1
|
Khalil I, Sayad R, Kedwany AM, Sayed HH, Caprara ALF, Rissardo JP. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). MEDICINE INTERNATIONAL 2024; 4:70. [PMID: 39355336 PMCID: PMC11443310 DOI: 10.3892/mi.2024.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), which can result in significant disability and distress for patients and caregivers. There is a marked variation in the timing, characteristics and rate at which cognitive decline occurs in patients with PD. This decline can vary from normal cognition to mild cognitive impairment and dementia. Cognitive impairment is associated with several pathophysiological mechanisms, including the accumulation of β-amyloid and tau in the brain, oxidative stress and neuroinflammation. Cardiovascular autonomic dysfunctions are commonly observed in patients with PD. These dysfunctions play a role in the progression of cognitive impairment, the incidents of falls and even in mortality. The majority of symptoms of dysautonomia arise from changes in the peripheral autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. Cardiovascular changes, including orthostatic hypotension, supine hypertension and abnormal nocturnal blood pressure (BP), can occur in both the early and advanced stages of PD. These changes tend to increase as the disease advances. The present review aimed to describe the cognitive changes in the setting of cardiovascular dysautonomia and to discuss strategies through which these changes can be modified and managed. It is a multifactorial process usually involving decreased blood flow to the brain, resulting in the development of cerebral ischemic lesions, an increased presence of abnormal white matter signals in the brain, and a potential influence on the process of neurodegeneration in PD. Another possible explanation is this association being independent observations of PD progression. Patients with clinical symptoms of dysautonomia should undergo 24-h ambulatory BP monitoring, as they are frequently subtle and underdiagnosed.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Faculty of Medicine, Alexandria University, Alexandria 5372066, Egypt
| | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hager Hamdy Sayed
- Department of Nuclear Medicine, Assuit University, Assuit 71515, Egypt
| | | | | |
Collapse
|
2
|
Lowe VJ, Mester CT, Lundt ES, Lee J, Ghatamaneni S, Algeciras-Schimnich A, Campbell MR, Graff-Radford J, Nguyen A, Min HK, Senjem ML, Machulda MM, Schwarz CG, Dickson DW, Murray ME, Kandimalla KK, Kantarci K, Boeve B, Vemuri P, Jones DT, Knopman D, Jack CR, Petersen RC, Mielke MM. Amyloid PET detects the deposition of brain Aβ earlier than CSF fluid biomarkers. Alzheimers Dement 2024. [PMID: 39392211 DOI: 10.1002/alz.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Understanding the relationship between amyloid beta (Aβ) positron emission tomography (PET) and Aβ cerebrospinal fluid (CSF) biomarkers will define their potential utility in Aβ treatment. Few population-based or neuropathologic comparisons have been reported. METHODS Participants 50+ years with Aβ PET and Aβ CSF biomarkers (phosphorylated tau [p-tau]181/Aβ42, n = 505, and Aβ42/40, n = 54) were included from the Mayo Clinic Study on Aging. From these participants, an autopsy subgroup was identified (n = 47). The relationships of Aβ PET and Aβ CSF biomarkers were assessed cross-sectionally in all participants and longitudinally in autopsy data. RESULTS Cross-sectionally, more participants were Aβ PET+ versus Aβ CSF- than Aβ PET- versus Aβ CSF+ with an incremental effect when using Aβ PET regions selected for early Aβ deposition. The sensitivity for the first detection of Thal phase ≥ 1 in longitudinal data was higher for Aβ PET (89%) than p-tau181/Aβ42 (64%). DISCUSSION Aβ PET can detect earlier cortical Aβ deposition than Aβ CSF biomarkers. Aβ PET+ versus Aβ CSF- findings are several-fold greater using regional Aβ PET analyses and in peri-threshold-standardized uptake value ratio participants. HIGHLIGHTS Amyloid beta (Aβ) positron emission tomography (PET) has greater sensitivity for Aβ deposition than Aβ cerebrospinal fluid (CSF) in early Aβ development. A population-based sample of participants (n = 505) with PET and CSF tests was used. Cortical regions showing early Aβ on Aβ PET were also used in these analyses. Neuropathology was used to validate detection of Aβ by Aβ PET and Aβ CSF biomarkers.
Collapse
Affiliation(s)
- Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Carly T Mester
- Departments of Radiology and Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily S Lundt
- Departments of Radiology and Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeyeon Lee
- Department of Biomedical Engineering, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | - Michelle R Campbell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention at Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Puerta R, de Rojas I, García-González P, Olivé C, Sotolongo-Grau O, García-Sánchez A, García-Gutiérrez F, Montrreal L, Pablo Tartari J, Sanabria Á, Pytel V, Lage C, Quintela I, Aguilera N, Rodriguez-Rodriguez E, Alarcón-Martín E, Orellana A, Pastor P, Pérez-Tur J, Piñol-Ripoll G, de Munian AL, García-Alberca JM, Royo JL, Bullido MJ, Álvarez V, Real LM, Anchuelo AC, Gómez-Garre D, Larrad MTM, Franco-Macías E, Mir P, Medina M, Sánchez-Valle R, Dols-Icardo O, Sáez ME, Carracedo Á, Tárraga L, Alegret M, Valero S, Marquié M, Boada M, Juan PS, Cavazos JE, Cabrera A, Cano A. Connecting genomic and proteomic signatures of amyloid burden in the brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313124. [PMID: 39281766 PMCID: PMC11398581 DOI: 10.1101/2024.09.06.24313124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Alzheimer's disease (AD) has a high heritable component characteristic of complex diseases, yet many of the genetic risk factors remain unknown. We combined genome-wide association studies (GWAS) on amyloid endophenotypes measured in cerebrospinal fluid (CSF) and positron emission tomography (PET) as surrogates of amyloid pathology, which may be helpful to understand the underlying biology of the disease. Methods We performed a meta-analysis of GWAS of CSF Aβ42 and PET measures combining six independent cohorts (n=2,076). Due to the opposite effect direction of Aβ phenotypes in CSF and PET measures, only genetic signals in the opposite direction were considered for analysis (n=376,599). Polygenic risk scores (PRS) were calculated and evaluated for AD status and amyloid endophenotypes. We then searched the CSF proteome signature of brain amyloidosis using SOMAscan proteomic data (Ace cohort, n=1,008) and connected it with GWAS results of loci modulating amyloidosis. Finally, we compared our results with a large meta-analysis using publicly available datasets in CSF (n=13,409) and PET (n=13,116). This combined approach enabled the identification of overlapping genes and proteins associated with amyloid burden and the assessment of their biological significance using enrichment analyses. Results After filtering the meta-GWAS, we observed genome-wide significance in the rs429358-APOE locus and nine suggestive hits were annotated. We replicated the APOE loci using the large CSF-PET meta-GWAS and identified multiple AD-associated genes as well as the novel GADL1 locus. Additionally, we found a significant association between the AD PRS and amyloid levels, whereas no significant association was found between any Aβ PRS with AD risk. CSF SOMAscan analysis identified 1,387 FDR-significant proteins associated with CSF Aβ42 levels. The overlap among GWAS loci and proteins associated with amyloid burden was very poor (n=35). The enrichment analysis of overlapping hits strongly suggested several signalling pathways connecting amyloidosis with the anchored component of the plasma membrane, synapse physiology and mental disorders that were replicated in the large CSF-PET meta-analysis. Conclusions The strategy of combining CSF and PET amyloid endophenotypes GWAS with CSF proteome analyses might be effective for identifying signals associated with the AD pathological process and elucidate causative molecular mechanisms behind the amyloid mobilization in AD.
Collapse
Affiliation(s)
- Raquel Puerta
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- Universitat de Barcelona (UB)
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | | | | | | | - Laura Montrreal
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nuria Aguilera
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | | | - Adelina Orellana
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Adolfo López de Munian
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology. Hospital Universitario Donostia. San Sebastian, Spain
- Department of Neurosciences. Faculty of Medicine and Nursery. University of the Basque Country, San Sebastián, Spain
- Neurosciences Area. Instituto Biodonostia. San Sebastian, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Jose Luís Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. School of Medicine. University of Malaga. Málaga, Spain
| | - María Jesús Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)
- Instituto de Investigacion Sanitaria ‘Hospital la Paz’ (IdIPaz), Madrid, Spain
- Universidad Autónoma de Madrid
| | - Victoria Álvarez
- Laboratorio de Genética. Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| | - Luis Miguel Real
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. School of Medicine. University of Malaga. Málaga, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología.Hospital Universitario de Valme, Sevilla, Spain
| | - Arturo Corbatón Anchuelo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
| | - Dulcenombre Gómez-Garre
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM)
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María Teresa Martínez Larrad
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
| | - Emilio Franco-Macías
- Dementia Unit, Department of Neurology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center
| | - Raquel Sánchez-Valle
- Alzheimer’s disease and other cognitive disorders unit. Service of Neurology. Hospital Clínic of Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica – CIBERER-IDIS, Santiago de Compostela, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Montse Alegret
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pascual Sánchez Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Jose Enrique Cavazos
- South Texas Medical Science Training Program, University of Texas Health San Antonio, San Antonio
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
| | - Alfredo Cabrera
- Neuroscience Therapeutic Area, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Amanda Cano
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alzheimer’s Disease Neuroimaging Initiative.
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
| |
Collapse
|
4
|
Wisch JK, Gordon BA, Barthélemy NR, Horie K, Henson RL, He Y, Flores S, Benzinger TLS, Morris JC, Bateman RJ, Ances BM, Schindler SE. Predicting continuous amyloid PET values with CSF tau phosphorylation occupancies. Alzheimers Dement 2024; 20:6365-6373. [PMID: 39041391 PMCID: PMC11497729 DOI: 10.1002/alz.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) tau phosphorylation at multiple sites is associated with cortical amyloid and other pathologic changes in Alzheimer's disease. These relationships can be non-linear. We used an artificial neural network to assess the ability of 10 different CSF tau phosphorylation sites to predict continuous amyloid positron emission tomography (PET) values. METHODS CSF tau phosphorylation occupancies at 10 sites (including pT181/T181, pT217/T217, pT231/T231 and pT205/T205) were measured by mass spectrometry in 346 individuals (57 cognitively impaired, 289 cognitively unimpaired). We generated synthetic amyloid PET scans using biomarkers and evaluated their performance. RESULTS Concentration of CSF pT217/T217 had low predictive error (average error: 13%), but also a low predictive range (ceiling 63 Centiloids). CSF pT231/T231 has slightly higher error (average error: 19%) but predicted through a greater range (87 Centiloids). DISCUSSION Tradeoffs exist in biomarker selection. Some phosphorylation sites offer greater concordance with amyloid PET at lower levels, while others perform better over a greater range. HIGHLIGHTS Novel pTau isoforms can predict cortical amyloid burden. pT217/T217 accurately predicts cortical amyloid burden in low-amyloid individuals. Traditional CSF biomarkers correspond with higher levels of amyloid.
Collapse
Affiliation(s)
- Julie K. Wisch
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Brian A. Gordon
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Nicolas R. Barthélemy
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Kanta Horie
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Rachel L. Henson
- Hope CenterWashington University in Saint LouisSt. LouisMissouriUSA
| | - Yingxin He
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Shaney Flores
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Tammie L. S. Benzinger
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - John C. Morris
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Randall J. Bateman
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
- Hope CenterWashington University in Saint LouisSt. LouisMissouriUSA
| | - Beau M. Ances
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Suzanne E. Schindler
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Hope CenterWashington University in Saint LouisSt. LouisMissouriUSA
| |
Collapse
|
5
|
Garnaik UC, Chandra A, Goel VK, Gulyás B, Padmanabhan P, Agarwal S. Development of SERS Active Nanoprobe for Selective Adsorption and Detection of Alzheimer's Disease Biomarkers Based on Molecular Docking. Int J Nanomedicine 2024; 19:8271-8284. [PMID: 39161360 PMCID: PMC11330857 DOI: 10.2147/ijn.s446212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose Development of SERS-based Raman nanoprobes can detect the misfolding of Amyloid beta (Aβ) 42 peptides, making them a viable diagnostic technique for Alzheimer's disease (AD). The detection and imaging of amyloid peptides and fibrils are expected to help in the early identification of AD. Methods Here, we propose a fast, easy-to-use, and simple scheme based on the selective adsorption of Aβ42 molecules on SERS active gold nanoprobe (RB-AuNPs) of diameter 29 ± 3 nm for Detection of Alzheimer's Disease Biomarkers. Binding with the peptides results in a spectrum shift, which correlates with the target peptide. We also demonstrated the possibility of using silver nanoparticles (AgNPs) as precursors for the preparation of a SERS active nanoprobe with carbocyanine (CC) dye and AgNPs known as silver nanoprobe (CC-AgNPs) of diameter 25 ± 4 nm. Results RB-AuNPs probe binding with the peptides results in a spectrum shift, which correlates with the target peptide. Arginine peak appears after the conjugation confirms the binding of Aβ 42 with the nanoprobe. Tyrosine peaks appear after conjugated Aβ42 with CC-AgNPs providing binding of the peptide with the probe. The nanoprobe produced a strong, stable SERS signal. Further molecular docking was utilized to analyse the interaction and propose a structural hypothesis for the process of binding the nanoprobe to Aβ42 and Tau protein. Conclusion This peptide-probe interaction provides a general enhancement factor and the molecular structure of the misfolded peptides. Secondary structural information may be obtained at the molecular level for specific residues owing to isotope shifts in the Raman spectra. Conjugation of the nanoprobe with Aβ42 selectively detected AD in bodily fluids. The proposed nanoprobes can be easily applied to the detection of Aβ plaques in blood, saliva, and sweat samples.
Collapse
Affiliation(s)
| | - Anshuman Chandra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Kumar Goel
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Balázs Gulyás
- Cognitive Neuroimaging Centre, Nanyang Technological University (NTU), Singapore, Singapore
| | | | - Shilpi Agarwal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Quattrini G, Ferrari C, Pievani M, Geviti A, Ribaldi F, Scheffler M, Frisoni GB, Garibotto V, Marizzoni M. Unsupervised [ 18F]Flortaucipir cutoffs for tau positivity and staging in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:3265-3275. [PMID: 37272955 PMCID: PMC10542510 DOI: 10.1007/s00259-023-06280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Several [18F]Flortaucipir cutoffs have been proposed for tau PET positivity (T+) in Alzheimer's disease (AD), but none were data-driven. The aim of this study was to establish and validate unsupervised T+ cutoffs by applying Gaussian mixture models (GMM). METHODS Amyloid negative (A-) cognitively normal (CN) and amyloid positive (A+) AD-related dementia (ADRD) subjects from ADNI (n=269) were included. ADNI (n=475) and Geneva Memory Clinic (GMC) cohorts (n=98) were used for validation. GMM-based cutoffs were extracted for the temporal meta-ROI, and validated against previously published cutoffs and visual rating. RESULTS GMM-based cutoffs classified less subjects as T+, mainly in the A- CN (<3.4% vs >28.5%) and A+ CN (<14.5% vs >42.9%) groups and showed higher agreement with visual rating (ICC=0.91 vs ICC<0.62) than published cutoffs. CONCLUSION We provided reliable data-driven [18F]Flortaucipir cutoffs for in vivo T+ detection in AD. These cutoffs might be useful to select participants in clinical and research studies.
Collapse
Affiliation(s)
- Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Clarissa Ferrari
- FONDAZIONE POLIAMBULANZA ISTITUTO OSPEDALIERO via Bissolati, 57, 25124, Brescia, Italy
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Andrea Geviti
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Federica Ribaldi
- LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, 1205, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, 1205, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocentre, Faculty of Medicine, University of Geneva, 1205, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, 1205, Geneva, Switzerland
- Centre for Biomedical Imaging (CIBM), 1205, Geneva, Switzerland
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy.
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy.
| |
Collapse
|
7
|
Honig LS, Kang MS, Lee AJ, Reyes-Dumeyer D, Piriz A, Soriano B, Franco Y, Coronado ZD, Recio P, Mejía DR, Medrano M, Lantigua RA, Teich AF, Dage JL, Mayeux R. Evaluation of Plasma Biomarkers for A/T/N Classification of Alzheimer Disease Among Adults of Caribbean Hispanic Ethnicity. JAMA Netw Open 2023; 6:e238214. [PMID: 37079306 PMCID: PMC10119732 DOI: 10.1001/jamanetworkopen.2023.8214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 04/21/2023] Open
Abstract
Importance Cerebrospinal fluid (CSF) and plasma biomarkers can detect biological evidence of Alzheimer disease (AD), but their use in low-resource environments and among minority ethnic groups is limited. Objective To assess validated plasma biomarkers for AD among adults of Caribbean Hispanic ethnicity. Design, Setting, and Participants In this decision analytical modeling study, adults were recruited between January 1, 2018, and April 30, 2022, and underwent detailed clinical assessments and venipuncture. A subsample of participants also consented to lumbar puncture. Established CSF cut points were used to define AD biomarker-positive status, allowing determination of optimal cut points for plasma biomarkers in the same individuals. The performance of a panel of 6 plasma biomarkers was then assessed with respect to the entire group. Data analysis was performed in January 2023. Main Outcomes and Measures Main outcomes were the association of plasma biomarkers amyloid-β 1-42 (Aβ42), amyloid-β 1-40 (Aβ40), total tau (T-tau), phosphorylated tau181 (P-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) with AD diagnosis. These biomarkers allow assessment of amyloid (A), neurofibrillary degeneration (T), and neurodegeneration (N) aspects of AD. Statistical analyses performed included receiver operating characteristics, Pearson and Spearman correlations, t tests, and Wilcoxon rank-sum, chi-square, and Fisher exact tests. Exposures Exposures included age, sex, education, country of residence, apolipoprotein-ε4 (APOE-ε4) allele number, serum creatinine, blood urea nitrogen, and body mass index. Results This study included 746 adults. Participants had a mean (SD) age of 71.0 (7.8) years, 480 (64.3%) were women, and 154 (20.6%) met clinical criteria for AD. Associations were observed between CSF and plasma P-tau181 (r = .47 [95% CI, 0.32-0.60]), NfL (r = 0.57 [95% CI, 0.44-0.68]), and P-tau181/Aβ42 (r = 0.44 [95% CI, 0.29-0.58]). For AD defined by CSF biomarkers, plasma P-tau181 and P-tau181/Aβ42 provided biological evidence of AD. Among individuals judged to be clinically healthy without dementia, biomarker-positive status was determined by plasma P-tau181 for 133 (22.7%) and by plasma P-tau181/Aβ42 for 104 (17.7%). Among individuals with clinically diagnosed AD, 69 (45.4%) had plasma P-tau181 levels and 89 (58.9%) had P-tau181/Aβ42 levels that were inconsistent with AD. Individuals with biomarker-negative clinical AD status tended to have lower levels of education, were less likely to carry APOE-ε4 alleles, and had lower levels of GFAP and NfL than individuals with biomarker-positive clinical AD. Conclusions and Relevance In this cross-sectional study, plasma P-tau181 and P-tau181/Aβ42 measurements correctly classified Caribbean Hispanic individuals with and without AD. However, plasma biomarkers identified individuals without dementia with biological evidence of AD, and a portion of those with dementia whose AD biomarker profile was negative. These results suggest that plasma biomarkers can augment detection of preclinical AD among asymptomatic individuals and improve the specificity of AD diagnosis.
Collapse
Affiliation(s)
- Lawrence S. Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- G. H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Universidad Pedro Henríquez Urena, Santo Domingo, Dominican Republic
| | - Min Suk Kang
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Annie J. Lee
- G. H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Universidad Pedro Henríquez Urena, Santo Domingo, Dominican Republic
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- G. H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Angel Piriz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Belisa Soriano
- Universidad Pedro Henríquez Urena, Santo Domingo, Dominican Republic
| | | | | | - Patricia Recio
- Center for Diagnosis, Advanced Medicine and Telemedicine, Santo Domingo, Dominican Republic
| | - Diones Rivera Mejía
- Universidad Pedro Henríquez Urena, Santo Domingo, Dominican Republic
- Center for Diagnosis, Advanced Medicine and Telemedicine, Santo Domingo, Dominican Republic
| | - Martin Medrano
- Pontíficia Universidad Católica Madre y Maestra, Santiago, Dominican Republic
| | - Rafael A. Lantigua
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Medicine, Vagelos College of Physicians and Surgeons, New York Presbyterian Hospital, Columbia University, New York, New York
| | - Andrew F. Teich
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, Vagelos College of Physicians and Surgeons, New York Presbyterian Hospital, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jeffrey L. Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- G. H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Universidad Pedro Henríquez Urena, Santo Domingo, Dominican Republic
| |
Collapse
|
8
|
Long JM, Coble DW, Xiong C, Schindler SE, Perrin RJ, Gordon BA, Benzinger TLS, Grant E, Fagan AM, Harari O, Cruchaga C, Holtzman DM, Morris JC. Preclinical Alzheimer's disease biomarkers accurately predict cognitive and neuropathological outcomes. Brain 2022; 145:4506-4518. [PMID: 35867858 PMCID: PMC10200309 DOI: 10.1093/brain/awac250] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease biomarkers are widely accepted as surrogate markers of underlying neuropathological changes. However, few studies have evaluated whether preclinical Alzheimer's disease biomarkers predict Alzheimer's neuropathology at autopsy. We sought to determine whether amyloid PET imaging or CSF biomarkers accurately predict cognitive outcomes and Alzheimer's disease neuropathological findings. This study included 720 participants, 42-91 years of age, who were enrolled in longitudinal studies of memory and aging in the Washington University Knight Alzheimer Disease Research Center and were cognitively normal at baseline, underwent amyloid PET imaging and/or CSF collection within 1 year of baseline clinical assessment, and had subsequent clinical follow-up. Cognitive status was assessed longitudinally by Clinical Dementia Rating®. Biomarker status was assessed using predefined cut-offs for amyloid PET imaging or CSF p-tau181/amyloid-β42. Subsequently, 57 participants died and underwent neuropathologic examination. Alzheimer's disease neuropathological changes were assessed using standard criteria. We assessed the predictive value of Alzheimer's disease biomarker status on progression to cognitive impairment and for presence of Alzheimer's disease neuropathological changes. Among cognitively normal participants with positive biomarkers, 34.4% developed cognitive impairment (Clinical Dementia Rating > 0) as compared to 8.4% of those with negative biomarkers. Cox proportional hazards modelling indicated that preclinical Alzheimer's disease biomarker status, APOE ɛ4 carrier status, polygenic risk score and centred age influenced risk of developing cognitive impairment. Among autopsied participants, 90.9% of biomarker-positive participants and 8.6% of biomarker-negative participants had Alzheimer's disease neuropathological changes. Sensitivity was 87.0%, specificity 94.1%, positive predictive value 90.9% and negative predictive value 91.4% for detection of Alzheimer's disease neuropathological changes by preclinical biomarkers. Single CSF and amyloid PET baseline biomarkers were also predictive of Alzheimer's disease neuropathological changes, as well as Thal phase and Braak stage of pathology at autopsy. Biomarker-negative participants who developed cognitive impairment were more likely to exhibit non-Alzheimer's disease pathology at autopsy. The detection of preclinical Alzheimer's disease biomarkers is strongly predictive of future cognitive impairment and accurately predicts presence of Alzheimer's disease neuropathology at autopsy.
Collapse
Affiliation(s)
- Justin M Long
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Dean W Coble
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Suzanne E Schindler
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Richard J Perrin
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Brian A Gordon
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Elizabeth Grant
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Anne M Fagan
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Oscar Harari
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Carlos Cruchaga
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - David M Holtzman
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - John C Morris
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| |
Collapse
|
9
|
Discordant Amyloid Status Diagnosis in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10112880. [DOI: 10.3390/biomedicines10112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction: Early and accurate Alzheimer’s disease (AD) diagnosis has evolved in recent years by the use of specific methods for detecting its histopathological features in concrete cases. Currently, biomarkers in cerebrospinal fluid (CSF) and imaging techniques (amyloid PET) are the most used specific methods. However, some results between both methods are discrepant. Therefore, an evaluation of these discrepant cases is required. Objective: The aim of this work is to analyze the characteristics of cases showing discrepancies between methods for detecting amyloid pathology. Methodology: Patients from the Neurology Department of La Fe Hospital (n = 82) were diagnosed using both methods (CSF biomarkers and amyloid-PET). Statistical analyses were performed using logistic regression, and sex and age were included as covariables. Additionally, results of standard neuropsychological evaluations were taken into account in our analyses. Results: The comparison between CSF biomarker (Aβ42) and amyloid PET results showed that around 18% of cases were discrepant—mainly CFS-negative and PET-positive cases had CSF levels close to the cut-off point. In addition, a correlation between the episodic memory test and CSF biomarkers levels was observed. However, the same results were not obtained for other neuropsychological domains. In general, CSF- and PET-discrepant cases showed altered episodic memory in around 66% of cases, while 33% showed normal performance. Conclusions: In common clinical practice at tertiary memory centers, result discrepancies between tests of amyloid status are far more common than expected. However, episodic memory tests remain an important support method for AD diagnosis, especially in cases with discrepant results between amyloid PET and CSF biomarkers.
Collapse
|
10
|
Düzel E, Ziegler G, Berron D, Maass A, Schütze H, Cardenas-Blanco A, Glanz W, Metzger C, Dobisch L, Reuter M, Spottke A, Brosseron F, Fliessbach K, Heneka MT, Laske C, Peters O, Priller J, Spruth EJ, Ramirez A, Speck O, Schneider A, Teipel S, Kilimann I, Jens W, Schott BH, Preis L, Gref D, Maier F, Munk MH, Roy N, Ballarini T, Yakupov R, Haynes JD, Dechent P, Scheffler K, Wagner M, Jessen F. Amyloid pathology but not APOE ε4 status is permissive for tau-related hippocampal dysfunction. Brain 2022; 145:1473-1485. [PMID: 35352105 PMCID: PMC9128811 DOI: 10.1093/brain/awab405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A−) of amyloid pathology was defined by CSF amyloid-β42 (Aβ42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A− individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aβ42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aβ42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A− groups. After classifying this matched sample for phospho-tau pathology (T−/T+), individuals with A+/T+ were significantly more memory-impaired than A−/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer’s disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer’s disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function.
Collapse
Affiliation(s)
- Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Institute of Cognitive Neuroscience, University College London, London, UK
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Hartmut Schütze
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Arturo Cardenas-Blanco
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Wenzel Glanz
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Clinic for Neurology, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Coraline Metzger
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076 Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eike Jakob Spruth
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alfredo Ramirez
- Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, 18147 Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, 18147 Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Wiltfang Jens
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, 37075 Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
| | - Björn-Hendrik Schott
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, 37075 Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Daria Gref
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076 Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Tomasso Ballarini
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| |
Collapse
|
11
|
Mickeviciute GC, Valiuskyte M, Plattén M, Wszolek ZK, Andersen O, Danylaité Karrenbauer V, Ineichen BV, Granberg T. Neuroimaging phenotypes of CSF1R-related leukoencephalopathy: Systematic review, meta-analysis, and imaging recommendations. J Intern Med 2022; 291:269-282. [PMID: 34875121 DOI: 10.1111/joim.13420] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare but fatal microgliopathy. The diagnosis is often delayed due to multifaceted symptoms that can mimic several other neurological disorders. Imaging provides diagnostic clues that help identify cases. The objective of this study was to integrate the literature on neuroimaging phenotypes of CSF1R-related leukoencephalopathy. A systematic review and meta-analysis were performed for neuroimaging findings of CSF1R-related leukoencephalopathy via PubMed, Web of Science, and Embase on 25 August 2021. The search included cases with confirmed CSF1R mutations reported under the previous terms hereditary diffuse leukoencephalopathy with spheroids, pigmentary orthochromatic leukodystrophy, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In 78 studies providing neuroimaging data, 195 cases were identified carrying CSF1R mutations in 14 exons and five introns. Women had a statistically significant earlier age of onset (p = 0.041, 40 vs 43 years). Mean delay between symptom onset and neuroimaging was 2.3 years. Main magnetic resonance imaging (MRI) findings were frontoparietal white matter lesions, callosal thinning, and foci of restricted diffusion. The hallmark computed tomography (CT) finding was white matter calcifications. Widespread cerebral hypometabolism and hypoperfusion were reported using positron emission tomography and single-photon emission computed tomography. In conclusion, CSF1R-related leukoencephalopathy is associated with progressive white matter lesions and brain atrophy that can resemble other neurodegenerative/-inflammatory disorders. However, long-lasting diffusion restriction and parenchymal calcifications are more specific findings that can aid the differential diagnosis. Native brain CT and brain MRI (with and without a contrast agent) are recommended with proposed protocols and pictorial examples are provided.
Collapse
Affiliation(s)
- Goda-Camille Mickeviciute
- Department of Physical Medicine and Rehabilitation, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Monika Valiuskyte
- Department of Skin and Venereal Diseases, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Michael Plattén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,School of Chemistry, Biotechnology, and Health, Royal Institute of Technology, Stockholm, Sweden
| | | | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin V Ineichen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Evidence of plasma biomarkers indicating high risk of dementia in cognitively normal subjects. Sci Rep 2022; 12:1192. [PMID: 35075194 PMCID: PMC8786959 DOI: 10.1038/s41598-022-05177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/07/2022] [Indexed: 11/08/2022] Open
Abstract
Subjects with comorbidities are at risk for neurodegeneration. There is a lack of a direct relationship between comorbidities and neurodegeneration. In this study, immunomagnetic reduction (IMR) assays were utilized to assay plasma Aβ1-42 and total tau protein (T-Tau) levels in poststroke (PS, n = 27), family history of Alzheimer's disease (ADFH, n = 35), diabetes (n = 21), end-stage renal disease (ESRD, n = 41), obstructive sleep apnea (OSA, n = 20), Alzheimer's disease (AD, n = 65). Thirty-seven healthy controls (HCs) were enrolled. The measured concentrations of plasma Aβ1-42 were 14.26 ± 1.42, 15.43 ± 1.76, 15.52 ± 1.60, 16.15 ± 1.05, 16.52 ± 0.59, 15.97 ± 0.54 and 20.06 ± 3.09 pg/mL in HC, PS, ADFH, diabetes, ESRD, OSA and AD groups, respectively. The corresponding concentrations of plasma T-Tau were 15.13 ± 3.62, 19.29 ± 8.01, 17.93 ± 6.26, 19.74 ± 2.92, 21.54 ± 2.72, 20.17 ± 2.77 and 41.24 ± 14.64 pg/mL. The plasma levels of Aβ1-42 and T-Tau in were significantly higher in the PS, ADFH, diabetes, ESRD and OSA groups than controls (Aβ1-42 in PS: 15.43 ± 1.76 pg/mL vs. 14.26 ± 1.42 pg/mL, p < 0.005; T-Tau in PS: 19.29 ± 8.01 vs. 15.13 ± 3.62 pg/mL, p < 0.005, Aβ1-42 in ADFH: 15.52 ± 1.60 pg/mL vs. 14.26 ± 1.42 pg/mL, p < 0.001; T-Tau in ADFH: 17.93 ± 6.26 vs. 15.13 ± 3.62 pg/mL, p < 0.005, Aβ1-42 in diabetes: 16.15 ± 1.05 pg/mL vs. 14.26 ± 1.42 pg/mL, p < 0.001; T-Tau in diabetes: 19.74 ± 2.92 vs. 15.13 ± 3.62 pg/mL, p < 0.001, Aβ1-42 in ESRD: 16.52 ± 0.59 pg/mL vs. 14.26 ± 1.42 pg/mL, p < 0.001; T-Tau in ESRD: 21.54 ± 2.72 vs. 15.13 ± 3.62 pg/mL, p < 0.001, Aβ1-42 in OSA: 15.97 ± 0.54 pg/mL vs. 14.26 ± 1.42 pg/mL, p < 0.001; T-Tau in OSA: 20.17 ± 2.77 vs. 15.13 ± 3.62 pg/mL, p < 0.001). This evidence indicates the high risk for dementia in these groups from the perspective of plasma biomarkers.
Collapse
|
13
|
Jiang C, Wang Q, Xie S, Chen Z, Fu L, Peng Q, Liang Y, Guo H, Guo T. OUP accepted manuscript. Brain Commun 2022; 4:fcac084. [PMID: 35441134 PMCID: PMC9014538 DOI: 10.1093/braincomms/fcac084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Jiang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518107, China
| | - Siwei Xie
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhicheng Chen
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, 2 Yinghuayuan Dongjie, Beijing 100029, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Hongbo Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Correspondence to: Tengfei Guo, PhD Institute of Biomedical Engineering Shenzhen Bay Laboratory, No.5 Kelian Road Shenzhen 518132, China E-mail:
| | | |
Collapse
|
14
|
Andersen E, Casteigne B, Chapman WD, Creed A, Foster F, Lapins A, Shatz R, Sawyer RP. Diagnostic biomarkers in Alzheimer’s disease. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
15
|
Grothe MJ, Moscoso A, Ashton NJ, Karikari TK, Lantero-Rodriguez J, Snellman A, Zetterberg H, Blennow K, Schöll M. Associations of Fully Automated CSF and Novel Plasma Biomarkers With Alzheimer Disease Neuropathology at Autopsy. Neurology 2021; 97:e1229-e1242. [PMID: 34266917 PMCID: PMC8480485 DOI: 10.1212/wnl.0000000000012513] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To study CSF biomarkers of Alzheimer disease (AD) analyzed by fully automated Elecsys immunoassays compared to neuropathologic gold standards and to compare their accuracy to plasma phosphorylated tau (p-tau181) measured with a novel single molecule array method. METHODS We studied antemortem Elecsys-derived CSF biomarkers in 45 individuals who underwent standardized postmortem assessments of AD and non-AD neuropathologic changes at autopsy. In a subset of 26 participants, we also analyzed antemortem levels of plasma p-tau181 and neurofilament light (NfL). Reference biomarker values were obtained from 146 amyloid-PET-negative healthy controls (HC). RESULTS All CSF biomarkers clearly distinguished pathology-confirmed AD dementia (n = 27) from HC (area under the curve [AUC] 0.86-1.00). CSF total tau (t-tau), p-tau181, and their ratios with β-amyloid1-42 (Aβ1-42) also accurately distinguished pathology-confirmed AD from non-AD dementia (n = 8; AUC 0.94-0.97). In pathology-specific analyses, intermediate to high Thal amyloid phases were best detected by CSF Aβ1-42 (AUC [95% confidence interval] 0.91 [0.81-1]), while intermediate to high scores for Consortium to Establish a Registry for Alzheimer's Disease neuritic plaques and Braak tau stages were best detected by CSF p-tau181 (AUC 0.89 [0.79-0.99] and 0.88 [0.77-0.99], respectively). Optimal Elecsys biomarker cutoffs were derived at 1,097, 229, and 19 pg/mL for Aβ1-42, t-tau, and p-tau181. In the plasma subsample, both plasma p-tau181 (AUC 0.91 [0.86-0.96]) and NfL (AUC 0.93 [0.87-0.99]) accurately distinguished those with pathology-confirmed AD (n = 14) from HC. However, only p-tau181 distinguished AD from non-AD dementia cases (n = 4; AUC 0.96 [0.88-1.00]) and showed a similar, although weaker, pathologic specificity for neuritic plaques (AUC 0.75 [0.52-0.98]) and Braak stage (AUC 0.71 [0.44-0.98]) as CSF p-tau181. CONCLUSION Elecsys-derived CSF biomarkers detect AD neuropathologic changes with very high discriminative accuracy in vivo. Preliminary findings support the use of plasma p-tau181 as an easily accessible and scalable biomarker of AD pathology. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that fully automated CSF t-tau and p-tau181 measurements discriminate between autopsy-confirmed AD and other dementias.
Collapse
Affiliation(s)
- Michel J Grothe
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK.
| | - Alexis Moscoso
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Nicholas J Ashton
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Thomas K Karikari
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Juan Lantero-Rodriguez
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Anniina Snellman
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Henrik Zetterberg
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Kaj Blennow
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Michael Schöll
- From the Unidad de Trastornos del Movimiento (M.J.G.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Department of Psychiatry and Neurochemistry (M.J.G., A.M., N.J.A., T.K.K., J.L.-R., A.S., H.Z., K.B., M.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy, and Wallenberg Centre for Molecular and Translational Medicine (M.J.G., A.M., N.J.A., M.S.), University of Gothenburg, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), London, UK; Turku PET Centre (A.S.), University of Turku, Finland; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z., M.S.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London, UK.
| |
Collapse
|
16
|
Gouilly D, Tisserand C, Nogueira L, Saint-Lary L, Rousseau V, Benaiteau M, Rafiq M, Carlier J, Milongo-Rigal E, Pagès JC, Pariente J. Taking the A Train? Limited Consistency of Aβ42 and the Aβ42/40 Ratio in the AT(N) Classification. J Alzheimers Dis 2021; 83:1033-1038. [PMID: 34397413 DOI: 10.3233/jad-210236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The consistency of cerebrospinal fluid amyloid-β (Aβ)42/40 ratio and Aβ 42 has not been assessed in the AT(N) classification system. We analyzed the classification changes of the dichotomized amyloid status (A+/A-) in 363 patients tested for Alzheimer's disease biomarkers after Aβ 42 was superseded by the Aβ 42/40 ratio. The consistency of Aβ 42 and the Aβ 42/40 ratio was very low. Notably, the proportions of "false" A+T-patients were considerable (74-91%) and corresponded mostly to patients not clinically diagnosed with Alzheimer's disease. Our results suggest that the interchangeability of Aβ 42/40 ratio and Aβ 42 is limited for classifying patients in clinical setting using the AT(N) scheme.
Collapse
Affiliation(s)
| | - Camille Tisserand
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - Leonor Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - Laura Saint-Lary
- Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - Vanessa Rousseau
- Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - Marie Benaiteau
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - Marie Rafiq
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - Jasmine Carlier
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - Emilie Milongo-Rigal
- Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | | | - Jérémie Pariente
- Toulouse Neuroimaging Center, Toulouse, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| |
Collapse
|
17
|
Ossenkoppele R, Reimand J, Smith R, Leuzy A, Strandberg O, Palmqvist S, Stomrud E, Zetterberg H, Scheltens P, Dage JL, Bouwman F, Blennow K, Mattsson-Carlgren N, Janelidze S, Hansson O. Tau PET correlates with different Alzheimer's disease-related features compared to CSF and plasma p-tau biomarkers. EMBO Mol Med 2021; 13:e14398. [PMID: 34254442 PMCID: PMC8350902 DOI: 10.15252/emmm.202114398] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
PET, CSF and plasma biomarkers of tau pathology may be differentially associated with Alzheimer's disease (AD)‐related demographic, cognitive, genetic and neuroimaging markers. We examined 771 participants with normal cognition, mild cognitive impairment or dementia from BioFINDER‐2 (n = 400) and ADNI (n = 371). All had tau‐PET ([18F]RO948 in BioFINDER‐2, [18F]flortaucipir in ADNI) and CSF p‐tau181 biomarkers available. Plasma p‐tau181 and plasma/CSF p‐tau217 were available in BioFINDER‐2 only. Concordance between PET, CSF and plasma tau biomarkers ranged between 66 and 95%. Across the whole group, ridge regression models showed that increased CSF and plasma p‐tau181 and p‐tau217 levels were independently of tau PET associated with higher age, and APOEɛ4‐carriership and Aβ‐positivity, while increased tau‐PET signal in the temporal cortex was associated with worse cognitive performance and reduced cortical thickness. We conclude that biofluid and neuroimaging markers of tau pathology convey partly independent information, with CSF and plasma p‐tau181 and p‐tau217 levels being more tightly linked with early markers of AD (especially Aβ‐pathology), while tau‐PET shows the strongest associations with cognitive and neurodegenerative markers of disease progression.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Juhan Reimand
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia.,Radiology Centre, North Estonia Medical Centre, Tallinn, Estonia
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Antoine Leuzy
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Femke Bouwman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
18
|
Jardel A, Hopes L, Malaplate C, Roch V, Manca C, Jonveaux TR, Verger A. Prognostic Impact of 18-F-Florbetaben Amyloid PET Imaging in Patients with Isolated Increases in Cerebrospinal Fluid Phospho-Tau Biomarkers: A Longitudinal Study. J Alzheimers Dis 2021; 80:1389-1394. [PMID: 33682716 DOI: 10.3233/jad-201435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This longitudinal study evaluates the prognostic impact of amyloid PET in patients suspected of Alzheimer's disease and presenting with isolated cerebrospinal fluid (CSF) increases in P-Tau proteins (NCT02556502). The rate of conversion, based on the DSM-5 criteria and all collected data (average follow-up of 39.2±13.2 months), was determined by a panel of experts blinded to the PET results and was 75%(6/8) for positive and 35%(6/17) for negative baseline amyloid PET. In this population with isolated CSF increases in P-Tau, a positive baseline amyloid PET was associated with greater than twice the proportion of dementia conversions within the following three years.
Collapse
Affiliation(s)
- Amory Jardel
- Department of Neurology and Geriatrics, CHRU-Nancy, Lorraine University, Nancy, France
| | - Lucie Hopes
- Department of Neurology and Geriatrics, CHRU-Nancy, Lorraine University, Nancy, France
| | - Catherine Malaplate
- Molecular Biology and Nutrition, CRB, Department of Biochemistry, CHRU-Nancy, Lorraine University, Nancy, France
| | - Véronique Roch
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Lorraine University, Nancy, France
| | - Chloé Manca
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Lorraine University, Nancy, France
| | | | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Lorraine University, Nancy, France.,IADI, INSERM, Lorraine University, Nancy, France
| |
Collapse
|