Pierre Hélaouët
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Margarita Machairopoulou
- Marine Directorate of the Scottish Government, 375 Victoria Road, AB11 9DB Aberdeen, Scotland, UK
| | - Matthew Faith
- Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Murray S A Thompson
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, UK
| | | |
Collapse
|
2
|
Peng B, Li J, Zhang H, Overmans S, Wang Y, Xu L, Jia Y, Huang B, Liu F, Liu P, Xiao M, Ye M, Xia J, Jin P. Interactions between ocean acidification and multiple environmental drivers on the biochemical traits of marine primary producers: A meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106707. [PMID: 39205357 DOI: 10.1016/j.marenvres.2024.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Ocean acidification (OA) interacts with multiple environmental drivers, such as temperature, nutrients, and ultraviolet radiation (UVR), posing a threat to marine primary producers. In this study, we conducted a quantitative meta-analysis of 1001 experimental assessments from 68 studies to examine the combined effects of OA and multiple environmental drivers (e.g., light, nutrient) on the biochemical compositions of marine primary producers. The results revealed significant positive effects of each environmental driver and their interactions with OA according to Hedge's d analysis. The results revealed significant positive effects of multiple environmental drivers and their interactions with OA. Additive effects dominated (71%), with smaller proportions of antagonistic (20%) and synergistic interactions (9%). The antagonistic interactions, although fewer, had a substantial impact, causing OA and other environmental drivers to interact antagonistically. Significant differences were observed among taxonomic groups: haptophytes and rhodophytes were negatively affected, while bacillariophytes were positively affected by OA. Our findings also indicated that the interactions between OA and multiple environmental drivers varied depending on specific type of the environmental driver, suggesting a modulating role of OA on the biochemical compositions of marine primary producers in response to global change. In summary, our study elucidates the complex interactions between OA and multiple environmental drivers on marine primary producers, highlighting the varied impacts on biochemical compositions and elemental stoichiometry.
Collapse
Affiliation(s)
- Baoyi Peng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingyao Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hao Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Yipeng Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Leyao Xu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuan Jia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Bin Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fangzhou Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peixuan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Zou C, Yi X, Li H, Bizic M, Berman-Frank I, Gao K. Correlation of methane production with physiological traits in Trichodesmium IMS 101 grown with methylphosphonate at different temperatures. Front Microbiol 2024; 15:1396369. [PMID: 38894967 PMCID: PMC11184136 DOI: 10.3389/fmicb.2024.1396369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The diazotrophic cyanobacterium Trichodesmium has been recognized as a potentially significant contributor to aerobic methane generation via several mechanisms including the utilization of methylphophonate (MPn) as a source of phosphorus. Currently, there is no information about how environmental factors regulate methane production by Trichodesmium. Here, we grew Trichodesmium IMS101 at five temperatures ranging from 16 to 31°C, and found that its methane production rates increased with rising temperatures to peak (1.028 ± 0.040 nmol CH4 μmol POC-1 day-1) at 27°C, and then declined. Its specific growth rate changed from 0.03 ± 0.01 d-1 to 0.34 ± 0.02 d-1, with the optimal growth temperature identified between 27 and 31°C. Within the tested temperature range the Q10 for the methane production rate was 4.6 ± 0.7, indicating a high sensitivity to thermal changes. In parallel, the methane production rates showed robust positive correlations with the assimilation rates of carbon, nitrogen, and phosphorus, resulting in the methane production quotients (molar ratio of carbon, nitrogen, or phosphorus assimilated to methane produced) of 227-494 for carbon, 40-128 for nitrogen, and 1.8-3.4 for phosphorus within the tested temperature range. Based on the experimental data, we estimated that the methane released from Trichodesmium can offset about 1% of its CO2 mitigation effects.
Collapse
Affiliation(s)
- Chuze Zou
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiangqi Yi
- Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen, China
| | - He Li
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Mina Bizic
- Department of Environmental Microbiomics, Institute of Environmental Technology, Technical University of Berlin, Berlin, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Ilana Berman-Frank
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
4
|
de la Iglesia-Vélez B, Díaz-Pérez L, Acuña JL, Morán XAG. Spatial and seasonal variability of picoplankton abundance and growth rates in the southern Bay of Biscay. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106331. [PMID: 38181718 DOI: 10.1016/j.marenvres.2023.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Autotrophic and heterotrophic picoplankton play fundamental roles in marine food webs and biogeochemical cycles. However, their growth responses have seldom been jointly assessed, including many temperate regions such as the Bay of Biscay. There, previous studies have shown their relevance in carbon fluxes. We describe here the spatio-temporal variability of the abundances and growth rates of the picoplanktonic groups routinely distinguished by flow cytometry (Synechococcus and Prochlorococcus cyanobacteria, two groups of differently sized picoeukaryotes and two groups of heterotrophic bacteria distinguished by their relative nucleic acid content) in the central Cantabrian Sea (S Bay of Biscay). To that end, from February to December 2021 we collected surface water on 5 occasions from 6 stations distributed along the S Bay of Biscay (6-3°W) and incubated it after removing protistan grazers in order to determine their dynamics along the seasonal cycle as well as the inshore-offshore and the west-east gradients. Seasonal variations in initial and maximum abundances generally matched previous knowledge of the region but growth rates were more variable, with Prochlorococcus and high nucleic acid (HNA) bacteria showing the maximum values (up to 2 d-1) while negative growth was observed in one third of Synechococcus incubations. Temporal differences generally overrode differences along the inshore-offshore gradient in trophic status while in situ and maximum abundances of most of the groups generally decreased towards the east following the increase in stratification and lower nutrient availability. Responses to stratification suggest Prochlorococcus and low nucleic acid (LNA) cells may prevail among autotrophic and heterotrophic bacteria, respectively, in a warmer ocean.
Collapse
Affiliation(s)
| | - Laura Díaz-Pérez
- Centro Oceanográfico de Gijón/Xixón (IEO-CSIC), 33212, Gijón/Xixón, Spain
| | - José Luis Acuña
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo/Uviéu, 33071, Oviedo/Uviéu, Spain
| | | |
Collapse
|
5
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
6
|
Likumahua S, de Boer MK, Krock B, Tatipatta WM, Abdul MS, Buma AGJ. Co-occurrence of pectenotoxins and Dinophysis miles in an Indonesian semi-enclosed bay. MARINE POLLUTION BULLETIN 2022; 185:114340. [PMID: 36410193 DOI: 10.1016/j.marpolbul.2022.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The study aims to unravel the variability of Dinophysis spp. and their alleged toxins in conjunction with environmental drivers in Ambon Bay. Phytoplankton samples, lipophilic toxins and physiochemical water properties were analysed during a 1.5-year period. Three Dinophysis species (D. miles, D. caudata, and D. acuminata) were found in plankton samples, of which D. miles was the most abundant and persistently occurring species. Pectenotoxin-2 (PTX2) and its secoacid (PTX2sa) were detected throughout, and PTX2sa levels strongly correlated with D. miles cell abundance. The toxin showed a positive correlation with temperature, which may suggest that D. miles cells contain rather constant PTX2sa during warmer months. Dissolved nitrate concentrations were found to play a major role in regulating cell abundances and toxin levels. This study adds adequate information regarding marine biotoxins and potentially toxic species for future Harmful Algal Bloom management in Ambon and Indonesia at large.
Collapse
Affiliation(s)
- Sem Likumahua
- Center for Isotope Research-CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands; Centre for Deep Sea Research, The National Research and Innovation Agency (BRIN), Jl. Y. Syaranamual Guru-guru, Poka, 97233 Ambon, Indonesia; Collaborative Research Center for Aquatic Ecosystem of Eastern Indonesia, Pattimura University, Jl. Ir. M. Putuhena, Poka, 97233 Ambon, Indonesia.
| | - M Karin de Boer
- Center for Isotope Research-CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands; Beta Science Shop, Faculty of Science and Engineering, University of Groningen, Nijenborgh 6, 9747AG Groningen, the Netherlands
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Willem M Tatipatta
- Centre for Deep Sea Research, The National Research and Innovation Agency (BRIN), Jl. Y. Syaranamual Guru-guru, Poka, 97233 Ambon, Indonesia
| | - Malik S Abdul
- Centre for Deep Sea Research, The National Research and Innovation Agency (BRIN), Jl. Y. Syaranamual Guru-guru, Poka, 97233 Ambon, Indonesia
| | - Anita G J Buma
- Center for Isotope Research-CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|
7
|
Hintz NH, Schulze B, Wacker A, Striebel M. Ecological impacts of photosynthetic light harvesting in changing aquatic environments: A systematic literature map. Ecol Evol 2022; 12:e8753. [PMID: 35356568 PMCID: PMC8939368 DOI: 10.1002/ece3.8753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Underwater light is spatially as well as temporally variable and directly affects phytoplankton growth and competition. Here we systematically (following the guidelines of PRISMA-EcoEvo) searched and screened the published literature resulting in 640 individual articles. We mapped the conducted research for the objectives of (1) phytoplankton fundamental responses to light, (2) effects of light on the competition between phytoplankton species, and (3) effects of climate-change-induced changes in the light availability in aquatic ecosystems. Among the fundamental responses of phytoplankton to light, the effects of light intensity (quantity, as measure of total photon or energy flux) were investigated in most identified studies. The effects of the light spectrum (quality) that via species-specific light absorbance result in direct consequences on species competition emerged more recently. Complexity in competition arises due to variability and fluctuations in light which effects are sparsely investigated on community level. Predictions regarding future climate change scenarios included changes in in stratification and mixing, lake and coastal ocean darkening, UV radiation, ice melting as well as light pollution which affect the underwater light-climate. Generalization of consequences is difficult due to a high variability, interactions of consequences as well as a lack in sustained timeseries and holistic approaches. Nevertheless, our systematic literature map, and the identified articles within, provide a comprehensive overview and shall guide prospective research.
Collapse
Affiliation(s)
- Nils Hendrik Hintz
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgWilhelmshavenGermany
| | - Brian Schulze
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Alexander Wacker
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgWilhelmshavenGermany
| |
Collapse
|
8
|
Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 2021; 591:592-598. [PMID: 33762764 PMCID: PMC7610469 DOI: 10.1038/s41586-021-03303-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Abstract
The surface mixed layer of the world ocean regulates global climate by controlling heat and carbon exchanges between the atmosphere and the oceanic interior1–3. The mixed layer also shapes marine ecosystems by hosting most of the ocean’s primary production4 and providing the conduit for oxygenation of deep oceanic layers. Despite these important climatic and life-supporting roles, possible changes in the mixed layer during an era of global climate change remain uncertain. Here, we use oceanographic observations to show that from 1970-2018 the density contrast across the mixed-layer base increased and that the mixed layer itself deepened. The summertime density contrast increased by 8.9±2.7% dec-1 (10-6-10-5 s-2 dec-1, depending on region), more than six times greater than previous estimates due to our use of a more physically-based definition of mixed layer stability following the differing dynamical regimes across the global ocean. While prior work has suggested that a thinner mixed layer should accompany a more stratified ocean5–7, we instead find that the summertime mixed layer deepened by 2.9±0.5% dec-1 or several meters per decade (typically 5-10m dec-1, depending on region). A detailed mechanistic interpretation is challenging, but the concurrent stratification and deepening of the mixed layer are related to an increase in stability associated with surface warming and high latitude surface freshening8,9, accompanied by a wind-driven intensification of upper-ocean turbulence10,11. Our results are based on a complex dataset with incomplete coverage of a vast area; we found our results to be robust within a wide range of sensitivity analyses, but important uncertainties remain, such as sparse coverage in the early years. Nonetheless, our work calls for reconsideration of the drivers of ongoing shifts in marine primary production, and reveals stark changes in the world’s upper ocean over the past five decades.
Collapse
|
9
|
Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Wilson SR, Madronich S, Andrady AL, Heikkilä AM, Bernhard GH, Bais AF, Aucamp PJ, Banaszak AT, Bornman JF, Bruckman LS, Byrne SN, Foereid B, Häder DP, Hollestein LM, Hou WC, Hylander S, Jansen MAK, Klekociuk AR, Liley JB, Longstreth J, Lucas RM, Martinez-Abaigar J, McNeill K, Olsen CM, Pandey KK, Rhodes LE, Robinson SA, Rose KC, Schikowski T, Solomon KR, Sulzberger B, Ukpebor JE, Wang QW, Wängberg SÅ, White CC, Yazar S, Young AR, Young PJ, Zhu L, Zhu M. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem Photobiol Sci 2021; 20:1-67. [PMID: 33721243 PMCID: PMC7816068 DOI: 10.1007/s43630-020-00001-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/31/2023]
Abstract
This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
Collapse
Affiliation(s)
- R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - T M Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - P J Neale
- Smithsonian Environmental Research Center, Maryland, USA
| | - C E Williamson
- Department of Biology, Miami University, Oxford, OH, USA
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | - G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA
| | - A F Bais
- Department of Physics, Laboratory of Atmospheric Physics, Aristotle University, Thessaloniki, Greece
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, México
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - L S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - S N Byrne
- The University of Sydney, School of Medical Sciences, Discipline of Applied Medical Science, Sydney, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - D-P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - L M Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - S Hylander
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.
| | - M A K Jansen
- School of BEES, Environmental Research Institute, University College Cork, Cork, Ireland
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water and Atmospheric Research, Lauder, New Zealand
| | - J Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, MD, USA
| | - R M Lucas
- National Centre of Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño, Spain
| | | | - C M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - K K Pandey
- Department of Wood Properties and Uses, Institute of Wood Science and Technology, Bangalore, India
| | - L E Rhodes
- Photobiology Unit, Dermatology Research Centre, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S A Robinson
- Securing Antarctica's Environmental Future, Global Challenges Program and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - K C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - T Schikowski
- IUF-Leibniz Institute of Environmental Medicine, Dusseldorf, Germany
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Academic Guest Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - J E Ukpebor
- Chemistry Department, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S-Å Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - C C White
- Bee America, 5409 Mohican Rd, Bethesda, MD, USA
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - P J Young
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - L Zhu
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China
| | - M Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| |
Collapse
|
10
|
Atmospheric Forcing of the High and Low Extremes in the Sea Surface Temperature over the Red Sea and Associated Chlorophyll-a Concentration. REMOTE SENSING 2020. [DOI: 10.3390/rs12142227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Taking advantage of 37-year-long (1982–2018) of high-quality satellite datasets, we examined the role of direct atmospheric forcing on the high and low sea surface temperature (SST) extremes over the Red Sea (RS). Considering the importance of SST in regulating ocean physics and biology, the associated impacts on chlorophyll (Chl-a) concentration were also explored, since a small change in SST can cause a significant impact in the ocean. After describing the climate features, we classified the top 5% of SST values (≥31.5 °C) as extreme high events (EHEs) during the boreal summer period and the lowest SST values (≤22.8 °C) as extreme low events (ELEs) during the boreal winter period. The spatiotemporal analysis showed that the EHEs (ELEs) were observed over the southern (northern) basin, with a significant warming trend of 0.027 (0.021) °C year−1, respectively. The EHEs were observed when there was widespread less than average sea level pressure (SLP) over southern Europe, northeast Africa, and Middle East, including in the RS, leading to the cold wind stress from Europe being relatively less than usual and the intrusion of stronger than usual relatively warm air mass from central Sudan throughout the Tokar Gap. Conversely, EHEs were observed when above average SLP prevailed over southern Europe and the Mediterranean Sea as a result of the Azores high and westward extension of the Siberian anticyclone, which led to above average transfer of cold and dry wind stress from higher latitudes. At the same time, notably less wind stress due to southerlies that transfer warm and humid air masses northward was observed. Furthermore, physical and biological responses related to extreme stress showed distinct ocean patterns associated with each event. It was found that the Chl-a concentration anomalies over the northern basin caused by vertical nutrient transport through deep upwelling processes are the manifestation of the superimposition of ELEs. The situation was the opposite for EHEs due to the stably stratified ocean boundary layer, which is a well-known consequence of global warming.
Collapse
|
11
|
Lesser MP, Slattery M. Will coral reef sponges be winners in the Anthropocene? GLOBAL CHANGE BIOLOGY 2020; 26:3202-3211. [PMID: 32052520 DOI: 10.1111/gcb.15039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Recent observations have shown that increases in climate change-related coral mortality cause changes in shallow coral reef community structure through phase shifts to alternative taxa. As a result, sponges have emerged as a potential candidate taxon to become a "winner," and therefore a numerically and functionally dominant member of many coral reef communities. But, in order for this to occur, there must be sufficient trophic resources to support larger populations of these active filter-feeding organisms. Globally, climate change is causing an increase in sea surface temperatures (SSTs) and a decrease in salinity, which can lead to an intensification in the stratification of shallow nearshore waters (0-200 m), that affects both the mixed layer depth (MLD) and the strength and duration of internal waves. Specifically, climate change-driven increases in SSTs for tropical waters are predicted to cause increased stratification, and more stabilized surface waters. This causes a shallowing of the MLD which prevents nutrients from reaching the euphotic zone, and is predicted to decrease net primary production (NPP) up to 20% by the end of the century. Lower NPP would subsequently affect multiple trophic levels, including shallow benthic filter-feeding communities, as the coupling between water column productivity and the benthos weakens. We argue here that sponge populations may actually be constrained, rather than promoted, by climate change due to decreases in their primary trophic resources, caused by bottom-up forcing, secondary to physical changes in the water column (i.e., stratification and changes in the MLD resulting in lower nutrients and NPP). As a result, we predict sponge-dominated tropical reefs will be rare, or short-lived, if they occur at all into the future in the Anthropocene.
Collapse
Affiliation(s)
- Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, NH, USA
| | - Marc Slattery
- Department of BioMolecular Science, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
12
|
Likumahua S, de Boer MK, Krock B, Hehakaya S, Imu L, Müller A, Max T, Buma AGJ. Variability of dinoflagellates and their associated toxins in relation with environmental drivers in Ambon Bay, eastern Indonesia. MARINE POLLUTION BULLETIN 2020; 150:110778. [PMID: 31910525 DOI: 10.1016/j.marpolbul.2019.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present work was to unravel which environmental drivers govern the dynamics of toxic dinoflagellate abundance as well as their associated paralytic shellfish toxins (PSTs), diarrhetic shellfish toxins (DSTs) and pectenotoxin-2 (PTX2) in Ambon Bay, Eastern Indonesia. Weather, biological and physicochemical parameters were investigated weekly over a 7-month period. Both PSTs and PTX2 were detected at low levels, yet they persisted throughout the research. Meanwhile, DSTs were absent. A strong correlation was found between total particulate PST and Gymnodinium catenatum cell abundance, implying that this species was the main producer of this toxin. PTX2 was positively correlated with Dinophysis miles cell abundance. Vertical mixing, tidal elevation and irradiance attenuation were the main environmental factors that regulated both toxins and cell abundances, while nutrients showed only weak correlations. The present study indicates that dinoflagellate toxins form a potential environmental, economic and health risk in this Eastern Indonesian bay.
Collapse
Affiliation(s)
- Sem Likumahua
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands; Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru Poka, 97233 Ambon, Indonesia..
| | - M Karin de Boer
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands; Beta Science Shop, Faculty of Science and Engineering, University of Groningen, Nijenborgh 6, 9747AG Groningen, the Netherlands
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Salomy Hehakaya
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru Poka, 97233 Ambon, Indonesia
| | - La Imu
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru Poka, 97233 Ambon, Indonesia
| | - Annegret Müller
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Thomas Max
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Anita G J Buma
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|
13
|
Reconstructed 3-D Ocean Temperature Derived from Remotely Sensed Sea Surface Measurements for Mixed Layer Depth Analysis. REMOTE SENSING 2019. [DOI: 10.3390/rs11243018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mixed layer depth (MLD) is generally estimated using in situ or model data. However, MLD analyses have limitations due to the sparse resolution of the observed data. Therefore, this study reconstructs three-dimensional (3D) ocean thermal structures using only satellite sea surface measurements for a higher spatial and longer temporal resolution than that of Argo and diagnoses the decadal variation of global MLD variability. To simulate the ocean thermal structures, the relationship between the ocean subsurface temperature and the sea surface fields was computed based on gridded Argo data. Based on this relationship, high spatial resolution and extended periods of satellite-derived altimeter, sea surface temperature (SST), and wind stress data were used to estimate the 3D ocean thermal structures with 0.25° spatial resolution and 26 standard depth levels (5–2000 m) for 24 years (1993–2016). Then, the MLD was calculated using a temperature threshold method (∆T = 0.2 °C) and correlated reasonably well (>0.9) with other MLD datasets. The extended 24-year data enabled us to analyze the decadal variability of the MLD. The global linear trend of the 24-year MLD is −0.110 m yr−1; however, from 1998 to 2012, the linear trend is −0.003 m yr−1 which is an order of magnitude smaller than that of other periods and corresponds to a global warming hiatus period. Via comparisons between the trends of the SST anomalies and the MLD anomalies, we tracked how the MLD trend changes in response to the global warming hiatus.
Collapse
|
14
|
Likumahua S, de Boer MK, Krock B, Nieuwenhuizen T, Tatipatta WM, Hehakaya S, Imu L, Abdul MS, Moniharapon E, Buma AGJ. First record of the dynamics of domoic acid producing Pseudo-nitzschia spp. in Indonesian waters as a function of environmental variability. HARMFUL ALGAE 2019; 90:101708. [PMID: 31806164 DOI: 10.1016/j.hal.2019.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Within the past few decades, harmful algal blooms (HABs) have occurred frequently in Indonesian waters, resulting in environmental degradation, economic loss and human health problems. So far, HAB related studies mainly addressed ecological traits and species distribution, yet toxin measurements were virtually absent for Indonesian waters. The aim of the present study was to explore variability of the potentially toxic marine diatom genus Pseudo-nitzschia, as well as its neurotoxin domoic acid as a function of environmental conditions in Ambon Bay, eastern Indonesia. Weekly phytoplankton samples, oceanographic (CTD, nutrients) and meteorological (precipitation, wind) parameters were analyzed at 5 stations in the bay during the dry and wet seasons of 2018. Liquid chromatography - tandem mass spectrometry (LC-MS/MS) was used to detect particulate DA (pDA). Vegetative cells of Pseudo-nitzschia spp. and pDA were found in 98.6% and 51.4% of the samples, respectively. pDA levels were low, yet detected throughout the campaign, implying that Ambon Bay might potentially be subject to amnesic shellfish poisoning. The highest levels of both Pseudo-nitzschia spp. cell abundance and pDA were found in the wet season, showing a strong positive correlation between both parameters, compared to the dry season, (r = 0.87 and r = 0.66 (p < 0.01), respectively). Statistical analyses revealed that temperature and mixed layer depth positively correlated with Pseudo-nitzschia spp. and pDA during the dry season, while ammonium showed positive correlations in both seasons. This study represents the first successful investigation of the presence and variability of Pseudo-nitzschia spp. and its neurotoxin DA in Indonesian waters.
Collapse
Affiliation(s)
- Sem Likumahua
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands; Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia.
| | - M Karin de Boer
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands; Beta Science Shop, Faculty of Science and Engineering, University of Groningen, Nijenborgh 6, 9747AG Groningen, the Netherlands
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Tomas Nieuwenhuizen
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Willem M Tatipatta
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - Salomy Hehakaya
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - La Imu
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - Malik S Abdul
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - Eduard Moniharapon
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - Anita G J Buma
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|
15
|
Lorenzo MR, Neale PJ, Sobrino C, León P, Vázquez V, Bresnan E, Segovia M. Effects of elevated CO 2 on growth, calcification, and spectral dependence of photoinhibition in the coccolithophore Emiliania huxleyi (Prymnesiophyceae) 1. JOURNAL OF PHYCOLOGY 2019; 55:775-788. [PMID: 31090939 DOI: 10.1111/jpy.12885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/03/2019] [Indexed: 05/20/2023]
Abstract
We studied the effects of elevated CO2 concentrations on cell growth, calcification, and spectral variation in the sensitivity of photosynthesis to inhibition by solar radiation in the globally important coccolithophore Emiliania huxleyi. Growth rates and chlorophyll a content per cell showed no significant differences between elevated (800 ppmv) and ambient (400 ppmv) CO2 conditions. However, the production of organic carbon and the cell quotas for both carbon and nitrogen, increased under elevated CO2 conditions, whilst particulate inorganic carbon production rates decreased under the same conditions. Biometric analyses of cells showed that coccoliths only presented significant differences due to treatments in the central area width. Most importantly, the size of the coccosphere decreased under elevated CO2 conditions. The susceptibility of photosynthesis to inhibition by ultraviolet radiation (UVR) was estimated using biological weighting functions (BWFs) and a model that predicts photosynthesis under photosynthetically active radiation and UVR exposures. BWF results demonstrated that the sensitivity of photosynthesis to UVR was not significantly different between E. huxleyi cells grown under elevated and present CO2 concentrations. We propose that the acclimation to elevated CO2 conditions involves a physiological mechanism of regulation and allocation of energy and metabolites in the cell, which is also responsible for altering the sensitivity to UVR. In coccolithophores, this mechanism might be affected by the decrease in the calcification rates.
Collapse
Affiliation(s)
- M Rosario Lorenzo
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, Málaga, 29071, Spain
| | - Patrick J Neale
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, Maryland, 21037, USA
| | - Cristina Sobrino
- Department of Ecology and Animal Biology, Faculty of Sciences, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - Pablo León
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK
| | - Víctor Vázquez
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, Málaga, 29071, Spain
| | - Eileen Bresnan
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK
| | - María Segovia
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, Málaga, 29071, Spain
| |
Collapse
|
16
|
Abstract
The evolution of the near-surface phytoplankton bloom towards a Deep Chlorophyll Maximum (DCM) in mid-latitudes and subpolar regions of the global ocean is a well-known biological feature. However, our knowledge about the exact mechanism that determines the end of the bloom and its irreversible evolution towards a DCM is still limited. In this work, combining satellite and in-situ oceanographic data together with reanalysis data, we investigate why and when this transition between the near-surface phytoplankton bloom and the development of a DCM occurs. For this aim, we investigate the links between changes in air-sea heat exchanges, the near-surface signature of phytoplankton bloom, and the water column vertical structure by calculating the mixed layer depth (MLD) and depth of the DCM on hydrographic and chlorophyll profiles. We find that the occurrence of the last convective mixing event (heat loss by the ocean surface) at the end of the spring which is able to reach the base of the MLD and inject new nutrients into the mixed layer marks the end of the near-surface bloom and its transition towards a DCM. Identified in this way, the spring bloom duration and the start of the transition towards a DCM can be systematically and objectively determined, providing sensitive indexes of climate and ecosystem variability.
Collapse
|
17
|
Williamson CE, Neale PJ, Hylander S, Rose KC, Figueroa FL, Robinson SA, Häder DP, Wängberg SÅ, Worrest RC. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem Photobiol Sci 2019; 18:717-746. [DOI: 10.1039/c8pp90062k] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Summary of current knowledge about effects of UV radiation in inland and oceanic waters related to stratospheric ozone depletion and climate change.
Collapse
Affiliation(s)
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial model Systems
- Linnaeus Univ
- Kalmar
- Sweden
| | - Kevin C. Rose
- Department of Biological Sciences
- Rensselaer Polytechnic Institute
- Troy
- USA
| | | | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions
- School of Earth
- Atmosphere and Life Sciences and Global Challenges Program
- University of Wollongong
- Australia
| | - Donat-P. Häder
- Department of Biology
- Friedrich-Alexander Universität
- Möhrendorf
- Germany
| | | | | |
Collapse
|
18
|
Bais F, Luca RM, Bornman JF, Williamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL, Aucamp PJ, Madronich S, Neale RE, Yazar S, Young AR, de Gruijl FR, Norval M, Takizawa Y, Barnes PW, Robson TM, Robinson SA, Ballaré CL, Flint SD, Neale PJ, Hylander S, Rose KC, Wängberg SÅ, Häder DP, Worrest RC, Zepp RG, Paul ND, Cory RM, Solomon KR, Longstreth J, Pandey KK, Redhwi HH, Torikai A, Heikkilä AM. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 2018; 17:127-179. [PMID: 29404558 PMCID: PMC6155474 DOI: 10.1039/c7pp90043k] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.
Collapse
Affiliation(s)
- F. Bais
- Aristotle Univ. of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
| | - R. M. Luca
- National Centre for Epidemiology and Population Health, Australian National Univ., Canberra, Australia
| | - J. F. Bornman
- Curtin Univ., Curtin Business School, Perth, Australia
| | | | - B. Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A. T. Austin
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. R. Wilson
- School of Chemistry, Centre for Atmospheric Chemistry, Univ. of Wollongong, Wollongong, Australia
| | - A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State Univ., Raleigh, NC, USA
| | - G. Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA
| | | | - P. J. Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - S. Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - R. E. Neale
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - S. Yazar
- Univ. of Western Australia, Centre for Ophthalmology and Visual Science, Lions Eye Institute, Perth, Australia
| | | | - F. R. de Gruijl
- Department of Dermatology, Leiden Univ. Medical Centre, Leiden, The Netherlands
| | - M. Norval
- Univ. of Edinburgh Medical School, UK
| | - Y. Takizawa
- Akita Univ. School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program, Loyola Univ., New Orleans, USA
| | - T. M. Robson
- Research Programme in Organismal and Evolutionary Biology, Viikki Plant Science Centre, Univ. of Helsinki, Finland
| | - S. A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, Univ. of Wollongong, Wollongong, NSW 2522, Australia
| | - C. L. Ballaré
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. D. Flint
- Dept of Forest, Rangeland and Fire Sciences, Univ. of Idaho, Moscow, ID, USA
| | - P. J. Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - S. Hylander
- Centre for Ecology and Evolution in Microbial model Systems, Linnaeus Univ., Kalmar, Sweden
| | - K. C. Rose
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S.-Å. Wängberg
- Dept Marine Sciences, Univ. of Gothenburg, Göteborg, Sweden
| | - D.-P. Häder
- Friedrich-Alexander Univ. Erlangen-Nürnberg, Dept of Biology, Möhrendorf, Germany
| | - R. C. Worrest
- CIESIN, Columbia Univ., New Hartford, Connecticut, USA
| | - R. G. Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - N. D. Paul
- Lanter Environment Centre, Lanter Univ., LA1 4YQ, UK
| | - R. M. Cory
- Earth and Environmental Sciences, Univ. of Michigan, Ann Arbor, MI, USA
| | - K. R. Solomon
- Centre for Toxicology, School of Environmental Sciences, Univ. of Guelph, Guelph, ON, Canada
| | - J. Longstreth
- The Institute for Global Risk Research, Bethesda, MD, USA
| | - K. K. Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - H. H. Redhwi
- Chemical Engineering Dept, King Fahd Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - A. Torikai
- Materials Life Society of Japan, Kayabacho Chuo-ku, Tokyo, Japan
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research, Helsinki, Finland
| |
Collapse
|