1
|
Yang S, Di Lodovico E, Rupp A, Harms H, Fricke C, Miltner A, Kästner M, Maskow T. Enhancing insights: exploring the information content of calorespirometric ratio in dynamic soil microbial growth processes through calorimetry. Front Microbiol 2024; 15:1321059. [PMID: 38371938 PMCID: PMC10869564 DOI: 10.3389/fmicb.2024.1321059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024] Open
Abstract
Catalytic activity of microbial communities maintains the services and functions of soils. Microbial communities require energy and carbon for microbial growth, which they obtain by transforming organic matter (OM), oxidizing a fraction of it and transferring the electrons to various terminal acceptors. Quantifying the relations between matter and energy fluxes is possible when key parameters such as reaction enthalpy (∆rH), energy use efficiency (related to enthalpy) (EUE), carbon use efficiency (CUE), calorespirometric ratio (CR), carbon dioxide evolution rate (CER), and the apparent specific growth rate (μ app ) are known. However, the determination of these parameters suffers from unsatisfying accuracy at the technical (sample size, instrument sensitivity), experimental (sample aeration) and data processing levels thus affecting the precise quantification of relationships between carbon and energy fluxes. To address these questions under controlled conditions, we analyzed microbial turnover processes in a model soil amended using a readily metabolizable substrate (glucose) and three commercial isothermal microcalorimeters (MC-Cal/100P, TAM Air and TAM III) with different sample sizes meaning varying volume-related thermal detection limits (LODv) (0.05- 1 mW L-1). We conducted aeration experiments (aerated and un-aerated calorimetric ampoules) to investigate the influence of oxygen limitation and thermal perturbation on the measurement signal. We monitored the CER by measuring the additional heat caused by CO2 absorption using a NaOH solution acting as a CO2 trap. The range of errors associated with the calorimetrically derived μ app , EUE, and CR was determined and compared with the requirements for quantifying CUE and the degree of anaerobicity (η A ) . Calorimetrically derived μ app and EUE were independent of the instrument used. However, instruments with a low LODv yielded the most accurate results. Opening and closing the ampoules for oxygen and CO2 exchange did not significantly affect metabolic heats. However, regular opening during calorimetrically derived CER measurements caused significant measuring errors due to strong thermal perturbation of the measurement signal. Comparisons between experimentally determined CR, CUE,η A , and modeling indicate that the evaluation of CR should be performed with caution.
Collapse
Affiliation(s)
- Shiyue Yang
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Eliana Di Lodovico
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Landau in der Pfalz, Germany
| | - Alina Rupp
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Christian Fricke
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Landau in der Pfalz, Germany
| | - Anja Miltner
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Matthias Kästner
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Thomas Maskow
- Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
2
|
Schittich AR, Fenner K, Stedmon CA, Xu J, McKnight US, Smets BF. Coupling pathway prediction and fluorescence spectroscopy to assess the impact of auxiliary substrates on micropollutant biodegradation. Environ Microbiol 2024; 26:e16560. [PMID: 38234207 DOI: 10.1111/1462-2920.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Some bacteria can degrade organic micropollutants (OMPs) as primary carbon sources. Due to typically low OMP concentrations, these bacteria may benefit from supplemental assimilation of natural substrates present in the pool of dissolved organic matter (DOM). The biodegradability of such auxiliary substrates and the impacts on OMP removal are tightly linked to biotransformation pathways. Here, we aimed to elucidate the biodegradability and effect of different DOM constituents for the carbofuran degrader Novosphingobium sp. KN65.2, using a novel approach that combines pathway prediction, laboratory experiments, and fluorescence spectroscopy. Pathway prediction suggested that ring hydroxylation reactions catalysed by Rieske-type dioxygenases and flavin-dependent monooxygenases determine the transformability of the 11 aromatic compounds used as model DOM constituents. Our approach further identified two groups with distinct transformation mechanisms amongst the four growth-supporting compounds selected for mixed substrate biodegradation experiments with the pesticide carbofuran (Group 1: 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde; Group 2: p-coumaric acid, ferulic acid). Carbofuran biodegradation kinetics were stable in the presence of both Group 1 and Group 2 auxiliary substrates. However, Group 2 substrates would be preferable for bioremediation processes, as they showed constant biodegradation kinetics under different experimental conditions (pre-growing KN65.2 on carbofuran vs. DOM constituent). Furthermore, Group 2 substrates were utilisable by KN65.2 in the presence of a competitor (Pseudomonas fluorescens sp. P17). Our study thus presents a simple and cost-efficient approach that reveals mechanistic insights into OMP-DOM biodegradation.
Collapse
Affiliation(s)
- Anna-Ricarda Schittich
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
- Sino-Danish Center for Education and Research, Denmark
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California, USA
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- University of Zürich, Department of Chemistry, Zürich, Switzerland
| | - Colin A Stedmon
- National Institute of Aquatic Research, Technical University of Denmark, Lyngby, Denmark
| | - Jianxin Xu
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ursula S McKnight
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
- Sino-Danish Center for Education and Research, Denmark
| |
Collapse
|
3
|
Ullmann L, Guntermann N, Kohl P, Schröders G, Müsgens A, Franciò G, Leitner W, Blank LM. Improved Itaconate Production with Ustilago cynodontis via Co-Metabolism of CO 2-Derived Formate. J Fungi (Basel) 2022; 8:jof8121277. [PMID: 36547610 PMCID: PMC9784962 DOI: 10.3390/jof8121277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/07/2022] Open
Abstract
In recent years, it was shown that itaconic acid can be produced from glucose with Ustilago strains at up to maximum theoretical yield. The use of acetate and formate as co-feedstocks can boost the efficiency of itaconate production with Ustilaginaceae wild-type strains by reducing the glucose amount and thus the agricultural land required for the biotechnological production of this chemical. Metabolically engineered strains (U. cynodontis Δfuz7 Δcyp3 ↑Pria1 and U. cynodontis Δfuz7 Δcyp3 PetefmttA ↑Pria1) were applied in itaconate production, obtaining a titer of 56.1 g L-1 and a yield of 0.55 gitaconate per gsubstrate. Both improved titer and yield (increase of 5.2 g L-1 and 0.04 gitaconate per gsubstrate, respectively) were achieved when using sodium formate as an auxiliary substrate. By applying the design-of-experiments (DoE) methodology, cultivation parameters (glucose, sodium formate and ammonium chloride concentrations) were optimized, resulting in two empirical models predicting itaconate titer and yield for U. cynodontis Δfuz7 Δcyp3 PetefmttA ↑Pria1. Thereby, an almost doubled itaconate titer of 138 g L-1 was obtained and a yield of 0.62 gitaconate per gsubstrate was reached during confirmation experiments corresponding to 86% of the theoretical maximum. In order to close the carbon cycle by production of the co-feed via a "power-to-X" route, the biphasic Ru-catalysed hydrogenation of CO2 to formate could be integrated into the bioprocess directly using the obtained aqueous solution of formates as co-feedstock without any purification steps, demonstrating the (bio)compatibility of the two processes.
Collapse
Affiliation(s)
- Lena Ullmann
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nils Guntermann
- ITMC—Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Philipp Kohl
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Gereon Schröders
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Müsgens
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Giancarlo Franciò
- ITMC—Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Walter Leitner
- ITMC—Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lars M. Blank
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
4
|
Dominance of Gas-Eating, Biofilm-Forming Methylobacterium Species in the Evaporator Cores of Automobile Air-Conditioning Systems. mSphere 2020; 5:5/1/e00761-19. [PMID: 31941811 PMCID: PMC6968652 DOI: 10.1128/msphere.00761-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Air-conditioning systems (ACS) are indispensable for human daily life; however, microbial community analysis in automobile ACS has yet to be comprehensively investigated. A bacterial community analysis of 24 heat exchanger fins from five countries (South Korea, China, the United States, India, and the United Arab Emirates [UAE]) revealed that Methylobacterium species are some of the dominant bacteria in automobile ACS. Furthermore, we suggested that the predominance of Methylobacterium species in automobile ACS is due to the utilization of mixed volatile organic compounds and their great ability for aggregation and biofilm formation. Microbial communities in the evaporator core (EC) of automobile air-conditioning systems have a large impact on indoor air quality, such as malodor and allergenicity. DNA-based microbial population analysis of the ECs collected from South Korea, China, the United States, India, and the United Arab Emirates revealed the extraordinary dominance of Methylobacterium species in EC biofilms. Mixed-volatile organic compound (VOC) utilization and biofilm-forming capabilities were evaluated to explain the dominance of Methylobacterium species in the ECs. The superior growth of all Methylobacterium species could be possible under mixed-VOC conditions. Interestingly, two lifestyle groups of Methylobacterium species could be categorized as the aggregator group, which sticks together but forms a small amount of biofilm, and the biofilm-forming group, which forms a large amount of biofilm, and their genomes along with phenotypic assays were analyzed. Pili are some of the major contributors to the aggregator lifestyle, and succinoglycan exopolysaccharide production may be responsible for the biofilm formation. However, the coexistence of these two lifestyle Methylobacterium groups enhanced their biofilm formation compared to that with each single culture. IMPORTANCE Air-conditioning systems (ACS) are indispensable for human daily life; however, microbial community analysis in automobile ACS has yet to be comprehensively investigated. A bacterial community analysis of 24 heat exchanger fins from five countries (South Korea, China, the United States, India, and the United Arab Emirates [UAE]) revealed that Methylobacterium species are some of the dominant bacteria in automobile ACS. Furthermore, we suggested that the predominance of Methylobacterium species in automobile ACS is due to the utilization of mixed volatile organic compounds and their great ability for aggregation and biofilm formation.
Collapse
|
5
|
Park JO, Liu N, Holinski KM, Emerson DF, Qiao K, Woolston BM, Xu J, Lazar Z, Islam MA, Vidoudez C, Girguis PR, Stephanopoulos G. Synergistic substrate cofeeding stimulates reductive metabolism. Nat Metab 2019; 1:643-651. [PMID: 32694804 DOI: 10.1038/s42255-019-0077-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
Advanced bioproduct synthesis via reductive metabolism requires coordinating carbons, ATP and reducing agents, which are generated with varying efficiencies depending on metabolic pathways. Substrate mixtures with direct access to multiple pathways may optimally satisfy these biosynthetic requirements. However, native regulation favouring preferential use precludes cells from co-metabolizing multiple substrates. Here we explore mixed substrate metabolism and tailor pathway usage to synergistically stimulate carbon reduction. By controlled cofeeding of superior ATP and NADPH generators as 'dopant' substrates to cells primarily using inferior substrates, we circumvent catabolite repression and drive synergy in two divergent organisms. Glucose doping in Moorella thermoacetica stimulates CO2 reduction (2.3 g gCDW-1 h-1) into acetate by augmenting ATP synthesis via pyruvate kinase. Gluconate doping in Yarrowia lipolytica accelerates acetate-driven lipogenesis (0.046 g gCDW-1 h-1) by obligatory NADPH synthesis through the pentose cycle. Together, synergistic cofeeding produces CO2-derived lipids with 38% energy yield and demonstrates the potential to convert CO2 into advanced bioproducts. This work advances the systems-level control of metabolic networks and CO2 use, the most pressing and difficult reduction challenge.
Collapse
Affiliation(s)
- Junyoung O Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kara M Holinski
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David F Emerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kangjian Qiao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jingyang Xu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, China
| | - Zbigniew Lazar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Monskiego, Wroclaw, Poland
| | - M Ahsanul Islam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Charles Vidoudez
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Elsayed NS, Aboshanab KM, Yassien MA, Hassouna NA. Kinetic modeling, recovery, and molecular characterization of poly-beta-hydroxybutyrate polymer in Acinetobacter baumannii isolate P39. Bioprocess Biosyst Eng 2018; 41:1779-1791. [PMID: 30194493 DOI: 10.1007/s00449-018-2000-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
Abstract
To control the poly-β-hydroxybutyrate (PHB) biopolymer production by Acinetobacter baumannii isolate P39 kinetic modeling of the fermentation process, polymer downstream processing, enzymological analysis, and molecular characterization of PHA synthase, key biosynthetic enzyme, should be addressed. A. baumannii isolate P39 produced 0.15 g/L PHB after 24 h of incubation with a polymer content of 28% per dry weight. Logistic and Leudeking-Piret models were used for describing cell growth and PHB production, respectively. They showed good agreement with the experimental data describing both cell growth and PHB production (average regression coefficient r2:0.999). The growth-associated production of PHB biopolymer as an electron acceptor was confirmed using Leudeking-Piret model and victim substrate experiment. The best method of recovery of PHB biopolymer was chemical digestion using sodium hypochlorite, since it produced the largest amount of polymer and highest molecular weight (16,000 g/mole) in comparison to other recovery methods. DTNB assay showed high activity of PHA synthase enzyme, 600 U activity, and 153.8 U/mg specific activity. Molecular analysis of PHA synthase enzyme confirmed class III identity. Taken together, micelle model was proposed for polyhydroxybutyrate formation in A. baumannii isolate P39.
Collapse
Affiliation(s)
- Noha S Elsayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, P.O. Box 11566, Cairo, Egypt
| |
Collapse
|
7
|
Syafiq IM, Huong KH, Shantini K, Vigneswari S, Aziz NA, Amirul AAA, Bhubalan K. Synthesis of high 4-hydroxybutyrate copolymer by Cupriavidus sp. transformants using one-stage cultivation and mixed precursor substrates strategy. Enzyme Microb Technol 2017; 98:1-8. [DOI: 10.1016/j.enzmictec.2016.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
8
|
Liu Z, Oyetunde T, Hollinshead WD, Hermanns A, Tang YJ, Liao W, Liu Y. Exploring eukaryotic formate metabolisms to enhance microbial growth and lipid accumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:22. [PMID: 28149324 PMCID: PMC5267366 DOI: 10.1186/s13068-017-0708-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND C1 substrates (such as formate and methanol) are promising feedstock for biochemical/biofuel production. Numerous studies have been focusing on engineering heterologous pathways to incorporate C1 substrates into biomass, while the engineered microbial hosts often demonstrate inferior fermentation performance due to substrate toxicity, metabolic burdens from engineered pathways, and poor enzyme activities. Alternatively, exploring native C1 pathways in non-model microbes could be a better solution to address these challenges. RESULTS An oleaginous fungus, Umbelopsis isabellina, demonstrates an excellent capability of metabolizing formate to promote growth and lipid accumulation. By co-feeding formate with glucose at a mole ratio of 3.9:1, biomass and lipid productivities of the culture in 7.5 L bioreactors were improved by 20 and 70%, respectively. 13C-metabolite analysis, genome annotations, and enzyme assay further discovered that formate not only provides an auxiliary energy source [promoting NAD(P)H and ATP] for cell anabolism, but also contributes carbon backbones via folate-mediated C1 pathways. More interestingly, formate addition can tune fatty acid profile and increase the portion of medium-chain fatty acids, which would benefit conversion of fungal lipids for high-quality biofuel production. Flux balance analysis further indicates that formate co-utilization can power microbial metabolism to improve biosynthesis, particularly on glucose-limited cultures. CONCLUSION This study demonstrates Umbelopsis isabellina's strong capability for co-utilizing formate to produce biomass and enhance fatty acid production. It is a promising non-model platform that can be potentially integrated with photochemical/electrochemical processes to efficiently convert carbon dioxide into biofuels and value-added chemicals.
Collapse
Affiliation(s)
- Zhiguo Liu
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323 USA
| | - Tolutola Oyetunde
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Whitney D. Hollinshead
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Anna Hermanns
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323 USA
- Department of Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Wei Liao
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323 USA
| | - Yan Liu
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323 USA
| |
Collapse
|
9
|
Henriques SF, Mira NP, Sá-Correia I. Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:96. [PMID: 28428821 PMCID: PMC5395885 DOI: 10.1186/s13068-017-0781-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Formic acid is an inhibitory compound present in lignocellulosic hydrolysates. Understanding the complex molecular mechanisms underlying Saccharomyces cerevisiae tolerance to this weak acid at the system level is instrumental to guide synthetic pathway engineering for robustness improvement of industrial strains envisaging their use in lignocellulosic biorefineries. RESULTS This study was performed to identify, at a genome-wide scale, genes whose expression confers protection or susceptibility to formic acid, based on the screening of a haploid deletion mutant collection to search for these phenotypes in the presence of 60, 70 and 80 mM of this acid, at pH 4.5. This chemogenomic analysis allowed the identification of 172 determinants of tolerance and 41 determinants of susceptibility to formic acid. Clustering of genes required for maximal tolerance to this weak acid, based on their biological function, indicates an enrichment of those involved in intracellular trafficking and protein synthesis, cell wall and cytoskeleton organization, carbohydrate metabolism, lipid, amino acid and vitamin metabolism, response to stress, chromatin remodelling, transcription and internal pH homeostasis. Among these genes is HAA1 encoding the main transcriptional regulator of yeast transcriptome reprograming in response to acetic acid and genes of the Haa1-regulon; all demonstrated determinants of acetic acid tolerance. Among the genes that when deleted lead to increased tolerance to formic acid, TRK1, encoding the high-affinity potassium transporter and a determinant of resistance to acetic acid, was surprisingly found. Consistently, genes encoding positive regulators of Trk1 activity were also identified as formic acid susceptibility determinants, while a negative regulator confers protection. At a saturating K+ concentration of 20 mM, the deletion mutant trk1Δ was found to exhibit a much higher tolerance compared with the parental strain. Given that trk1Δ accumulates lower levels of radiolabelled formic acid, compared to the parental strain, it is hypothesized that Trk1 facilitates formic acid uptake into the yeast cell. CONCLUSIONS The list of genes resulting from this study shows a few marked differences from the list of genes conferring protection to acetic acid and provides potentially valuable information to guide improvement programmes for the development of more robust strains against formic acid.
Collapse
Affiliation(s)
- Sílvia F. Henriques
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno P. Mira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
10
|
Huong KH, Kannusamy S, Lim SYH, Amirul AA. Biosynthetic enhancement of single-stage Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by manipulating the substrate mixtures. ACTA ACUST UNITED AC 2015; 42:1291-7. [DOI: 10.1007/s10295-015-1657-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
Abstract
Two-stage fermentation was normally employed to achieve a high poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] productivity with higher 4HB molar fraction. Here, we demonstrated single-stage fermentation method which is more industrial feasible by implementing mixed-substrate cultivation strategy. Studies on bioreactor scale show a remarkably high PHA accumulation of 73 wt%, contributing to a high PHA concentration and product yield of 8.6 g/L and 2.7 g/g, respectively. This fermentation strategy has resulted in copolymers with wider range of 4HB monomer composition, which ranges from 12 to 55 mol%. These copolymers show a broad range of weight average molecular weight (M w) from 119.5 to 407.0 kDa. The copolymer characteristics were found to be predominantly affected by the nature of the substrates and the mixture strategies, regardless of the 4HB monomer compositions. This was supported by the determination of copolymer randomness using 13C-NMR analysis. The study warrants significantly in the copolymer scale-up and modeling at industrial level.
Collapse
Affiliation(s)
- Kai-Hee Huong
- grid.454125.3 Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM 11700 Gelugor Penang Malaysia
| | - Shantini Kannusamy
- grid.11875.3a 0000000122943534 School of Biological Sciences Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Sumithda Yeong Hui Lim
- grid.11875.3a 0000000122943534 School of Chemical Sciences Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - A A Amirul
- grid.454125.3 Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM 11700 Gelugor Penang Malaysia
- grid.11875.3a 0000000122943534 School of Biological Sciences Universiti Sains Malaysia 11800 Minden Penang Malaysia
- grid.11875.3a 0000000122943534 Centre for Chemical Biology Universiti Sains Malaysia 11900 Bayan Lepas Penang Malaysia
| |
Collapse
|
11
|
Xia J, Wang G, Lin J, Wang Y, Chu J, Zhuang Y, Zhang S. Advances and Practices of Bioprocess Scale-up. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 152:137-51. [PMID: 25636486 DOI: 10.1007/10_2014_293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
: This chapter addresses the update progress in bioprocess engineering. In addition to an overview of the theory of multi-scale analysis for fermentation process, examples of scale-up practice combining microbial physiological parameters with bioreactor fluid dynamics are also described. Furthermore, the methodology for process optimization and bioreactor scale-up by integrating fluid dynamics with biokinetics is highlighted. In addition to a short review of the heterogeneous environment in large-scale bioreactor and its effect, a scale-down strategy for investigating this issue is addressed. Mathematical models and simulation methodology for integrating flow field in the reactor and microbial kinetics response are described. Finally, a comprehensive discussion on the advantages and challenges of the model-driven scale-up method is given at the end of this chapter.
Collapse
Affiliation(s)
- Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jihan Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
12
|
Shakeri S, Roghanian R, Emtiazi G. Surveillance of single-cell behavior in different subpopulations of Ralstonia pickettii AR1 during growth and polyhydroxybutyrate production phases by flow cytometry. J Basic Microbiol 2011; 52:206-15. [PMID: 21780145 DOI: 10.1002/jobm.201100042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/26/2011] [Indexed: 11/12/2022]
Abstract
Most bacterial strains accumulate intracellular polyhydroxybutyrate (PHB) granules as an energy reservoir, in response to fluctuations in their microenvironment. Flow cytometry was applied for the analysis of single cells of Ralstonia pickettii AR1 in response to changes in the culture conditions. Two parameters, the PHB production-related FL2 and side scatter (SSC) parameters, were used to monitor, distinguish and characterize different subpopulations in the growth and PHB production phases. A high SSC level was observed in the mid-log exponential growth phase. When the nitrogen source reached a limiting level, the SSC started to decrease, in contrast to the intracellular PHB granules-related FL2 parameter. The results show that ammonium limitation is a critical and important factor for the accumulation of reserve compounds. Four subpopulations were observed and distinguished upon entrance of the cells into the exponential growth phase. When the cells entered the late exponential growth or early stationary phase, two subpopulations had disappeared and only two, different subpopulations were dominant. One of the subpopulations with changed SSC and PHB production activity switched to another subpopulation that was only active in PHB production in the stationary phase. The whole cells of R. pickettii AR1 tended to form a homogeneous population at the end of the stationary phase. In fact, the changes in the subpopulations of a single strain are related to different physiological states of the cells. The observation of different subpopulations suggests that each subpopulation shows a specific response to changes in the surrounding microenvironment, nutrients and limiting factors.
Collapse
Affiliation(s)
- Shahryar Shakeri
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | | | | |
Collapse
|
13
|
Abstract
Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed.
Collapse
|
14
|
Babel W. The Auxiliary Substrate Concept: From simple considerations to heuristically valuable knowledge. Eng Life Sci 2009. [DOI: 10.1002/elsc.200900027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Harris DM, van der Krogt ZA, van Gulik WM, van Dijken JP, Pronk JT. Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum: impact on penicillin G production and biomass yield. Appl Environ Microbiol 2007; 73:5020-5. [PMID: 17545326 PMCID: PMC1951027 DOI: 10.1128/aem.00093-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of beta-lactams by the filamentous fungus Penicillium chrysogenum requires a substantial input of ATP. During glucose-limited growth, this ATP is derived from glucose dissimilation, which reduces the product yield on glucose. The present study has investigated whether penicillin G yields on glucose can be enhanced by cofeeding of an auxiliary substrate that acts as an energy source but not as a carbon substrate. As a model system, a high-producing industrial strain of P. chrysogenum was grown in chemostat cultures on mixed substrates containing different molar ratios of formate and glucose. Up to a formate-to-glucose ratio of 4.5 mol.mol(-1), an increasing rate of formate oxidation via a cytosolic NAD(+)-dependent formate dehydrogenase increasingly replaced the dissimilatory flow of glucose. This resulted in increased biomass yields on glucose. Since at these formate-to-glucose ratios the specific penicillin G production rate remained constant, the volumetric productivity increased. Metabolic modeling studies indicated that formate transport in P. chrysogenum does not require an input of free energy. At formate-to-glucose ratios above 4.5 mol.mol(-1), the residual formate concentrations in the cultures increased, probably due to kinetic constraints in the formate-oxidizing system. The accumulation of formate coincided with a loss of the coupling between formate oxidation and the production of biomass and penicillin G. These results demonstrate that, in principle, mixed-substrate feeding can be used to increase the yield on a carbon source of assimilatory products such as beta-lactams.
Collapse
Affiliation(s)
- Diana M Harris
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, Delft, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Geertman JMA, van Dijken JP, Pronk JT. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res 2007; 6:1193-203. [PMID: 17156016 DOI: 10.1111/j.1567-1364.2006.00124.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Anaerobic Saccharomyces cerevisiae cultures reoxidize the excess NADH formed in biosynthesis via glycerol production. This study investigates whether cometabolism of formate, a well-known NADH-generating substrate in aerobic cultures, can increase glycerol production in anaerobic S. cerevisiae cultures. In anaerobic, glucose-limited chemostat sultures (D=0.10 h(-1)) with molar formate-to-glucose ratios of 0 to 0.5, only a small fraction of the formate added to the cultures was consumed. To investigate whether incomplete formate consumption was by the unfavourable kinetics of yeast formate dehydrogenase (high k(M) for formate at low intracellular NAD(+) concentrations) strains were constructed in which the FDH1 and/or GPD2 genes, encoding formate dehydrogenase and glycerol-3-phosphate dehydrogenase, respectively, were overexpressed. The engineered strains consumed up to 70% of the formate added to the feed, thereby increasing glycerol yields to 0.3 mol mol(-1) glucose at a formate-to-glucose ratio of 0.34. In all strains tested, the molar ratio between formate consumption and additional glycerol production relative to a reference culture equalled one. While demonstrating that that format can be use to enhance glycerol yields in anaerobic S. cerevisiae cultures, This study also reveals kinetic constraints of yeast formate dehydrogenase as an NADH-generating system in yeast mediated reduction processes.
Collapse
|
17
|
Jungo C, Marison I, von Stockar U. Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: A quantitative study based on concentration gradients in transient continuous cultures. J Biotechnol 2007; 128:824-37. [PMID: 17303281 DOI: 10.1016/j.jbiotec.2006.12.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/12/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Transient continuous cultures constitute a means to speed up strain characterization, by avoiding the need for many time-consuming steady-state experiments. In this study, mixed substrate growth on glycerol and methanol of a Pichia pastoris strain expressing and secreting recombinant avidin was characterized quantitatively by performing a nutrient gradient with linear increase of the methanol fraction in the feed medium from 0.5 to 0.93 C-mol C-mol(-1) at a dilution rate of 0.06 h(-1). The influence of the methanol fraction in the feed medium on recombinant avidin productivity and on specific alcohol oxidase activity were also examined. Results showed that, compared with cultures on methanol as sole carbon source, the specific recombinant avidin production rate was the same provided the methanol fraction in the feed medium was higher than 0.6 C-mol C-mol(-1). The volumetric avidin production rate was even 1.1-fold higher with a methanol fraction in the feed medium of 0.62 C-mol C-mol(-1) as a result of the higher biomass yield on mixed substrate growth compared with methanol alone. Moreover, since heat production and oxygen uptake rates are lower during mixed substrate growth on glycerol and methanol, mixed substrate cultures present technical advantages for the performance of high cell density P. pastoris cultures. Results obtained in a high cell density fed-batch culture with a mixed feed of 0.65 C-mol C-mol(-1) methanol and 0.35 C-mol C-mol(-1) glycerol were in agreement with results obtained during the transient nutrient gradient.
Collapse
Affiliation(s)
- Carmen Jungo
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Génie Chimique et Biologique, Station 6, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
18
|
Müller RH, Rohwerder T, Harms H. Carbon conversion efficiency and limits of productive bacterial degradation of methyl tert-butyl ether and related compounds. Appl Environ Microbiol 2007; 73:1783-91. [PMID: 17220260 PMCID: PMC1828808 DOI: 10.1128/aem.01899-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The utilization of the fuel oxygenate methyl tert-butyl ether (MTBE) and related compounds by microorganisms was investigated in a mainly theoretical study based on the Y(ATP) concept. Experiments were conducted to derive realistic maintenance coefficients and K(s) values needed to calculate substrate fluxes available for biomass production. Aerobic substrate conversion and biomass synthesis were calculated for different putative pathways. The results suggest that MTBE is an effective heterotrophic substrate that can sustain growth yields of up to 0.87 g g(-1), which contradicts previous calculation results (N. Fortin et al., Environ. Microbiol. 3:407-416, 2001). Sufficient energy equivalents were generated in several of the potential assimilatory routes to incorporate carbon into biomass without the necessity to dissimilate additional substrate, efficient energy transduction provided. However, when a growth-related kinetic model was included, the limits of productive degradation became obvious. Depending on the maintenance coefficient m(s) and its associated biomass decay term b, growth-associated carbon conversion became strongly dependent on substrate fluxes. Due to slow degradation kinetics, the calculations predicted relatively high threshold concentrations, S(min), below which growth would not further be supported. S(min) strongly depended on the maximum growth rate mu(ma)(x), and b and was directly correlated with the half maximum rate-associated substrate concentration K(s), meaning that any effect impacting this parameter would also change S(min). The primary metabolic step, catalyzing the cleavage of the ether bond in MTBE, is likely to control the substrate flux in various strains. In addition, deficits in oxygen as an external factor and in reduction equivalents as a cellular variable in this reaction should further increase K(s) and S(min) for MTBE.
Collapse
Affiliation(s)
- Roland H Müller
- UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany.
| | | | | |
Collapse
|
19
|
Use of biosensor and impedance spectroscopy assays to investigate the influence of temperature on E. coli sensitivity to 3,5-dichlorophenol. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Geertman JMA, van Maris AJA, van Dijken JP, Pronk JT. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Metab Eng 2006; 8:532-42. [PMID: 16891140 DOI: 10.1016/j.ymben.2006.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/11/2006] [Accepted: 06/21/2006] [Indexed: 11/28/2022]
Abstract
Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constraints by (i) maintaining flexibility at fructose-1,6-bisphosphatase and triosephosphate isomerase, while (ii) eliminating reactions that compete with glycerol formation for cytosolic NADH and (iii) enabling oxidative catabolism within the mitochondrial matrix. In aerobic, glucose-grown batch cultures a S. cerevisiae strain, in which the pyruvate decarboxylases the external NADH dehydrogenases and the respiratory chain-linked glycerol-3-phosphate dehydrogenase were deleted for this purpose, produced glycerol at a yield of 0.90 mol.(molglucose)(-1). In aerobic glucose-limited chemostat cultures, the glycerol yield was ca. 25% lower, suggesting the involvement of an alternative glucose-sensitive mechanism for oxidation of cytosolic NADH. Nevertheless, in vivo generation of additional cytosolic NADH by co-feeding of formate to aerobic, glucose-limited chemostat cultures increased the glycerol yield on glucose to 1.08 mol mol(-1). To our knowledge, this is the highest glycerol yield reported for S. cerevisiae.
Collapse
Affiliation(s)
- Jan-Maarten A Geertman
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | |
Collapse
|
21
|
Zinn M, Witholt B, Egli T. Dual nutrient limited growth: models, experimental observations, and applications. J Biotechnol 2004; 113:263-79. [PMID: 15380660 DOI: 10.1016/j.jbiotec.2004.03.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 01/19/2004] [Accepted: 03/03/2004] [Indexed: 11/16/2022]
Abstract
Dual nutrient limited growth, the control of the cell growth rate (kinetic aspect) or the restriction of the amount of biomass (stoichiometric aspect) by two nutrients at the same time, is a relatively unknown ability of the microorganisms and consequently, still not mentioned in textbooks to date. Nevertheless, multiple nutrient limited or controlled growth has been reported for different systems; e.g. ecosystems, batch, fed-batch, and chemostat cultures. Generally, dual nutrient limited growth has been observed when the microorganism of interest: (a) showed a variation of the cellular composition, (b) was able to accumulate a storage compound, (c) changed the cell metabolism, or (d) excreted metabolic intermediates. Consequently, stoichiometric models have been developed to estimate the growth conditions leading to dual nutrient limited growth. A general problem of the kinetic aspect is the accurate measurement of the growth controlling nutrients in the culture broth (microg l(-1) range), as the cells may consume residual nutrients during sampling. Nevertheless, most models of dual limited growth deal with the kinetic aspect although the control experiments are difficult to carry out. The aim of this survey is to introduce this special growth feature with respect to basic models, experimental data, and potential applications in bioprocesses.
Collapse
Affiliation(s)
- Manfred Zinn
- Biocompatible Materials, Swiss Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen.
| | | | | |
Collapse
|
22
|
Hoffmann D, Müller RH, Kiesel B, Babel W. Isolation and characterization of an alkaliphilic bacterium capable of growing on 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/abio.370160205] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Müller S, Babel W. Analysis of bacterial DNA patterns—an approach for controlling biotechnological processes. J Microbiol Methods 2003; 55:851-8. [PMID: 14607431 DOI: 10.1016/j.mimet.2003.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Optimisation of biotechnological processes catalysed by microbial cells requires detailed information about operational limits of the single cells. Their performance is correlated with distinct physiological states. We related these states to cell cycle events, which were found to proceed extremely diversely in different bacterial strains. Characteristic DNA patterns were found flow cytometrically, depending on the type of strain, substrates and growth conditions involved; this information can be used for the development of control strategies of bioprocesses, although some skill is required. Four bacterial strains (the Gram-negative strains Acinetobacter calcoaceticus 69-V, Ralstonia eutropha JMP 134, Ochrobactrum anthropi K2-14 and the Gram-positive strain Rhodococcus erythropolis K2-3) were grown in mono- and mixed cultures on different substrates, and analysed regarding their proliferation behaviour. The resulting DNA distribution patterns provided three types of valuable information. First, correlation of proliferation activity with the appearance of a major part of cells within the C(2) stage of the cell cycle is a strain-specific feature. Second, bacteria usually maintain more than one chromosome under limiting growth conditions: DNA replication is completed in such cases, but cell division fails. Third, high growth rates are associated with uncoupled DNA synthesis. Its general initiation might be genetically determined in the first place, but it is promoted by optimal growth conditions and the presence of substrates that can be metabolised at high rates, thereby allowing substantial amounts of carbon, other nutrients and energy to be used exclusively for DNA synthesis.
Collapse
Affiliation(s)
- S Müller
- Department of Environmental Microbiology, Centre for Environmental Research Leipzig/Halle, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | |
Collapse
|
24
|
Gallmetzer M, Burgstaller W. Efflux of organic acids in Penicillium simplicissimum is an energy-spilling process, adjusting the catabolic carbon flow to the nutrient supply and the activity of catabolic pathways. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1143-1149. [PMID: 11932458 DOI: 10.1099/00221287-148-4-1143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Continuous cultivation was used to study the effect of glucose, ammonium, nitrate or phosphate limitation on the excretion of tricarboxylic acid (TCA) cycle intermediates by Penicillium simplicissimum. Additionally, the effect of benzoic acid, salicylhydroxamic acid (SHAM) and 2,4-dinitrophenol on TCA cycle intermediates was studied. The physiological state of the fungus was characterized by its glucose and O(2) consumption, its CO(2) production, its intra- and extracellular concentrations of TCA cycle intermediates, as well as by its biomass yield, its maintenance coefficient and its respiratory quotient. The excretion of TCA cycle intermediates was observed during ammonium-, nitrate- and phosphate-limited growth. The highest productivity was found with phosphate-limited growth. The respiratory quotient was 1.3 under ammonium limitation and 0.7 under phosphate limitation. Citrate was always the main excreted intermediate. This justifies calling this excretion an energy-spilling process, because citrate excretion avoids the synthesis of too much NADH. The addition of benzoic acid further increased the excretion of TCA cycle intermediates by ammonium-limited hyphae. A SHAM-sensitive respiration was constitutively present during ammonium-limited growth of the fungus. The sum of the excreted organic acids was negatively correlated with the biomass yield (Y(GlcX)).
Collapse
Affiliation(s)
- Martin Gallmetzer
- Institute of Microbiology, Leopold-Franzens-University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria1
| | - Wolfgang Burgstaller
- Institute of Microbiology, Leopold-Franzens-University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria1
| |
Collapse
|
25
|
Maskow T, Babel W. Calorimetrically obtained information about the efficiency of ectoine synthesis from glucose in Halomonas elongata. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1527:4-10. [PMID: 11420137 DOI: 10.1016/s0304-4165(01)00115-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compatible solutes are becoming more and more attractive commercially. Thus, knowledge of the efficiency of synthesis of compatible solutes from different carbon substrates is very important. As the growth rate and rates of formation of compatible solutes correspond to the heat flux, calorimetric measurements are particularly suitable for providing this information. By growing microorganisms continuously in a calorimeter, and generating a feeding stream with gradually increasing salinity without changing any other growth conditions, we were able to determine the efficiency of growth-associated synthesis of compatible solutes. This was shown for Halomonas elongata DMSZ 2581(T) growing on glucose, which synthesizes (at 25 degrees C) 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) as its main osmotic counterweight. The requirement of biologically usable energy for its growth-associated synthesis was found to be very low: a 100% efficiency of the conversion of the substrate-carbon into ectoine is both theoretically possible and was reached approximately in practice. The growth rate and yield coefficient were essentially independent of the ectoine formation rate, and the rate of substrate-carbon assimilation was far greater than the rate of dissimilation. The specific maximum growth rate was limited by the rate of formation of ectoine.
Collapse
Affiliation(s)
- T Maskow
- UFZ Centre for Environmental Research Leipzig-Halle GmbH, Department of Environmental Microbiology, Permoserstrasse 15, D-04318, Leipzig, Germany.
| | | |
Collapse
|
26
|
Babel W, Ackermann JU, Breuer U. Physiology, regulation, and limits of the synthesis of poly(3HB). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 71:125-57. [PMID: 11217410 DOI: 10.1007/3-540-40021-4_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The properties of poly(3-hydroxybutyrate) combined with the fact that it can be produced easily by numerous prokaryotes from renewable resources and even from potentially toxic waste products using well-known fermentation processes have generated keen interest in this biopolyester as a substitute for chemo-synthetic petroleum-derived polymers in many applications. However, the high price of poly(3HB) compared with the conventional synthetic materials currently in use has restricted its availability in a wide range of applications. If the economic viability of poly(3HB) production and its competitiveness are to be improved, more must be found out about the phenotypic optimization and the upper limits of bacterial systems as the factory of poly(3HB). In this chapter, two aspects of poly(3HB) are reviewed--poly(3HB) formation as a physiological response to external limitations and overcoming internal bottlenecks, and poly(3HB) as a commercially attractive polyester. From a physiological viewpoint, the ability to synthesize and degrade poly(3HB) is considered an investment in the future and provides organisms with a selective advantage. Poly(3HB) is presented as a strategic survival polymer, and it is shown that growth-associated synthesis is not as rare as reported. The influence of the efficiency and velocity of cell multiplication and product formation, of poly(3HB) content and of productivity on the overall yield, and finally on the economics of the whole process are discussed and evaluated from the technological or consumer's point of view. The specific production rate and poly(3HB) content appear to be more important than the yield coefficients.
Collapse
Affiliation(s)
- W Babel
- UFZ Umweltforschungszentrum Leipzig-Halle, Sektion Umweltmikrobiologie, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | | | | |
Collapse
|
27
|
Müller RH, Babel W. A theoretical study on the metabolic requirements resulting from alpha-ketoglutarate-dependent cleavage of phenoxyalkanoates. Appl Environ Microbiol 2000; 66:339-44. [PMID: 10618245 PMCID: PMC91827 DOI: 10.1128/aem.66.1.339-344.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The etherolytic cleavage of phenoxyalkanoic acids in various bacteria is catalyzed by an alpha-ketoglutarate-dependent dioxygenase. In this reaction, the electron acceptor is oxidatively decarboxylated to succinate, whereas the proper substrate is cleaved by forming the oxidized alkanoic acid and the phenolic intermediate. The necessity of regenerating alpha-ketoglutarate and the consequences for the overall metabolism were investigated in a theoretical study. It was found that the dioxygenase mechanism is accompanied by a significant loss of carbon amounting to up to 62.5% in the assimilatory branch, thus defining the upper limit of carbon conversion efficiency. This loss in carbon is almost compensated for in comparison to a monooxygenase-catalyzed initial step when the dissimilatory efforts of the entire metabolism are included: the yield coefficients become similar. The alpha-ketoglutarate-dependent dioxygenase mechanism has more drastic consequences for microorganisms which are restricted in their metabolism to the first step of phenoxyalkanoate degradation by excreting the phenolic intermediate as a dead-end product. In the case of phenoxyacetate derivatives, the cleavage reaction would quickly cease due to the exhaustion of alpha-ketoglutarate and no growth would be possible. With the cleavage products of phenoxypropionate and phenoxybutyrate herbicides, i.e., pyruvate and succinate(semialdehyde), respectively, as the possible products, the regeneration of alpha-ketoglutarate will be guaranteed for stoichiometric reasons. However, the maintenance of the cleavage reaction ought to be restricted due to physiological factors owing to the involvement of other metabolic reactions in the pool of metabolites. These effects are discussed in terms of a putative recalcitrance of these compounds.
Collapse
Affiliation(s)
- R H Müller
- UFZ Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| | | |
Collapse
|
28
|
Müller S, Bley T, Babel W. Adaptive responses of Ralstonia eutropha to feast and famine conditions analysed by flow cytometry. J Biotechnol 1999; 75:81-97. [PMID: 10617338 DOI: 10.1016/s0168-1656(99)00130-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Results obtained by flow cytometry allow conclusions to be drawn about how the physiological states of Ralstsonia eutropha JMP134 are connected with survival strategies under distinct growth conditions. During both feast and famine conditions the cells were found to proceed through sharply separated phases of life. Two sources of carbon and energy, one poor (0.02% phenol) and one rich (0.2% pyruvate and 0.1% yeast extract) were chosen to study the cellular responses. Despite the major differences in carbon source, when growth stages of the bacteria on the two substrates were characterised in batch growth, only minor differences were found in the time course of the membrane potential related fluorescence intensity (MPRFI). This also applied to the rRNA content and the size-correlated forward scatter (FSC) signal of the cells, both of which increased to high levels during the (early) exponential growth phase. On the rich medium, DNA synthesis initially occurred in an uncoupled manner, then a high rate of PHB formation followed when nutrients began to be limiting. Under famine conditions, the cellular responses were much more complex. PHB was synthesised, then DNA synthesis occurred in a 'eukaryotic' mode, to be succeeded by renewed PHB synthesis. To obtain defined cell physiological states, the chemostat technique was used in addition to batch experiments. The results obtained clearly indicated that key events in cell physiology, including initiation of DNA replication and overflow metabolism, occurred in a hierarchically ordered manner and were tightly correlated with changes in the environmental conditions of the bacterial cells.
Collapse
Affiliation(s)
- S Müller
- Sächsisches Institut für Angewandte Biotechnologie, Leipzig, Germany
| | | | | |
Collapse
|
29
|
Kovárová-Kovar K, Egli T. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 1998; 62:646-66. [PMID: 9729604 PMCID: PMC98929 DOI: 10.1128/mmbr.62.3.646-666.1998] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth kinetics, i.e., the relationship between specific growth rate and the concentration of a substrate, is one of the basic tools in microbiology. However, despite more than half a century of research, many fundamental questions about the validity and application of growth kinetics as observed in the laboratory to environmental growth conditions are still unanswered. For pure cultures growing with single substrates, enormous inconsistencies exist in the growth kinetic data reported. The low quality of experimental data has so far hampered the comparison and validation of the different growth models proposed, and only recently have data collected from nutrient-controlled chemostat cultures allowed us to compare different kinetic models on a statistical basis. The problems are mainly due to (i) the analytical difficulty in measuring substrates at growth-controlling concentrations and (ii) the fact that during a kinetic experiment, particularly in batch systems, microorganisms alter their kinetic properties because of adaptation to the changing environment. For example, for Escherichia coli growing with glucose, a physiological long-term adaptation results in a change in KS for glucose from some 5 mg liter-1 to ca. 30 microg liter-1. The data suggest that a dilemma exists, namely, that either "intrinsic" KS (under substrate-controlled conditions in chemostat culture) or micromax (under substrate-excess conditions in batch culture) can be measured but both cannot be determined at the same time. The above-described conventional growth kinetics derived from single-substrate-controlled laboratory experiments have invariably been used for describing both growth and substrate utilization in ecosystems. However, in nature, microbial cells are exposed to a wide spectrum of potential substrates, many of which they utilize simultaneously (in particular carbon sources). The kinetic data available to date for growth of pure cultures in carbon-controlled continuous culture with defined mixtures of two or more carbon sources (including pollutants) clearly demonstrate that simultaneous utilization results in lowered residual steady-state concentrations of all substrates. This should result in a competitive advantage of a cell capable of mixed-substrate growth because it can grow much faster at low substrate concentrations than one would expect from single-substrate kinetics. Additionally, the relevance of the kinetic principles obtained from defined culture systems with single, mixed, or multicomponent substrates to the kinetics of pollutant degradation as it occurs in the presence of alternative carbon sources in complex environmental systems is discussed. The presented overview indicates that many of the environmentally relevant apects in growth kinetics are still waiting to be discovered, established, and exploited.
Collapse
Affiliation(s)
- K Kovárová-Kovar
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland
| | | |
Collapse
|
30
|
|
31
|
Ampe F, Léonard D, Lindley ND. Repression of phenol catabolism by organic acids in Ralstonia eutropha. Appl Environ Microbiol 1998; 64:1-6. [PMID: 9435054 PMCID: PMC124663 DOI: 10.1128/aem.64.1.1-6.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During batch growth of Ralstonia eutropha (previously named Alcaligenes eutrophus) on phenol in the presence of acetate, acetate was found to be the preferred substrate; this organic acid was rapidly metabolized, and the specific rate of phenol consumption was considerably decreased, although phenol consumption was not abolished. This decrease corresponded to a drop in phenol hydroxylase and catechol-2,3-dioxygenase specific activities, and the synthesis of the latter was repressed at the transcriptional level. Studies with a mutant not able to consume acetate indicated that the organic acid itself triggers the repression. Other organic acids were also found to repress phenol degradation. One of these, benzoate, was found to completely block the catabolism of phenol (diauxic growth). A mutant unable to metabolize benzoate was also unable to develop on benzoate-phenol mixtures, indicating that the organic acid rather than a metabolite involved in benzoate degradation was responsible for the repression observed.
Collapse
Affiliation(s)
- F Ampe
- Centre de Bioingénierie Gilbert Durand, Unité Mixte de Recherche 5504 du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | |
Collapse
|
32
|
Brinkmann U, Babel W. Simultaneous utilization of pyridine and fructose by Rhodococcus opacus UFZ B 408 without an external nitrogen source. Appl Microbiol Biotechnol 1996; 45:217-23. [PMID: 8920194 DOI: 10.1007/s002530050673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A bacterium classified as Rhodococcus opacus, which is able to use pyridine (a potentially growth-inhibiting substrate) as its sole source of carbon, energy and nitrogen, was isolated. In a carbon-limited chemostat culture, the kinetics was determined for growth on both pyridine and a mixture of pyridine and fructose (9 mM/22.15 mM). With growth on pyridine, stable steady states were achieved up to dilution rates of about 0.1 h-1. A further increase in the dilution rate resulted in the progressive accumulation of pyridine in the culture liquid and the cells were washed out. The maximum specific growth rate (mu max = 0.23 h-1) and the Ks value (0.22 mM) for growth on pyridine were determined from the residual pyridine concentrations measured within the range of stable steady states. With growth on the substrate mixture, the specific pyridine consumption rates and the residual pyridine concentrations were lower at similar dilution rates than with growth on pyridine alone, and stable steady states were established at dilution rates of up to 0.13 h-1. The maximum pyridine degradation rate was enhanced to 270 mg pyridine l-1 h-1 compared to 210 mg pyridine l-1 h-1 with growth on pyridine as a single substrate. An external nitrogen source did not need to be added in the case of growth on the substrate mixture. Fructose was assimilated by means of ammonium released from pyridine. Analysis of the nitrogen balance furnished proof that pyridine is an energy-deficient substrate; pyridine was assimilated and dissimilated at a ratio of 1 mol/0.67 mol respectively. The resulting yield coefficient was about 0.55 g dry weight/g pyridine. Moreover, it was demonstrated that, in regard to the biologically usable energy, 1 mol pyridine corresponds to 0.43 mol fructose.
Collapse
Affiliation(s)
- U Brinkmann
- Abteilung Biotechnologie, Universität Leipzig, Germany
| | | |
Collapse
|
33
|
Ampe F, Lindley ND. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase. J Bacteriol 1995; 177:5826-33. [PMID: 7592330 PMCID: PMC177405 DOI: 10.1128/jb.177.20.5826-5833.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During batch growth of Alcaligenes eutrophus on benzoate-acetate mixtures, benzoate was the preferred substrate, with acetate consumption being delayed until the rate of benzoate consumption had diminished. This effect was attributed to a transcriptional control of the synthesis of acetyl coenzyme A (acetyl-CoA) synthetase, an enzyme necessary for the entry of acetate into the central metabolic pathways, rather than to a biochemical modulation of the activity of this enzyme. Analysis of a 2.4-kb mRNA transcript hybridizing with the A. eutrophus acoE gene confirmed this repression effect. In a benzoate-limited chemostat culture, derepression was observed, with no increase in the level of expression following an acetate pulse. Benzoate itself was not the signal triggering the repression of acetyl-CoA synthetase. This role was played by catechol, which transiently accumulated in the medium when high specific rates of benzoate consumption were reached. The lack of rapid inactivation of the functional acetyl-CoA synthetase after synthesis has been stopped enables A. eutrophus to retain the capacity to metabolize acetate for prolonged periods while conserving minimal protein expenditure.
Collapse
Affiliation(s)
- F Ampe
- Centre de Bioingénierie Gilbert Durand, Institut National des Sciences Appliquées, Centre National de la Recherche Scientifique Unité de Recherche Associée 544, Toulouse, France
| | | |
Collapse
|
34
|
The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates. ADVANCES IN MICROBIAL ECOLOGY 1995. [DOI: 10.1007/978-1-4684-7724-5_8] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|