1
|
Luigetti M, Vitali F, Romano A, Sciarrone MA, Guglielmino V, Ardito M, Sabino A, Servidei S, Piro G, Carbone C, Graziani F, Lillo R, Ferraro PM, Primiano G. Emerging multisystem biomarkers in hereditary transthyretin amyloidosis: a pilot study. Sci Rep 2024; 14:18281. [PMID: 39112608 PMCID: PMC11306773 DOI: 10.1038/s41598-024-69123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Hereditary transthyretin (ATTRv) amyloidosis is a rare, adult-onset, progressive, multisystemic condition caused by TTR pathogenic variants. Reliable biomarkers are needed to allow early diagnosis and to monitor disease severity and progression. We measured serum concentrations of growth differentiation factor-15 (GDF-15) and uromodulin (Umod) in ATTRv patients to evaluate correlations with standard markers of disease severity (FAP stage and PND score). Blood samples were collected from 16 patients diagnosed with ATTRv amyloidosis and a verified TTR variant and from 26 healthy controls. ATTRv patients were stratified by clinical phenotype (neurologic vs. mixed), genotype (V30M vs. non-V30M), and disease severity. We found significantly higher levels of serum GDF-15 in ATTRv patients compared with controls. Mean serum Umod levels were significantly lower in patients with ATTRv than controls. A positive correlation was found between serum Umod and estimated glomerular filtration rate (eGFR), while an inverse correlation was found with cystatin C levels. Conversely, GDF-15 showed a negative correlation with eGFR, and a direct correlation with cystatin C levels. No correlation was demonstrated between GDF-15 or Umod levels and traditional cardiac biomarkers. The results identify alteration of serum levels of GDF-15 and Umod in ATTRv amyloidosis.
Collapse
Affiliation(s)
- Marco Luigetti
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Vitali
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angela Romano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | | | - Valeria Guglielmino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michelangelo Ardito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Sabino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serenella Servidei
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesca Graziani
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rosa Lillo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Pietro Manuel Ferraro
- Section of Nephrology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
| | - Guido Primiano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione UILDM Lazio Onlus, Rome, Italy
| |
Collapse
|
2
|
Pekeles H, Berrahmoune S, Dassi C, Cheung AC, Gagnon T, Waters PJ, Eberhard R, Buhas D, Myers KA. Safety and efficacy of deoxycytidine/deoxythymidine combination therapy in POLG-related disorders: 6-month interim results of an open-label, single arm, phase 2 trial. EClinicalMedicine 2024; 74:102740. [PMID: 39091670 PMCID: PMC11293517 DOI: 10.1016/j.eclinm.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Background DNA polymerase gamma (POLG)-related disorders are a group of rare neurodegenerative mitochondrial diseases caused by pathogenic variants in POLG, the gene encoding POLG. Patients may experience a range of signs and symptoms, including seizures, vision loss, myopathy, neuropathy, developmental impairment or regression, and liver failure. The diseases follow a progressive, degenerative course, with most affected individuals dying within 3 months-12 years of diagnosis. At present, there are no effective treatments for POLG-related disorders. Methods In this study we report the interim 6-month data from a long term open-label, single arm phase 2 trial, in which we assessed the safety and efficacy of combination therapy with deoxycytidine and deoxythymidine (dC/dT) in children with POLG-related disorders. dC/dT was given enterally in powder form, dissolved in water. The primary outcome measures included Newcastle Mitochondrial Disease Scale (NMDS) score, serum growth differentiation factor 15 (GDF-15; a biomarker of mitochondrial dysfunction), electroencephalography (EEG), seizure diary, and blood and urine tests to assess end organ and mitochondrial function. Secondary outcome measures included recording of all adverse events to evaluate the safety of the intervention. The trial is registered with ClinicalTrials.gov, NCT04802707 (https://clinicaltrials.gov/ct2/show/NCT04802707). Data were collected from 14 October, 2021 to 13 December, 2023. Findings We present 6-month interim data from the first ten people with POLG-related disorders enrolled in the trial, six with Alpers-Huttenlocher syndrome, two with ataxia-neuropathy spectrum, and two who do not fit into a classical POLG-related phenotype. During the 6 months of treatment, NMDS score improved from a mean of 27.3 at baseline to 20.7 at 6 months (estimated difference 6.0; 95% CI 2.5-∞). GDF-15 values remained stable or decreased in all patients; the mean decreased from 1031 pg/ml to 729 pg/ml (estimated difference 200; 95% CI 12-∞). 8/10 patients had abnormal baseline EEG; improvement in EEG was seen in 5 of these 8. There were no significant changes in other blood and urine testing. Regarding adverse events, two patients experienced diarrhea that spontaneously resolved. Interpretation dC/dT is a promising treatment option for people with POLG-related disorders. Further research is needed to assess the long-term safety and efficacy in POLG-related disorders, as well as safety and efficacy in other mitochondrial DNA depletion disorders. Funding This study was primarily funded by the Liam Foundation, with additional funding from the Savoy Foundation, Grand Défi Pierre Lavoie Foundation, and Fonds de Recherche du Québec - Santé.
Collapse
Affiliation(s)
- Heather Pekeles
- Division of Neurology, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Saoussen Berrahmoune
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, Quebec, H3H 2R9, Canada
| | - Christelle Dassi
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, Quebec, H3H 2R9, Canada
| | - Anthony C.T. Cheung
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Tommy Gagnon
- Medical Genetics Service, Department of Laboratory Medicine, CHUS and Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Paula J. Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHUS and Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), 12e Avenue N Porte 6, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Ralf Eberhard
- Division of Neurology, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Kenneth A. Myers
- Division of Neurology, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, Quebec, H3H 2R9, Canada
- Department of Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
3
|
Zhang Y, Tian XL, Li JQ, Wu DS, Li Q, Chen B. Mitochondrial dysfunction affects hepatic immune and metabolic remodeling in patients with hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol 2024; 30:881-900. [PMID: 38516248 PMCID: PMC10950637 DOI: 10.3748/wjg.v30.i8.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1β and transforming growth factor-β1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Xiao-Ling Tian
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Jie-Qun Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Dong-Sheng Wu
- Department of Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Qiang Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| |
Collapse
|
4
|
Lin Y, Wang J, Ren H, Ma X, Wang W, Zhao Y, Xu Z, Liu S, Wang W, Xu X, Wang B, Zhao D, Wang D, Li W, Liu F, Zhao Y, Lu J, Yan C, Ji K. Mitochondrial myopathy without extraocular muscle involvement: a unique clinicopathologic profile. J Neurol 2024; 271:864-876. [PMID: 37847292 DOI: 10.1007/s00415-023-12005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVE Mitochondrial myopathy without extraocular muscles involvement (MiMy) represents a distinct form of mitochondrial disorder predominantly affecting proximal/distal or axial muscles, with its phenotypic, genotypic features, and long-term prognosis poorly understood. METHODS A cross-sectional study conducted at a national diagnostic center for mitochondrial disease involved 47 MiMy patients, from a cohort of 643 mitochondrial disease cases followed up at Qilu Hospital from January 1, 2000, to January 1, 2021. We compared the clinical, pathological, and genetic features of MiMy to progressive external ophthalmoplegia (PEO) and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) patients. RESULTS MiMy patients demonstrated a more pronounced muscle involvement syndrome, with lower 6MWT scores, higher FSS, and lower BMI compared to PEO and MELAS patients. Serum levels of creatinine kinase (CK), lactate, and growth and differentiation factor 15 (GDF15) were substantially elevated in MiMy patients. Nearly a third (31.9%) displayed signs of subclinical peripheral neuropathy, mostly axonal neuropathy. Muscle biopsies revealed that cytochrome c oxidase strong (COX-s) ragged-red fibers (RRFs) were a typical pathological feature in MiMy patients. Genetic analysis predominantly revealed mtDNA point pathogenic variants (59.6%) and less frequently single (12.8%) or multiple (4.2%) mtDNA deletions. During the follow-up, a majority (76.1%) of MiMy patients experienced stabilization or improvement after therapeutic intervention. CONCLUSIONS This study provides a comprehensive profile of MiMy through a large patient cohort, elucidating its unique clinical, genetic, and pathological features. These findings offer significant insights into the diagnostic and therapeutic management of MiMy, ultimately aiming to ameliorate patient outcomes and enhance the quality of life.
Collapse
Affiliation(s)
- Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Hong Ren
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250012, Shandong, China
| | - Xiaotian Ma
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
| | - Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Ying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Shuangwu Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Wenqing Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Xuebi Xu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, China
| | - Bin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Jianqiang Lu
- Department of Pathology and Molecular Medicine, Neuropathology Section, McMaster University, Hamilton, ON, Canada
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Van Hove JL, Friederich MW, Strode DK, Van Hove RA, Miller KR, Sharma R, Shah H, Estrella J, Gabel L, Horslen S, Kohli R, Lovell MA, Miethke AG, Molleston JP, Romero R, Squires JE, Alonso EM, Guthery SL, Kamath BM, Loomes KM, Rosenthal P, Mysore KR, Cavallo LA, Valentino PL, Magee JC, Sundaram SS, Sokol RJ. Protein biomarkers GDF15 and FGF21 to differentiate mitochondrial hepatopathies from other pediatric liver diseases. Hepatol Commun 2024; 8:e0361. [PMID: 38180987 PMCID: PMC10781130 DOI: 10.1097/hc9.0000000000000361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Mitochondrial hepatopathies (MHs) are primary mitochondrial genetic disorders that can present as childhood liver disease. No recognized biomarkers discriminate MH from other childhood liver diseases. The protein biomarkers growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21) differentiate mitochondrial myopathies from other myopathies. We evaluated these biomarkers to determine if they discriminate MH from other liver diseases in children. METHODS Serum biomarkers were measured in 36 children with MH (17 had a genetic diagnosis); 38 each with biliary atresia, α1-antitrypsin deficiency, and Alagille syndrome; 20 with NASH; and 186 controls. RESULTS GDF15 levels compared to controls were mildly elevated in patients with α1-antitrypsin deficiency, Alagille syndrome, and biliary atresia-young subgroup, but markedly elevated in MH (p<0.001). FGF21 levels were mildly elevated in NASH and markedly elevated in MH (p<0.001). Both biomarkers were higher in patients with MH with a known genetic cause but were similar in acute and chronic presentations. Both markers had a strong performance to identify MH with a molecular diagnosis with the AUC for GDF15 0.93±0.04 and for FGF21 0.90±0.06. Simultaneous elevation of both markers >98th percentile of controls identified genetically confirmed MH with a sensitivity of 88% and specificity of 96%. In MH, independent predictors of survival without requiring liver transplantation were international normalized ratio and either GDF15 or FGF21 levels, with levels <2000 ng/L predicting survival without liver transplantation (p<0.01). CONCLUSIONS GDF15 and FGF21 are significantly higher in children with MH compared to other childhood liver diseases and controls and, when combined, were predictive of MH and had prognostic implications.
Collapse
Affiliation(s)
- Johan L.K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Dana K. Strode
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Roxanne A. Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Kristen R. Miller
- Section of Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Rohit Sharma
- Department of Molecular Biology and Department of Medicine, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Hardik Shah
- Department of Molecular Biology and Department of Medicine, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jane Estrella
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Linda Gabel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Simon Horslen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Mark A. Lovell
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Alexander G. Miethke
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jean P. Molleston
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Indiana University and Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Rene Romero
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - James E. Squires
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Estella M. Alonso
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Stephen L. Guthery
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Spencer F. Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Intermountain Primary Children’s Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip Rosenthal
- Departments of Pediatrics and Surgery, University of California San Francisco, San Francisco, California, USA
| | - Krupa R. Mysore
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Laurel A. Cavallo
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Pamela L. Valentino
- Division of Gastroenterology and Hepatology, Seattle Children’s Hospital, University of Washington, Seattle, Washington, USA
| | - John C. Magee
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Shikha S. Sundaram
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Ronald J. Sokol
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
6
|
Houshmand M, Zeinali V, Hosseini A, Seifi A, Danaei B, Kamfar S. Investigation of FGF21 mRNA levels and relative mitochondrial DNA copy number levels and their relation in nonalcoholic fatty liver disease: a case-control study. Front Mol Biosci 2023; 10:1203019. [PMID: 37347041 PMCID: PMC10279952 DOI: 10.3389/fmolb.2023.1203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Although the exact mechanisms of nonalcoholic fatty liver disease (NAFLD) are not fully understood, numerous pieces of evidence show that the variations in mitochondrial DNA (mtDNA) level and hepatic Fibroblast growth factor 21 (FGF21) expression may be related to NAFLD susceptibility. Objectives: The main objective of this study was to determine relative levels of mtDNA copy number and hepatic FGF21 expression in a cohort of Iranian NAFLD patients and evaluate the possible relationship. Methods: This study included 27 NAFLD patients (10 with nonalcoholic fatty liver (NAFL) and 17 with non-alcoholic steatohepatitis (NASH)) and ten healthy subjects. Total RNA and genomic DNA were extracted from liver tissue samples, and then mtDNA copy number and FGF21 expression levels were assessed by quantitative real-time PCR. Results: The relative level of hepatic mtDNA copy number was 3.9-fold higher in patients than in controls (p < 0.0001). NAFLD patients showed a 2.9-fold increase in hepatic FGF21 expression compared to controls (p < 0.013). Results showed that hepatic FGF21 expression was positively correlated with BMI, serum ALT, and AST levels (p < 0.05). The level of mitochondrial copy number and hepatic FGF21 expression was not significantly associated with stages of change in hepatic steatosis. Finally, there was a significant correlation between FGF21 expression and mitochondrial copy number in NAFLD patients (p = 0.027). Conclusion: Our findings suggest a considerable rise of hepatic FGF21 mRNA levels and mtDNA-CN and show a positive correlation between them in the liver tissue of NAFLD patients.
Collapse
Affiliation(s)
- Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Vahide Zeinali
- Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Seifi
- Pediatric Nephrology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Restrepo-Vera JL, Muñoz-Cabello P, Pérez-Rodon J, Rovira-Moreno E, Codina-Solà M, Llauradó A, Salvadó M, Sánchez-Tejerina D, Sotoca J, Martínez-Sáez E, García-Arumí E, Juntas-Morales R. Limb-girdle myopathy and mild intellectual disability: the expanding spectrum of TANGO2-related disease. Neuromuscul Disord 2023; 33:463-467. [PMID: 37119590 DOI: 10.1016/j.nmd.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
TANGO2-related disease is an autosomal recessive multisystem disease associated with developmental delay and infancy-onset recurrent metabolic crises with early mortality. Several studies have reported dysfunction in endoplasmic reticulum-to-Golgi traffic and mitochondrial homoeostasis as the underlying pathophysiology. We report a 40-year-old woman affected by limb-girdle weakness and mild intellectual disability caused by the recurrent deletion of exons 3-9 in homozygosity in the TANGO2 gene. Physical examination revealed hyperlordosis, waddling gait, calf pseudohypertrophy, and Aquilian tendon retractions. Laboratory investigations revealed elevation of serum biomarkers suggestive of mitochondrial dysfunction together with hypothyroidism. At the age of 24, the patient suffered a metabolic crisis with severe rhabdomyolysis and malignant cardiac arrhythmia. After recovery, no metabolic or arrhythmic crisis has recurred. Muscle histology two years later revealed increased endomysial fibrosis and other myopathic changes. Our findings illustrate the mildest end of the phenotypic spectrum of TANGO2-related disease and reveal further aspects related to chronic muscle damage in this disorder.
Collapse
Affiliation(s)
- Juan Luis Restrepo-Vera
- Department of Neurology, Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-135, Barcelona 08035, Spain
| | - Patricia Muñoz-Cabello
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Jordi Pérez-Rodon
- Department of Cardiology, Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Vall d'Hebrón Institut de Recerca, CIBER-CV, Barcelona, Spain
| | - Eulàlia Rovira-Moreno
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Marta Codina-Solà
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Arnau Llauradó
- Department of Neurology, Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-135, Barcelona 08035, Spain
| | - Maria Salvadó
- Department of Neurology, Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-135, Barcelona 08035, Spain
| | - Daniel Sánchez-Tejerina
- Department of Neurology, Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-135, Barcelona 08035, Spain
| | - Javier Sotoca
- Department of Neurology, Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-135, Barcelona 08035, Spain
| | - Elena Martínez-Sáez
- Department of Pathology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Elena García-Arumí
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul Juntas-Morales
- Department of Neurology, Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-135, Barcelona 08035, Spain.
| |
Collapse
|
8
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Lopriore P, Ricciarini V, Siciliano G, Mancuso M, Montano V. Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity. Neurol Int 2022; 14:337-356. [PMID: 35466209 PMCID: PMC9036286 DOI: 10.3390/neurolint14020028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Ataxia is increasingly being recognized as a cardinal manifestation in primary mitochondrial diseases (PMDs) in both paediatric and adult patients. It can be caused by disruption of cerebellar nuclei or fibres, its connection with the brainstem, or spinal and peripheral lesions leading to proprioceptive loss. Despite mitochondrial ataxias having no specific defining features, they should be included in hereditary ataxias differential diagnosis, given the high prevalence of PMDs. This review focuses on the clinical and neuropathological features and genetic background of PMDs in which ataxia is a prominent manifestation.
Collapse
|
11
|
Wesół-Kucharska D, Rokicki D, Greczan M, Kaczor M, Czkuć-Kryśkiewicz E, Piekutowska-Abramczuk D, Halat-Wolska P, Ciara E, Jaworski M, Jezela-Stanek A. The fibroblast growth factor 21 concentration in children with mitochondrial disease does not depend on the disease stage, but rather on the disease genotype. Pediatr Endocrinol Diabetes Metab 2022; 28:141-151. [PMID: 35620925 PMCID: PMC10214940 DOI: 10.5114/pedm.2022.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 06/07/2023]
Abstract
ABSTRACT The fibroblast growth factor 21 (FGF21) is a new biomarker of mitochondrial diseases (MD). FGF21 concentration may be used to define the severity of mitochondrial disease. AIM OF THE STUDY The study objective was to verify if the FGF21 concentration in paediatric patients with MD was correlated with the disease severity and stage and to assess the correlation between FGF21 levels and the genetic background of MD. MATERIAL AND METHODS The disease stage in MD subjects was determined on the basis of the International Paediatric Mitochondrial Disease Scale (IPMDS) and the concentrations of FGF21, lactic and pyruvic acids, alanine and creatine kinase in serum were assessed in those patients. RESULTS The median age of children with MD (n = 32) was 33 months (range: 2-213), in the control group (n = 21) the median age was 42 months (range: 8-202). The concentrations of FGF21, lactic acid and pyruvic acid were higher in MD patients than in the control group. No correlation between the disease severity (IPMDS) and serum FGF21 concentration was found. The FGF21 concentration was higher in patients whose MD resulted from nuclear gene damage (nDNA), median FGF21 = 1022 (84-8873) pg/ml, than in patients with MD resulting from mitochondrial damage (mtDNA), median FGF21 = 736 (188-2906) pg/ml, or with an abnormal variant in the PDHA1 gene, median FGF21 = 58 (25-637) pg/ml. CONCLUSIONS There is no correlation between the stage of MD and FGF21 level. Higher FGF21 values are seen in patients whose MD results from an abnormal nDNA variant rather than mtDNA damage.
Collapse
Affiliation(s)
- Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Edyta Czkuć-Kryśkiewicz
- Laboratory of Radioimmunology and Experimental Medicine, Department of Biochemistry, Radioimmunology and Experimental Medicine; The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Paulina Halat-Wolska
- Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
12
|
Li Y, Li S, Qiu Y, Zhou M, Chen M, Hu Y, Hong S, Jiang L, Guo Y. Circulating FGF21 and GDF15 as Biomarkers for Screening, Diagnosis, and Severity Assessment of Primary Mitochondrial Disorders in Children. Front Pediatr 2022; 10:851534. [PMID: 35498801 PMCID: PMC9047692 DOI: 10.3389/fped.2022.851534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Primary mitochondrial disorders (PMDs) are a diagnostic challenge for paediatricians, and identification of reliable and easily measurable biomarkers has become a high priority. This study aimed to investigate the role of serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) in children with PMDs. METHODS We analysed serum FGF21 and GDF15 concentrations by enzyme-linked immunosorbent assay (ELISA) in children with PMDs, patients with non-mitochondrial neuromuscular disorders (NMDs), and aged-matched healthy children, and compared them with serum lactate and ratio of lactate and pyruvate (L/P). We also evaluated correlations between these biomarkers and the phenotype, genotype, and severity of PMDs. RESULTS The median serum GDF15 and FGF21 concentrations were significantly elevated in fifty-one patients with PMDs (919.46 pg/ml and 281.3 pg/ml) compared with those of thirty patients with NMDs (294.86 pg/ml and 140.51 pg/ml, both P < 0.05) and fifty healthy controls (221.21 pg/ml and 85.02 pg/ml, both P < 0.05). The area under the curve of GDF15 for the diagnosis of PMDs was 0.891, which was higher than that of the other biomarkers, including FGF21 (0.814), lactate (0.863) and L/P ratio (0.671). Calculated by the maximum Youden index, the critical value of GDF15 was 606.369 pg/ml, and corresponding sensitivity and specificity were 74.5and 100%. In the PMD group, FGF21 was significantly correlated with International Paediatric Mitochondrial Disease Scale (IPMDS) score. The levels of GDF15 and FGF21 were positively correlated with age, critical illness condition, and multisystem involvement but were not correlated with syndromic/non-syndromic PMDs, different mitochondrial syndromes, nuclear DNA/mitochondrial DNA pathogenic variants, gene functions, or different organ/system involvement. CONCLUSION Regardless of clinical phenotype and genotype, circulating GDF15 and FGF21 are reliable biomarkers for children with PMDs. GDF15 can serve as a screening biomarker for diagnosis, and FGF21 can serve as a severity biomarker for monitoring.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shengrui Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yinfeng Qiu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Maobin Zhou
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Siqi Hong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yi Guo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
13
|
Riley LG, Nafisinia M, Menezes MJ, Nambiar R, Williams A, Barnes EH, Selvanathan A, Lichkus K, Bratkovic D, Yaplito-Lee J, Bhattacharya K, Ellaway C, Kava M, Balasubramaniam S, Christodoulou J. FGF21 outperforms GDF15 as a diagnostic biomarker of mitochondrial disease in children. Mol Genet Metab 2022; 135:63-71. [PMID: 34991945 DOI: 10.1016/j.ymgme.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022]
Abstract
Several studies have shown serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) levels are elevated in patients with mitochondrial disease (MD) where myopathy is a feature. In this study we investigated the utility of FGF21 and GDF15 as biomarkers for MD in a phenotypically and genotypically diverse pediatric cohort with suspected MD against a panel of healthy controls and non-mitochondrial disease controls with some overlapping clinical features. Serum was collected from 56 children with MD, 104 children with non-mitochondrial disease (27 neuromuscular, 26 cardiac, 21 hepatic, 30 renal) and 30 pediatric controls. Serum FGF21 and GDF15 concentrations were measured using ELISA, and their ability to detect MD was determined. Median FGF21 and GDF15 serum concentrations were elevated 17-fold and 3-fold respectively in pediatric MD patients compared to the healthy control group. Non-mitochondrial disease controls had elevated serum GDF15 concentrations while FGF21 concentrations were in the normal range. Elevation of GDF15 in a range of non-mitochondrial pediatric disorders limits its use as a MD biomarker. FGF21 was elevated in MD patients with a spectrum of clinical phenotypes, including those without myopathy. Serum FGF21 had an area under the receiver operating characteristic curve of 0.87, indicating good ability to discriminate between pediatric MD and healthy and non-mitochondrial disease controls. Triaging of pediatric MD patients by clinical phenotyping and serum FGF21 testing, followed by massively parallel sequencing, may enable more rapid diagnosis of pediatric MD.
Collapse
Affiliation(s)
- Lisa G Riley
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Rare Diseases Functional Genomics, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | - Michael Nafisinia
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Storr Liver Centre, Sydney, NSW, Australia
| | - Minal J Menezes
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia
| | - Reta Nambiar
- Immunopathology Laboratory, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Andrew Williams
- Immunopathology Laboratory, The Children's Hospital at Westmead, Sydney, NSW, Australia; Central Clinical School, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Kate Lichkus
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Drago Bratkovic
- Metabolic Clinic, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Joy Yaplito-Lee
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of Metabolic Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Carolyn Ellaway
- Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Maina Kava
- Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia; Department of Neurology, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital for Children/Perth Children's Hospital, Perth, WA, Australia
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, NSW, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Burow P, Haselier M, Naegel S, Scholle LM, Gaul C, Kraya T. The Mitochondrial Biomarkers FGF-21 and GDF-15 in Patients with Episodic and Chronic Migraine. Cells 2021; 10:cells10092471. [PMID: 34572118 PMCID: PMC8471677 DOI: 10.3390/cells10092471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial processes may play a role in the pathophysiology of migraine. Serum levels of two biomarkers, Fibroblast-growth-factor 21 (FGF-21) and Growth-differentiation-factor 15 (GDF-15), are typically elevated in patients with mitochondrial disorders. The study investigated whether the presence of migraine may influence FGF-21 and GDF-15 serum levels considering vascular and metabolic disorders as possible confounders. A cross-sectional study in two headache centers was conducted analyzing GDF-15 and FGF-21 serum concentration in 230 patients with episodic and chronic migraine compared to a control group. Key clinical features of headache were evaluated, as well as health-related life quality, anxiety and depression using SF-12 and HADS-questionnaires. Elevated GDF-15 values were detected in the migraine group compared to the control group (506.65 ± 275.87 pg/mL vs. 403.34 ± 173.29 pg/mL, p < 0.001, Mann–Whitney U test). A strong correlation between increasing age and higher GDF-15 levels was identified (p < 0.001, 95%-CI elevation of GDF-15 per year 5.246–10.850 pg/mL, multiple linear regression). Mean age was different between the groups, and this represents a confounding factor of the measurements. FGF-21 levels did not differ between migraine patients and controls (p = 0.635, Mann–Whitney U test) but were significantly influenced by increasing BMI (p = 0.030, multiple linear regression). Neither biomarker showed correlation with headache frequency. Higher FGF-21 levels were associated with a higher mean intensity of headache attacks, reduced health-related life quality and anxiety. When confounding factors were considered, increased serum levels of FGF-21 and GDF-15 were not detected in migraine patients. However, the results show an age-dependence of GDF-15 in migraine patients, and this should be considered in future studies. Similar findings apply to the relationship between FGF-21 and BMI. Previous studies that did not adjust for these factors should be interpreted with caution.
Collapse
Affiliation(s)
- Philipp Burow
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
- Correspondence:
| | - Marc Haselier
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
| | - Steffen Naegel
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
| | - Leila Motlagh Scholle
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
| | - Charly Gaul
- Headache Center Frankfurt, Dalbergstraße 2A, 65929 Frankfurt am Main, Germany;
| | - Torsten Kraya
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
- Department of Neurology, Hospital Sankt Georg, Delitzscher Straße 141, 04129 Leipzig, Germany
| |
Collapse
|
15
|
Abstract
Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or β-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure–function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.
Collapse
|
16
|
Huddar A, Govindaraj P, Chiplunkar S, Deepha S, Jessiena Ponmalar JN, Philip M, Nagappa M, Narayanappa G, Mahadevan A, Sinha S, Taly AB, Parayil Sankaran B. Serum fibroblast growth factor 21 and growth differentiation factor 15: Two sensitive biomarkers in the diagnosis of mitochondrial disorders. Mitochondrion 2021; 60:170-177. [PMID: 34419687 DOI: 10.1016/j.mito.2021.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Mitochondrial disorders are often difficult to diagnose because of diverse clinical phenotypes. FGF-21 and GDF-15 are metabolic hormones and promising biomarkers for the diagnosis of these disorders. This study has systematically evaluated serum FGF-21 and GDF-15 levels by ELISA in a well-defined cohort of patients with definite mitochondrial disorders (n = 30), neuromuscular disease controls (n = 36) and healthy controls (n = 36) and aimed to ascertain their utility in the diagnosis of mitochondrial disorders. Both serum FGF-21 and GDF-15 were significantly elevated in patients with mitochondrial disorders, especially in those with muscle involvement. The levels were higher in patients with mitochondrial deletions (both single and multiple) and translation disorders compared to respiratory chain subunit or assembly factor defects.
Collapse
Affiliation(s)
- Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Shwetha Chiplunkar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Mariyamma Philip
- Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Bindu Parayil Sankaran
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; The Children's Hospital at Westmead Clinical School, Sydney Medical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Ng YS, Bindoff LA, Gorman GS, Klopstock T, Kornblum C, Mancuso M, McFarland R, Sue CM, Suomalainen A, Taylor RW, Thorburn DR, Turnbull DM. Mitochondrial disease in adults: recent advances and future promise. Lancet Neurol 2021; 20:573-584. [PMID: 34146515 DOI: 10.1016/s1474-4422(21)00098-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases are some of the most common inherited neurometabolic disorders, and major progress has been made in our understanding, diagnosis, and treatment of these conditions in the past 5 years. Development of national mitochondrial disease cohorts and international collaborations has changed our knowledge of the spectrum of clinical phenotypes and natural history of mitochondrial diseases. Advances in high-throughput sequencing technologies have altered the diagnostic algorithm for mitochondrial diseases by increasingly using a genetics-first approach, with more than 350 disease-causing genes identified to date. While the current management strategy for mitochondrial disease focuses on surveillance for multisystem involvement and effective symptomatic treatment, new endeavours are underway to find better treatments, including repurposing current drugs, use of novel small molecules, and gene therapies. Developments made in reproductive technology offer women the opportunity to prevent transmission of DNA-related mitochondrial disease to their children.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, LMU Hospital, Ludwig Maximilians University, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany; Centre for Rare Diseases, University Hospital Bonn, Bonn, Germany
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Italy
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Anu Suomalainen
- Research Program in Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Neuroscience Centre, HiLife, University of Helsinki, Helsinki, Finland; Helsinki University Hospital, HUSlab, Helsinki, Finland
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|