1
|
Massi MN, Hidayah N, Handayani I, Iskandar IW, Djannah F, Angria N, Halik H. microRNA hsa-miR-425-5p and hsa-miR-4523 expressions as biomarkers of active pulmonary tuberculosis, latent tuberculosis infection, and lymph node tuberculosis. Noncoding RNA Res 2023; 8:527-533. [PMID: 37555010 PMCID: PMC10405153 DOI: 10.1016/j.ncrna.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Studies on miRNA highlight its significance as an immunomarker for several diseases, including tuberculosis. This study aimed to determine the difference between miR-425-5p and miR-4523 expressions in patients with active pulmonary TB (PTB), latent TB infection (LTBI), and lymph node TB (LNTB), whose diagnosis remains challenging. METHODS This case-control study was performed on blood samples obtained from 23 patients with PTB, 21 with LTBI, 21 with LNTB, and 25 healthy controls (HC). miRNA hsa-miR-425-5p and hsa-miR-4523 expression levels were measured by RT-qPCR. Statistical analyses were performed using SPSS version 25.0. RESULTS RT-qPCR showed that hsa-mir-425-5p and hsa-mir-4523 expression levels were significantly different among the four groups (PTB, LTBI, LNTB, and HCs). The hsa-mir-425-5p miRNA expression level in LNTB was higher than that in LTBI (p = 0.003). Meanwhile, the hsa-mir-4523 miRNA expression was downregulated in PTB and LNTB than in LTBI (p < 0.0001 and p = 0.015, respectively). The ROC analysis of a single sample showed that only mir-4523 could discriminate LTBI and HCs, with an AUC of 0.829 (p < 0.001). The ROC curve of each miRNA was further analyzed after logistic regression by adjusting for sex and age. The combination of both miRNAs was also analyzed. The model that analyzed the combination of both miRNAs after adjusting for age had the best performance in differentiating LNTB from LTBI, with an AUC of 0.97 (p < 0.001). CONCLUSION miRNA hsa-mir-425-5p was upregulated and miRNA hsa-mir-4523 was downregulated in PTB and LNTB than in LTBI.
Collapse
Affiliation(s)
- Muhammad Nasrum Massi
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Hasanuddin, Makassar, 90245, South Sulawesi, Indonesia
- Hasanuddin University Medical Research Center Laboratory, Faculty of Medicine, Universitas Hasanuddin, Makassar, 90245, South Sulawesi, Indonesia
- Institute Research and Community Services Universitas Hasanuddin, Makassar, 90245, South Sulawesi, Indonesia
| | - Najdah Hidayah
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Banten, Indonesia
| | - Irda Handayani
- Department of Clinical Pathology, Faculty of Medicine, Universitas Hasanuddin, Makassar, 90245, South Sulawesi, Indonesia
| | - Israini Wiyulanda Iskandar
- Institute Research and Community Services Universitas Hasanuddin, Makassar, 90245, South Sulawesi, Indonesia
| | - Fathul Djannah
- Department of Anatomy Pathology, Faculty of Medicine, Universitas Mataram, Mataram, 83126, Indonesia
| | - Nirmawati Angria
- Department of Biomedical Sciences, Faculty of Health Technology, Megarezky University, Makassar, 90234, South Sulawesi, Indonesia
| | - Handayani Halik
- Hasanuddin University Medical Research Center Laboratory, Faculty of Medicine, Universitas Hasanuddin, Makassar, 90245, South Sulawesi, Indonesia
- Department of Biomedical Sciences, Faculty of Health Technology, Megarezky University, Makassar, 90234, South Sulawesi, Indonesia
| |
Collapse
|
2
|
Jamrozik D, Dutczak R, Machowicz J, Wojtyniak A, Smędowski A, Pietrucha-Dutczak M. Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants (Basel) 2023; 12:1251. [PMID: 37371981 DOI: 10.3390/antiox12061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Metallothioneins are the metal-rich proteins that play important roles in metal homeostasis and detoxification. Moreover, these proteins protect cells against oxidative stress, inhibit proapoptotic mechanisms and enhance cell differentiation and survival. Furthermore, MTs, mainly MT-1/2 and MT-3, play a vital role in protecting the neuronal retinal cells in the eye. Expression disorders of these proteins may be responsible for the development of various age-related eye diseases, including glaucoma, age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa. In this review, we focused on the literature reports suggesting that these proteins may be a key component of the endogenous protection system of the retinal neurons, and, when the expression of MTs is disrupted, this system becomes inefficient. Moreover, we described the location of different MT isoforms in ocular tissues. Then we discussed the changes in MT subtypes' expression in the context of the common eye diseases. Finally, we highlighted the possibility of the use of MTs as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Daniel Jamrozik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Radosław Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alicja Wojtyniak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Adrian Smędowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- GlaucoTech Co., Gen., Władysława Sikorskiego 45/177, 40-282 Katowice, Poland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
3
|
Lycium barbarum Polysaccharides Regulating miR-181/Bcl-2 Decreased Autophagy of Retinal Pigment Epithelium with Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9554457. [PMID: 36644575 PMCID: PMC9836813 DOI: 10.1155/2023/9554457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Disturbed structure and dysfunction of the retinal pigment epithelium (RPE) lead to degenerative diseases of the retina. Excessive accumulation of reactive oxygen species (ROS) in the RPE is thought to play an important role in RPE dysfunction and degeneration. Autophagy is a generally low-activity degradation process of cellular components that increases significantly when high levels of oxidative stress are present. Agents with antioxidant properties may decrease autophagy and provide protection against RPE dysfunction and damage caused by ROS. Lycium barbarum polysaccharide (LBP) has been widely studied as an antioxidant and cell-protective agent. Therefore, we designed this study to investigate the effects of LBP, which inhibits miR-181, on autophagy in retinal pigment epithelium (RPE) with oxidative stress in vitro and in vivo. In the current study, we found that the highly expressed miR-181 downregulated the expression of Bcl-2 in hydrogen peroxide- (H2O2-) induced ARPE-19 cells, resulting in an increase in ROS, apoptosis, and autophagy flux. LBP inhibited the expression of miR-181, decreased the levels of ROS, apoptosis, and autophagy flux, and increased cell viability in H2O2-induced ARPE-19 cells, suggesting that LBP provides protection against oxidative damage in ARPE-19 cells. We also found that LBP decreased RPE atrophy and autophagy flux in rd10 mice. Taken together, the results showed that LBP has a protective effect for RPE under oxidative stress by inhibiting miR-181 and affecting the Bcl-2/Beclin1 autophagy signaling pathway.
Collapse
|
4
|
The impact of modifier genes on cone-rod dystrophy heterogeneity: An explorative familial pilot study and a hypothesis on neurotransmission impairment. PLoS One 2022; 17:e0278857. [PMID: 36490268 PMCID: PMC9733859 DOI: 10.1371/journal.pone.0278857] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cone-rod dystrophies (CORDs) are a heterogeneous group of inherited retinopathies (IRDs) with more than 30 already known disease-causing genes. Uncertain phenotypes and extended range of intra- and interfamilial heterogenicity make still difficult to determine a precise genotype-phenotype correlation. Here, we used a next-generation sequencing approach to study a Sicilian family with a suspected form of CORD. Affected family members underwent ophthalmological examinations and a proband, blind from 50 years, underwent whole genome and exome sequencing. Variant analysis was enriched by pathway analysis and relevant variants were, then, investigated in other family members and in 100 healthy controls from Messina. CORD diagnosis with an intricate pattern of symptoms was confirmed by ophthalmological examinations. A total of about 50,000 variants were identified in both proband's genome and exome. All affected family members presented specific genotypes mainly determined by mutated GUCY2D gene, and different phenotypical traits, mainly related to focus and color perception. Thus, we looked for possible modifier genes. According to relationship with GUCY2D, predicted functional effects, eye localization, and ocular disease affinity, only 9 variants, carried by 6 genes (CACNG8, PAX2, RXRG, CCDC175, PDE4DIP and LTF), survived the filtering. These genes encode key proteins involved in cone development and survival, and retina neurotransmission. Among analyzed variants, CACNG8c.*6819A>T and the new CCDC175 c.76C>T showed extremely low frequency in the control group, suggesting a key role on disease phenotypes. Such discovery could enforce the role of modifier genes into CORD onset/progression, contributing to improve diagnostic test towards a better personalized medicine.
Collapse
|
5
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
6
|
Kaczynski TJ, Au ED, Farkas MH. Exploring the lncRNA localization landscape within the retinal pigment epithelium under normal and stress conditions. BMC Genomics 2022; 23:539. [PMID: 35883037 PMCID: PMC9327364 DOI: 10.1186/s12864-022-08777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are emerging as a class of genes whose importance has yet to be fully realized. It is becoming clear that the primary function of lncRNAs is to regulate gene expression, and they do so through a variety of mechanisms that are critically tied to their subcellular localization. Although most lncRNAs are poorly understood, mapping lncRNA subcellular localization can provide a foundation for understanding these mechanisms. RESULTS Here, we present an initial step toward uncovering the localization landscape of lncRNAs in the human retinal pigment epithelium (RPE) using high throughput RNA-Sequencing (RNA-Seq). To do this, we differentiated human induced pluripotent stem cells (iPSCs) into RPE, isolated RNA from nuclear and cytoplasmic fractions, and performed RNA-Seq on both. Furthermore, we investigated lncRNA localization changes that occur in response to oxidative stress. We discovered that, under normal conditions, most lncRNAs are seen in both the nucleus and the cytoplasm to a similar degree, but of the transcripts that are highly enriched in one compartment, far more are nuclear than cytoplasmic. Interestingly, under oxidative stress conditions, we observed an increase in lncRNA localization in both nuclear and cytoplasmic fractions. In addition, we found that nuclear localization was partially attributable to the presence of previously described nuclear retention motifs, while adenosine to inosine (A-to-I) RNA editing appeared to play a very minimal role. CONCLUSIONS Our findings map lncRNA localization in the RPE and provide two avenues for future research: 1) how lncRNAs function in the RPE, and 2) how one environmental factor, in isolation, may potentially play a role in retinal disease pathogenesis through altered lncRNA localization.
Collapse
Affiliation(s)
- Tadeusz J Kaczynski
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA
- Research Service, VA Medical Center, Buffalo, NY, USA
| | - Elizabeth D Au
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael H Farkas
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA.
- Research Service, VA Medical Center, Buffalo, NY, USA.
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Bai Y, Li L, Zhang Z. Linc00883 affects colorectal cancer through miR-577/FKBP14 axis: a novel mechanism for regulating colorectal cancer cell proliferation, invasion, and migration. Cell Cycle 2022; 21:2403-2416. [PMID: 35833665 DOI: 10.1080/15384101.2022.2097824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are relevant to the development of human cancers. Here, we aimed to investigate the role and mechanism of Linc00883 in the proliferation, invasion, and migration of colorectal cancer (CRC) cells. CRC cell lines SW480 and LoVo were applied as in vitro models in this study. Quantitative real-time PCR was applied to measure Linc00883, miR-577, and FKBP14 expressions. Cell Counting Kit-8, transwell, and wound-healing assays were carried out to confirm the function of Linc00883. Western blot was applied to detect the protein levels of the epithelial-mesenchymal transition-related proteins E-cadherin, vimentin, fibronectin, and α-SMA. RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the relationship between Linc00883 and miR-577. Linc00883 expression was elevated in CRC tissues and cells, and the patients with high expression of Linc00883 were related to a low survival rate and prone to distant metastasis. Moreover, we corroborated that Linc00883 and miR-577, miR-577 and FKBP14 are bound to each other. Linc00883 was negatively correlated with miR-577, and miR-577 was also negatively correlated with FKBP14. Furthermore, interference with Linc00883 restrained the proliferation, invasion, and migration of CRC cells through the miR-577/FKBP14 axis. In vivo studies also clarified that Linc00883 facilitated the growth of CRC tumors and the epithelial-mesenchymal transition (EMT) of CRC. Our results demonstrated that Linc00883 facilitated the proliferation, invasion, and migration of CRC cells by regulating the miR-577/FKBP14 axis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Ling Li
- Department of Ultrasound, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan, China
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
8
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
9
|
Detection Of TLR-2 germ line variants as a risk for obesity in local Pakistani population. Arch Med Res 2022; 53:359-367. [DOI: 10.1016/j.arcmed.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/08/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022]
|
10
|
Huang S, Dou J, Li Z, Hu L, Yu Y, Wang Y. Analysis of Genomic Alternative Splicing Patterns in Rat under Heat Stress Based on RNA-Seq Data. Genes (Basel) 2022; 13:genes13020358. [PMID: 35205403 PMCID: PMC8871965 DOI: 10.3390/genes13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most severe challenges faced in livestock production in summer. Alternative splicing as an important post-transcriptional regulation is rarely studied in heat-stressed animals. Here, we performed and analyzed RNA-sequencing assays on the liver of Sprague-Dawley rats in control (22 °C, n = 5) and heat stress (4 °C for 120 min, H120; n = 5) groups, resulting in the identification of 636 differentially expressed genes. Identification analysis of the alternative splicing events revealed that heat stress-induced alternative splicing events increased by 20.18%. Compared with other types of alternative splicing events, the alternative start increased the most (43.40%) after heat stress. Twenty-eight genes were differentially alternatively spliced (DAS) between the control and H120 groups, among which Acly, Hnrnpd and mir3064 were also differentially expressed. For DAS genes, Srebf1, Shc1, Srsf5 and Ensa were associated with insulin, while Cast, Srebf1, Tmem33, Tor1aip2, Slc39a7 and Sqstm1 were enriched in the composition of the endoplasmic reticulum. In summary, our study conducts a comprehensive profile of alternative splicing in heat-stressed rats, indicating that alternative splicing is one of the molecular mechanisms of heat stress response in mammals and providing reference data for research on heat tolerance in mammalian livestock.
Collapse
Affiliation(s)
- Shangzhen Huang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Jinhuan Dou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
- Correspondence: (J.D.); (Y.W.)
| | - Zhongshu Li
- Agricultural College, Yanbian University, Yanji 133002, China;
| | - Lirong Hu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Ying Yu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Yachun Wang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
- Correspondence: (J.D.); (Y.W.)
| |
Collapse
|
11
|
Du SW, Palczewski K. MicroRNA regulation of critical retinal pigment epithelial functions. Trends Neurosci 2021; 45:78-90. [PMID: 34753606 DOI: 10.1016/j.tins.2021.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs are short, evolutionarily conserved noncoding RNAs that are critical for the control of normal cellular physiology. In the retina, photoreceptors are highly specialized neurons that transduce light into electrical signals. Photoreceptors, however, are unable to process visual stimuli without the support of the retinal pigment epithelium (RPE). The RPE performs numerous functions to aid the retina, including the generation of visual chromophore and metabolic support. Recent work has underscored how microRNAs enable vision through their contributions to RPE functions. This review focuses on the biogenesis and control of microRNAs in rodents and humans, the roles microRNAs play in RPE function and degeneration, and how microRNAs could serve as potential therapeutics and biomarkers for visual diseases.
Collapse
Affiliation(s)
- Samuel W Du
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA
| | - Krzysztof Palczewski
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, CA, USA; Department of Chemistry, University of California, Irvine School of Medicine, CA, USA.
| |
Collapse
|
12
|
Whole transcriptome sequencing identifies key circRNAs, lncRNAs, and miRNAs regulating neurogenesis in developing mouse retina. BMC Genomics 2021; 22:779. [PMID: 34717547 PMCID: PMC8557489 DOI: 10.1186/s12864-021-08078-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background The molecular complexity of neural retina development remains poorly studied. Knowledge of retinal neurogenesis regulation sheds light on retinal degeneration therapy exploration. Therefore, we integrated the time-series circRNA, lncRNA, miRNA, and mRNA expression profiles of the developing retina through whole-transcriptome sequencing. The key functional ncRNAs and the ceRNA network regulating retinal neurogenesis were identified. Results Transcriptomic analysis identified circRNA as the most variable ncRNA subtype. We screened a series of neurogenesis-related circRNAs, lncRNAs, and miRNAs using different strategies based on their diversified molecular functions. The expression of circCDYL, circATXN1, circDYM, circPRGRIP, lncRNA Meg3, and lncRNA Vax2os was validated by quantitative real-time PCR. These circRNAs and lncRNAs participate in neurotransmitter transport and multicellular organism growth through the intricate circRNA/lncRNA-miRNA-mRNA network. Conclusion Whole-transcriptome sequencing and bioinformatics analysis systematically screened key ncRNAs in retinal neurogenesis. The validated ncRNAs and their circRNA/lncRNA-miRNA-mRNA network involve neurotransmitter transport and multicellular organism growth during retinal development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08078-z.
Collapse
|
13
|
Qu J, Xiong X, Hujie G, Ren J, Yan L, Ma L. MicroRNA-132-3p alleviates neuron apoptosis and impairments of learning and memory abilities in Alzheimer's disease by downregulation of HNRNPU stabilized BACE1. Cell Cycle 2021; 20:2309-2320. [PMID: 34585626 DOI: 10.1080/15384101.2021.1982507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neuro-degenerative disease characterized by dementia. MicroRNAs (miRNAs) are involved in many diseases, including AD. MiR-132-3p has been identified to be downregulated in AD. In this study, we explored the effects of miR-132-3p on neuron apoptosis and impairments of learning and memory abilities. Aβ1-42-stimulated SH-SY5Y cells were used as in vitro models of AD. An AD-like homocysteine (Hcy) rat model was established to evaluate the effects of miR-132-3p on AD pathogenesis in vivo. RIP, RNA pull down and luciferase reporter assays were conducted to investigate the relationship between miR-132-3p and its downstream target genes. The viability and apoptosis of SH-SY5Y cells were measured by CCK-8 and TUNEL assays. The rat spatial learning and memory abilities were accessed using Morris water maze test. Results indicated that miR-132-3p was downregulated in SH-SY5Y cells after Aβ1-42 treatment and promoted cell apoptosis. Mechanistically, miR-132-3p targeted heterogeneous nuclear ribonucleoprotein U (HNRNPU). HNRNPU acted as an RNA binding protein (RBP) to regulate the mRNA stability of β-site amyloid precursor protein cleaving enzyme 1 (BACE1). Overexpression of HNRNPU or BACE1 reversed the effects of miR-132-3p overexpression on the viability and apoptosis of Aβ1-42-treated SH-SY5Y cells. In vivo experiments revealed the downregulation of miR-132-3p in the hippocampus of Hcy-treated rats. MiR-132-3p suppressed levels of apoptotic genes in hippocampus and reduced impairments of learning and memory abilities in Hcy-treated rats. In conclusion, miR-132-3p reduces apoptosis of SH-SY5Y cells and alleviates impairments of learning and memory abilities in AD rats by modulating the HNRNPU/BACE1 axis.
Collapse
Affiliation(s)
- Jie Qu
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Xiaowei Xiong
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Gulibaha Hujie
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Jun Ren
- Department of Neurology, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Lihui Yan
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Liqun Ma
- Department of Health Care, Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| |
Collapse
|
14
|
Kuznetsova AV, Rzhanova LA, Aleksandrova MA. Small Noncoding RNA in Regulation of Differentiation of Retinal Pigment Epithelium. Russ J Dev Biol 2021. [DOI: 10.1134/s106236042103005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Gallenga CE, Lonardi M, Pacetti S, Violanti SS, Tassinari P, Di Virgilio F, Tognon M, Perri P. Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa. Antioxidants (Basel) 2021; 10:antiox10060848. [PMID: 34073310 PMCID: PMC8229325 DOI: 10.3390/antiox10060848] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinopathy. Nevertheless, non-genetic biological factors play a central role in its pathogenesis and progression, including inflammation, autophagy and oxidative stress. The retina is particularly affected by oxidative stress due to its high metabolic rate and oxygen consumption as well as photosensitizer molecules inside the photoreceptors being constantly subjected to light/oxidative stress, which induces accumulation of ROS in RPE, caused by damaged photoreceptor’s daily recycling. Oxidative DNA damage is a key regulator of microglial activation and photoreceptor degeneration in RP, as well as mutations in endogenous antioxidant pathways involved in DNA repair, oxidative stress protection and activation of antioxidant enzymes (MUTYH, CERKL and GLO1 genes, respectively). Moreover, exposure to oxidative stress alters the expression of micro-RNA (miRNAs) and of long non-codingRNA (lncRNAs), which might be implicated in RP etiopathogenesis and progression, modifying gene expression and cellular response to oxidative stress. The upregulation of the P2X7 receptor (P2X7R) also seems to be involved, causing pro-inflammatory cytokines and ROS release by macrophages and microglia, contributing to neuroinflammatory and neurodegenerative progression in RP. The multiple pathways analysed demonstrate that oxidative microglial activation may trigger the vicious cycle of non-resolved neuroinflammation and degeneration, suggesting that microglia may be a key therapy target of oxidative stress in RP.
Collapse
Affiliation(s)
- Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Maria Lonardi
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Sofia Pacetti
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Sara Silvia Violanti
- Department of Head and Neck, Section of Ophthalmology, San Paolo Hospital, 17100 Savona, Italy;
| | - Paolo Tassinari
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Paolo Perri
- Department of Neuroscience and Rehabilitation, Section of Ophthalmology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
16
|
Yuan X, Zhang Y, Yu Z. Expression and clinical significance of miR-3615 in hepatocellular carcinoma. J Int Med Res 2021; 49:300060520981547. [PMID: 33435769 PMCID: PMC7809312 DOI: 10.1177/0300060520981547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the association between microRNA-3615 (miR-3615) expression and the prognosis and clinicopathological features in patients with hepatocellular carcinoma (HCC). METHODS We obtained clinicopathological and genomic data and prognostic information on HCC patients from The Cancer Genome Atlas (TCGA) database. We then analyzed differences in miR-3615 expression levels between HCC and adjacent tissues using SPSS software, and examined the relationships between miR-3615 expression levels and clinicopathological characteristics. We also explored the influence of miR-3615 expression levels on the prognosis of HCC patients using Kaplan-Meier survival curve analysis. RESULTS Based on data for 345 HCC and 50 adjacent normal tissue samples, expression levels of miR-3615 were significantly higher in HCC tissues compared with adjacent tissues. MiR-3615 expression levels in HCC patients were negatively correlated with overall survival time and positively correlated with high TNM stage, serum Ki-67 expression level, and serum alpha-fetoprotein level. There were no significant correlations between miR-3615 expression and age, sex, and pathological grade. CONCLUSION MiR-3615 may be a promising new biomarker and prognostic factor for HCC.
Collapse
Affiliation(s)
- Xin Yuan
- Gene Hospital of Henan Province, Precision Medicine Center, Zhengzhou, Henan Province, China.,Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yize Zhang
- Gene Hospital of Henan Province, Precision Medicine Center, Zhengzhou, Henan Province, China.,Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zujiang Yu
- Gene Hospital of Henan Province, Precision Medicine Center, Zhengzhou, Henan Province, China.,Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
17
|
Wu Y, Xiao H, Pi J, Zhang H, Pan A, Pu Y, Liang Z, Shen J, Du J, Huang T. LncRNA lnc_13814 promotes the cells apoptosis in granulosa cells of duck by acting as apla-miR-145-4 sponge. Cell Cycle 2021; 20:927-942. [PMID: 33843432 DOI: 10.1080/15384101.2021.1911102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Follicle development is a vital factor which determines the reproductive performance of poultry. Long noncoding RNAs (lncRNAs) have been reported to maintain animal reproductive function and play key roles in ovarian development and hormone secretion. But the regulatory mechanism of lncRNAs in duck follicle development has seldom been reported. In this study, to better explore the molecular mechanism of follicle development in ducks, the follicular lncRNA was sequenced and analyzed. A total of 9,551 lncRNAs were predicted in the duck follicles. Four hundred and forty-five lncRNAs were differentially expressed between the white follicles and yellow follicles. The results of our studies showed that lnc_13814 promoted cell apoptosis in duck GCs. Furthermore, the bioinformatics analysis results demonstrated that lnc_13814 was involved in a lncRNA-miRNA-mRNA coexpression network and it was observed to sponge two follicle-related miRNAs by a luciferase activity assay. Moreover, we found that overexpression of lnc_13814 significantly increased DNA damage inducible transcript 3 (DDIT3) expression and downregulated GCs apoptosis. Finally, we found that lnc_13814 directly binds to and inhibits apla-mir-145-4; then, lnc_13814 increases the expression of DDIT3 and up-regulates GCs apoptosis. Taken together, our findings demonstrate that lncRNAs have potential effects on duck ovarian follicles and lncRNAs may represent a new approach to understand follicular development.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Science, Wuhan, China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Tao Huang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
18
|
Liu J, Qu X. The roles of long non-coding RNAs in ocular diseases. Exp Eye Res 2021; 207:108561. [PMID: 33812869 DOI: 10.1016/j.exer.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
In recent years, lncRNAs have been shown to regulate gene expression at the epigenetic, transcriptional and translational level, thus exerting various functions in biological and pathological processes involving cell proliferation, apoptosis, cell cycle and immune response. An increasing number of researches have unveiled that lncRNAs are dysregulated in pathogenesis and the development of different ocular diseases, such as glaucoma, cataract, retinal disease and ocular tumors. Also, it has been reported that lncRNAs may exert significant roles in various ocular diseases. Here, we summarized the functions of lncRNAs on relevant ocular diseases and further clarified their mechanisms. Here, several previous studies with detailed information of lncRNAs which have been proved to be the diagnostic or prognostic biomarkers and potential therapeutic targets were included. Also, it is our hope to provide a thorough knowledge of the functions of lncRNAs in eye diseases and the methods by which lncRNAs can influence ocular diseases.
Collapse
Affiliation(s)
- Jinlu Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
19
|
Impairments of Photoreceptor Outer Segments Renewal and Phototransduction Due to a Peripherin Rare Haplotype Variant: Insights from Molecular Modeling. Int J Mol Sci 2021; 22:ijms22073484. [PMID: 33801777 PMCID: PMC8036374 DOI: 10.3390/ijms22073484] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinitis pigmentosa punctata albescens (RPA) is a particular form of retinitis pigmentosa characterized by childhood onset night blindness and areas of peripheral retinal atrophy. We investigated the genetic cause of RPA in a family consisting of two affected Egyptian brothers with healthy consanguineous parents. METHODS Mutational analysis of four RPA causative genes was realized by Sanger sequencing on both probands, and detected variants were subsequently genotyped in their parents. Afterwards, found variants were deeply, statistically, and in silico characterized to determine their possible effects and association with RPA. RESULTS Both brothers carry three missense PRPH2 variants in a homozygous condition (c.910C > A, c.929G > A, and c.1013A > C) and two promoter variants in RHO (c.-26A > G) and RLBP1 (c.-70G > A) genes, respectively. Haplotype analyses highlighted a PRPH2 rare haplotype variant (GAG), determining a possible alteration of PRPH2 binding with melanoregulin and other outer segment proteins, followed by photoreceptor outer segment instability. Furthermore, an altered balance of transcription factor binding sites, due to the presence of RHO and RLBP1 promoter variants, might determine a comprehensive downregulation of both genes, possibly altering the PRPH2 shared visual-related pathway. CONCLUSIONS Despite several limitations, the study might be a relevant step towards detection of novel scenarios in RPA etiopathogenesis.
Collapse
|
20
|
Chang Y, Xing L, Zhou W, Zhang W. Up-regulating microRNA-138-5p enhances the protective role of dexmedetomidine on myocardial ischemia-reperfusion injury mice via down-regulating Ltb4r1. Cell Cycle 2021; 20:445-458. [PMID: 33509010 DOI: 10.1080/15384101.2021.1878330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both microRNAs (miRs) and dexmedetomidine (Dex) have been verified to exert functional roles in myocardial ischemia-reperfusion injury (MI/RI). Given that, we concretely aim to discuss the effects of Dex and miR-138-5p on ventricular remodeling in mice affected by MI/RI via mediating leukotriene B4 receptor 1 (Ltb4r1). MI/RI mouse model was established by ligating left anterior descending coronary artery. The cardiac function, inflammatory factors and collagen fiber contents were detected after Dex/miR-138-5p/Ltb4r1 treatment. MiR-138-5p and Ltb4r1 expression in myocardial tissues were tested by RT-qPCR and western blot assay. The target relationship between miR-138-5p and Ltb4r1 was verified by online software prediction and luciferase activity assay. MiR-138-5p was down-regulated while Ltb4r1 was up-regulated in myocardial tissues of MI/RI mice. Dex improved cardiac function, alleviated myocardial damage, reduced inflammatory factor contents, collagen fibers, and Ltb4r1 expression while increased miR-138-5p expression in myocardial tissues of mice with MI/RI. Restored miR-138-5p and depleted Ltb4r1 improved cardiac function, abated inflammatory factor contents, myocardial damage, and content of collagen fibers in MI/RI mice. MiR-138-5p directly targeted Ltb4r1. The work evidence that Dex could ameliorate ventricular remodeling of MI/RI mice by up-regulating miR-138-3p and down-regulating Ltb4r1. Thus, Dex and miR-138-3p/Ltb4r1 may serve as potential targets for the ventricular remodeling of MI/RI.
Collapse
Affiliation(s)
- Yanzi Chang
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Lika Xing
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Wenjuan Zhou
- Department of Anesthesiology, Attending Doctor, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, Chief Physician, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| |
Collapse
|
21
|
Intartaglia D, Giamundo G, Conte I. The Impact of miRNAs in Health and Disease of Retinal Pigment Epithelium. Front Cell Dev Biol 2021; 8:589985. [PMID: 33520981 PMCID: PMC7844312 DOI: 10.3389/fcell.2020.589985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are essential key players in the control of biological processes in both physiological and pathological conditions. miRNAs play important roles in fine tuning the expression of many genes, which often have roles in common molecular networks. miRNA dysregulation thus renders cells vulnerable to aberrant fluctuations in genes, resulting in degenerative diseases. The retinal pigment epithelium (RPE) is a monolayer of polarized pigmented epithelial cells that resides between the light-sensitive photoreceptors (PR) and the choriocapillaris. The demanding physiological functions of RPE cells require precise gene regulation for the maintenance of retinal homeostasis under stress conditions and the preservation of vision. Thus far, our understanding of how miRNAs function in the homeostasis and maintenance of the RPE has been poorly addressed, and advancing our knowledge is central to harnessing their potential as therapeutic agents to counteract visual impairment. This review focuses on the emerging roles of miRNAs in the function and health of the RPE and on the future exploration of miRNA-based therapeutic approaches to counteract blinding diseases.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Biology, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Abbouda A, Avogaro F, Moosajee M, Vingolo EM. Update on Gene Therapy Clinical Trials for Choroideremia and Potential Experimental Therapies. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:64. [PMID: 33445564 PMCID: PMC7826687 DOI: 10.3390/medicina57010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/26/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Background and objectives: Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations involving the CHM gene. Gene therapy has entered late-phase clinical trials, although there have been variable results. This review gives a summary on the outcomes of phase I/II CHM gene therapy trials and describes other potential experimental therapies. Materials and Methods: A Medline (National Library of Medicine, Bethesda, MD, USA) search was performed to identify all articles describing gene therapy treatments available for CHM. Results: Five phase I/II clinical trials that reported subretinal injection of adeno-associated virus Rab escort protein 1 (AAV2.REP1) vector in CHM patients were included. The Oxford study (NCT01461213) included 14 patients; a median gain of 5.5 ± 6.8 SD (-6 min, 18 max) early treatment diabetic retinopathy study (ETDRS) letters was reported. The Tubingen study (NCT02671539) included six patients; only one patient had an improvement of 17 ETDRS letters. The Alberta study (NCT02077361) enrolled six patients, and it reported a minimal vision change, except for one patient who gained 15 ETDRS letters. Six patients were enrolled in the Miami trial (NCT02553135), which reported a median gain of 2 ± 4 SD (-1 min, 10 max) ETDRS letters. The Philadelphia study (NCT02341807) included 10 patients; best corrected visual acuity (BCVA) returned to baseline in all by one-year follow-up, but one patient had -17 ETDRS letters from baseline. Overall, 40 patients were enrolled in trials, and 34 had 2 years of follow-up, with a median gain of 1.5 ± 7.2 SD (-14 min, 18 max) in ETDRS letters. Conclusions: The primary endpoint, BCVA following gene therapy in CHM, showed a marginal improvement with variability between trials. Optimizing surgical technique and pre-, peri-, and post-operative management with immunosuppressants to minimize any adverse ocular inflammatory events could lead to reduced incidence of complications. The ideal therapeutic window needs to be addressed to ensure that the necessary cell types are adequately transduced, minimizing viral toxicity, to prolong long-term transgenic potential. Long-term efficacy will be addressed by ongoing studies.
Collapse
Affiliation(s)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Enzo Maria Vingolo
- Fiorini Hospital Terracina AUSL, 04019 Terracina, Latina, Italy;
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| |
Collapse
|
23
|
Li S, He P, Wang Z, Liang M, Liao W, Huang Y, Chi M, Liu F, Zen N, Su R, Chen S, Liu Z, Hong H. RNAi-mediated knockdown of PFK1 decreases the invasive capability and metastasis of nasopharyngeal carcinoma cell line, CNE-2. Cell Cycle 2021; 20:154-165. [PMID: 33404290 PMCID: PMC7889105 DOI: 10.1080/15384101.2020.1866279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most prevailing malignancy of the head and neck with unique geographic distribution. Southern China has one of the highest incidence rates of NPC in the world. Although radiotherapy and chemotherapy are the most important treatment modalities for NPC, recurrence, and metastasis severely interfere with the survival quality of patients. It is much-needed to find an effective method of NPC treatment with a good prognosis such as gene therapy. PFK1, a key regulatory enzyme of glycolysis, is frequently shown to be amplified and overexpressed in a variety of human cancers. However, the function of PFK1 and molecular mechanism in NPC is elusive. Here, we knockdown PFK1 expression by utilizing DNA vector-based RNA Interference. Western blotting and real-time PCR show that the expression of PFK1 is efficiently down-regulated in both protein and mRNA levels by stable transfection with PFK1 siRNA expression vector. In addition, stable knockdown of PFK1 expression inhibits cell growth, induces apoptosis, decreases the invasive capability and metastasis in the CNE2 human NPC cell line. This present study finds the importance of PFK1 which can be worked as a novel target in NPC treatment and holds great potential to be extended to other malignant cancers.
Collapse
Affiliation(s)
- Shuo Li
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Peng He
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhiwei Wang
- Department of Otolaryngology Head and Neck Surgery, Zhuhai People’ Hospital (Zhuhai Hospital Affiliated with Ji’nan University), Zhuhai, China
| | - Meng Liang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei Liao
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yili Huang
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Mengshi Chi
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fei Liu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Nan Zen
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfei Su
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shulin Chen
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhigang Liu
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University; Phase I Clinical Trial Laboratory, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Haiyu Hong
- Department of Otolaryngology Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
24
|
New Omics-Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? Int J Mol Sci 2020; 22:ijms22010070. [PMID: 33374679 PMCID: PMC7793472 DOI: 10.3390/ijms22010070] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. Here, ion channels play a role in several physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to a wide spectrum of ocular diseases collectively called channelopathies, a subgroup of inherited retinal dystrophies. Such mutations result in either a loss or gain-of channel functions affecting the structure, assembly, trafficking and localization of channel proteins. We investigated the probands of seven Italian and Egyptian families affected by not completely defined forms of inherited retinal dystrophies, by whole exome sequencing (WES) experiments, and found interesting variants in already known causative genes probably able to impair retinal functionalities. However, because such variants did not completely explain the phenotype manifested by each patient, we proceed to further investigate possible related genes carrying mutations that might complement previously found data, based on the common aspect linked to neurotransmission impairments. We found 10 mutated genes whose variants might alter important ligand binding sites differently distributed through all considered patients. Such genes encode for ion channels, or their regulatory proteins, and strictly interact with known causative genes, also sharing with them synaptic-related pathways. Taking into account several limitations that will be resolved by further experiments, we believe that our exploratory investigation will help scientists to provide a new promising paradigm for precise diagnosis of retinal dystrophies to facilitate the development of rational treatments.
Collapse
|
25
|
Abstract
INTRODUCTION In the retina, noncoding RNA (ncRNA) plays an integral role in regulating apoptosis, inflammatory responses, visual perception, and photo-transduction, with altered levels reported in diseased states. AREAS COVERED MicroRNA (miRNA), a class of ncRNA, regulates post-transcription gene expression through the binding of complementary sites of target messenger RNA (mRNA) with resulting translational repression. Small-interfering RNA (siRNA) is a double-stranded RNA (dsRNA) that regulates gene expression, leading to selective silencing of genes through a process called RNA interference (RNAi). Another form of RNAi involves short hairpin RNA (shRNA). In age-related macular degeneration (AMD) and diabetic retinopathy (DR), miRNA has been implicated in the regulation of angiogenesis, oxidative stress, immune response, and inflammation. EXPERT OPINION Many RNA-based therapies in development are conveniently administered intravitreally, with the potential for pan-retinal effect. The majority of these RNA therapeutics are synthetic ncRNA's and hold promise for the treatment of AMD, DR, and inherited retinal diseases (IRDs). These RNA-based therapies include siRNA therapy with its high specificity, shRNA to 'knock down' autosomal dominant toxic gain of function-mutated genes, antisense oligonucleotides (ASOs), which can restore splicing defects, and translational read-through inducing drugs (TRIDs) to increase expression of full-length protein from genes with premature stop codons.
Collapse
Affiliation(s)
- Michael C Gemayel
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA
| | - Thomas Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, IN, USA.,Preclinical and Clinical Development, Clearside Biomedical, Inc, Alpharetta, GA, USA.,Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
26
|
Wu S, Deng H, He H, Xu R, Wang Y, Zhu X, Zhang J, Zeng Q, Zhao X. The circ_0004463/miR-380-3p/FOXO1 axis modulates mitochondrial respiration and bladder cancer cell apoptosis. Cell Cycle 2020; 19:3563-3580. [PMID: 33283616 DOI: 10.1080/15384101.2020.1852746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bladder cancer is one of the most commonly diagnosed and fatal malignancies of the urinary tract. Noncoding RNAs have been reported to be new biomarkers and effective treatment targets for bladder cancer. In the present study, we identified a novel bladder cancer-related circRNA-miRNA-mRNA network, the circ_0004463/miR-380-3p/FOXO1 axis. circ_0004463 is significantly downregulated, whereas miR-380-3p is upregulated in bladder carcinoma tissue samples and cells. circ_0004463 acts as a tumor suppressor by inhibiting bladder cancer cell proliferation. Genes that negatively correlated with miR-380-3p and genes that miR-380-3p might target are enriched in mitochondrial respiration chain-related pathways. miR-380-3p promotes the proliferation of bladder cancer cells and mitochondrial respiration by acting as an oncogenic miRNA. circ_0004463 competes with FOXO1 for miR-380-3p binding to counteract miR-380-3p-mediated repression of FOXO1. Circ_0004463 overexpression inhibits cancer cell proliferation and mitochondrial respiration in bladder cancer cell lines, while miR-380-3p overexpression dramatically reverses the roles of circ_0004463 overexpression. In conclusion, the circ_0004463/miR-380-3p/FOXO1 axis could regulate mitochondrial respiration and bladder cancer cell apoptosis via FOXO1 signaling.
Collapse
Affiliation(s)
- Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Huanghao Deng
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Jinhua Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Qi Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
27
|
Chen H, Xu X, Lai L, Huo R, Chen M. Circ_0008450 downregulates Runx3 to promote the proliferation and epithelial-mesenchymal transition of human keratinized epithelial cells. Cell Cycle 2020; 19:3303-3316. [PMID: 33131417 DOI: 10.1080/15384101.2020.1842665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Keloid is an extremely common and often overlooked benign neoplastic disease, but its consequences should not be underestimated. Therefore, a deep exploration of the pathological mechanism of keloid becomes very essential. After 22 samples were collected from each patient's keloid tissues and normal skin tissues, circ_0008450 and Runx3 expression was tested by qRT-PCR. When primary human keratinized epithelial cells were transfected by sh-circ_0008450 or sh-Runx3, cell proliferation, apoptosis, migration, and EMT process were assessed by CCK-8, BrdU assay, apoptosis assay, migration assay, and Western blot. Finally, transfection was performed to explore the effect of circ_0008450 on the TGF-β/Smad signal pathway by adopting western blot. Circ_0008450 was highly expressed in keratinized epithelial tissues. After the transfection of sh-circ_0008450 into primary human keratinized epithelial cells, cell proliferation, migration, and EMT process were inhibited, and apoptosis was stimulated. Moreover, circ_0008450 silence-induced above changes were partly reversed by transfecting sh-Runx3. In addition, transfecting sh-circ_0008450 could repress TGF-β/Smad pathway, while transfecting sh-Runx3 activated the above pathway. Circ_0008450 down-regulated Runx3 to promote the proliferation and EMT process of human keratinized epithelial cells. This discovery may be related to the activation of the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Huaxia Chen
- Department of Burn and Plastic Surgery, The Fourth Medical Center of People's Liberation Army General Hospital , Beijing, China.,Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, China
| | - Xiao Xu
- Department of Plastic and Reconstructive Surgery, The Third Medical Center of People's Liberation Army General Hospital , Beijing, China
| | - Linying Lai
- Department of Burn and Plastic Surgery, The Fourth Medical Center of People's Liberation Army General Hospital , Beijing, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, China
| | - Minliang Chen
- Department of Burn and Plastic Surgery, The Fourth Medical Center of People's Liberation Army General Hospital , Beijing, China
| |
Collapse
|
28
|
Wang Y, Niu H, Liu Y, Yang H, Zhang M, Wang L. Promoting effect of long non-coding RNA SNHG1 on osteogenic differentiation of fibroblastic cells from the posterior longitudinal ligament by the microRNA-320b/IFNGR1 network. Cell Cycle 2020; 19:2836-2850. [PMID: 33017569 PMCID: PMC7714528 DOI: 10.1080/15384101.2020.1827188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been noted to influence the progression of ossification of posterior longitudinal ligament (OPLL). The work aims to probe the effect of lncRNA SNHG1 on osteogenic differentiation of ligament fibroblastic cells (LFCs). Aberrantly expressed lncRNAs in ossified PLL tissues were screened out by microarray analysis. Gain- and loss-of function experiments of SNHG1 were performed to identify its role in osteogenic differentiation of LFCs. The downstream molecules of SNHG1 were explored. Altered expression of miR-320b was introduced in LFCs as well. The interactions among SNHG1, miR-320b and IFNGR1 were identified. Consequently, SNHG1 was found highly expressed in OPLL patients. Silencing of SNHG1 inhibited BMP-2, RUNX2 and OCN expression and the ALP activity and reduced osteogenic differentiation of LFCs. Importantly, SNHG1 could and upregulate IFNGR1 through serving as a sponge for miR-320b. Over-expression of miR-320b inhibited osteogenic differentiation of LFCs and inactivated the JAK/STAT signaling pathway. Further administration of Fedratinib, a JAK2-specific agonist, increased osteogenic differentiation of LFCs. To conclude, the study suggested that SNHG1 could upregulate IFNGR1 by sequestering miR-320b and activate the JAK/STAT signaling. Silencing of SNHG1 could reduce the osteogenic differentiation and mineralization of LFCs. The study may offer new insights into OPLL treatment.
Collapse
Affiliation(s)
- Yuqiang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Huixia Niu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yilin Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hao Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Min Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Limin Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
29
|
Zhou Y, Yusufu M, Zhang T, Wang J. Silencing of miR-23a attenuates hydrogen peroxide (H 2O 2) induced oxidative damages in ARPE-19 cells by upregulating GLS1: an in vitro study. Cytotechnology 2020; 72:10.1007/s10616-020-00431-6. [PMID: 33123932 PMCID: PMC7695802 DOI: 10.1007/s10616-020-00431-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Oxidative damages contributes to age-related macular degeneration (AMD) caused vision blindness, but the molecular mechanisms are still largely unknown. OBJECTIVES This study managed to investigate this issue by conducting in vitro experiments. METHODS Oxidative stress were evaluated by L-012 dye, DHE staining and MDA assay. CCK-8 and colony formation assay were conducted to examine cell proliferation. Cell death was evaluated by trypan blue staining and Annexin V-FITC/PI double staining method through flow cytometry (FCM). The binding sites of miR-23a and GLS1 mRNA were predicted by online miRDB database and validated by dual-luciferase reporter gene system. Real-Time qPCR for miR-23a levels and Western Blot for protein expressions. RESULTS The retinal pigment epithelial (RPE) cells (ARPE-19) were subjected to hydrogen peroxide (H2O2) stimulation to simulate AMD progression in vitro, and we identified a novel miR-23a/glutaminase-1 (GLS1) pathway that regulated H2O2 induced oxidative damages in ARPE-19 cells. Mechanistically, H2O2 induced oxidative stress, inhibited cell proliferation and induced cell death in ARPE-19 cells in a dose- and time-dependent manner. Also, H2O2 stimulation hindered cell invasion, migration and glutamine uptake in ARPE-19 cells. Interestingly, we proved that H2O2 increased miR-23a levels, while downregulated glutaminase-1 (GLS1) in ARPE-19 cells, and miR-23a targeted 3' untranslated region (3'UTR) of GLS1 mRNA for GLS1 degradation. Finally, our data suggested that silencing miR-23a upregulated GLS1 to reverse the detrimental effects of H2O2 treatment on ARPE-19 cells. CONCLUSIONS In general, analysis of the data suggested that miR-23a ablation upregulated GLS1 to attenuate H2O2 stimulation induced oxidative damages in ARPE-19 cells in vitro, and this study broadened our knowledge in this field, which might help to provide novel theranostic signatures for AMD.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Ophthalmology, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Ürümqi, 830011 Xinjiang China
| | - Meilibanu Yusufu
- Department of Ophthalmology, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Ürümqi, 830011 Xinjiang China
| | - Ting Zhang
- Department of Eye Center, Qingdao Municipal Hospital (Group), Jiaozhou Road No.1, Qingdao, 266011 Shandong China
| | - Jing Wang
- Department of Eye Center, Qingdao Municipal Hospital (Group), Jiaozhou Road No.1, Qingdao, 266011 Shandong China
| |
Collapse
|
30
|
Fu D, Yu JY, Connell AR, Hookham MB, McLeese RH, Lyons TJ. Effects of Modified Low-Density Lipoproteins and Fenofibrate on an Outer Blood-Retina Barrier Model: Implications for Diabetic Retinopathy. J Ocul Pharmacol Ther 2020; 36:754-764. [PMID: 33107777 PMCID: PMC7757531 DOI: 10.1089/jop.2020.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose: There is a lack of treatment for early diabetic retinopathy (DR), including blood-retina barrier (BRB) breakdown. The robust clinical benefit of fenofibrate in DR provides an opportunity to explore disease mechanisms and therapeutic targets. We have previously found that modified lipoproteins contribute to DR and that fenofibrate protects the inner BRB. We now investigate (1) whether modified lipoproteins elicit outer BRB injury and (2) whether fenofibrate may alleviate such damage. Methods: Human retinal pigment epithelium ARPE-19 cells were cultured in semipermeable transwells to establish a monolayer barrier and then exposed to heavily oxidized, glycated low-density lipoprotein (HOG-LDL, 25–300 mg/L, up to 24 h) versus native (N)-LDL. Transepithelial electric resistance (TEER) and FITC-dextran permeability were measured. The effects of fenofibrate, its active metabolite fenofibric acid, and other peroxisome proliferator-activated receptor (PPARα) agonists (gemfibrozil, bezafibrate, and WY14643) were evaluated, with and without the PPARα antagonist GW6471 or the adenosine monophosphate-activated protein kinase (AMPK) inhibitor Compound C. Results: HOG-LDL induced concentration- and time-dependent barrier impairment, decreasing TEER and increasing dextran leakage, effects that were amplified by high glucose. Fenofibric acid, but not fenofibrate, gemfibrozil, bezafibrate, or WY14643, attenuated barrier impairment. This effect was reversed significantly by Compound C, but not by GW6471. Conclusions: Modified lipoproteins elicited outer BRB injury in an experimental model, which was reduced by fenofibric acid through a PPARα-independent, AMPK-mediated mechanism. These findings suggest a protective role of fenofibric acid on the outer BRB in diabetic retina.
Collapse
Affiliation(s)
- Dongxu Fu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Jeremy Y Yu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna R Connell
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Michelle B Hookham
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Rebecca H McLeese
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Timothy J Lyons
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA.,Diabetes Free SC, BlueCross BlueShield of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
31
|
Anasagasti A, Lara-López A, Milla-Navarro S, Escudero-Arrarás L, Rodríguez-Hidalgo M, Zabaleta N, González Aseguinolaza G, de la Villa P, Ruiz-Ederra J. Inhibition of MicroRNA 6937 Delays Photoreceptor and Vision Loss in a Mouse Model of Retinitis Pigmentosa. Pharmaceutics 2020; 12:pharmaceutics12100913. [PMID: 32987664 PMCID: PMC7598722 DOI: 10.3390/pharmaceutics12100913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of rare retinal conditions, including retinitis pigmentosa (RP), caused by monogenic mutations in 1 out of more than 250 genes. Despite recent advancements in gene therapy, there is still a lack of an effective treatment for this group of retinal conditions. MicroRNAs (miRNAs) are a class of highly conserved small non-coding RNAs that inhibit gene expression. Control of miRNAs-mediated protein expression has been described as a widely used mechanism for post-transcriptional regulation in many physiological and pathological processes in different organs, including the retina. Our main purpose was to test the hypothesis that modulation of a group of miRNAs can protect photoreceptor cells from death in the rd10 mouse model of retinitis pigmentosa. For this, we incorporated modulators of three miRNAs in adeno-associated viruses (AAVs), which were administered through sub-retinal injections. The results obtained indicate that inhibition of the miR-6937-5p slows down the visual deterioration of rd10 mice, reflected by an increased electroretinogram (ERG) wave response under scotopic conditions and significant preservation of the outer nuclear layer thickness. This work contributes to broadening our knowledge on the molecular mechanisms underlying retinitis pigmentosa and supports the development of novel therapeutic approaches for RP based on miRNA modulation.
Collapse
Affiliation(s)
- Ander Anasagasti
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
- Viralgen Vector Core, 20009 San Sebastián, Spain
| | - Araceli Lara-López
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
| | - Santiago Milla-Navarro
- Visual Neurophysiology, IRYCIS, University of Alcala, 28801 Madrid, Spain; (S.M.-N.); (P.d.l.V.)
| | - Leire Escudero-Arrarás
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
| | - María Rodríguez-Hidalgo
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
| | - Nerea Zabaleta
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain; (N.Z.); (G.G.A.)
| | - Gloria González Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain; (N.Z.); (G.G.A.)
| | - Pedro de la Villa
- Visual Neurophysiology, IRYCIS, University of Alcala, 28801 Madrid, Spain; (S.M.-N.); (P.d.l.V.)
- RETICS OFTARED, 28040 Madrid, Spain
| | - Javier Ruiz-Ederra
- Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (A.L.-L.); (L.E.-A.); (M.R.-H.)
- RETICS OFTARED, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-943-006128
| |
Collapse
|
32
|
Smith JR, Ashander LM, Arruda SL, Cordeiro CA, Lie S, Rochet E, Belfort R, Furtado JM. Pathogenesis of ocular toxoplasmosis. Prog Retin Eye Res 2020; 81:100882. [PMID: 32717377 DOI: 10.1016/j.preteyeres.2020.100882] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Ocular toxoplasmosis is a retinitis -almost always accompanied by vitritis and choroiditis- caused by intraocular infection with Toxoplasma gondii. Depending on retinal location, this condition may cause substantial vision impairment. T. gondii is an obligate intracellular protozoan parasite, with both sexual and asexual life cycles, and infection is typically contracted orally by consuming encysted bradyzoites in undercooked meat, or oocysts on unwashed garden produce or in contaminated water. Presently available anti-parasitic drugs cannot eliminate T. gondii from the body. In vitro studies using T. gondii tachyzoites, and human retinal cells and tissue have provided important insights into the pathogenesis of ocular toxoplasmosis. T. gondii may cross the vascular endothelium to access human retina by at least three routes: in leukocyte taxis; as a transmigrating tachyzoite; and after infecting endothelial cells. The parasite is capable of navigating the human neuroretina, gaining access to a range of cell populations. Retinal Müller glial cells are preferred initial host cells. T. gondii infection of the retinal pigment epithelial cells alters the secretion of growth factors and induces proliferation of adjacent uninfected epithelial cells. This increases susceptibility of the cells to parasite infection, and may be the basis of the characteristic hyperpigmented toxoplasmic retinal lesion. Infected epithelial cells also generate a vigorous immunologic response, and influence the activity of leukocytes that infiltrate the retina. A range of T. gondii genotypes are associated with human ocular toxoplasmosis, and individual immunogenetics -including polymorphisms in genes encoding innate immune receptors, human leukocyte antigens and cytokines- impacts the clinical manifestations. Research into basic pathogenic mechanisms of ocular toxoplasmosis highlights the importance of prevention and suggests new biological drug targets for established disease.
Collapse
Affiliation(s)
- Justine R Smith
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia; Formerly of Casey Eye Institute, Oregon Health & Science University, USA.
| | - Liam M Ashander
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia; Formerly of Casey Eye Institute, Oregon Health & Science University, USA
| | - Sigrid L Arruda
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cynthia A Cordeiro
- Cordeiro et Costa Ophtalmologie, Campos dos Goytacazes, Brazil; Formerly of Department of Ophthalmology, Federal University of Minas Gerais School of Medicine, Belo Horizonte, Brazil
| | - Shervi Lie
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia
| | - Elise Rochet
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia
| | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - João M Furtado
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Formerly of Casey Eye Institute, Oregon Health & Science University, USA
| |
Collapse
|
33
|
Zhu H, Wang X, Wang X, Liu B, Yuan Y, Zuo X. Curcumin attenuates inflammation and cell apoptosis through regulating NF-κB and JAK2/STAT3 signaling pathway against acute kidney injury. Cell Cycle 2020; 19:1941-1951. [PMID: 32615888 DOI: 10.1080/15384101.2020.1784599] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Curcumin alleviates septic acute kidney injury (SAKI); however, the underlying mechanism remained unclear. To explore this, SAKI cell model and mice model were conducted by using LPS and cecal ligation and puncture (CLP), respectively. Cell counting kit-8 (CCK-8) and enzyme-linked immunosorbent assay (ELISA) assays indicated that LPS reduced the viability, but upregulated the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6, whereas Curcumin pretreatment had no effect on viability, but reduced the levels of TNF-α and IL-6. Further assays showed that Curcumin partly attenuated the LPS-induced injury as the viability was enhanced, TNF-α and IL-6 expressions and cell apoptosis rates were reduced. Western blot analysis indicated that Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, p-65-NF-κB and cell apoptosis pathways were activated by LPS but suppressed by Curcumin. Mice SAKI model further indicated that the serum Cystatin C (Cys-C), creatinine (Cr) and blood urea nitrogen (BUN) were increased within 24 h of model construction while those indicators were decreased at 48 h. Pretreated with Curcumin, NF-κB inhibitor (PDTC) or JAK2 inhibitor (AG-490) could weaken the renal histological injury and the increased serum Cys-C, Cr and BUN, IL-6 and TNF-α induced by CLP. Moreover, PDTC, AG-490 and Curcumin all significantly reversed the previously increased expressions of p-JAK2/STAT3, p-p65 and proapoptotic proteins in the mice with AKI. The present study revealed that Curcumin attenuated SAKI through inhibiting NF-κB and JAK2/STAT3 signaling pathways, and proposed that Curcumin could be a potential therapeutic agent for treating SAKI.
Collapse
Affiliation(s)
- Hongkun Zhu
- Department of Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing, China
| | - Xinjun Wang
- Second Clinical Medical College, Nanjing University of Chinese Medicine , Nanjing, China
| | - Xiaoxiao Wang
- GCP Center, The First Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing, China
| | - Bei Liu
- First Clinical Medical College, Nanjing University of Chinese Medicine , Nanjing, China
| | - Yizhen Yuan
- First Clinical Medical College, Nanjing University of Chinese Medicine , Nanjing, China
| | - Xiangrong Zuo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| |
Collapse
|
34
|
Differential Expression of Kinin Receptors in Human Wet and Dry Age-Related Macular Degeneration Retinae. Pharmaceuticals (Basel) 2020; 13:ph13060130. [PMID: 32599742 PMCID: PMC7345220 DOI: 10.3390/ph13060130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
Kinins are vasoactive peptides and mediators of inflammation, which signal through two G protein-coupled receptors, B1 and B2 receptors (B1R, B2R). Recent pre-clinical findings suggest a primary role for B1R in a rat model of wet age-related macular degeneration (AMD). The aim of the present study was to investigate whether kinin receptors are differentially expressed in human wet and dry AMD retinae. The cellular distribution of B1R and B2R was examined by immunofluorescence and in situ hybridization in post-mortem human AMD retinae. The association of B1R with inflammatory proteins (inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor A (VEGFA)), fibrosis markers and glial cells was also studied. While B2R mRNA and protein expression was not affected by AMD, a significant increase of B1R mRNA and immunoreactivity was measured in wet AMD retinae when compared to control and dry AMD retinae. B1R was expressed by Müller cells, astrocytes, microglia and endothelial/vascular smooth muscle cells, and colocalized with iNOS and fibrosis markers, but not with VEGFA. In conclusion, the induction and upregulation of the pro-inflammatory and pro-fibrotic kinin B1R in human wet AMD retinae support previous pre-clinical studies and provide a clinical proof-of-concept that B1R represents an attractive therapeutic target worth exploring in this retinal disease.
Collapse
|
35
|
B. Domènech E, Marfany G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants (Basel) 2020; 9:E347. [PMID: 32340220 PMCID: PMC7222416 DOI: 10.3390/antiox9040347] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal cell survival requires an equilibrium between oxygen, reactive oxygen species, and antioxidant molecules that counteract oxidative stress damage. Oxidative stress alters cell homeostasis and elicits a protective cell response, which is most relevant in photoreceptors and retinal ganglion cells, neurons with a high metabolic rate that are continuously subject to light/oxidative stress insults. We analyze how the alteration of cellular endogenous pathways for protection against oxidative stress leads to retinal dysfunction in prevalent (age-related macular degeneration, glaucoma) as well as in rare genetic visual disorders (Retinitis pigmentosa, Leber hereditary optic neuropathy). We also highlight some of the key molecular actors and discuss potential therapies using antioxidants agents, modulators of gene expression and inducers of cytoprotective signaling pathways to treat damaging oxidative stress effects and ameliorate severe phenotypic symptoms in multifactorial and rare retinal dystrophies.
Collapse
Affiliation(s)
- Elena B. Domènech
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain;
- CIBERER, ISCIII, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain;
- CIBERER, ISCIII, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
36
|
Li Q, Xuan W, Jia Z, Li H, Li M, Liang X, Su D. HRD1 prevents atherosclerosis-mediated endothelial cell apoptosis by promoting LOX-1 degradation. Cell Cycle 2020; 19:1466-1477. [PMID: 32308114 DOI: 10.1080/15384101.2020.1754561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) is an E3 ubiquitin ligase that can preserve heart structure and function, but its role in endothelial dysfunction and atherosclerosis (AS) is unclear. The aim of this study was to explore the role and biological function of HRD1 in AS. HRD1 expression was significantly decreased in atherosclerotic intima and ox-LDL led to a decrease of HRD1 level in endothelial cells (ECs). Forced expression of HRD1 inhibited the endothelial apoptosis induced by ox-LDL. The transcription factor KLF2 specifically bound to the HRD1 promoter and positively regulated HRD1 expression. KLF2 up-regulation could reverse the decrease of HRD1 level in ECs treated with ox-LDL. Further analysis showed that HRD1 interacted with LOX-1 and promoted ubiquitination and degradation of LOX-1 by the proteasome. Deletion of LOX-1 attenuated the ECs apoptosis induced by HRD1 downregulation. Pravastatin, which protected EC from damage via a KLF2-dependent mechanism, could dose-dependently enhanced HRD1 expression in EC exposed to ox-LDL. Interestingly, interference of HRD1 abolished the cytoprotective effect of pravastatin. Collectively, our data indicate that decreased HRD1 expression leads to apoptosis of ECs and restoration of HRD1 expression could represent a novel strategy for human AS therapy.
Collapse
Affiliation(s)
- Qingguo Li
- Department of Cardiovascular Surgery, 2nd Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | - Wenying Xuan
- Department of Stomatology, Xuanwu Hospital , Nanjing, China
| | - Zhijun Jia
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University , Nanjing, China
| | - Hongyan Li
- Department of Pathology, Nanjing Medical University , Nanjing, China
| | - Min Li
- Department of Pathology, Nanjing Medical University , Nanjing, China
| | - Xiubin Liang
- Center of Pathology and Clinical Laboratory, Sir Runrun Hospital of Nanjing Medical University , Nanjing, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University , Nanjing, China.,Center of Pathology and Clinical Laboratory, Sir Runrun Hospital of Nanjing Medical University , Nanjing, China
| |
Collapse
|
37
|
Donato L, D’Angelo R, Alibrandi S, Rinaldi C, Sidoti A, Scimone C. Effects of A2E-Induced Oxidative Stress on Retinal Epithelial Cells: New Insights on Differential Gene Response and Retinal Dystrophies. Antioxidants (Basel) 2020; 9:E307. [PMID: 32290199 PMCID: PMC7222197 DOI: 10.3390/antiox9040307] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress represents one of the principal inductors of lifestyle-related and genetic diseases. Among them, inherited retinal dystrophies, such as age-related macular degeneration and retinitis pigmentosa, are well known to be susceptible to oxidative stress. To better understand how high reactive oxygen species levels may be involved in retinal dystrophies onset and progression, we performed a whole RNA-Seq experiment. It consisted of a comparison of transcriptomes' profiles among human retinal pigment epithelium cells exposed to the oxidant agent N-retinylidene-N-retinylethanolamine (A2E), considering two time points (3h and 6h) after the basal one. The treatment with A2E determined relevant differences in gene expression and splicing events, involving several new pathways probably related to retinal degeneration. We found 10 different clusters of pathways involving differentially expressed and differentially alternative spliced genes and highlighted the sub- pathways which could depict a more detailed scenario determined by the oxidative-stress-induced condition. In particular, regulation and/or alterations of angiogenesis, extracellular matrix integrity, isoprenoid-mediated reactions, physiological or pathological autophagy, cell-death induction and retinal cell rescue represented the most dysregulated pathways. Our results could represent an important step towards discovery of unclear molecular mechanisms linking oxidative stress and etiopathogenesis of retinal dystrophies.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| |
Collapse
|
38
|
Peresypkina A, Pazhinsky A, Danilenko L, Lugovskoy S, Pokrovskii M, Beskhmelnitsyna E, Solovev N, Pobeda A, Korokin M, Levkova E, Gubareva V, Korokina L, Martynova O, Soldatov V, Pokrovskii V. Retinoprotective Effect of 2-Ethyl-3-hydroxy-6-methylpyridine Nicotinate. BIOLOGY 2020; 9:biology9030045. [PMID: 32121045 PMCID: PMC7150877 DOI: 10.3390/biology9030045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
An important task of pharmacology is to find effective agents to improve retinal microcirculation and resistance to ischemia. The purpose of the study is to pharmacologically evaluate the retinoprotective effect of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate in a rat model of retinal ischemia–reperfusion. A retinal ischemia–reperfusion model was used, in which an increase in intraocular pressure (IOP) to 110 mmHg was carried out within 30 min. The retinoprotective effect of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate at a dose of 3.8 mg/kg, in comparison with nicotinic acid at a dose of 2 mg/kg and emoxipine at a dose of 2 mg/kg, was estimated by the changes in the eye fundus during ophthalmoscopy, the retinal microcirculation level with laser Doppler flowmetry (LDF), and electroretinography (ERG) after 72 h of reperfusion. The use of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate prevented the development of ischemic injuries in the fundus and led to an increase in the retinal microcirculation level to 747 (median) (lower and upper quartiles: 693;760) perfusion units (p = 0.0002) in comparison with the group that underwent no treatment. In the group with the studied substance, the b-wave amplitude increased significantly (p = 0.0022), and the b/a coefficient increased reliably (p = 0.0002) in comparison with the group with no treatment. Thus, 2-ethyl-3-hydroxy-6-methylpyridine nicotinate has established itself as a potential retinoprotector.
Collapse
Affiliation(s)
- Anna Peresypkina
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
- Correspondence: ; Tel.: +7-903-885-86-19
| | - Anton Pazhinsky
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Lyudmila Danilenko
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Sergey Lugovskoy
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Mikhail Pokrovskii
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| | - Evgeniya Beskhmelnitsyna
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Nikolai Solovev
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Anna Pobeda
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Mikhail Korokin
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| | - Elena Levkova
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Victoria Gubareva
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Liliya Korokina
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Olga Martynova
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| | - Vladislav Soldatov
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| | - Vladimir Pokrovskii
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| |
Collapse
|
39
|
Wan Y, Yang ZQ. LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy. Cell Cycle 2020; 19:419-431. [PMID: 31948324 DOI: 10.1080/15384101.2020.1711578] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is crucial to understand the molecular mechanisms involved in epileptogenesis. This study aims to investigate the role of lncRNA NEAT1, miR-129-5p and Notch signaling pathway in epilepsy. In this research, temporal lobe tissues were collected from patients with epilepsy and healthy controls. The CTX-TNA cells were treated with IL-1β to establish as epilepsy cell model, which were then manipulated the expression level of NEAT1, miR-129-5p and Notch1 to investigate their roles in the epilepsy progression. The expression levels of RNA and protein in temporal lobe tissues and epilepsy cell model were determined by RT-qPCR, western blotting or ELISA, respectively. MTT assay was utilized to analyze the cell viability. Dual-luciferase reporter assay was used to explore the interaction relationship between lncRNA NEAT1, miR-129-5p and Notch1. Silencing NEAT1 significantly reduced the expression levels of IL-6, COX-2 and TNF-α in epilepsy cell model. The overexpression of NEAT1 suppressed the expression level of miR-129-5p. Inhibiting miR-129-5p significantly increased the expression of IL-6, COX-2, TNF-α and Notch1. Furthermore, the expression levels of IL-6, COX-2 and TNF-α were increased after overexpressing Notch1 in miR-129-5p mimics-treated cells. The expression levels of Notch1, JAG1, and HES1 were decreased after transfecting with sh-NEAT1. However, compared with sh-NEAT1 group, the expression levels of Notch1, JAG1, HES1, IL-6 and TNF-α were reversed by miR-129-5p inhibition or Notch1 overexpression. The present study verified that lncRNA NEAT1 affected inflammatory response of epilepsy by suppressing miR-129-5p and further regulating Notch signaling pathway in IL-1β-induced epilepsy cell model.Abbreviations: CNS: Central nervous system; lncRNAs: Long noncoding RNAs; NEAT1: Nuclear-enriched abundant transcript 1; miRNAs: MicroRNAs; ATCC: American Type Culture Collection; DMEM: Dulbecco's Modified Eagle Medium; FBS: Fetal bovine serum; ELISA: Enzyme-linked immunosorbent assay; RT-qPCR: Reverse transcription-quantitative polymerase chain reaction; SD: Standard deviation; ANOVA: Analysis of variance; LPS: Ligand lipopolysaccharide; GLO1: Glyoxalase I.
Collapse
Affiliation(s)
- Yi Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhi-Quan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
40
|
Cui L, Lyu Y, Jin X, Wang Y, Li X, Wang J, Zhang J, Deng Z, Yang N, Zheng Z, Guo Y, Wang C, Mao R, Xu J, Gao F, Jin C, Zhang J, Tian H, Xu GT, Lu L. miR-194 suppresses epithelial-mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:751. [PMID: 32042767 DOI: 10.21037/atm.2019.11.90] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of proliferative vitreoretinopathy (PVR). Some microRNAs (miRNAs) participate in regulating RPE cell EMT as post-transcriptional regulators. However, the function of miR-194 in RPE cell EMT remains elusive. Here, the role of miR-194 in PVR was investigated. Methods Retinal layers were obtained using laser capture microdissection (LCM). Gene expression at the mRNA and protein level in the tissues and cells was examined using quantitative reverse transcription (RT)-polymerase chain reaction and Western blotting, respectively. The related protein expression was observed by immunostaining. The effect of miR-194 on RPE cell EMT was examined by gel contraction, wound healing, and cell migration assays. RNAseq was performed in ARPE-19 with transfection of pSuper-scramble and pSuper-miR-194. The target gene of miR-194 was identified and confirmed via bioinformatics analysis and dual-luciferase reporter assay. ARPE-19 (adult retinal pigment epithelium-19) cells were treated with transforming growth factor (TGF)-β1 in the same fashion as the in vitro RPE cell EMT model. A PVR rat model was prepared by intravitreous injection of ARPE-19 cells with plasma-rich platelets. Results miR-194 was preferentially expressed in the RPE cell layer compared with the outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer in rat retina. RNAseq analysis indicated that miR-194 overexpression was involved in RPE cell processes, including phagocytosis, ECM-receptor interaction, cell adhesion molecules, and focal adhesion. miR-194 overexpression significantly inhibited the TGF-β1-induced EMT phenotype of RPE cells in vitro. Zinc finger E-box binding homeobox 1 (ZEB1), a key transcription factor in EMT, was confirmed as the direct functional target of miR-194. Knockdown of ZEB1 attenuated TGF-β1-induced α-smooth muscle actin expression in ARPE-19 cells, and overexpression of miR-194 could significantly reduce the expression of some genes which were up-regulated by ZEB1. Exogenous miR-194 administration in vivo effectively suppressed PVR in the rat model, both functionally and structurally. Conclusions Our findings demonstrate for the first time that miR-194 suppresses RPE cell EMT by functionally targeting ZEB1. The clinical application of miR-194 in patients with PVR merits further investigation.
Collapse
Affiliation(s)
- Lian Cui
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Yali Lyu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University Medical school, Shanghai 200011, China
| | - Yueye Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiang Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Juan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jieping Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhongzhu Deng
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Nan Yang
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Zixuan Zheng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Yizheng Guo
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Chao Wang
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Rui Mao
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jingying Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Furong Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Caixia Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Haibin Tian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Guo-Tong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 310000, China.,The collaborative Innovation Center for Brain Science, Tongji University, Shanghai 310000, China
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
41
|
Xie Y, Li X, Ge J. Expression of REGγ in atherosclerotic plaques and promotes endothelial cells apoptosis via the cyclophilin A pathway indicates functional implications in atherogenesis. Cell Cycle 2019; 18:2083-2098. [PMID: 31282281 DOI: 10.1080/15384101.2019.1639304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
REGγ is a member of the 11S regulatory particles family of proteasome activators and has been shown to promote the degradation of intact cellular proteins in a ubiquitin- and ATP-independent manner in the progression of various diseases. Our previous studies showed that REGγ-proteasome promotes Protein kinase A catalytic subunit α (PKAcα) turnover to modulate Forkhead box protein O1 (FoxO1) cellular activity in vascular endothelial cell migration and angiogenesis. We, therefore, studied the expression and novel functional implications and pathways involving REGγ in atherogenesis. We studied the expression of REGγ in atherosclerotic plaques in the ApoE-/- mouse model. Using immunohistochemistry, we showed that REGγ was highly expressed in these plaques, and the result of RNA-seq in Human umbilical vein endothelial cells (HUVECs), led us to explore and indentify that REGγ significantly promoted cyclophilin A (CyPA) expression, which is a proinflammatory and proapoptotic molecule in atherosclerosis progression. Next, we studied the regulation of REGγ in CyPA expression, and the proapoptotic effect on Endothelial cells (ECs). REGγ promoted CyPA expression via the REGγ-PKA-FoxO1-CyPA axis, and stimulated CyPA-dependent ECs apoptosis in vitro. Our data indicated that REGγ had proapoptotic effects on ECs depends on CyPA pathway in vitro and functional implications in atherogenesis in vivo.
Collapse
Affiliation(s)
- Yifan Xie
- a Institutes of Biomedical Science, Fudan University , Shanghai , China.,b Department of Cardiology, Zhongshan Hospital, Fudan University , Shanghai , China.,c Shanghai Institute of Cardiovascular Diseases , Shanghai , China
| | - Xiaotao Li
- d Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University , Shanghai , China.,e Department of Molecular and Cellular Biology, The Dan L. Duncan Cancer Center, Baylor College of Medicine , Houston , TX , USA
| | - Junbo Ge
- a Institutes of Biomedical Science, Fudan University , Shanghai , China.,b Department of Cardiology, Zhongshan Hospital, Fudan University , Shanghai , China.,c Shanghai Institute of Cardiovascular Diseases , Shanghai , China
| |
Collapse
|
42
|
Simón MV, Prado Spalm FH, Vera MS, Rotstein NP. Sphingolipids as Emerging Mediators in Retina Degeneration. Front Cell Neurosci 2019; 13:246. [PMID: 31244608 PMCID: PMC6581011 DOI: 10.3389/fncel.2019.00246] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
The sphingolipids ceramide (Cer), sphingosine-1-phosphate (S1P), sphingosine (Sph), and ceramide-1-phosphate (C1P) are key signaling molecules that regulate major cellular functions. Their roles in the retina have gained increasing attention during the last decade since they emerge as mediators of proliferation, survival, migration, neovascularization, inflammation and death in retina cells. As exacerbation of these processes is central to retina degenerative diseases, they appear as crucial players in their progression. This review analyzes the functions of these sphingolipids in retina cell types and their possible pathological roles. Cer appears as a key arbitrator in diverse retinal pathologies; it promotes inflammation in endothelial and retina pigment epithelium (RPE) cells and its increase is a common feature in photoreceptor death in vitro and in animal models of retina degeneration; noteworthy, inhibiting Cer synthesis preserves photoreceptor viability and functionality. In turn, S1P acts as a double edge sword in the retina. It is essential for retina development, promoting the survival of photoreceptors and ganglion cells and regulating proliferation and differentiation of photoreceptor progenitors. However, S1P has also deleterious effects, stimulating migration of Müller glial cells, angiogenesis and fibrosis, contributing to the inflammatory scenario of proliferative retinopathies and age related macular degeneration (AMD). C1P, as S1P, promotes photoreceptor survival and differentiation. Collectively, the expanding role for these sphingolipids in the regulation of critical processes in retina cell types and in their dysregulation in retina degenerations makes them attractive targets for treating these diseases.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
43
|
Fang H, Li HF, Yang M, Liao R, Wang RR, Wang QY, Zheng PC, Zhang FX, Zhang JP. NF-κB signaling pathway inhibition suppresses hippocampal neuronal apoptosis and cognitive impairment via RCAN1 in neonatal rats with hypoxic-ischemic brain damage. Cell Cycle 2019; 18:1001-1018. [PMID: 30990350 PMCID: PMC6527272 DOI: 10.1080/15384101.2019.1608128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NF-κB is a core transcription factor, the activation of which can lead to hypoxic-ischemic brain damage (HIBD), while RCAN1 plays a protective role in HIBD. However, the relationship between NF-κB and RCAN1 in HIBD remains unclear. This study aimed to explore the mechanism of NF-κB signaling pathway in hippocampal neuron apoptosis and cognitive impairment of neonatal rats with HIBD in relation to RCAN1. Initially, microarray analysis was used to determine the differentially expressed genes related to HIBD. After the establishment of HIBD rat models, gain- or loss-of-function assay was performed to explore the functional role of NF-κB signaling pathway in HIBD. Then, the learning and memory ability of rats was evaluated. Expression of RCAN1, NF-κB signaling pathway-related genes and glial fibrillary acidic protein (GFAP), S-100β and acetylcholine (Ach) level, and acetylcholinesterase (AchE) activity were determined with neuron apoptosis detected to further explore the function of NF-κB signaling pathway. RCAN1 could influence the development of HIBD. In the HIBD model, the expression of RCAN1 and NF-κB-related genes increased, and NF-κB p65 showed a significant nuclear shift. By activation of NF-κB or overexpression of RCAN1, the number of neuronal apoptosis, S-100β protein level, and AchE level increased significantly, Ach activity decreased significantly, and GFAP positive cells increased. In addition, after the activation of NF-κB or overexpression of RCAN1, the learning and memory ability of HIBD rats was inhibited. All the results show that activation of NF-κB signaling pathway promotes RCAN1 expression, thus increasing neuronal apoptosis and aggravating cognitive impairment in HIBD rats.
Collapse
Affiliation(s)
- Hua Fang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Hua-Feng Li
- c Department of Anesthesiology, West China Second University Hospital , Sichuan University , Chengdu , P. R. China
| | - Miao Yang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Ren Liao
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Ru-Rong Wang
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Quan-Yun Wang
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Peng-Cheng Zheng
- e Guizhou University Research Center for Analysis of Drugs and Metabolites , Guizhou University , Chengdu , P. R. China
| | - Fang-Xiang Zhang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Jian-Ping Zhang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| |
Collapse
|
44
|
Tang C, Wang H, Wu H, Yan S, Han Z, Jiang Z, Na M, Guo M, Lu D, Lin Z. The MicroRNA Expression Profiles of Human Temporal Lobe Epilepsy in HS ILAE Type 1. Cell Mol Neurobiol 2019; 39:461-470. [PMID: 30790096 DOI: 10.1007/s10571-019-00662-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Temporal lobe epilepsy (TLE) is associated with neurodegeneration, often leading to hippocampal sclerosis (HS). Type 1 HS, which is characterized by severe neuronal loss and gliosis predominantly in regions CA1 and CA4, is the most common subtype and is associated with the best prognosis according to the ILAE classification system. MiRNAs participate in the biological processes underlying many nervous system diseases, including epilepsy. However, the miRNA expression profile of HS ILAE type 1 is not completely understood. A total of 14 patients were identified as having the ILAE subtype, as determined by NeuN immunohistochemistry (ILAE type 1 = 7; no-HS = 7). Next-generation sequencing and reverse transcription polymerase chain reaction technology were used to validate the dysregulated miRNAs. Bioinformatics analysis of the predicted target genes was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. In total, 1643 mature miRNAs were detected in this study, along with 5 miRNAs that were upregulated and 2 miRNAs that were downregulated in the type 1 group. Bioinformatics analysis showed that 1545 target genes were predicted using the miRDB and Targetscan databases and that these predicted genes showed enrichment in pathways associated with nucleic acid binding, intracellular and cellular macromolecule metabolic processes, and the PI3K-Akt signaling pathway. This study is the first to report the miRNA expression profile of HS ILAE type 1 compared with those of no-HS. These results provide new insights into the neuronal loss pathology of type 1 HS.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Hongmei Wu
- Department of Pathology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Shi Yan
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Dunyue Lu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
45
|
Owen N, Moosajee M. RNA-sequencing in ophthalmology research: considerations for experimental design and analysis. Ther Adv Ophthalmol 2019; 11:2515841419835460. [PMID: 30911735 PMCID: PMC6421592 DOI: 10.1177/2515841419835460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
High-throughput, massively parallel sequence analysis has revolutionized the way that researchers design and execute scientific investigations. Vast amounts of sequence data can be generated in short periods of time. Regarding ophthalmology and vision research, extensive interrogation of patient samples for underlying causative DNA mutations has resulted in the discovery of many new genes relevant to eye disease. However, such analysis remains functionally limited. RNA-sequencing accurately snapshots thousands of genes, capturing many subtypes of RNA molecules, and has become the gold standard for transcriptome gene expression quantification. RNA-sequencing has the potential to advance our understanding of eye development and disease; it can reveal new candidates to improve our molecular diagnosis rates and highlight therapeutic targets for intervention. But with a wide range of applications, the design of such experiments can be problematic, no single optimal pipeline exists, and therefore, several considerations must be undertaken for optimal study design. We review the key steps involved in RNA-sequencing experimental design and the downstream bioinformatic pipelines used for differential gene expression. We provide guidance on the application of RNA-sequencing to ophthalmology and sources of open-access eye-related data sets.
Collapse
Affiliation(s)
- Nicholas Owen
- Development, Ageing and Disease Theme, UCL Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
46
|
Bao X, He X, Zheng S, Sun J, Luo Y, Tan R, Zhao J, Zhong F, Zhang L. Up-regulation of circular RNA hsa_circ_0037909 promotes essential hypertension. J Clin Lab Anal 2019; 33:e22853. [PMID: 30861600 PMCID: PMC6528570 DOI: 10.1002/jcla.22853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023] Open
Abstract
Aims Essential hypertension (EH) is a high prevalence disease facing a public health challenge. People were little known about the genetics of diagnosing the cause of EH. Circular RNAs that have a continuous cycle of covalent closure, without affected by RNA exonuclease, and are more stable and hard to degrade may involve into the molecule regulation mechanism of EH as an important biomedical. Methods qRT‐PCR was used to analyze circRNAs in total volume of human blood and the induced human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs). Our case‐control study was involved with 48 pairs of case controls with sex and age (±3 years) match. We conducted t test, Pearson's χ2 test, and receiver operating characteristics (ROC) curve analysis for the corresponding analysis. Results The expression level of hsa_circ_0037909 in EH patients was significantly higher than that in the healthy controls (P = 0.007), and the expression level of hsa‐miR‐637 in EH patients was significantly lower in than that in the healthy controls (P = 0.039); the same result appears in the HAECs and HUVECs. Hsa‐miR‐637 (adjusted P = 0.018), hsa_circ_0037909 (adjusted P = 0.005), HDL (adjusted P = 0.024), and serum creatinine (adjusted P = 0.014) were brought into the model which performed logistic regression analysis. The combination of two RNAs was excellent (P < 0.001) through ROC curve analysis. Hsa_circ_0037909 was significantly positively correlated with serum creatinine (P < 0.001) and low‐density lipoprotein (LDL) (P = 0.017). Conclusions Our findings suggested that the combination of hsa_circ_0037911 and hsa‐miR‐637 may be a significant important biomarker for early diagnosis of EH. Hsa_circ_0037909 may affect serum creatinine or LDL leading to the formation of EH.
Collapse
Affiliation(s)
- Xingjie Bao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, China
| | - Xin He
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, China
| | - Shuying Zheng
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, China
| | - Jihan Sun
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, China
| | - Yizhe Luo
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, China
| | - Ronghui Tan
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, China
| | - Fade Zhong
- Ningbo Municipal Blood Center, Ningbo, China
| | - Lina Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, China
| |
Collapse
|
47
|
Integrating miRNA and mRNA expression profiles in plasma of laying hens associated with heat stress. Mol Biol Rep 2019; 46:2779-2789. [PMID: 30835041 DOI: 10.1007/s11033-019-04724-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
High temperature is one of the most common environmental stressors plaguing animal husbandry worldwide. Little is known about the regulatory roles of miRNAs in response to heat stress in laying hens. To systematically identify heat stress-responsive miRNAs and their targets in laying hens, the differential expression of miRNAs and mRNAs was compared under heat stress and normal temperature. We identified 16 miRNAs and 502 genes that were significantly changed in heat-stressed laying hens. By comparing the differentially expressed genes (DEGs) and the putative targets of the altered miRNAs based on bioinformatics prediction, 82 coordinated genes were identified. Gene ontology classification analyses of the 82 putative target genes showed that the biological category 'cellular response to stress' was prominently annotated. Notably, the response-related gene autophagy-related protein 9A was most likely controlled by the upregulated miRNAs gga-miR-92-5p, gga-miR-1618-5p, gga-miR-1737, and gga-miR-6557 in response to heat stress. Analysis of DEGs also revealed an increase in lipid metabolism in heat-stressed laying hens. Some of these genes were negatively correlated with the altered miRNAs, suggesting that they are potential targets of the miRNAs. Taken together, our results advance our understanding of the regulatory mechanism of heat-stress-induced injury in laying hens, specifically with regard to miRNAs.
Collapse
|
48
|
Chen Q, Tang L, Xin G, Li S, Ma L, Xu Y, Zhuang M, Xiong Q, Wei Z, Xing Z, Niu H, Huang W. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med 2019; 130:48-58. [PMID: 30339883 DOI: 10.1016/j.freeradbiomed.2018.10.419] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
Retinal pigment epithelium (RPE) dysfunction is thought to increase the risk of the development and progression of diabetic retinopathy (DR), the leading cause of blindness. However, the molecular mechanism behind high glucose-induced RPE cell damage is still blurred. We reported that ARPE-19 exposed to 25 mM glucose for 48 h did not induce apoptosis, but senescence validated by SA-β-Gal staining, p21 expression and cell cycle distribution. High glucose also increased oxidant species that exerted a pivotal role in senescence, which could be relieved by the treatment with antioxidant N-acetylcysteine (NAC). The accumulation of lipid droplets and the increase of lipid oxidation were also observed in ARPE-19 treated with high glucose. And the supplementation of free fatty acids (FFAs) indicated that lipid metabolism was associated with the generation of hydrogen peroxide (H2O2) and subsequent senescence in ARPE-19. PI3K/Akt/mTOR signaling pathway was shown to be responsible for the accumulation of intracellular lipids by regulating fatty acid synthesis, which in turn controlled senescence. Furthermore, high glucose induced autophagy in ARPE-19 with the treatment of glucose for 48 h, and autophagy inhibitor hydroxychloroquine (HCQ) or bafilomycin further aggravated the senescence, accompanying by an increase in oxidant species. Whereas, prolonged high glucose exposure inhibited autophagy and increased apoptotic cells. Experiments above provide evidence that lipid metabolism plays an important role in oxidative stressed senescence of RPE.
Collapse
Affiliation(s)
- Qingqiu Chen
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Limei Ma
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Yao Xu
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Manjiao Zhuang
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Qiuyang Xiong
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China.
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China.
| |
Collapse
|
49
|
Donato L, Scimone C, Nicocia G, D'Angelo R, Sidoti A. Role of oxidative stress in Retinitis pigmentosa: new involved pathways by an RNA-Seq analysis. Cell Cycle 2018; 18:84-104. [PMID: 30569795 DOI: 10.1080/15384101.2018.1558873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a very heterogeneous inherited ocular disorder group characterized by progressive retinal disruption. Retinal pigment epithelium (RPE) degeneration, due to oxidative stress which arrests the metabolic support to photoreceptors, represents one of the principal causes of RP. Here, the role of oxidative stress in RP onset and progression was analyzed by a comparative whole transcriptome analysis of human RPE cells, treated with 100 µg/ml of oxLDL and untreated, at different time points. Experiment was thrice repeated and performed on Ion ProtonTM sequencing system. Data analysis, including low quality reads trimming and gene expression quantification, was realized by CLC Genomics Workbench software. The whole analysis highlighted 14 clustered "macro-pathways" and many sub-pathways, classified by selection of 5271 genes showing the highest alteration of expression. Among them, 23 genes were already known to be RP causative ones (15 over-expressed and 8 down-expressed), and their enrichment and intersection analyses highlighted new 77 candidate related genes (49 over-expressed and 28 down-expressed). A final filtering analysis then highlighted 29 proposed candidate genes. This data suggests that many new genes, not yet associated with RP, could influence its etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Concetta Scimone
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Giacomo Nicocia
- c Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Rosalia D'Angelo
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Antonina Sidoti
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| |
Collapse
|
50
|
Donato L, Bramanti P, Scimone C, Rinaldi C, Giorgianni F, Beranova-Giorgianni S, Koirala D, D'Angelo R, Sidoti A. Corrigendum to: miRNA expression profile of retinal pigment epithelial cells under oxidative stress conditions. FEBS Open Bio 2018; 8:1884. [PMID: 30410868 PMCID: PMC6212636 DOI: 10.1002/2211-5463.12526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Luigi Donato
- Division of Medical Biotechnologies and Preventive Medicine Department of Biomedical and Dental Sciences and Morphofunctional Imaging University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine I.E.ME.S.T. Palermo Italy
| | | | - Concetta Scimone
- Division of Medical Biotechnologies and Preventive Medicine Department of Biomedical and Dental Sciences and Morphofunctional Imaging University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine I.E.ME.S.T. Palermo Italy
| | - Carmela Rinaldi
- Division of Medical Biotechnologies and Preventive Medicine Department of Biomedical and Dental Sciences and Morphofunctional Imaging University of Messina Italy
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences University of Tennessee Health Science Center Memphis TN USA
| | | | - Diwa Koirala
- Department of Pharmaceutical Sciences University of Tennessee Health Science Center Memphis TN USA
| | - Rosalia D'Angelo
- Division of Medical Biotechnologies and Preventive Medicine Department of Biomedical and Dental Sciences and Morphofunctional Imaging University of Messina Italy
| | - Antonina Sidoti
- Division of Medical Biotechnologies and Preventive Medicine Department of Biomedical and Dental Sciences and Morphofunctional Imaging University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine I.E.ME.S.T. Palermo Italy
| |
Collapse
|